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ABSTRACT

Herein, we found that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-
unexposed individuals exhibited an increased frequency of CD4+ T cells against SARS-CoV-2 
membrane (M) protein, suggesting that SARS-CoV-2 M-reactive cells may be primed by 
previous infection with common cold coronaviruses (CCCoVs). We confirmed that CCCoV 
M-reactive CD4+ T cells cross-recognize SARS-CoV-2 M in unexposed individuals. Among 
coronavirus disease 2019 (COVID-19) convalescents and unexposed individuals, SARS-CoV-2 
M-reactive CD4+ T cells exhibited significantly lower functional avidity than CD4+ T cells 
reactive to other viruses. Importantly, convalescents from mild COVID-19 had SARS-CoV-2 
M-reactive CD4+ T cells with significantly lower functional avidity than convalescents from 
severe COVID-19. The current data suggest that pre-existing CCCoV M-specific memory CD4+ 
T cells may contribute to controlling SARS-CoV-2 infection by cross-reactivity, leading to 
mild disease but leaving memory cells with low functional avidity to SARS-CoV-2 M due to 
incomplete homology. These data provide indirect evidence that pre-existing cross-reactive 
CD4+ T cells contribute to protection from severe COVID-19.

Keywords: COVID-19; SARS-CoV-2; CD4-positive-T-lymphocytes; Cross-reactivity; 
Functional avidity

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a broad 
spectrum of clinical symptoms, from asymptomatic or mild symptoms to severe pneumonia 
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and acute respiratory distress syndrome, termed coronavirus disease 2019 (COVID-19) (1,2). 
Although COVID-19 has become an endemic disease, understanding T-cell responses against 
SARS-CoV-2 is important for preparedness against newly emerging viruses.

T cells contribute to viral control by producing effector cytokines and exerting cytotoxic 
activity during viral infection, and memory T cells are involved in protective immunity upon 
viral re-exposure. SARS-CoV-2-specific T cells are detected in patients with COVID-19 (3-6), 
and SARS-CoV-2-specific CD4+ T cells have been detected in almost 100% of COVID-19 
convalescents in ex vivo stimulation-based assays (4,7-14).

In several studies, SARS-CoV-2-reactive T cells have also been detected among individuals 
with no prior SARS-CoV-2 infection or vaccination. SARS-CoV-2-reactive CD4+ T cells are 
present in 20% to 77% of individuals not exposed to SARS-CoV-2 (4,7-10,14-19). SARS-CoV-2 
epitopes recognized by these T cells exhibit considerable levels of homology to endemic 
common cold coronaviruses (CCCoVs), including OC43, HKU1, 229E, and NL63 (9,10,14-19). 
These findings suggest that memory T cells primed by previous CCCoV infection are cross-
reactive to SARS-CoV-2 proteins to some degree.

Pre-existing cross-reactive T cells have been demonstrated to play a protective role against 
COVID-19 (20). Pre-existing T cells targeting the highly conserved polymerase protein expand 
in seronegative individuals after SARS-CoV-2 exposure, leading to abortive infection (18). In 
addition, T cells specific for conserved coronavirus epitopes correlate with mild COVID-19 
(17), and the frequency of baseline cross-reactive T cells correlates with better clinical 
outcomes following SARS-CoV-2 exposure (21). In an epidemiological study, recent CCCoV 
infection was associated with a reduced risk of severe COVID-19 (22).

Pre-existing cross-reactive T cells and de novo primed T cells during SARS-CoV-2 infection may 
have different TCR affinity for SARS-CoV-2 proteins. If someone has CCCoV-specific memory T 
cells that are cross-reactive to SARS-CoV-2 due to considerable levels of protein homology, pre-
existing CCCoV-specific memory T cells will rapidly exert antiviral functions upon SARS-CoV-2 
infection, leading to mild disease but leaving memory cells with low affinity for SARS-CoV-2 
due to incomplete homology between CCCoVs and SARS-CoV-2. However, in the absence of 
pre-existing CCCoV-specific memory T cells, SARS-CoV-2-reactive T cells may derive from 
naïve precursor cells that have TCRs specific for SARS-CoV-2, leading to slower effector T-cell 
responses compared to the rapid responses by pre-existing cross-reactive memory T cells. This 
scenario may result in severe COVID-19, leaving memory cells with high affinity for SARS-
CoV-2. Indeed, a delayed induction of SARS-CoV-2-specific T-cell responses has been found in 
patients with severe COVID-19 compared to patients with mild COVID-19 (23).

In the present study, we investigated the functional avidity of SARS-CoV-2-reactive CD4+ T 
cells as a surrogate of TCR affinity and compared it between convalescents from mild and 
severe COVID-19.

MATERIALS AND METHODS

Patients and specimens
A total of 50 convalescents previously diagnosed with SARS-CoV-2 infection were enrolled 
from Chungbuk National University Hospital, Samsung Medical Center, Severance Hospital, 
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and Ansan Hospital in 2020 (Supplementary Table 1). None of them had been immunized 
with COVID-19 vaccines. SARS-CoV-2 RNA was detected in specimens from the patients’ 
nasopharyngeal swabs by multiplex real-time RT-PCR using the Allplex 2019-nCoV Assay 
kit (Seegene, Seoul, Korea) or PowerCheck 2019-nCoV RT PCR kit (KogeneBiotech, Seoul, 
Korea). In the present study, we categorized patients into asymptomatic and symptomatic 
(mild to critical illness) as defined by the National Institutes of Health severity of illness 
categories (24). Peripheral blood was also obtained from 26 healthy donors (HDs), who 
had never been diagnosed with SARS-CoV-2 infection, before emergence of the COVID-19 
pandemic. Informed consent was obtained from all donors and patients.

PBMCs were isolated by density gradient centrifugation using Lymphocyte Separation 
Medium (Corning, NY, USA). After isolation, the cells were cryopreserved in FBS (Corning) 
containing 10% DMSO (Sigma-Aldrich, St. Louis, MO, USA) until use.

ELISA
To detect human IgG directed against S proteins from different human coronaviruses (HCoV-
OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63), each recombinant S1 protein was obtained 
from Sino Biological Inc. (Beijing, China) and in-house ELISAs performed. Briefly, 96-well plates 
(Thermo Fisher Scientific, Waltham, MA, USA) were coated with 100 μl of 1 μg/ml S1 protein in 
PBS per well overnight at 4°C. The next day, the plates were washed with PBS containing 0.05% 
Tween-20 (Junsei Chemical Co.,Ltd., Tokyo, Japan) and blocked with 5% BSA in PBS containing 
0.05% Tween-20 for 2 h at room temperature (RT). After blocking and washing, plasma was 
diluted 1:1,000 with 5% BSA in PBS. Diluted plasma was added and the plates incubated for 
2 h at RT. The negative control was 5% BSA in PBS with no plasma. After washing, plates 
were incubated with 100 μl HRP-conjugated mouse anti-human IgG Ab (1:50,000; Jackson 
ImmunoResearch, West Grove, PA, USA) for 1 h at RT. Reactions were visualized by adding 
color development (R&D Systems, Minneapolis, MN, USA). The absorbance at 450 nm (optical 
density, OD) was measured by spectrophotometry (BioTek, Winooski, VT, USA). The detection 
threshold was determined by the OD value of the negative control.

Peptides
Pools of lyophilized 15-mer peptides with 11-amino-acid overlap, covering the SARS-CoV-2 
spike (S), membrane (M), and nucleocapsid (N) proteins were purchased from Miltenyi 
Biotec (Bergisch Gladbach, Germany). The M and N pools included the complete sequences, 
and the S pool included immunodominant sequence domains. Peptide pools for human 
cytomegalovirus (HCMV) pp65, influenza A virus (IAV) membrane protein 1 (MP1), and 
respiratory syncytial virus (RSV) fusion glycoprotein F0 (FP) were purchased from JPT 
(Berlin, Germany). Pools were resuspended according to the manufacturer’s instructions and 
cells stimulated at a concentration of 1 μg/peptide/ml.

For in vitro expansion of CCCoV M-specific T cells and cross-reactivity analysis, lyophilized 
15-mer peptides with 10-amino-acid overlap, spanning the entire sequence of the M protein 
of CCCoVs (HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63) and SARS-CoV-2 
were purchased from Mimotopes (Melbourne, Australia). Each peptide was resuspended in 
distilled water containing 5% DMSO and pooled.

In vitro expansion and re-stimulation of CCCoV M-reactive cells
PBMCs from HDs seropositive for HCoV were labeled with CellTrace Violet (CTV; Invitrogen, 
Carlsbad, CA, USA) in PBS containing 5% FBS for 20 min at RT and suspended in AIM V 
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medium (Thermo Fisher Scientific) supplemented with 10 U/ml IL-2 (PeproTech, Cranbury, 
NJ, USA). Labeled cells (0.5×106 cells/well) were cultured in 96-well U-bottom plates and 
stimulated with the corresponding HCoV M peptide pool at a concentration of 1 μg/peptide/
ml at 37°C. After 4 days of culture, the medium was exchanged with fresh medium containing 
10 U/ml IL-2 and M pool (1 μg/peptide/ml). After an additional 3 days of culture, the medium 
was removed and the cells incubated for 24 h in fresh medium containing no cytokine or 
peptide. After the incubation, the cells were harvested and re-stimulated with the SARS-
CoV-2 M peptide pool or the corresponding HCoV M peptide pool at a concentration of 1 μg/
peptide/ml. An equimolar volume of DMSO was used as the negative control. After 1 hour of 
re-stimulation, intracellular cytokine staining (ICS) was performed as described below.

ICS and flow cytometry
PBMCs or in vitro expanded T cells were resuspended in complete medium (RPMI 1640 
supplemented with 10% FBS and 1% penicillin/streptomycin) and 1×106 cells cultured per 
well in 96-well U-bottom plates (Corning) with the relevant peptide pool (each at 1 μg/
ml). After 1 h of stimulation, brefeldin A (1 μl/ml; BD Biosciences, Franklin Lakes, NJ, USA) 
was added. After incubating for 5 h at 37°C, cells were washed in PBS supplemented with 
2% FBS and 2 μM EDTA (FACS buffer) and stained for 20 min at 4°C with fluorochrome-
conjugated Abs for specific surface markers. Dead cells were stained using LIVE/DEAD 
red fluorescent reactive dye (Invitrogen). The cells were then washed with FACS buffer and 
fixed/permeabilized using the FoxP3/Transcription Factor Staining Buffer Set (Invitrogen). 
Intracellular cytokine proteins were detected by the addition of fluorochrome-conjugated Abs 
for 20 min at RT. Multi-color flow cytometry was performed using an LSR II instrument (BD 
Bioscience) and the data analyzed by FlowJo software (FlowJo, LLC, Ashland, OR, USA).

Abs
The following fluorochrome-conjugated mAbs were used for multicolor flow cytometry: anti-
CD3-Brilliant Violet (BV) 786 or -PE-Cy7 (565491 or 563423; clone UCHT1), anti-CD4-APC-
Cy7 or -BV650 (566319 or 563875; clone SK3), and anti-CD8-BV510 (563919; clone SK1; all 
from BD Bioscience). For intracellular staining, we used the following Abs: anti-IFN-γ-APC 
or BV711 (554702 or 564039; clone B27; BD Bioscience), anti-TNF-FITC or PE-Cy7 (11-7349-82 
or 25-7349-82; clone Mab11), and anti-IL-2-PE or PerCP-eFluor710 (12-7029-42 or 46-7029-42; 
clone MQ1-17H12; all from eBioscience, San Diego, CA, USA).

Measurement of functional avidity
To measure the functional avidity, PBMCs were stimulated with 4-fold serially diluted peptide 
concentrations (1, 0.25, 0.0625, 0.0156, 0.0039, 0.0009 μg/peptide/ml) and analyzed by 
ICS. The peptide concentrations required for a half-maximal response (EC50 values) were 
calculated from the dose-normalized response curves using GraphPad Prism (GraphPad 
Software, San Diego, CA, USA). The functional avidity values were determined as Log(EC50).

Statistical analysis
Statistical analyses were performed using GraphPad Prism. Significance was set at p<0.05. 
The Wilcoxon signed-rank test was used to compare data between 2 paired groups and the 
Mann-Whitney U test to compare data between 2 unpaired groups. The analytical methods 
are described in the corresponding figure legends.
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RESULTS AND DISCUSSION

SARS-CoV-2 M protein-reactive CD4+ T cells are frequently observed in 
unexposed individuals
First, we performed ICS assays for IFN-γ, TNF, and IL-2 after ex vivo stimulation of PBMCs 
from COVID-19 convalescents with overlapping peptide (OLP) pools covering SARS-CoV-2 
S, M, and N proteins and analyzed the CD4+ T-cell responses (Supplementary Fig. 1). As 
expected, the frequencies of IFN-γ+ cells in S, M, or N-stimulated cells were significantly 
higher than the frequencies in non-stimulated controls (Fig. 1A and B). Similar results were 
obtained when TNF+ or IL-2+ cells were evaluated. In CD8+ T cells, the frequencies of IFN-γ+ 
cells in S, M, or N-stimulated cells were also significantly higher than the frequencies in non-
stimulated controls (Supplementary Fig. 2A).

We also examined SARS-CoV-2-reactive CD4+ T-cell responses using prepandemic PBMCs 
banked before the emergence of COVID-19. The frequency of IFN-γ+ or TNF+ cells in 
M-stimulated cells was significantly higher than the frequency in non-stimulated controls, 
though the frequency of IL-2+ cells was not significantly different (Fig. 1C and D). However, 
S or N stimulation did not result in higher frequencies of IFN-γ+, TNF+, or IL-2+ cells 
compared to non-stimulation controls. In CD8+ T cells, the frequencies of IFN-γ+ cells in 
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Figure 1. Cytokine production by SARS-CoV-2-reactive CD4+ T cells in COVID-19 convalescents and unexposed donors. PBMCs from COVID-19 convalescents (A, 
B) and unexposed donors (C, D) were stimulated with SARS-CoV-2 protein peptide pools (spike, membrane, or nucleocapsid). Cytokine-producing T cells were 
detected by intracellular cytokine staining after stimulation. (A) Representative flow cytometry plots and (B) summary data of the frequencies of IFN-γ+, TNF+, 
or IL-2+ cells among CD4+ T cells against spike (n=46), membrane (n=50), and nucleocapsid (n=40) pools from COVID-19 convalescents. (C) Representative 
flow cytometry plots and (D) summary data of the frequencies of IFN-γ+, TNF+, or IL-2+ cells among CD4+ T cells against spike (n=23), membrane (n=26), and 
nucleocapsid (n=26) pools from unexposed individuals. Data in (B, D) are presented with lines connecting data from the same individuals. 
ns, not significant. 
**p<0.01, ***p<0.001, Wilcoxon signed-rank test.



S, M, or N-stimulated cells were comparable to the frequencies in non-stimulated controls 
(Supplementary Fig. 2B). Collectively, these data indicate that SARS-CoV-2 M-reactive CD4+ 
cells exist in individuals without prior infection with or vaccination for SARS-CoV-2.

CCCoV M-specific CD4+ T cells are cross-reactive to SARS-CoV-2 M in SARS-
CoV-2-unexposed individuals
We wondered whether prior infection with CCCoVs can explain the presence of SARS-CoV-2 
M-reactive CD4+ T cells in SARS-CoV-2-unexposed individuals. To this end, we examined 
serum IgG specific to CCCoVs, such as OC43, HKU1, 229E, and NL63, among SARS-CoV-2-
unexposed HDs and found that all of the HDs had high IgG titers over the cut-off against all 4 
CCCoVs (Fig. 2A), indicating that they commonly had prior infections with CCCoVs. Next, we 
directly examined whether CCCoV M-specific CD4+ T cells are cross-reactive to SARS-CoV-2 M 
protein. We generated CCCoV M-specific short-term (1-wk) T cell lines by stimulating CTV-
labelled PBMCs from SARS-CoV-2-unexposed HDs with CCCoV M OLPs. We selected a species 
of CCCoVs for the OLPs according to the species with the highest IgG titer in each HD. We 
performed IFN-γ ICS assays by stimulating 1-week T cell lines with either the CCCoV M OLPs 
that were used for the generation of a T cell line or SARS-CoV-2 M OLPs. We detected IFN-γ+ 
cells among CTVloCD4+ T cells following CCCoV M OLP stimulation, and they were detected at 

Functional Avidity of SARS-CoV-2-Reactive CD4+ T Cells

https://doi.org/10.4110/in.2025.25.e4 6/12https://immunenetwork.org

B
No stimulation CCCoVSARS-CoV-2

CD
4

1.291.090.14

CTVloCD4+ T cells

IFN-γ

A

0

0.2

0.6

O
D 4

50

0.4

HCoV-HKU1

HCoV-OC43

HCoV-229E

HCoV-NL63

C

0

1

3

IF
N

-γ
+  c

el
ls

 o
f 

CT
Vlo

CD
4+  T

 c
el

ls
 (%

)

2

**
**

ns

CCCoV-reactive

HCoV-HKU1
HCoV-OC43
HCoV-NL63

No stim
ulatio

n

CCCoVs

SARS-CoV-2

IFN-γ+CTVloCD4+ T cells

0

6

10

M
FI

 IF
N

-γ
 (×

10
3 ) 8

*

4

2

D

HCoV-HKU1
HCoV-OC43
HCoV-NL63

CCCoVs

SARS-CoV-2

Figure 2. Cross-reactivity of CCCoV-reactive CD4+ T cells to SARS-CoV-2 in unexposed donors. (A) Plasma titers of anti-spike IgG towards CCCoVs (HCoV-HKU1, 
HCoV-OC43, HCoV-229E, and HCoV-NL63) in unexposed donors (n=8). (B-D) CTV-labeled PBMCs from unexposed donors (n=8) were expanded in vitro with the 
CCCoV membrane peptide pool for 7 days and re-stimulated with the SARS-Co-V-2 membrane peptide pool or corresponding CCCoV membrane pool for 6 h. 
After the stimulation, ICS was performed and IFN-γ+ cells detected among CTVloCD4+ T cells. (B) Representative flow cytometry plots and (C) summary data of 
the frequency of IFN-γ+ cells among CTVloCD4+ T cells. (D) Comparison of mean fluorescence intensities of IFN-γ among IFN-γ+CTVloCD4+ T cells against SARS-
CoV-2 and CCCoV. Data in (A) are presented as mean and SD, and data in (C, D) are presented with lines connecting data from the same individuals. 
ns, not significant. 
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a comparable frequency following SARS-CoV-2 M OLP stimulation (Fig. 2B and C),  
demonstrating that CCCoV M-specific CD4+ T cells are cross-reactive to SARS-CoV-2 M in 
SARS-CoV-2-unexposed individuals. However, SARS-CoV-2 M OLP stimulation resulted in 
a significantly lower mean fluorescence intensity (MFI) of IFN-γ among IFN-γ+CTVloCD4+ T 
cells than CCCoV M OLP stimulation (Fig. 2D). Given previous reports that high avidity T 
cells exhibit enhanced effector functions, including high IFN-γ MFI (25,26), we hypothesized 
that CCCoV M-specific CD4+ T cells may have low functional avidity to SARS-CoV-2 M, 
probably due to incomplete homology between CCCoV and SARS-CoV-2 M proteins.

SARS-CoV-2 M-reactive CD4+ T cells exhibit low functional avidity in 
COVID-19 convalescents and SARS-CoV-2-unexposed individuals
We directly assessed the functional avidity of SARS-CoV-2 M-reactive CD4+ T cells by 
performing IFN-γ ICS assays with 4-fold serial dilution of SARS-CoV-2 M OLPs. In COVID-19 
convalescents, the frequency of IFN-γ+CD4+ T cells reactive to SARS-CoV-2 M or IAV MP1 
abruptly decreased when the concentration of the OLP pools was diluted from 1 μg/ml to 
0.25 μg/ml, whereas the frequency of IFN-γ+CD4+ T cells reactive to HCMV pp65 or RSV FP 
was maintained (Fig. 3A and B). The functional avidity was determined by the EC50. The 
functional avidity of SARS-CoV-2 M-reactive CD4+ T cells was comparable to that of IAV MP1-
reactive CD4+ T cells but significantly lower than that of HCMV pp65- or RSV FP-reactive CD4+ 
T cells (Fig. 3C). The low functional avidity of SARS-CoV-2 M-reactive CD4+ T cells might be 
attributed to partial cross-reactivity between CCCoV and SARS-CoV-2 M proteins. Such low 
functional avidity was also anticipated in T cell responses against IAV because an individual 
tends to have a history of repeated infections with various strains of IAV, and low functional 
avidity of IAV MP1-reactive CD4+ T cells was observed indeed. In the analysis according to the 
age, there was no significant difference in the functional avidity of SARS-CoV-2 M-reactive 
CD4+ T cells (Fig. 3D) and in IFN-γ MFI (Supplementary Fig. 3A) between different age 
groups although the frequency of IFN-γ+ cells was significantly higher in convalescents over 
60 years old than those under 40 years old (Supplementary Fig. 3B).

We also assessed the functional avidity of CD4+ T cells among SARS-CoV-2-unexposed 
HDs. The functional avidity of SARS-CoV-2 M-reactive CD4+ T cells was comparable to that 
of IAV MP1-reactive CD4+ T cells and significantly lower than that of HCMV pp65-reactive 
cells (Fig. 3E). When COVID-19 convalescents and unexposed individuals were compared, 
the functional avidity of SARS-CoV-2 M-reactive CD4+ T cells was significantly lower in the 
unexposed group than the convalescent group (Fig. 3F). The functional avidity of IAV MP- or 
HCMV pp65-reactive CD4+ T cells was not different between 2 groups.

Our findings indicate that the functional avidity of SARS-CoV-2 M-reactive CD4+ T cells is low 
in both COVID-19 convalescents and SARS-CoV-2-unexposed individuals. We hypothesized 
that SARS-CoV-2 infection activates CCCoV M-specific memory CD4+ T cells that are partially 
cross-reactive to SARS-CoV-2 M, resulting in the low functional avidity of SARS-CoV-2 
M-reactive CD4+ T cells among COVID-19 convalescents.

Convalescents from mild COVID-19 have SARS-CoV-2 M-reactive CD4+ T cells 
with lower functional avidity than convalescents from severe COVID-19
Finally, we compared SARS-CoV-2 M-reactive CD4+ T cell responses between COVID-19 
convalescents who recovered from mild (non-hospitalized) and severe (hospitalized) disease. 
Convalescents from mild COVID-19 exhibited significantly lower frequencies of IFN-γ+, 
TNF+, or IL-2+ cells than convalescents from severe disease although there was no significant 
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Figure 3. Ex vivo functional avidity among virus Ag-reactive CD4+ T cells in COVID-19 convalescents and unexposed individuals. PBMCs from COVID-19 convalescents 
(A-D, F-I) and unexposed donors (E-I) were stimulated with 4-fold diluted peptide pools. EC50 values were calculated as the peptide concentration yielding a half-
maximal response in the IFN-γ intracellular cytokine staining assay, and avidities are represented as Log(EC50 values). (A) Concatenated flow cytometry plots of the 
frequencies of IFN-γ+ cells among CD4+ T cells. (B) Mean values of the normalized IFN-γ+ cells among CD4+ T cells against SARS-CoV-2 membrane (n=33), IAV MP1 
(n=8), HCMV pp65 (n=20), and RSV FP (n=4) peptide pools in COVID-19 convalescents for the indicated concentration per peptide. (C) Comparison of avidity against 
SARS-CoV-2 membrane (n=33), IAV MP1 (n=8), HCMV pp65 (n=20), and RSV FP (n=4) peptide pools in COVID-19 convalescents. (D) Comparison of avidity against 
SARS-CoV-2 membrane peptide pool among different age groups of COVID-19 convalescents (<40 years, n=7; 40-60 years, n=12; >60 years, n=14). (E) Comparison 
of avidity against SARS-CoV-2 membrane (n=6), IAV MP1 (n=7), and HCMV pp65 (n=8) peptide pools in unexposed donors. (F) Summary data showing the avidities 
against SARS-CoV-2 membrane, IAV MP1, and HCMV pp65 peptide pools among COVID-19 convalescents and unexposed donors. (G-I) The COVID-19 convalescents 
were grouped by COVID-19 severity level according to NIH criteria into non-hospitalized (asymptomatic and mild symptoms in the acute phase) and hospitalized 
(moderate, severe, and critical symptoms in the acute phase) groups. (G) Concatenated flow cytometry plots of the frequencies of IFN-γ+ cells among CD4+ T cells. 
(H) Mean values of the normalized IFN-γ+ cells among CD4+ T cells against the SARS-CoV-2 membrane peptide pool in unexposed donors (n=6) and non-hospitalized 
(n=10) or hospitalized (n=23) COVID-19 convalescents for the indicated concentration per peptide. (I) Comparison of avidity against the SARS-CoV-2 membrane 
peptide pool in unexposed donors (n=6) and non-hospitalized (n=10) or hospitalized (n=23) COVID-19 convalescents. Data in (C-F, I) are presented as mean and SD. 
ns, not significant. 
*p<0.05, **p<0.01, ***p<0.001, Mann-Whitney test.



difference in IFN-γ MFI (Supplementary Fig. 4A and B). Next, we compared the functional 
avidity of SARS-CoV-2 M-reactive CD4+ T cells. Convalescents from mild COVID-19 had 
SARS-CoV-2 M-reactive CD4+ T cells with lower functional avidity than convalescents from 
severe disease, but the functional avidity was comparable to SARS-CoV-2 M-reactive CD4+ T 
cells in SARS-CoV-2-unexposed HDs (Fig. 3G-I).

These data support our hypothesis that individuals with high levels of pre-existing CCCoV 
M-specific memory CD4+ T cells that are partially cross-reactive to SARS CoV-2 M may 
have mild disease upon SARS-CoV-2 infection due to rapid T-cell responses although their 
functional avidity for SARS-CoV-2 M might be relatively low (Fig. 4A). In those individuals, 
SARS-CoV-2-cross-reactive memory CD4+ T cells may outgrow SARS-CoV-2-specific naïve 
precursor CD4+ T cells during SARS-CoV-2 infection. In this scenario, SARS-CoV-2 M-specific 
naïve precursor CD4+ T cells might not have a chance to be fully activated due to early 
disappearance of the cognate Ag. After convalescence, these individuals may have SARS-
CoV-2 M-reactive memory CD4+ T cells with relatively low functional avidity. In contrast, 
individuals without pre-existing CCCoV M-specific memory CD4+ T cells may have severe 
disease upon SARS-CoV-2 infection due to slow primary T-cell responses starting from 
SARS-CoV-2 M-specific naïve precursor CD4+ T cells (Fig. 4B). These individuals may have 
SARS-CoV-2 M-reactive memory CD4+ T cells with high functional avidity after convalescence 
because their memory cells carry TCRs that are more highly specific to SARS-CoV-2 M.

Bacher et al. (27) previously reported that SARS-CoV-2-reactive CD4+ T cells exhibited low 
functional avidity in severe cases, contrasting with our current findings. This discrepancy 
can be potentially explained by Ag specificity and patient status. They primarily examined 
S-reactive T cells whereas we focused on M-reactive T cells. In addition, they included 
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hospitalized patients with active COVID-19 in their study whereas we only recruited 
convalescents who already recovered from COVID-19 in our study.

Study limitations
There are limitations in our study. First, we examined cross-reactivity at the protein level 
not at the epitope level. Therefore, we do not know epitope peptides that are responsible for 
the cross-reactivity. Second, we do not know a species of CCCoVs that elicited cross-reactive 
CD4+ T cells in each individual. Third, we did not examine HLA allotypes of enrolled subjects.

Conclusions
The current data suggest that pre-existing CCCoV M-specific memory CD4+ T cells contribute 
to controlling SARS-CoV-2 infection by partial cross-reactivity, leading to mild disease but 
leaving memory cells with low functional avidity to SARS-CoV-2 M. These data provide 
indirect evidence that pre-existing cross-reactive CD4+ T cells contribute to protection from 
severe COVID-19. Our study not only provides insights into SARS-CoV-2 immunity, but also 
may aid in preparing for newly emerging viruses.
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SUPPLEMENTARY MATERIALS

Supplementary Table 1
Clinical information of the COVID-19 convalescents

Supplementary Figure 1
Representative flow cytometry plots of SARS-CoV-2-reactive CD4+ T cells from COVID-19 
convalescents. The representative flow cytometry plots show the expression of IFN-γ, TNF, or 
IL-2 among CD4+ T cells after stimulation of PBMCs with SARS-CoV-2 protein peptide pools 
(spike, membrane, or nucleocapsid). Numbers indicate the percentages of IFN-γ+, TNF+, 
and IL-2+ cells among CD4+ T cells. No stimulation was used as a negative control. αCD3 and 
αCD28 was used as a positive control.

Supplementary Figure 2
Cytokine production by SARS-CoV-2-reactive CD8+ T cells. PBMCs from COVID-19 
convalescents (A) and unexposed donors (B) were stimulated with SARS-CoV-2 protein 
peptide pools (spike, membrane, or nucleocapsid). Cytokine-producing T cells were detected 
by intracellular cytokine staining after stimulation. (A) Summary data of the frequencies 
of IFN-γ+, TNF+, or IL-2+ cells among CD8+ T cells against spike (n=46), membrane (n=50), 
and nucleocapsid (n=40) pools from COVID-19 convalescents. (B) Summary data of 
the frequencies of IFN-γ+, TNF+, or IL-2+ cells among CD8+ T cells against spike (n=23), 
membrane (n=26), and nucleocapsid (n=26) pools from unexposed individuals. Data are 
presented with lines connecting data from the same individuals.
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Supplementary Figure 3
IFN-γ responses of SARS-CoV-2-reactive CD4+ T cells in different age groups. Mean 
fluorescence intensity of IFN-γ among IFN-γ+CD4+ T cells (A) and the frequency of IFN-γ+ 
cells among CD4+ T cells (B) in response to stimulation with SARS-CoV-2 membrane peptide 
pool were compared in different age groups of COVID-19 convalescents: <40 years, n=7; 
40–60 years, n=12; >60 years, n=14 in (A) and <40 years, n=15; 40–60 years, n=15; >60 years, 
n=20 in (B). Data are presented as mean and SD.

Supplementary Figure 4
IFN-γ responses of SARS-CoV-2-reactive CD4+ T cells in COVID-19 convalescents according to 
clinical severity in the acute phase. The COVID-19 convalescents were grouped by COVID-19 
severity level according to NIH criteria into non-hospitalized (asymptomatic and mild 
symptoms in the acute phase) and hospitalized (moderate, severe, and critical symptoms in 
the acute phase) groups. PBMCs from COVID-19 convalescents were stimulated with SARS-
CoV-2 membrane peptide pool. Cytokine-producing CD4+ T cells were detected by intracellular 
cytokine staining. (A) Comparison of the frequencies of IFN-γ+, TNF+, or IL-2+ cells among CD4+ 
T cells in non-hospitalized (n=18) and hospitalized (n=32) convalescents. (B) Comparison of 
mean fluorescence intensity of IFN-γ among IFN-γ+CD4+ T cells in non-hospitalized (n=10) and 
hospitalized (n=23) convalescents. Data are presented as mean and SD.
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