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Accurate detection of homologous recombination deficiency (HRD) in cancer patients is paramount in clinical applications, as HRD 
confers sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. With the advances in genome sequencing technology, mutational 
profiling on a genome-wide scale has become readily accessible, and our knowledge of the genomic consequences of HRD has been 
greatly expanded and refined. Here, we review the recent advances in HRD detection methods. We examine the copy number and 
structural alterations that often accompany the genome instability that results from HRD, describe the advantages of mutational 
signature-based methods that do not rely on specific gene mutations, and review some of the existing algorithms used for HRD detec-
tion. We also discuss the choice of sequencing platforms (panel, exome, or whole-genome) and catalog the HRD detection assays 
used in key PARP inhibitor trials.
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Introduction

Many endogenous mutagenic processes or exogenous 
mutagens can lead to double-strand breaks (DSBs). If left 
unrepaired, DSBs can lead to a wide range of genomic altera- 
tions often observed in cancer. Cells employ several path-
ways to repair DSBs. Most prominently, homologous recom- 
bination repair (HRR) fixes DSB with high fidelity by copy-
ing the undamaged sister chromatid. In some cancers, how-
ever, HRR is dysfunctional, resulting in homologous recom-
bination deficiency (HRD). In these cases, DSBs are instead 
repaired by more error-prone pathways, including nonho-
mologous end joining (NHEJ) and microhomology-mediat-
ed end joining (MMEJ). Among the various causes of HRD, 
BRCA1/2 mutations are the most frequent and well-studied. 
However, genomic studies in the past decade have revealed 
that other alterations (e.g., mutations in other genes, epige-
netic silencing of target genes, structural rearrangements) 
could also result in the same type of genome instability as 
BRCA1/2 mutations, suggesting a more expansive view of 
HRD cases.

Research in HRD was spurred in part by the advances in 
therapies that exploit the underlying defect in HRR, namely 
poly(ADP-ribose) polymerase (PARP) inhibitors. In HRD 
tumors, inhibition of the PARP1 protein leads to a multi-

tude of unrepaired single-strand breaks (SSBs), which upon 
replication become DSBs. PARP inhibitors also promote an 
increase in DSBs by trapping PARP on the DNA, forming 
a PARP-DNA complex which obstructs DNA replication. 
When cells are overwhelmed by DSBs, cell death ensues. 
Since the first trial demonstrated the safety and potential effi-
cacy of PARP inhibitors in BRCA carriers in 2009, numerous 
studies have examined the potential to extend the benefits of 
PARP inhibitors beyond the BRCA-mutant tumors to other, 
non-BRCA-associated cancer types. Besides PARP inhibitors, 
platinum-based chemotherapy has also proven effective in 
some HRD tumors. 

Given the advances in the treatment of HRD patients, 
accurate and cost-effective identification of patients with 
HRD is of paramount importance. In particular, the devel-
opment of sequencing-based assays has enabled a more pre-
cise, genome-wide characterization of genomic instability 
that accompanies HRD. With the increasing accessibility of 
genome sequencing methods in clinical settings, the design 
and use of optimal assays is likely to result in more effective 
trials and an expanded patient population that will benefit 
from PARP inhibitors.

In this review, we focus on genome-based methods for 
identifying patients with a defective HRR pathway, result-
ing in HRD. After briefly reviewing key components of the 
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HRR pathway, we describe the genomic consequences of 
HRD, especially copy number variations (CNVs) and struc-
tural variations (SVs) observed in whole-genome sequencing 
(WGS) data. Then, we describe current sequencing platforms 
and recent advances that have increased the accuracy of HRD 
detection, which often involve combining multiple genomic 
features of HRD into a statistical framework. We pay par-
ticular attention to the use of ‘mutational signatures,’ which 
aim to capture a specific set of genomic features associated 
with distinct mutagenic sources. The last section highlights 
the clinical application of HRD detection, including a review 
of platforms used in key PARP inhibitor trials.

Homologus Recombination Deficiency

1. HRR pathway 
The HRR pathway starts with the recognition of DSBs by 

the MRN complex (MRE11, RAD50, and NSB1) and subse-
quent activation of ATM, which leads to further activations 
of BRCA1, BRCA2, and PALB2 [1]. The exonuclease com-
ponent of the MRN complex (in the presence of functional 
BRCA1) leads to DNA end resection from the 5′ to the 3′ 
end, generating a 3′ overhang coated by replication protein 
A (RPA). Then, RAD51 together with BRCA2 replaces RPA, 
assisted by BRCA1 and PALB2 [2]. This RAD51-DNA nucleo-
protein complex initiates D-loop formation and strand inva-
sion. Through such intricate interplay of different steps of 
repair mechanisms, the cell ensures accurate replication and 
maintains genome stability. 

During the cell cycle, HRR preferentially occurs during the 
S/G2 phase when end resection can be readily performed, 
as end-protecting factors (53BP1 and REV7) are inactivated 
by CDKs [3,4]. In contrast, during other phases of the cell 
cycle or when HRR is defective, there is a shift towards non-
HRR mediated, error-prone DNA repair, namely NHEJ and 
MMEJ. The NHEJ process, mediated by the Ku70-80 heter-
odimer complex and DNA-PKc, directly ligates the two bro-
ken ends, often creating characteristic mutations, deletions, 
or inter-chromosomal translocations [5]. MMEJ is mediated 
by PARP1, which regulates the balance between NHEJ and 
MMEJ through its competition with the Ku70-80 complex. 
Following the DNA resection step, the MMEJ process utilizes 
polymerase theta and microhomology features (homologous 
DNA sequences of 5 to 25 bp) at DNA breakpoints to join 
the broken ends [6]. More details on these mechanisms are 
reviewed elsewhere [7].

2. Characteristic footprints of genomic instability in HRD
An intact HRR pathway is crucial for genome integrity 

and tumor suppression, and its loss is a prevalent cause of 

cancer in tumor types such as ovarian cancer and triple-neg-
ative breast cancer. The leading cause of HRD is the bi-allelic 
loss of BRCA1 or BRCA2, most commonly due to mutations 
on one allele and loss of heterozygosity (LOH) of the other 
allele, and promoter hypermethylation of BRCA1 [8]. Beyond 
BRCA1/2, loss of other central HRR genes can also lead to 
HRD [9]. In addition to their DSB repair function, BRCA1/2 
are involved in other key cellular processes such as main-
tenance of replication fork stability, R-loop resolution, and 
protection of telomere integrity, all of which contribute to 
maintaining genome integrity [10,11]. 

With impaired HRR, the increased contribution of NHEJ/
MMEJ leads to characteristic patterns of genomic instability 
(some refer to these as “genomic scars”). Comparison of HRD 
and non-HRD (i.e., homologous recombination proficient, 
HRP) cell lines and tumors have revealed several features 
of HRD-specific genomic instability involving LOH, allelic 
imbalance, and chromosomal rearrangements [8,9,12,13]. 
These features all reflect improper repair of DSBs and are 
linked to each other—allelic imbalance, for instance, can be 
caused by copy number—neutral LOH, deletion, or monoal-
lelic copy number gain. In one study, the authors examined 
different summary statistics of chromosomal alterations and 
found the number of chromosomal regions with telomeric 
allelic imbalance (TAI)—allelic imbalance that extends to the 
telomeric end of a chromosome—to be the most accurate 
predictor of sensitivity to cisplatin in breast cancer cell lines 
and associated with impaired HRR [12]. In another study, the 
authors found frequent large-scale chromosomal rearrange-
ments to be characteristic of BRCA1-associated genomic 
instability in breast cancers and proposed the number of 
large-scale state transitions (LST)—chromosomal breaks 
between adjacent regions of at least 10 Mb—as a robust pre-
dictor of BRCA1 status [13]. A commercial HRD test used in 
many key clinical trials defined the genome instability score 
(GIS) as a simple sum of LOH events (defined as the num-
ber of sub-chromosomal LOH regions > 15 Mb), TAI, and 
LST scores (see later sections for more details) [14]. These 
measures were established more than a decade ago based on 
single nucleotide polymorphism (SNP) arrays, prior to the 
widespread use of WGS. Therefore, although they attempted 
to capture genome-wide characteristics of genome instabil-
ity, the detected features were of low resolution, not allowing 
inference of detailed rearrangement types. 

3. Clinical significance of HRD
Accurate detection of HRD in cancer patients is important 

because of its therapeutic implications. An efficacious mode 
of intervention is the PARP inhibitor, which targets PARP1 
and PARP2 enzymes. PARP inhibitors restrict the base exci-
sion repair pathway for repairing DNA SSBs, leading to an 
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accumulation of unrepaired SSBs, which is then converted 
into DSBs during replication [15]. Since cells with BRCA1/2 
mutations or HRD phenotypes cannot efficiently repair 
DSBs, PARP inhibitors lead to synthetic lethality. Moreover, 
PARP inhibitors cause PARP1/2 trapping, which could be 
associated with drug potency among different types of PARP 
inhibitors [16]. The first human trial using PARP inhibitors 
was conducted in 2009, in which 60 patients with multiple 
cancer types received olaparib in recurrent settings [17]. 
Responses were observed in breast, ovarian, prostate, and 
pancreatic cancers, which are BRCA-associated cancers. 
Since then, PARP inhibitors have become standard care in 
ovarian cancer. Most notably, in the SOLO-1 trial, olaparib 
for front-line maintenance in ovarian cancer patients with 
BRCA mutations was associated with a progression-free sur-
vival (PFS) benefit of 36 months compared to placebo, with 
a hazard ratio of 0.30 (95% confidence interval, 0.23 to 0.41) 
[18]. A recently published 7-year follow-up suggests that 
patients continued to derive benefits even after 2 years on 
olaparib [19]. Although not as dramatic, efficacy of PARP 
inhibitor was also shown in metastatic or recurrent settings 
and in BRCA-associated cancer types other than ovarian, as 
several trials have highlighted [20-22]. Importantly, studies 
have suggested that patients with HRD disproportionately 
benefit from PARP inhibitor even when they are wild-type 
for BRCA (see later sections for more details). Therefore, an 
accurate HRD detection strategy can be pivotal for refining 
patient selection criteria and the expansion of cancer types 
for which PARP inhibitor is not currently considered. 

Mutational Signature Analysis

To understand the advances in HRD prediction algorithms, 
it is necessary to understand the fundamentals of ‘mutational 
signatures,’ an analytical framework first described a decade 
ago [23] and now routine in cancer genome analysis. Here, 
we describe the key concepts and basic properties of muta-
tional signature analysis in non-mathematical language, with 
a focus on HRD-associated signatures. A schematic summary 
of signature analysis in the context of HRD is shown in Fig. 
1. More detailed reviews of mutational signature analysis are 
available elsewhere [24-26].

1. Basic concepts and single base substitutions
Signature analysis aims to decipher the etiology of specific 

mutational processes based on their characteristic patterns in 
the genome. In the simplest case of point mutations, different 
types of single base substitutions (SBSs) are enriched in can-
cers of different tissues. For example, lung and liver tissues 
are specifically subject to DNA damage induced by tobacco 

smoking, resulting in an enrichment of C>A substitutions in 
the associated tumors. Furthermore, the DNA sequence con-
text surrounding the substituted bases often provides addi-
tional information on the underlying mutagenic process. For 
instance, spontaneous deamination of 5-methylcytosine—an 
endogenous mutational process operative in nearly all tis-
sues—creates C>T mutations almost exclusively in the CpG 
context. Standard signature analysis for point mutations 
thus centers on mutation frequency spectra of trinucleotides, 
consisting of the substituted base together with one adjacent 
base on each side, yielding 96 combinations given the four 
bases. It is possible to extend to larger contexts, e.g., two 
bases on each side for a pentamer, but such analyses appear 
to yield limited additional insights, at least with currently 
available data.

As multiple mutagenic processes are typically active in a 
cancer genome, its mutational spectrum reflects the cumu-
lative effect of such processes over time. To identify what 
mutagenic processes might be present (de novo signature 
discovery), a standard approach is to perform non-negative 
matrix factorization (NMF) on the mutational type-by-sam-
ple matrix. Similar to principal component analysis (PCA), 
NMF aims to identify the building blocks (i.e., signatures) 
that best summarize the data; the difference compared to 
PCA is that all elements of the signature and the coefficients 
used in decomposition must be positive. 

By applying NMF to large numbers of cancer genom-
es, catalogs of reference mutational signatures have been 
derived. One popular catalog is the COSMIC Mutational 
Signatures, which has been an indispensable resource in the 
field. The latest version (v3.4, 2023) was largely derived from 
2,780 cancer genomes. An additional > 1,800 genomes and 
> 19,000 exomes were used to assess stability and reproduc-
ibility [23,27]. Several curated signatures derived from other 
sources were also included in the catalog. For SBSs, the COS-
MIC catalog contains 86 signatures, 67 of which are thought 
to be of biological origin, whereas the rest are suspected to be 
possible sequencing artifacts. Such biological annotations are 
possible via population association studies or experimental 
studies, e.g., by the sequencing of cell lines after exposure 
to mutagens or the knock-down of genes with known func-
tion in DNA repair. Examples of signatures with well-estab-
lished etiologies include SBS1 (spontaneous deamination of 
5-methylcytosine), SBS2/SBS13 (activity of the APOBEC cyt-
idine deaminases), SBS4 (tobacco smoking), and SBS7 (UV 
light exposure). 

Catalogs of reference mutational signatures are evolving. 
As more genomes of cancer and other diseases are being 
sequenced, new signatures will be discovered [28]. Known 
signatures may also be refined or revised. For example, with 
more samples, there may be sufficient statistical power to 

Yoo-Na Kim, Genomic Approaches to Detect HRD 



978     CANCER  RESEARCH  AND  TREATMENT

Cancer Res Treat. 2024;56(4):975-990

B

M
ut

at
io

ns
Sp

ec
tra

Single-base
substitution

(SBS)

Copy number
variation

(CNV)

Structural
variation

(SV)

G C T C
T

A T C N

4
3
2
1
0

L

Change

LOH Clustered

DEL, DUP, TRA, INV

L

Indel (ID)

size

Microhomology

C
T C A

G
C

T C

A
ReplicationDamage Repair

Double-strand
break & repair

Stalled
replication forks

Single-strand breaks
lesions

↑ Translesion
synthesis (TLS)

↑

Double-strand breaks

Error-prone

High-fidelity Homologous recombination
Dysfunctional in HRD cells

NHEJ, MMEJ, BIR, SSA↑

DC

HR
D

Signatures Signatures Signatures SignaturesMechanism Mechanism Mechanism Mechanism

SBS3
TLS

MMEJ
ID6
ID8

MMEJ
NHEJ

CN17
(CX3) BIR RS3

RS5
BIR
SSA

Without signature analysis

Reciprocal pairs

LOHtAI LST

rDup rDel

Signature approach

Samples Signatures Activites

Fig. 1.  Schematic summary of signature analysis in the context of homologous recombination deficient (HRD). (A) The process of double-
strand break and repair. In HRD cells, homologous recombination—a high-fidelity repair mechanism—is dysfunctional, and thus error-
prone mechanisms dominate. (B) Different types of genomic alterations, SBS, insertions/deletions (ID), CNV, and SV can be used to 
detect HRD. Spectra indicates typical mutational patterns associated with each alteration type, and among these spectra, HRD-associated 
signatures and their underlying etiology has been suggested. (C) Schematic description of mutational signature approach, which involves 
non-negative matrix factorization (NMF) on the mutation type-by-sample matrix, to identify the building blocks (i.e., signatures) that best 
summarize the data. (D) HRD detection based on CNV and SV-based raw traits that do not involve signature analysis. BIR, break-induced 
repair; LOH, loss of heterozygosity; LST, large-scale state transitions; MMEJ, microhomology-mediated end joining; NHEJ, nonhomolo-
gous end joining; rDel, reciprocal deletion; rDup, reciprocal duplication; SSA, single-strand annealing; tAI, telomeric allelic imbalance.



VOLUME 56 NUMBER 4 OCTOBER 2024     979

further separate an existing signature into multiple ones 
[29]. It is important to note that deriving reference catalogs 
is a challenging process that can be error-prone and often 
requires manual intervention. For example, one needs to be 
cautious when analyzing cohorts with hypermutated sam-
ples, as a few hypermutated samples may bias the signature 
discovery process by contributing a disproportionately large 
number of mutations. Particularly challenging are ‘flat’ sig-
natures—where the spectra are more or less even across the 
triplets—as the underlying signatures become difficult to 
separate mathematically. Therefore, it is important to verify 
the robustness of discovered signatures in orthogonal data-
sets or through experiments.

Given that a fairly stable catalog has been generated, a 
common procedure in signature analysis is to ‘refit’ a given 
spectrum with a combination of catalog signatures, i.e., esti-
mating the weighting factor for each signature so that the sig-
natures sum to the original spectrum with minimum error. 
As is the case for deriving reference catalogs, refitting is not a 
clearly-defined process. Depending on the choice of the algo-
rithm and the thresholds therein, a sample may be found to 
contain a range of different signatures. To decrease the likeli-
hood of a false positive signature, one should consider limit-
ing the analysis only to a subset of signatures that are likely 
to be present in a given tissue as informed by previous stud-
ies of large cohorts, although this will prevent the discovery 
of a new biological process operative in the sample.

2. Alterations beyond SBSs
Recent signature analysis has incorporated mutation 

types beyond SBSs, including double-base substitutions 
(e.g., CC>TT), indels, CNVs, and SVs. These alterations can 
be identified from sequencing data using a wide range of 
computational tools, as summarized in our recent review 
[30]. Double-base substitutions are relatively rare, with a 
burden of about 1% of that of SBSs, and their signatures are 
defined without the surrounding sequence context to avoid 
the extremely large number of possible categories. For other 
mutation types, ad hoc definitions are used to strike a balance 
between capturing sufficient details of the mutation context 
and avoiding an excess of categories, which would lead to 
overly sparse spectra. Specifically, for indels, it is not feasible 
to enumerate all possible inserted or deleted sequences. The 
standard indel signature definition thus classifies indels pri-
marily based on their sizes and whether they occur at repeat 
regions (except for 1-bp indels, which are further separated 
based on the affected nucleotide). Deletions with microho-
mologies are further put into separate classes, as they are 
often informative of specific mutational processes [27,31]. 
Signature definitions of CNVs and SVs are even more chal-
lenging and less established [32-36]. The current COSMIC 

CNV signatures are mainly defined by the total copy number 
(1, 2, 3-4, 5-8, 9+) and the size (1-100 kb, 100 kb-1 Mb, 1-10 
Mb, 10-40 Mb, > 40 Mb) of each segment, while incorporat-
ing the heterozygosity status. 

3. Mutational signatures associated with HRD
Previous studies have linked HRD with specific mutation-

al signatures, most notably SBS signature 3 (SBS3), charac-
terized by a roughly uniform distribution across all 96 sub-
stitution types. First identified as correlating with BRCA1/2 
mutations in breast cancers [36,37], SBS3 was later found to 
be associated with other HRR gene alterations as well, such 
as epigenetic inactivation of BRCA1 and RAD51C or PALB2 
mutations [38]. The association between SBS3 and HRD was 
validated by knockout experiments of BRCA1/2 genes ini-
tially [39] and other HRR-genes later [40]. The mechanistic 
origin of SBS3 in HRD tumors is still an open question. Pro-
posed mechanisms involve polymerase theta in MMEJ [41] 
or REV1/REV3L in translesion synthesis [42], although in 
another study the double knockout of BRCA1 and REV1 still 
exhibited SBS3 [43]. 

Other non-SBS signatures associated with HRD are indel 
signatures ID6 and ID8, as well as rearrangement signatures 
RS3 and RS5 [27,36,38-40]. ID6 mainly consists of ≥ 5-bp 
deletions with overlapping microhomologies at deletion 
boundaries, suggesting an MMEJ origin. ID8 also contains 
≥ 5-bp deletions, but does not show an enrichment of long 
microhomologies, suggesting NHEJ as its underlying cause. 
In addition, ID8 was found to be enriched in tumors with 
topoisomerase mutations [27,44]. Rearrangement signatures 
are defined based on the type (deletions, tandem duplica-
tions, inversions, and translocations) and size of the rear-
rangements, as well as whether they occur in clusters [36]. 
Clustered rearrangements are likely to have originated from 
the same complex event, thus pointing towards distinct 
mutational processes. The two HRD-associated rearrange-
ment signatures correspond to different underlying causes 
of HRD. Specifically, RS3, characterized by small tandem 
duplications of < 10 kb is associated with BRCA1 mutations, 
whereas RS5, characterized by deletions of 10-100 kb is asso-
ciated with BRCA2 mutations [45] and enriched in cases 
with PALB2 or RAD51C losses [40,46]. Of note, RS5 is also 
present at lower amplitudes in HRP tumors, such as a large 
fraction of lung, liver, and cervical cancers and melanomas 
[47]. Furthermore, enrichment in deletions with homeology 
(approximately homologous sequences of > 50 bp) in BRCA2 
mutated samples suggests a potential link between single-
strand annealing  and RS5 [48,49]. Finally, a recent study 
using “linked-read” sequencing (Illumina technology that 
can track fragments from the same > 50 kb DNA molecule 
but is now discontinued due to patent issues) found com-
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plex SVs in BRCA1/2-deficient tumors that were missed by 
short-read data. Rather than balanced translocation or inver-
sion, near-reciprocal rearrangement with copy loss or gain of 
the intervening regions were found to be enriched in these 
tumors [49].

Although a COSMIC mutational signature catalog has 
also been generated for CNVs, it has not been as informative 
for HRD prediction. First, other features, especially micro-
homology-mediated deletions and SBS3, are more effective 
than a CNV-based measure. Second, GIS score or its variants 
(e.g., HRD index [50]) already capture the key features in 
large CNVs, even though those scores are ad hoc measures 
of genome instability. In two recent CNV signature analysis 
approaches [32,34], the copy number patterns are defined 
using copy number states, heterozygosity, segment length 
distributions, breakpoint density, and other related meas-
ures. Not surprisingly, the signatures linked with HRD in 
both papers, CN17 [32] and CX3 [34], have segment length 
distribution similar to that used to define components of GIS 
(each paper used its own CNV catalog with different signa-
ture names). Third, CNV signatures are more complicated to 
construct due to the difficulty in identifying whole-genome 
duplication regions accurately. For example, the most com-
mon copy number states in CN17 are 3 and 4, suggesting that 
this signature may be capturing events only in samples with 
whole-genome duplication rather than a broad signature 
that applies to all HRD samples.

 
4. Future improvements in mutational signature analysis

Signature analysis has become a standard tool in interpre-
tation of somatic mutations, but there are several shortcom-
ings with current approaches. For example, the observed 
mutations and their signatures reflect the residual imprints 
of errors after the repair processes have taken place, rather 
than the initial DNA damage. This becomes apparent when 
DNA damage introduced in cells with a deficient repair path-
way leads to specific mutational patterns [51,52]. To address 
this problem, explicit modeling of the damage-repair inter-
action has been proposed [53]. Another challenge is that 
mutations do not accumulate uniformly along the genome, 
as both DNA damage and repair vary depending on locus-
specific features such as transcription activity, replication 
timing, presence of DNA-binding proteins, and epigenetic 
modifications [52,54]. New signature analysis methods are 
being developed to incorporate these additional attributes 
[55]. Even within the standard signature analysis framework, 
important methodological issues remain. In particular, the 
NMF algorithm at the center of de novo signature discovery 
methods has an intrinsic problem of producing non-unique 
solutions; the procedure of deriving a reference signature 
catalog needs a method less dependent on manual interven-

tions; and signature refitting is lacking a statistically sound 
algorithm that minimizes incorrect signature assignments. 
We have recently developed Mutational Signature Calcula-
tor (MuSiCal), a rigorous analytical framework for signature 
analysis that incorporates several algorithms to tackle some 
of these issues [56].

Current Assays for HRD Detection

Existing HRD detection approaches can be classified 
based on what genomic information they rely on and which 
sequencing platform they use. A summary of genomic infor-
mation relevant to HRD detection for each sequencing plat-
form is shown in Table 1 [50,57-59]. 

1. Panel-based HRD detection method
An early approach for HRD detection, prior to the devel-

opment of mutational signatures, is based on mutations of 
genes associated with HRR. These typically include PALB2, 
BARD1, BRIP1, RAD51B, RAD51C, RAD51D, ATM, FAAP20, 
CHEK2, FAN1, FANCE, FANCM, and POLQ among others 
[60]. However, applying this gene-based approach to clini-
cal HRD detection has been challenging for several reasons. 
First, clinical studies have utilized slightly different sets of 
HRR genes, and the low prevalence of mutations in individ-
ual HRR genes makes it difficult to assess the clinical signifi-
cance of each gene. Second, mutations of HRR genes, when 
followed by an LOH event (thus creating a bi-allelic loss), 
are more likely to be pathogenic. But determining the mono-
allelic vs. bi-allelic status of a mutation is difficult, especially 
when the tumor purity is low. Third, evaluating the patho-
genicity of missense mutations in HRR genes is challenging, 
as variants of unknown significance are common except for 
the well-studied BRCA1/2. 

Clinical trials involving PARP inhibitors have frequently 
utilized panel sequencing to identify patients with BRCA 
mutations or other HRR gene mutations in prospective ran-
domized trials. Their inclusion criteria were often shaped by 
the initial trials that led to the approval of PARP inhibitors in 
each cancer type. Regardless of cancer type, BRCA mutations 
were associated with a favorable response to PARP inhibi-
tor, whereas a clinical benefit was not consistently observed 
for non-BRCA, HRR mutations. In prostate cancer, BRCA1, 
BRCA2, ATM, and other 12 prespecified HRR genes were 
used as inclusion criteria for the first trial that led to PARP 
inhibitor approval in prostate cancer [61]; thus, non-BRCA, 
HRR genes are still frequently used as the inclusion criteria. 
In contrast, in ovarian cancer, post-hoc analyses of major PARP 
inhibitor trials have shown mixed findings—either a trend 
of improved response or no improvement in HRR-mutated 
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subgroup [62,63]. There is ongoing research to understand 
the clinical significance of non-BRCA HRR gene mutations, 
such as identifying the tumor-specific context in which these 
mutations arise and determining which specific mutations 
drive therapeutic response. 

Although panel sequencing is routinely performed in 
many cancer hospitals to detect cancer-associated hotspot 
mutations, the number of identified mutations from panels 
is generally > 1,000-fold smaller than from WGS, rendering 
standard mutational signature analysis approaches ineffec-
tive. The HRD-associated SBS3 is particularly difficult to 
detect because its “flat” profile requires more mutations to 
ascertain its presence with confidence. To ameliorate this 
situation, we have previously developed a computational 
method called Signature Multivariate Analysis (SigMA) to 
identify SBS3 from targeted gene panels [57]. The key inno-
vations were leveraging existing WGS data to learn expected 
signature combinations for each tumor type and developing 
a robust classification framework with machine learning. We 
validated our method by comparing SigMA-derived SBS3 
calls with BRCA mutations and comparing results obtained 
from paired panel and exome data from the same patients 

[64]. We also showed that the SBS3 status inferred from panel 
data using SigMA predicted the response of breast cancers 
to PARP inhibitors and outperformed existing clinical HRD 
classification strategies [64,65]. Despite the reduced sen-
sitivity and specificity compared to WGS, SigMA enables 
mutational signature analysis to be performed using panel 
sequencing data. 

2. Detecting HRD-associated genome instability based on 
copy number profiling

Another popular approach for HRD detection is to measure 
HRD-associated large-scale copy number alterations, ideally 
in conjunction with point mutation detection in HRR genes. 
The commercial test Myriad myChoice provides a ‘Genome 
Instability Score’ (GIS) based on the three copy number-
based statistics described earlier (TAI, telomeric allelic imbal-
ance; LOH, loss of heterozygosity; and LST, large-scale state 
transitions), along with the BRCA1/2 mutation status. A GIS 
cutoff of ≥ 42 was defined based on 95% sensitivity to detect 
breast cancers with BRCA1/2 mutations and BRCA1 pro-
moter methylations [14]. GIS was initially computed from 
SNP arrays, but now high-throughput sequencing is used. 

Yoo-Na Kim, Genomic Approaches to Detect HRD 

Table 1.  The pros and cons of different sequencing methods that allow clinical HRD detection
	

	                                                  Sequencing method			                      HRD detection method

	
Pros	 Cons

	 Building 	
Component

	 Example algorithms/ 
			   blocks		  commercial tests

Whole-genome 	 Uniform and unbiased	 Low VAF variants  	 SBS, ID, 	 Spectra components	 CHORD [58] 
  sequencing	   genome coverage	   will missed due to 	   SV	   (BRCA1-like vs. 
  (~30× germline)	 Comprehensive 	   low coverage		    BRCA2-like vs. HRP)
  (~60-90× tumor;	   identification of	 Difficulty with FFPE  		  Signature exposure 
  1-5× low 	   variants: SNVs, 	   or low tumor	 CNV	 Genomic instability score	 HRDetect [50] 
  coverage)	   CNVs, SVs	   purity samples		    (GIS), LOH+TAI+LST
	 Purity and ploidy can 			   Large-scale CNVs from 	 ShallowHRD [59] 
	   be inferred  			     low (~1×) coverage 
	 Accurate signature 			     sequencing
	   analysis			 
Panel sequencing	 High depth allows for 	 Variants only in	 SBS	 Signature 3 exposure 	 SigMA [57]
  (~50-500 genes)	   effective detection of 	   prespecified regions		    (“Sig3” - HRD signature)
  (~500-2,000×)	   SNVs in regions 	 CNVs are difficult 	 CNV	 LOH (%)	 Foundation 
	   of interest	   to assess	   (> 1 Mb)		    Medicine
	 Data size easy to 	 Signature analysis 			     (FoundationOne 
	   manage	   challenging due to			     CDx)
		    low mutation counts
SNP array	 Robust CNV calling 	 No detection of  	 CNV	 Genomic instability 	 Myriad
  (~3-10 kb 	   due to dense SNP	   somatic mutations		    score (GIS)	   (MyChoice
  between probes)	   loci coverage 	   (other than CNVs) 			     CDx)

CNV, copy number variation; FFPE, formalin-fixed paraffin-embedded; HRD, homologous repair deficiency; HRP, homologous repair 
proficient; ID, indel; LOH, loss of heterozygosity; LST, large scale translocation; SBS, single base substitution; SNP, single nucleotide poly-
morphism; SNV, single nucleotide variant; SV, structural variation; TAI, telomeric allelic imbalance; VAF, variant allele fraction.
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The Foundation Medicine assay FoundationOne uses the 
BRCA1/2 mutation status and the genomic LOH percentage 
based on targeted panel sequencing to detect HRD. In addi-
tion to HRD status, it reports pathogenic mutation status of 
324 cancer-related genes, including HRR-associated genes. 

3. Enhanced HRD characterization with WGS
WGS enables the most unbiased and comprehensive quan-

tification of mutational signature. In addition to a larger 
number of single nucleotide mutations, WGS allows detec-
tion of various structural changes, such as large insertions, 
deletions, and rearrangements [30], thus enabling analysis of 
copy number and rearrangement signatures. Although it is 
possible to detect large-scale CNVs from exome data, WGS 
enables more accurate CNV analysis, with the resolution of 
CNV dependent on sequencing coverage.

The first method for HRD detection based on WGS is 
HRDetect (2017), which uses mutational signatures SBS3, 
SBS8, RS3, and RS5, deletions with microhomology, and the 
HRD index (a variant of GIS) as covariates for lasso logis-
tic regression modeling. HRDetect was trained on breast 
cancer samples with BRCA1/2 deficiency, and this classifier 
was later also applied to other tumor types [47,50]. The most 
impactful predictors were the proportion of deletions with 
microhomology and SBS3, followed by RS3, RS5, and HRD 
index. Another WGS-based algorithm is CHORD (Classi-
fier of HOmologous Recombination Deficiency) [58], which 
utilizes a random-forest classifier with 29 features, many of 
which correspond to components of the mutational signa-
tures used in HRDetect. The two features that contribute the 
most in CHORD were ≥ 2 bp deletions with flanking micro-
homology and duplications of size 1-100 kb. 

These two methods when applied to multiple tumor types 
provided largely concordant results [58], e.g., having the 
deletions with ≥ 2 bp flanking microhomology as one of the 
most predictive features of HRD. Pan-cancer HRD classifica-
tion is a challenging task. For HRDetect, training based on 
breast cancer data may not provide the optimal classification 
performance for other tumor types. For CHORD, although 
training was performed in a pan-cancer setting, the positive 
training set was largely dominated by tumor types typically 
associated with HRD, such as breast and ovarian cancers. To 
resolve this problem, more WGS samples must be available 
publicly for tumor types with low HRD prevalence, so that 
tumor type-specific training can be performed. 

A major question in the design of a WGS assay for HRD 
is the sequencing coverage. If the aim is simply to measure 
genome instability alone, it is possible to obtain reasonably 
accurate calls from shallow coverage. For example, Shal-
lowHRD used ~1× data to measure large-scale CNVs by a 
statistic similar to LST for SNP arrays, and found a high-

concordance with the SNP array-based calls [59]. The same 
group subsequently showed that shallowHRDv2 had 94% 
agreement with Myriad myChoice across 449 high-grade 
ovarian cancers and that patients with HRD according to 
shallowHRDv2 had longer PFS [66]. While we suspect that 
not having other features (e.g., microhomology-mediated 
indels and SBS3) make this less sensitive and less precise, 
shallow coverage sequencing may be a simple, low-cost 
alternative to currently available commercial tests.

4. HRD testing in PARP inhibitor trials 
In this section, we summarize the key clinical trials that 

led to the Food and Drug Administration (FDA) approval of 
PARP inhibitors, focusing on HRD testing platforms and the 
efficacy of PARP inhibitors with respect to HRD stratification 
(Table 2) [18,20,61,67-78].  Across various trials and cancer 
types, PARP inhibitor efficacy varies widely, likely due to dif-
ferences in cancer specificity and the treatment setting, since 
PARP inhibitors had to be incorporated into existing treat-
ment flow. However, consistently across trials, patients with 
pathogenic BRCA mutations disproportionately benefit from 
PARP inhibitors compared to those with BRCA wild-type dis-
ease. Consequently, PARP inhibitors have been approved for 
patients with BRCA mutations in ovarian, breast, prostate, 
and pancreatic cancers. Beyond BRCA mutations, patients 
with HRD tumors also benefit from PARP inhibitors com-
pared to those with HRP tumors. However, this summary 
also highlights the considerable differences in how HRD was 
tested and defined across these trials (e.g., HRR mutation or 
GIS, SNP array or sequencing, commercial test or in-house 
assay); the approved indications are driven by the diagnostic 
platforms available at the time of the study. Efforts to fur-
ther refine HRD classification and expand the indication 
for PARP inhibitors to other cancer types would require an 
understanding of the biological differences in cancer types 
that underlie the HRD phenotype, as well as careful design 
of prospective trials with respect to inclusion criteria, testing 
platforms, prespecified analysis plans, and sample size. 

Perspectives for the Future

1. Incorporating WGS-based HRD detection in the clinic 
In addition to more comprehensive HRD detection, WGS 

provides a wealth of information about the genome-wide 
mutational profile of the tumor, thereby enabling other types 
of analysis that should be of interest to physician-scientists. 
Despite these advantages, WGS is not typically incorporat-
ed in large prospective trials or in clinics yet. To implement 
WGS-based assays, several issues must be resolved.

With the introduction of the latest Illumina sequencers 

Cancer Res Treat. 2024;56(4):975-990
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Table 2.  Summary of FDA approvals in PARP inhibitors in respective cancer types, and corresponding clinical trials and HRD testing 
platforms used

	
Trials	 Setting	 Drug	 HRD test	 Cohort	 PFS overall	 PFS in HRDa)	 PFS in HRP

Ovarian cancer: 
    - Newly diagnosed setting for advanced stage, high grade: olaparib (gBRCA mutated), olaparib+bevacizumab 
      (g/sBRCA mutated or HRD), and niraparib (any BRCA or HRD status) 
    - Second-line or greater as maintenance: olaparib (any BRCA or HRD status), niraparib (gBRCA mutated), and rucaparib 
      (g/sBRCA mutated)
    - Heavily pre-treated setting: retraction of approval
SOLO-1  	 Newly  	 Olaparib   	 Not done  	 gBRCAmut (100%)	 Not reached 	 NA	 NA
  [18]	   diagnosed	   vs. placebo		    	   vs. 13.8 
	   advanced	   			     (HR 0.3, 
					       95% CI
					       0.23-0.41)
PAOLA-1 	 Newly  	 Olaparib+	 Myriad 	 HRD (48.0%)	 22.1 vs. 16.6	 37.2 vs. 17.7	 16.6 vs. 16.2 
  [67]	   diagnosed 	   bevacizumab 	  myChoice 	 HRP (34.4%)	   (HR 0.59, 	   (HR 0.33, 	   (HR 1.00,
	   advanced  	   vs. placebo	   HRD	 Unknown	   95% CI	   95% CI	   95% CI
			     	   (17.6%)	   0.49-0.72)	   0.25-0.45)	   0.75-1.35) 
PRIMA 	 Newly  	 Niraparib  	 Myriad 	 HRD (50.9%)	 13.8 vs. 8.2 	 21.9 vs. 10.4 	 8.1 vs. 5.4 
  [68]	   diagnosed 	   vs. placebo	   myChoice 	 HRP (49.1%)	   (HR 0.62, 	   (HR 0.43, 	   (HR 0.68,
	   advanced		    HRD		    95% CI	   95% CI	   95% CI
					       0.5-0.76)	   0.31-0.59)	   0.49-0.94)
Study 19 	 Platinum-	 Olaparib  	 Not done	 gBRCAmut (22.8%)	 8.4 vs. 4.8 	 NA	 NA
  [20]	   sensitive 	   vs. placebo 		  gBRCAwt (13.2%)	   (HR 0.35, 
	   recurrent			   Unknown (64.0%)	   95% CI
					       0.25-0.49)	
SOLO-2 	 Platinum- 	 Olaparib 	 Not done 	 gBRCAmut (96.9%)	 19.1 vs. 5.5	 NA	 NA
  [69]	   sensitive 	   vs. placebo		  Unknown (3.1%)	   (HR 0.3, 
	   recurrent				      95% CI
					       0.22-0.41)
NOVA 	 Platinum- 	 Niraparib 	 Myriad	 gBRCAmut (36.7%)	 Not reported 	 12.9 vs. 3.8 	 6.9 vs. 3.8 
  [70]	   sensitive 	   vs. placebo	   myChoice 	 gBRCAwt (63.3%)		    (HR 0.38, 	   (HR 0.58,
	   recurrent	   HRD				      95% CI	   95% CI
			    			     0.24-0.59)b)	   0.36-0.92)
ARIEL3 	 Platinum- 	 Rucaparib 	 Foundation	 g/sBRCAmut (35%)	 10.8 vs. 5.4 	 13.6 vs. 5.4 	 6.7 vs. 5.4 
  [71]	   sensitive 	   vs. placebo	   T5 NGS (s)	 BRCAwt (65%) 	   (HR 0.36, 	   (HR 0.44,	   (HR 0.58,
	   recurrent		  Foundation % 	   LOH-H (28%)	   95% CI	   95% CI	   95% CI
			     LOH 	   LOH-L (29%)	   0.30-0.45) 	   0.29-0.66)c)	   0.4-0.85)d)

				      LOH- 
				        indeterminate (9%) 
Breast cancer:	
    - Early stage, HER2-negative breast cancer with high risk of recurrence: olaparib (gBRCA mutated) 
    - Metastatic breast cancer (HER2-negative) with prior treatment using chemotherapy in neoadjuvant, adjuvant, or metastatic  
      setting: olaparib (gBRCA mutated) 
    - Locally advanced or metastatic breast cancer (HER2-negative): talazoparib (gBRCA mutated)
OlympiA 	 HER2   	 Olaparib 	 NA	 gBRCAmut 	 3-Year invasive	 NA	 NA
  [72]	   negative,	   (1 year) vs.		    (100%)	   disease-free
	   early breast 	   placebo			     survival
	   cancer	   			     85.9% vs.
					       77.1% (HR 
					       0.58, 95% CI
					       0.41-0.82)
(Continued to the next page)
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Table 2.  Continued
	

Trials	 Setting	 Drug	 HRD test	 Cohort	 PFS overall	 PFS in HRDa)	 PFS in HRP

OlympiADe) 	 HER2, 	 Olaparib vs. 	 NA	 gBRCAmut (100%)	 7.0 vs. 4.2 	 NA	 NA
    [73]	   negative,	   physician’s			     (HR 0.58,
	   recurrent or 	   choice			     95% CI 
	   metastatic	   single-agent     		    0.43-0.80) 
		    chemotherapy
EMBRACAe) 	Locally  	 Talazoparib 	 NA	 gBRCAmut (100%)	 8.6 vs. 5.6 	 NA	 NA
  [74]	   advanced or	   vs. 			     (HR 0.54,
	   metastatic	   physician’s			     95% CI
	   	   choice			     0.43-0.80)
	   	   single-agent     		   
		    chemotherapy
Prostate cancer: 
    - Metastatic castration-resistant prostate cancer (mCRPC) 
    - With progression on prior treatment with enzalutamide or abiraterone: olaparib (g/s HRR gene mutated)
    - Who have been treated with androgen receptor-directed therapy and a taxane-based chemotherapy: 
      rucaparib (g/s BRCA mutated) 
    - First-line setting for mCRPC: olaparib+abiraterone+prednisone (HRR mutated) and talazoparib+enzalutamide (BRCA mutated)
PROfounde) 	 mCRPC,   	 Olaparib vs. 	 FoundationOne 	 Cohort A: BRCA1, 	 Cohort A: 7.4 	 NA	 NA
  [61]	   failed prior	   physician’s	   CDxf)	   BRCA2, ATM (34.8%)	   vs. 3.6 (HR
	   treatment	   choice		  Cohort B: 12 other	   0.34, 95% CI
	   with new	   single-agent     	   prespecified 	   0.25-0.47)		   
	   hormonal 	   chemotherapy	   genes (63.3%)g)	 Cohort A+B: 5.8 
	   agent				      vs. 3.5 (HR
					       0.49, 95% CI
					       0.38-0.63) 
TRITON-2e) 	 mCRPC,  	 Rucaparib 	 NA	 g/s mutation in  	 ORR 43.5% 	 NA	 NA
  [75]	   failed prior 	   (phase II 		    BRCA1, BRCA2, 	   (31.0-56.7%), 
	   treatment 	   single arm)		    ATM, or 12 other 	   DOR not 
	   with 			     prespecified	   reached
	   hormonal			     genesh)	   (6.4 months to
	   agent and 				      not reached)
	   1 prior
	   taxane-based
	   chemotherapy
TALAPRO-2 	First-line   	 Talazoparib+	 FoundationOne	 HRRmut (20.7%)i)	 Not reached 	 27.9 vs. 16.4 	 Not reached 
  [76]	   mCRPC on	   enzalutamide	  CDx	 HRRwt (52.9%)	   vs. 21.9 (HR	   (HR 0.46, 	   vs. 22.5
	   androgen	   vs. placebo+		  Unknown (26.4%)	   0.63, 95% CI 	   95% CI	   (HR 0.70,
	   deprivation	   enzalutamide			    0.51-0.78) 	   0.30-0.70)	   95% CI
	   therapy						        0.54-0.89)j)

PROpel 	 First-line  	 Olaparib+	 FoundationOne 	 HRRmut (27.8%)k)	 24.8 vs. 16.6 	 Not reached 	 24.1 vs. 19.0 
  [77]	   mCRPC	   abiraterone	   CDx	 HRRwt (69.9%)	   (HR 0.66,	   vs. 13.9 	   (HR 0.76,
	   with no	   vs. placebo+		  Unknown (2.3%)	   95% CI	   (HR 0.5, 	   95% CI
	   previous	   abiraterone			     0.54-0.81)	   95% CI	   0.60-0.97)
	   systemic 					       0.34-0.73)	
	   treatment
Pancreatic cancer
   - Metastatic pancreatic adenocarcinoma who have not progressed on at least 16 weeks of 1st line platinum chemotherapy: 
      olaparib (gBRCA mutated)

(Continued to the next page)
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(e.g., NovaSeq X) in 2023, standard 30× short-read WGS for 
germline analysis is now < $400, including the cost of library 
preparation. If HRD detection is the sole purpose, low cover-
age WGS can be performed at a much lower cost. For research 
projects, tumors are generally sequenced at a higher depth 
(e.g., 60-90×) for somatic variant analysis, which amounts to 
~$1,000. With this reduction in sequencing cost, even the cost 
of high-coverage WGS is relatively small compared to the 
current cost of FDA-approved HRD tests ($3,500 for Founda-
tion CDx or Foundation liquid CDx; $4,000-6,000 for Myriad 
myChoice CDx). Thus, sequencing cost is no longer the main 
bottleneck. Furthermore, several new short-read platforms 
(Ultima Genomics, Complete Genomics, MGI, Element Bio-
sciences, Singular Genomics) have been introduced just in 
the past couple of years, with many of them advertising $200 
genomes. The cost reduction in long-read sequencing on the 
PacBio and Nanopore platforms is also changing the land-
scape of WGS studies.

A much greater challenge for WGS than the sequenc-
ing cost is the expertise and infrastructure for downstream 
analysis. At > 100 GB per 30× genome, any sequencing effort 
will require processing and storing of terabyte-scale data, 
requiring a substantial investment in a team of bioinformat-
ics experts and infrastructure [79]. Comprehensive variant 
identification and interpretation for WGS is an art rather 
than a science, especially for non-coding variants, structural 
variants, and coding variants of unknown pathogenicity. 

Therefore, scientific leadership as well as recruitment and 
retention of experienced bioinformaticians will be needed. 
For infrastructure, an existing institutional computing envi-
ronment may be sufficient for small projects, but additional 
servers are likely to be needed for larger ones. It is possible to 
avoid building a local computing environment by utilizing a 
cloud-based platform such as Amazon Web Services (AWS) 
or Google Cloud, but this necessitates additional level of 
informatics expertise or subscription to an informatics plat-
form by a commercial vendor. Computing and storing data 
on the cloud can also be costly and may require regulatory 
approval in some institutions and/or countries. 

Despite these limitations, WGS studies are continuing to 
grow in scale and are discovering new insights on driver 
mutations [80]. For instance, a recent study [81] from the 
UK 100,000 Genomes Project analyzed > 13,000 solid tumors 
with treatment outcome data, finding that some tumor types 
showed actionable structural variants in more than 10% of 
the cases. Importantly, that study also found that HRD was 
identified in 40% of high-grade serous ovarian cases with 
30% linked to pathogenic germline variants. 

Regardless of the progress on WGS data generation and 
analysis, panel sequencing is likely to continue in the clinic 
due to the extremely high-coverage needed in that setting. 
Gene panels in a real patient setting are often sequenced at 
> 1,000× to detect clinically-relevant variants with very low 
variant allele fraction (VAF). A study of > 5,000 clinical sam-

Table 2.  Continued
	

Trials	 Setting	 Drug	 HRD test	 Cohort	 PFS overall	 PFS in HRDa)	 PFS in HRP

POLO [78]	 Metastatic,  	 Olaparib 	 NA	 gBRCAmut (100%)	 7.4 vs. 3.8 	 NA	 NA
	   not	   vs. placebo			     (HR 0.53,
   	   progressed 				      95% CI 
	   during	   			     0.35-0.82)
	   first-line 				  
	   platinum
	   -based 
	   chemotherapy
CI, confidence interval; DOR, duration of response; FDA, Food and Drug Administration; g, germline; g/sBRCA, germline or somat-
ic BRCA; s, somatic; HR, hazard ratio; HRD, homologous recombination deficiency; HRP, homologous recombination proficient; HRR, 
homologous recombination repair gene; LOH, loss of heterozygosity; mut, mutated; NA, not available; NGS, next generation sequenc-
ing; PARP, poly(ADP-ribose) polymerase; PFS, progression-free survival; wt, wildtype. a)HRD indicates HRD (without further genomic 
stratification) or HRR gene mutation based on the respective HRD testing platform that was utilized, b)PFS in HRD+gBRCA wildtype,  
c)HRD defined as g/sBRCA mut or LOH-high (LOH-H), d)PFS in g/sBRCA wildtype and LOH-low (LOH-L), e)Note that PARP inhibitor 
was given as “treatment” and compared with physicians’ choice single-agent chemotherapy or hormonal therapy. This is in contrast with 
cases in ovarian cancer where PARP inhibitor was given as “maintenance” (i.e., immediately preceded by chemotherapy), f)Germline vs. 
somatic distinction and analysis are not reported, g)12 genes: BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, 
RAD51C, RAD51D, and RAD54L, h)12 genes: BARD1, BRIP1, CDK12, CHEK2, FANCA, NBN, PALB2, RAD51, RAD51B, RAD51C, RAD51D, 
and RAD54L, i)BRCA1, BRCA2, PALB2, ATM, ATR, CHEK2, FANCA, RAD51C, NBN, MLH1, MRE11A, CDK12, j)HRR mutation status profi-
cient or unknown, k)BRCA1, BRCA2, PALB2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, PANCL, RAD51B, RAD51C, RAD51D, RAD54L.
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ples in Samsung Medical Center showed that 10%-25% of 
hotspot mutations have VAF under 5% and that a substantial 
fraction of these might be missed if the coverage is lower. For 
example, 24% of EGFR T790M had < 5% VAF, and 25% of all 
T790M mutations would be missed if the sequencing cover-
age is 100× rather than 1,500× [82]. These VAFs are low partly 
because tumor purity of clinical samples is often low, where-
as VAFs in research sequencing projects tend to be higher 
because a tumor purity threshold is often imposed, e.g., the 
distribution of VAFs in The Cancer Genome Atlas data are 
substantially higher than that of real clinical samples [82]. 
Performing WGS at 1,000× is impractical not only because 
of the cost, but because of the difficulty in handling and ana-
lyzing such data, as one sample would generate more than  
> 10 TB of data and many WGS algorithms would fail to run. 
One likely scenario in a research hospital setting would be to 
perform both a high-coverage panel for hotspot mutations 
and ~60-90× WGS for a comprehensive characterization of 
mutations.

Another challenge for WGS adoption is the question of 
whether high-quality data can be obtained from formalin-
fixed paraffin-embedded (FFPE) samples. Formalin-induced 
DNA damage in FFPE samples results in artifact mutations, 
which can confound the identification of true variants. In 
some cases, the problem of artifactual point mutations, most-
ly C to T transitions due to deamination of cytosine residues, 
can be ameliorated with a series of filters. For mutational 
signature analysis, FFPE mutations correspond to SBS30 and 
can thus be isolated. FFPE samples also contain a large num-
ber of artifactual chimeric reads [83] that can be mistaken for 
structural alterations. One simple way to lessen the impact 
of FFPE-specific artifacts is to increase coverage, as artifacts 
are less likely to occur at the same position repeatedly and 
higher coverage makes it easier to distinguish them from 
true mutations.

2. Analyzing PARP inhibitor resistance in longitudinally 
collected samples 

A topic of growing interest is the mechanisms of acquired 
PARP inhibitor resistance such as BRCA reversion muta-
tions. These mutations refer to the secondary mutations that 
can restore the native reading frame of the mutated gene, 
thereby reducing sensitivity to platinum or PARP inhibitors. 
One meta-analysis examined BRCA reversion in four BRCA-
associated cancer types (breast, ovarian, prostate, and pan-
creatic, with the majority being ovarian) after platinum or 
PARP inhibitor treatments and found reversion mutations in 
22% of BRCA1 and 30.7% of BRCA2 cases [84]. BRCA rever-
sion rates can vary substantially depending on prior therapy 
and response to prior therapy, e.g., one study (n=69) report-
ing BRCA reversion rates of 2% in platinum-sensitive, 13% 

in platinum-resistant, and 18% in platinum-refractory can-
cers [85]. In terms of the mechanisms responsible for BRCA 
reversion, the majority of the reversion mutations were dele-
tions mediated by NHEJ, often involving sequence microho-
mologies indicative of MMEJ, especially for BRCA2 [84,86]. 
However, other reversions do not seem to utilize micro-
homologies, suggesting that further research is needed to 
understand the DNA repair or mutagenic processes that gen-
erate the reversion mutations. There are also non-BRCA asso-
ciated PARP inhibitor resistance mechanisms that are either 
homologous recombination-dependent (i.e., the change from 
HRD to HRP phenotype) or independent, as detailed in sepa-
rate reviews [87-89]. 

For a refined view of how PARP inhibitor resistance evo-
lves under therapeutic pressure, an ideal strategy would be 
to non-invasively and serially collect circulating tumor DNA 
(ctDNA) with liquid biopsy. Recent studies showed that 
resistance mechanisms to PARP inhibitor can be detected 
from plasma [86,90], with one study finding BRCA reversion 
mutations in ctDNA in 60% of patients who develop resist-
ance and that detection of a reversion mutation was associ-
ated with shorter time to progression [86]. To bring these 
scientific findings into clinic, a prospective clinical trial is 
needed address how these specific resistance mechanisms 
may inform clinical decision making. Such a trial would 
require meticulous genomic characterization of the tumor at 
initial diagnosis and at the time of PARP inhibitor resistance 
acquisition, accompanied by genomic sequencing of serially 
obtained blood samples. 

In addition to liquid biopsy, another emerging technology 
relevant for HRD studies is single cell RNA sequencing (scR-
NA-seq). Transcriptomic analysis using scRNA-seq will help 
characterize the heterogeneity of the cell populations that 
display HRD signatures, including the interaction between 
DNA repair-deficient cells and their tumor microenviron-
ment [91]. Recent advances in computational methods allow 
identification of point mutations and copy number profiles 
from scRNA-seq data [92,93], which can potentially be used 
to identify single cells directly from their mutational profile 
rather than relying on their gene expression patterns. Appli-
cations of recent methods in single cell multi-omics [94], e.g., 
sequencing DNA and RNA simultaneously from the same 
single cells, may also prove informative in characterizing 
genetic and phenotypic heterogeneity of HRD samples.

Conclusion 

The methods for detecting HRD continue to evolve as we 
obtain a more accurate view of the mutations associated 
with HRD. In particular, WGS is allowing us to character-
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ize HRD-associated genomic instability more accurately 
and thus refine the GIS currently being used in HRD assays. 
Although incorporation of WGS in clinical trials requires 
additional costs and bioinformatics expertise, such data will 
provide more accurate prediction of HRD status as well as 
better assessment of the correlation between HRD status and 
response to therapy. Both for panel and WGS data, mutation-
al signature analysis has provided a more robust approach to 
identify HRD, and this approach should also be applicable to 
liquid biopsies, which will be particularly useful for investi-
gating acquired resistance mechanisms. 

Despite the tremendous progress in expanding the poten-
tial pool of patients for PARP inhibitor treatment, the eligibil-
ity criteria and treatment settings (early vs. late stage, front-
line vs. recurrent) are highly variable across tumor types. 
A more systematic understanding of de novo and acquired 
resistance, tumor type-specific effects, impact of front-line 
therapy, and the correlation between genotype and genomic 
instability will be needed to design more effective therapeu-
tic strategies for patients with HRD.
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