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Determining tumor microsatellite status has significant clinical value because tumors that are
microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) respond well to immune
checkpoint inhibitors (ICIs) and oftentimes not to chemotherapeutics. We proposeMSI-SEER, a deep
Gaussian process-based Bayesian model that analyzes H&E whole-slide images in weakly-
supervised-learning to predict microsatellite status in gastric and colorectal cancers. We performed
extensive validation using multiple large datasets comprised of patients from diverse racial
backgrounds. MSI-SEER achieved state-of-the-art performance with MSI prediction by integrating
uncertainty prediction. We achieved high accuracy for predicting ICI responsiveness by combining
tumorMSI statuswith stroma-to-tumor ratio. Finally, MSI-SEER’s tile-level predictions revealed novel
insights into the role of spatial distribution of MSI-H regions in the tumor microenvironment and ICI
response.

Patientswhose cancers aremicrosatellite instability-high (MSI-H)/deficient
in mismatch repair proteins (dMMR) have better outcomes than patients
with microsatellite stable (MSS) tumors1,2. Additionally, MSI-H/dMMR
tumors arehighly sensitive to immune checkpoint inhibitors (ICIs) andmay
not respond to traditional chemotherapy3–5.

MSI testing is recommended for all newly diagnosed gastric6 and
colorectal cancers7,8. Current methods of testing include immunohis-
tochemistry (IHC) for detectingMMRstatus andpolymerase chain reaction
(PCR) for determiningMSI status. However, these assays are time-intensive
and costly, andmany patients do not undergo the recommendedmolecular
profiling9.Numerous studies havedemonstrated the feasibility of usingdeep
learning algorithms to analyze hematoxylin and eosin (H&E)-stained
whole-slide images (WSIs) to predict MSI status10–22. Thus, incorporating
artificial intelligence (AI) into the clinical workflow may provide cost-
efficient and widely accessible MSI testing.

The adoption of AI-basedMSI-status prediction into routine clinical
practice requires extensive validation in large, diverse patient cohorts.
The inclusion of heterogeneous patient cohorts is particularly important

as there may be biological differences associated with race and
ethnicity23–25. A recent study showed that a model trained on a pre-
dominantly non-Hispanic White patient cohort with gastric cancer,
performed poorly when it was tested on samples from Asian patients10.
These data highlight the fundamental need to validate novel clinical tools
across diverse populations.

The ability to quantify uncertainty in predictions is not only crucial to
enhance a model’s predictive accuracy, but it also may guide physicians to
make more informed decisions. Cases with high predictive uncertainty will
require nuanced decision-making by human experts.While numerous deep
learning methods, including convolutional neural networks (CNNs) and
vision-transformer-based methods, have been applied to MSI status pre-
diction problems, most do not capture the uncertainty in the prediction as
point estimation methods. A prediction model must not only deliver
accurate predictions, but also quantify the uncertainty of the predictions.
Finally, previously reported algorithms also focus solely on MSI prediction
without providing insights into ICI responsiveness, which limits their
clinical utility.
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To address these challenges, we propose a novel MSI prediction
algorithm that we namedMSI-SEER, which analyzesH&E-stainedWSIs by
utilizing deep Gaussian processes (DGPs)26 in weakly supervised learning,
which is a form of inexact supervision tasks27. MSI-SEER predicts MSI-H
status by first calculating the probability of beingMSI-H for each tile within
a WSI, then aggregating these tile-level probabilities to assess the overall
MSI-H status of the slide. This approach provides a predictive distribution
that quantifies the uncertainty of predictions, thereby enhancing the pre-
cision of MSI-H assessments and informing clinicians about the need for
additional confirmatory lab testing. Additionally, by calculating the MSI-H
status at both the tile and slide levels, our model provides new insights into
the tumor microenvironment, as related to ICI responsiveness in gastric
cancer.

Results
Datasets
In this study, we analyzed H&E-stained WSIs from 12 distinct datasets
comprised of colorectal and gastric cancers, with 2091 and 1101 slides,
respectively. These datasets includedadiverse patient population comprised
of Asian, Black or AfricanAmerican, andWhite patients treated atmultiple
international sites, including Yonsei University and, Seoul St. Mary’s Hos-
pital in Korea, Mayo Clinic in the USA, and various international sites
(Table 1). TheMSI testingmethods used for these datasets are summarized
in Supplementary Table 1.

The colorectal cancer datasets were TCGA-CRC, Yonsei-1, Yonsei-1-
remade, Yonsei-2, STMary-Colon, CPATC-COAD, and Mayo Clinic. We
used the TCGA-CRC and Yonsei-1 for training and the rest for validation.
Of note, theYonsei-1-remade datasetwas generated by re-cutting slides and
performing H&E staining from existing blocks of the Yonsei-1 dataset to
explore how staining variability affected MSI-H prediction.

For gastric cancer, we analyzed datasets namedTCGA-STAD, Yonsei-
Classic, STMary-GC, GC-ICI, and Molecular subtypes. TCGA-STAD or
Yonsei-Classic were used to train the model for gastric cancer sample
analyses, and the remaining datasets were used for validation. The MSI
status of the samples in the Molecular subtypes dataset was determined by
both PCR and IHC. Thus, this dataset represents the gold standard for our
validation efforts. Finally, the GC-ICI dataset consisted of gastric cancer
patients treated with ICIs and allowed us to test the clinical utility of MSI-
SEER to predict ICI response.

Developing and training the MSI-SEER model
The workflow of this study is summarized in Fig. 1. Our tumor MSI status
prediction model MSI-SEER consists of two main components: a feature
extractor and a prediction model (Fig. 1a illustrates the MSI prediction
pipeline, while Supplementary Fig. 1 details the DGP-based prediction
model within the weakly supervised learning framework). The feature
extractor utilizes pre-trained deep learning model within the transfer
learning framework to compute feature vectors from image tiles in a WSI.

Table 1 | Summary statistics of the data sets

Cancer type Dataset Samples MSI-high Collection Race
N N sites N

Colorectal TCGA-CRC 361 65 (18%) W: 206 (57%)

Various B: 47 (13%)

international As: 10 (3%)

AN: 1 (<1%)

U: 97 (27%)

Yonsei-1 174 71 (41%) Korea As: 174 (100%)

Yonsei-1-remade 146 53 (36%) Korea As: 146 (100%)

Yonsei-2 95 54 (57%) Korea As: 95 (100%)

STMary-Colon 98 23 (23%) Korea As: 98 (100%)

CPATC-COAD 221 53 (24%) USA W: 166 (75%)

B: 18 (8%)

As: 27 (12%)

AN: 3 (1%)

U: 7 (3%)

Mayo Clinic 966 255 (26%) USA W: 911 (91%)

B: 5 (<1%)

As: 3 (<1%)

AN: 10 (1%)

U: 67 (7%)

Stomach TCGA-STAD 284 60 (21%) W: 178 (63%)

Various B: 12 (4%)

international As: 63 (22%)

U: 31 (11%)

Yonsei-Classic 581 40 (7%) Korea As: 581 (100%)

STMary-GC 72 22 (31%) Korea As: 72 (100%)

Molecular 61 17 (28%) Korea As: 61 (100%)

Subtypes

GC-ICI 103 14 (11%) Korea As: 103 (100%)

For theGC-ICI cohort,we include17WSIs that havenoMSI-H information,whichwasused in the analysisof the correlationbetween thepredictedMSI-H regionand immunotherapy response in theResults
section. WWhite, B Black or African American, As Asian, AN American Native or Alaskan Native, U unknown.
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Tumor tiles in a slide were transformed into image features using either
CTransPath28 or one of the nine MSIDETECT CNNs12. The prediction
model is based on DGP in a weakly supervised learning framework. The
DGPmodel first estimated the probability of each individual tile beingMSI-
high, using the extracted tile features. The final slide-level MSI-high pre-
diction was then obtained by aggregating these tile-level probabilities. This
aggregation was performed using the extremized geometric mean of the
probabilities, a method shown to achieve superior calibration performance
compared to other pooling techniques, as evaluated by the Brier score29.
Additionally, a weight was assigned to each tile within the geometric mean
poolingoperator,minimizingattention to irrelevant tiles forMSIprediction.

We trained the DGP-based MSI prediction models using dropout
variational inference30, leveraging the fact that, with random feature
expansion31, a DGP can be reduced to a specific structure of a Bayesian
Neural Network (BNN)32. Detailed information on the model formulation
in weakly supervised learning, along with the training and inference pro-
cesses, is provided in the Methods section.

We first explored the DGP models based on the CTransPath feature
extractor to determine the optimal number of GP layers. We trained the
modelwithdifferent numbers of layers, from1 to7, and selected thebest one
based on the 3-fold cross validation (CV) performance (Supplementary
Fig. 2).While we did not see a wide variation in performance with different
numbers ofGP layers, themodel performance increased up to sixGP layers,

which was then used for all the training datasets for both DGP models
integrated with CTransPath and with MSIDETECT CNN models.

We implemented our model in ensemble learning, where the model
was trained using bootstrapped samples of training data 10 times, and the
final dropout samples from all ensemble models were aggregated to make
the final prediction. Of note, the DGP integrated with MSIDETECT CNN
models included nine different ensemblemodels depending onwhichCNN
model was used for feature extraction. Since selecting the best performer
from the nine ensemble models for a test slide is challenging, we combined
these nine ensemble models by using the same aggregation method used to
combine 10 models trained using bootstrapped samples. Finally, we
observed that the DGP integrated with MSIDETECT CNN models gen-
erally outperformed the DGP integrated with CTransPath (Supplementary
Table 2 and 3). Unlike theMSIDETECTCNNs, the CTransPathmodel was
trained without MSI status labels in self-supervised learning. Therefore, we
will utilize the DGPmodels integrated withMSIDETECTCNNs, which we
will refer to as MSI-SEER.

MSI-SEER predicted MSI status with accuracy similar to pre-
viously published models
To compare the predictive capability of MSI-SEER to previously published
models, we adapted the experimental designs from Laleh et al.33. We
compared MSI-SEER to previously reported CNN-based deep learning

Fig. 1 | Workflow of summary of current study. aMSI-SEER The method consists
of two core components, an image feature extractor and a DGP-based MSI pre-
dictionmodel. Tumor tiles in awhole slide image (WSI) were color normalized using
Macenko method and transformed into feature vectors using a pre-trained CNN
model. The slide-level MSI-H predictions were made by aggregating the tile-level
MSI-H predictions using the weighted version of the extremized geometric mean of
the tile-level MSI-H probabilities (σ represents the sigmoid function, ϕ is the output
of the DGPmodel for each tile, and a is the extremized parameter). bOutput ofMSI-
SEER provided MSI-H prediction probability at both the tile-level and slide-level

and quantified predictive uncertainty at the slide-level. cUncertainty quantification
identified cases that should be referred to human experts for further investigation.
Selective exclusion of highly uncertain predictions improved the model’s prediction
performance. d Information provided byMSI-SEER predicted immune check point
inhibitor (ICI) treatment response. We can predict ICI-treatment response using
predicted MSI-H tumor region by MSI-SEER and stromal composition obtained by
an image-based cell-type classification method CellViT. The figure was created in
BioRender. Park, S. (2025) https://BioRender.com/p31j116.
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models, ResNet34, ShuffleNet35, and EfficientNet36. We also compared these
models to theMSIDETECTCNNmodels. We evaluated the colorectal and
gastric cancer samples separately so that each model was tested on the
datasets only in the same cancer type towhich the training dataset belonged.
We did not observe a significant performance improvement when the
models were trained using the datasets from both cancer types (Supple-
mentary Table 4).

We trained ResNet, ShuffleNet, and EfficientNet using the same
training steps as described by Laleh et al.33, where the CNNs were trained
in supervised learning under the assumption that all image tiles in a WSI
shared the same label assigned to the WSI. We also attempted to retrain
MSIDETECT, but observed severe performance degradation due to
catastrophic forgetting, the phenomenon in which neural networks lose
knowledge gained from previous tasks. We therefore used the pre-trained
MSIDETECT models for the comparisons in the rest of the experiments.
We used 3-fold CV to evaluate the performance of the training datasets
(TCGA-CRC and Yonsei-1 for colorectal cancer and TCGA-STAD and
Yonsei-Classic for gastric cancer). To evaluate the inter-cohort prediction

performance, we trained each model using all data points in each training
dataset, tested the models on the validation datasets in the same cancer
type. Figures 2 and 3 show the prediction performance of the methods in
terms of the area under the ROC curve (AUC) as a heatmap. We also
used other metrics, recall, precision and F1 measure, to evaluate the
performance of the models in Supplementary Tables 5 and 6.

In themodel performance heatmaps (Figs. 2 and 3), best andworst
for MSI-SEER represent the best and worst performing models among
the nine DGP ensemble models. The aggregate MSI-SEER had per-
formances that were comparable to the best performing individual
MSI-SEER models in most cases. Similarly, best and worst for MSI-
DETECT represent the best and worst performing models among nine
MSIDETECT CNNs. We observed that no single model among the
nineMSIDETECTCNNs performed best for all datasets, and there was
a wide variation between the best and worst performance (Supple-
mentary Fig. 3). Similar to MSI-SEER, we defined the aggregated
model of the MSIDETECT CNNs by averaging the output MSI-H
probabilities of the CNNs on a test WSI, where a slide-level prediction

Fig. 2 | MSI-SEER performance for colorectal cancer. The 3-fold cross-validation
(CV) performance is evaluated for the training data, while the inter-cohort per-
formance is evaluated for the validation datasets. Area under the ROC curve (AUC)
values are shown. MSI-SEER, ResNet, EfficientNet, and ShuffleNet were trained
using TCGA-CRC, Yonsei-1, and the combined data of TCGA-CRC and Yonsei-1.

The 3-fold CV performance of MSIDETECT and MSI-SEER on TCGA-CRC was
not evaluated because this dataset was already included in the training data for
MSIDETECT. (*) denotes the dataset used for training and the remaining datasets
were used for validation.

Fig. 3 | MSI-SEER performance for gastric cancer. The threefold cross-validation
(CV) performance is evaluated for the training data, while the inter-cohort per-
formance is evaluated for the validation datasets. Area under the ROC curve (AUC)
values is shown.MSI-SEER, ResNet, EfficientNet, and ShuffleNet were trained using

TCGA-STAD, Yonsei Classic and the combined data of TCGA-STAD and Yonsei
Classic. (*) denotes the dataset used for training and the remaining datasets were
used for validation.
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is also made by averaging the MSI-H probabilities over the tiles in
the slide.

For the colorectal datasets (Fig. 2), we found that the MSI-SEER had
better predictive performance for more cases when trained using Yonsei-1
than when trained using TCGA-CRC. However, we also found that the
model trained on the combined data from both datasets did not perform
better than the models trained on either dataset. This may be because the
feature extractors were already trained on the datasets that includedTCGA-
CRC, and thus the combined data did not provide enough new information
to MSI prediction. Therefore, for unseen colorectal cancer slides, we
recommend using the aggregated MSI-SEER model trained on Yonsei-1.
For the gastric cancer datasets (Fig. 3), we found that the performance of the
aggregated MSI-SEER was best when trained on a combined data from
TCGA-STAD and Yonsei-Classic datasets, as compared to the models
trained on each dataset alone. Thus, for unseen slides in gastric cancer, we
recommend using the aggregated model trained on the combined TCGA-
STADandYonsei-Classic datasets. In the rest of the paper,MSI-SEER refers
to the aggregated MSI-SEER model trained on Yonsei-1 for colorectal
cancer and on the combined dataset for gastric cancer.

For colorectal cancer datasets (Fig. 2), MSI-SEER had AUC ranging
from 0.815 to 0.953, demonstrating that MSI-SEER worked well for
colorectal cancer WSIs obtained from a diverse patient cohort. We next
compared the MSI status prediction performance of the MSI-SEER
model to the other models using DeLong’s method37, which tests whe-
ther the AUC of one model is significantly different from that of another
model. We found that MSI-SEER generally had comparable perfor-
mance as the other methods, and in some cases, such as the CPATC-
COAD andMayo Clinic dataets, MSI-SEER showed better performance
(Supplementary Fig. 4). For the gastric cancer datasets (Fig. 3), we first
found that ResNet, ShuffleNet, and EfficientNet trained on TCGA-
STAD, which consisted of a diverse patient cohort, performed worse on
the validation datasets generated from Korean patients. However, their
predictive performance did not improve much on these validation
datasets even when the models were trained on the combined data from
TCGA-STAD and Yonsei-Classic. In contrast, MSI-SEER performed
well on these validation datasets generated from Korean patients, with
AUC ranging from 0.761 to 0.937 (Fig. 3c). Using DeLong’s method, we
also showed that MSI-SEER significantly outperformed the other
methods (Supplementary Fig. 5). We also compared our DGP-based
MSI predictionmodels, includingMSI-SEER and the DGPmodels using
either CTransPath or MSIDETECT, with representative multiple
instance learning (MIL) models, such as attention-based MIL38,
CLAM39, TransMIL40, and RRT-MIL41, as detailed in Supplementary
material. The experimental results, presented in Supplementary Figs.
6–11, confirm that our models achieved comparable prediction per-
formance. Notably, our method demonstrates stable prediction per-
formance across various validation datasets, even when trained on
different training data.

Incorporating predictive uncertainty improved MSI-SEER
performance
For MSI-SEER, we quantified predictive uncertainty through a Bayesian

confidence score (BCS)42, where, bcs ðy�Þ ¼ 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðy�Þ

p
, with varðy�Þ

representing the variance of the slide-level predictive distribution for a
testing point (slide). High BCS values indicated highermodel confidence in
the prediction. Our model’s inference, implemented using Monte Carlo
dropout, estimated the likelihood of slide-level MSI-H status using extre-
mized geometric means of tile-level MSI prediction probabilities. Higher
computed variance occurred when the weighted sum of log-odds is near
zero, indicating ambiguity in prediction (see Methods for more details).
Unlike attention-based weakly supervised learning methods that aggregate
tile-level features28,39, our method computed MSI-H probabilities for each
tile and aggregated these to slide-level predictions. This tile-level analysis
allowed for exploration of spatial MSI-H patterns within tumors, providing

unique insights compared to othermethods thatmaynot offer detailed local
predictions.

Figure 4 shows representative tile-level prediction results from our
model, displaying themeanprobability estimate of each tile beingMSI-Hon
a heatmap on anWSI. Tiles with a dominantMSI-H orMSSmorphological
pattern generally yieldedhigher BCS, indicatingmore confident predictions
(Fig. 4a, b). Conversely, tiles withheterogeneousMSI-Hprobabilities lead to
lower BCS, reflecting higher uncertainty due to the complex patterns
(Fig. 4c, d). In this case, despite the complex pattern, theweighted sumof the
log-oddswas approximately zero, and thus the slide-levelMSI-Hprediction
probability was marginal (≈0.5) with the high uncertainty. WSIs with high
predictive uncertainty (Fig. 4c) showed a spatially random distribution of
MSI-H-like andMSS-like tiles. This correlationbetween spatial randomness
and slide-level uncertainty was seen in each of our datasets, and there was a
significant and strong negative correlation between the BCS and spatial
(Altieri’s) entropy43 (Supplementary Figs. 12 and 13).

We next tested the effects of excluding the most uncertain predictions
as based on Deodato et al.42. We found that removing the most uncertain
predictions enhanced the overall model performance by 1.1% and 2.6% in
AUC in the colorectal (Fig. 5a–b) and gastric cancer datasets (Fig. 5c–d),
respectively (Supplementary Table 7 for the other evaluation metrics). This
selective approachofdiscarding themostuncertainpredictions, consistently
improved performance metrics, in contrast to random exclusions that
showed no beneficial effect (Fig. 5). Details about how to discard the most
uncertain predictions are provided in the Method section. These findings
demonstrate the potential of leveraging predictive uncertainty to refine
diagnostic accuracy, with further details on test data sets and various
training scenarios show in Supplementary Figs. 14 and 15.

Predicted MSI-H regions and stromal composition correlated to
immunotherapy response in gastric cancer
To further assess the clinical utility of MSI-SEER, we performed a targeted
analysis within the GC-ICI cohort, which included 21 slides from patients
who responded to ICIs and 75 slides from patients who did not. We tested
the association between the proportion of predicted tumor MSI-H regions
and ICI response. To determine the MSI status for each tile, we used 0.5 as
the cutoff for the mean predicted probability of the tile being MSI-H. We
found that responders had an average of 62% of tumor MSI-H predicted
regions, while non-responders had only an average of 30% (P < 0.001,
Fig. 6a).

Notably, there were 5 responders whowere categorized as havingMSS
tumors by traditional testingmethods. Three of the samples hadmore than
85.3% of tumor MSI-H predicted regions, and the other 2 had a similar
amount of tumor MSI-H predicted regions as other confirmed MSI-H
samples. Conversely, therewas one clinically determinedMSI-H tumor that
did not respond to ICI, and it had only 7.7% of tumor MSI-H predicted
regions. On review by board-certified pathologists (JHP and JYS), we found
that these patients displayed histopathological features consistent with
borderline state between MSS and MSI-H, suggesting that the MSI-SEER
algorithmmayuncoverMSI-Hpatternsnot detectedby standard laboratory
tests. Thus, MSI-SEER may help refine patient selection for ICI therapy by
identifying patients with MSS tumors who may benefit and MSI-H tumors
who may not benefit.

Based on our previouswork showing that stromal content is associated
with ICI response44, we next compared the stromal fraction within the
predictedMSI-H tiles in responders andnon-responders.Within eachMSI-
H tumor tile, we used CellViT to classify each cell as tumor or stromal45.
Since the average number of tumor cells per tile was significantly higher in
the responder group than in the non-responder group (Supplementary
Fig. 16), the stromal cell count was normalized by the tumor cell count. The
majority of predicted MSI-H tiles in non-responders contained a high
number of stromal cells compared to those in responders. For example,
more than 56% of the predicted MSI-H tiles in non-responders contain
more than 50 stromal cells in the MSI-H tiles, while only 38.2% of the
predicted MSI-H tiles in responders do. Figure 6b shows that a high
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abundance of stromal cells in theMSI-H tiles is significantly associated with
ICI non-responsiveness.

Finally, we developed a rule-based classifier incorporating predicted
MSI-H fraction and stroma-to-tumor ratiowithin predictedMSI-H regions
to predict ICI response.We treated 17 samples that do not haveMSI status
information in the cohort as test data and used the remaining samples to
define the classification rule. Based on the data ranges of the predictedMSI-
H fraction and the stroma-to-tumor ratio of responders obtained from
samples that have MSI status information (Supplementary Fig. 17), we
defined a patient with anMSI-H fraction greater than 0.5 and a stroma-to-
tumor ratio of less than 3.6 in a predicted MSI-H tile as a responder. Using
this simple rule,wewere able to stratify the test samples into responders and
non-responders with an accuracy of 94.1% (Supplementary Table 8). These
results demonstrate the potential of MSI-SEER to predict ICI
responsiveness.

Discussion
Determining tumor MSI status provides clinically actionable information
for both colorectal and gastric cancers. Deep learning models that analyze
WSI may provide cost-efficient and widely accessible MSI testing. Indeed,
previous work has shown that AI-based models have promising utility to
predict MSI status for both colorectal and gastric cancers10,14,46–50. However,
most of thesemodelswere not validated in diverse patient cohorts or did not
report the racial makeup of their patient samples, thus raising the question
of the generalizability of these models. The necessity of models externally
validated in large and diverse patient cohorts have been demonstrated by
several recent studies. Wagner et al. analyzed colorectal samples from
multiple countries and found decreased generalizability of their model on

samples fromdifferent races47. Similarly, Kather et al. found that theirmodel
for gastrointestinal cancers performed poorly on an Asian cohort when
trained on data from predominantly non-Asian patients10. We were able to
overcome these limitations with MSI-SEER, which is a prediction model
based on DGP in weakly supervised learning, through extensive experi-
ments on large datasets comprised of patients from diverse racial back-
grounds and collected from multiple international sites. By training MSI-
SEER on samples collected from diverse patient cohorts, we were able to
improve our model’s performance.

Our Bayesian approach also provided significant advantages over
traditional neural networks by quantifying uncertainty. Previousmodels are
point estimation methods, which provide only binary (MSS or MSI-H)
results. These outputs do not effectively capture or interpret uncertainty51,52,
often leading to overconfident53 andpotentiallymisleading results especially
whenused in complex decision-making processes suchas clinical care.With
MSI-SEER, we are able to provide uncertainty quantification while main-
taining comparable prediction performance as previously developed deep
learningMSI prediction tools, such asMSIDETECT.However, the ability of
MSI-SEER to quantify the uncertainty in the predictionmakesMSI-SEER a
more clinically useful tool as uncertain results can be augmentedwith expert
review for more nuanced decision making.

Finally, MSI-SEER may predict ICI response in gastric cancer. MSI-
SEERwas able to identify a subset of patients who were classified asMSS by
traditional testing methodologies yet showed a clinical response to ICI
treatment. This predictive capability extended to analyzing the stromal
composition within MSI-H predicted regions. We previously found that
high tumorACTA2 expression, amarker of cancer-associated fibroblasts, is
associated with ICI non-response44.WithMSI-SEER, we similarly observed

Fig. 4 | Representative examples of uncertainty quantification in two gastric
cancer samples. a, cWSI images with tile-level MSI-H prediction probability heat
maps. b, d Histograms quantifying tiles based on predicted probability of MSI-H

status.While both slides were consideredMSI-H, the sumpredictive probability was
0.996 (BCS = 0.871) for the highly confident sample, and the sum predictive prob-
ability was 0.503 (BCS << 0.001) for the highly uncertain slide.
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that increased stromal cells within tumors correlated with ICI non-
responsiveness. By combining MSI-H fraction with stroma-to-tumor ratio
we were able to achieve high accuracy in predicting ICI responsiveness in
patients with gastric cancer. These findings highlight the significant influ-
ence of tumor microenvironment on therapy effectiveness.

Our model does have potential limitations that warrant mention. In
order to capture real-world diversity and increase generalizability, we col-
lected data frommultiple institutions across different geographical regions.
This approach naturally introduced variability in sample handling and
clinical practices. To mitigate this variability, we generated newH&E slides
from paraffin blocks under standardized staining protocols for certain
cohorts and applied Macenko color normalization to reduce color dis-
crepancies. Because our analysis was retrospective in nature, variability in
treatment protocols–including in the GC-ICI cohort–was unavoidable.
Treatment decisions were made according to the discretion of the treating
physician and prevailing clinical practices, which evolved over time. How-
ever, we believe this diversity underscores our model’s robustness, as it was
able topredict ICI responsiveness in a rangeof real-world treatment settings.

To our knowledge MSI-SEER is the first computational model that
predicts ICI response from WSIs in gastric cancers. Given that MSI-H
gastric cancer may not be responsive to cytotoxic chemotherapies3, using
MSI-SEER to predict ICI response may spare select patients the toxicities
associated with chemotherapy and allow them to receive more optimal
treatment in the form of ICIs.

Methods
Datasets
The datasets used in this study are H&E-stained colorectal and gastric
cancer slides collected frommultiple institutions containing multiple racial
groups. For the colorectal cancer data, we first used publicly availablemulti-
center data from The Cancer Genome Atlas (TCGA) project: TCGA-CRC.
Yonsei-1 and Yonsei-2 were collected from Gangnam Severance Hospital,
Yonsei University College of Medicine, Seoul, Republic of Korea. Yonsei-1-
remadewas reprocessed fromYonsei-1: the remaining tumor tissues from a
subset of the patients in Yonsei-1 were scanned to produce whole slide
images. STMary-Colon was collected from Seoul St.Mary’s Hospital, Seoul,
Republic of Korea. The CPTAC-Colon dataset is from The Clinical Pro-
teomic Tumor Analysis Consortium Colon Adenocarcinoma Collection
(CPTAC-COAD). Mayo Clinic slides are from Colon Cancer Family Reg-
istry (CCFR).

For gastric cancer data, we also used publicly available data from
TCGA, (TCGA-STAD). We then included Yonsei-Classic data which was
collected from patients who received D1 gastrectomy plus capecitabine and
oxaliplatin chemotherapy or surgery alone. Molecular subtypes dataset is
fromSeoul St.Mary hospital inKorea, and theGC-ICI datasetwas obtained
from Yonsei University College of Medicine and Seoul St. Mary hospital.

TCGA (TCGA-CRC and TCGA-STAD), CPATC-colon and Mayo
clinic datasets data contained primarily white patients, whereas all other
datasets were collected from Asian (Korean) patients. Table 1 contains the

Fig. 5 | Examples of how to improve the predictive performance of our model
using prediction uncertainty. In this model, the aggregated version ofMSI-SEERwas
trained using Yonsei-1 in colorectal cancer or the combined data from TCGA-STAD
and Yonsei-Classic in gastric cancer. a All test datasets in colorectal cancer, except the
training data Yonsei-1, were combined and tested. The numbers of WSIs classified
correctly are green, and those classified incorrectly are orange. The predictive uncer-
tainty as measured by the Bayesian confidence scores are shown. b The changes in the
prediction performance (in terms of area under the curve (AUC)) when the predictions

are discarded at increasing rates, i.e. #discarded WSIs/#total WSIs, in each data cohort.
The red line represents the change in the performance when the most uncertain
predictions (as measured by the BCSs obtained by our model) are discarded while the
black line is the average change in the performance where the predictions are randomly
discarded 1000 times at each rate. c All the test datasets in gastric cancer, except the
training data TCGA-STAD and Yonsei-1, were combined and tested. The correctness
of classification for gastric cancer datasets is shown. d The change in prediction
performance is shown for the gastric cancer test datasets.
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summary statistics of each dataset in both colorectal- and stomach cancers.
WSIs without clinical MSI status were excluded from experiments where
MSI-H prediction performance was evaluated.

As outlined in Supplementary Table 1, the samples in our datasets
were primarily tested forMSIusingPCR,which iswidely recognized as the
gold standard for MSI detection54. For the datasets collected in Korea
across both cancer types, with the exception of Yonsei-Classic, the PCR
tests analyzed the markers BAT-25, BAT-26, D2S123, D5S346, and
D17S250. Tumorswere classified asMSI-H (≥2 unstablemarkers),MSI-L
(1 unstablemarker), orMSS (no instability).We classifiedMSI-L andMSS
asMSS due to their similar clinical characteristics. For Yonsei-Classic, the
PCR tests analyzed the markers BAT-25, BAT-26, NR-21, NR-24, and
MONO-27 (MSI Analysis System, Version 1.2, Promega, Madison, WI),
with the classification criteria: MSI-H for ≥2 unstable markers and MSS
otherwise. ForMayoClinic colon data cohort, testing forMMR status was
performed via PCR and/or MMR protein immunohistochemistry. In this
dataset, for tumors evaluated by immunohistochemistry, MMR deficient
(dMMR) was defined by loss of at least one MMR protein among MLH1,
MSH2, PMS2, and MSH6. For tumors evaluated by PCR, tumors were
classified as dMMR if >30% of the markers showed instability, andMMR
proficient (pMMR) if 0% to 29% of the markers showed instability. For
TCGA-CRC, TCGA-STAD, and CPATC-COAD the MSI status was
determined via sequencing10,55–57. Based on multiple prior reports of
concordance rates among MSI testing methods, PCR, IHC, and
sequencing-based approaches approaching 100%58–65, variability in MSI
testing methods across data cohorts should not significantly impact the
training or inference results.

WSIs from the Yonsei-1, Yonsei-1-remade, and Yonsei-2 datasets
(in.mrxs format) were generated using the PannoramicⓇ 250 Flash III
scanner (3DHISTECH, Budapest, Hungary) at a pixel resolution of 0.2428
m/pixel. All WSIs from the Mayo Clinic colon cohort were scanned at 40X
magnification using a Leica GT450 scanner. For the Yonsei-Classic dataset,
slides were scanned at 40xmagnification using the LeicaAperioAT scanner
(University of Leeds, UK). Slides from the ST Mary-Colon, ST Mary-GC,
and Molecular Subtypes cohorts were scanned using either Aperio or
Hamamatsu at 40x equivalent magnification (0.25 m/pixel). For TCGA-
CRC andTCGA-STAD,we obtained the processed tumor tiles from ref. 10.
To address potential batch effects across datasets, Macenko color

normalization66, a widely usedmethod for processing H&E-stainedWSIs67,
was applied to all the tumor tiles.

All patient data used in this study were obtained either with informed
consent or under an exemption for retrospective studies, as determined by
the Institutional Review Board (IRB). The relevant IRBs include Gangnam
Severance Hospital IRB (Approval No: 3-2020-0035 and 3-2021-0367), the
IRB of Severance Hospital, Yonsei University (Approval No: 4-2020-0724),
the IRB of the College of Medicine at The Catholic University of Korea
(Approval No: KC20RISI0329 and KC19SESI0518), and the Mayo Clinic
IRB (Approval No: 806-96). The study was conducted in full compliance
with IRB-approved protocols, ensuring adherence to ethical guidelines for
human research. Where applicable, the IRB granted a waiver of informed
consent in accordance with institutional and regulatory policies, due to the
retrospective nature of the study and minimal risk to participants.

Weakly supervised learning and prediction uncertainty analysis
Prediction tasks using WSIs can naturally be formulated as a weakly
supervised learning problem or a set problem68. Typical WSIs can exceed
gigapixels in size, so one of themost common approaches is to divide aWSI
into multiple, non-overlapping small image tiles. In contrast to standard
supervised learning, where an input point and corresponding label are
paired, in the weakly supervised learning that we utilized for the current
study, a set of input points (image tiles) are given a slide-level single label,
which in our study is the PCR-determined MSI status or IHC-detection of
mismatch repair protein presence. Many early MSI prediction
methods10,12,14,16,17 do not fully solve the prediction problem in weakly
supervised learning, due to simplicity in implementation andcomputational
limitations. These models were trained in standard supervised learning,
which trains models to associate each image tile with its slide-level label.
Within the scope of weakly supervised learning, the prediction process was
based on aggregating individual tile predictions within the slice by mean or
max pooling. However, due to intratumor heterogeneity, some image tiles,
e.g., MSI-H-like tiles in an MSS slide or MSS-like tiles in an MSI-H slide,
may introduce noise into the models, and all tiles in a slide may not be
relevant for prediction.

Multiple instance learning (MIL)69 was applied to address prediction
tasks involving inputs of variable size. MIL is a specialized form of weakly
supervised learning, where each data point consists of a bag of multiple

Fig. 6 | Comparison of MSI-H fractions in gastric cancer patients treated with
immune checkpoint inhibitors (ICIs), stratified by treatment response (N= 96).
a The MSI-H fraction, defined as the proportion of MSI-H tiles within a whole slide
image (WSI). Responders demonstrated a significantly higher fraction ofMSI-H tiles
compared to non-responders (Wilcoxon test, p << 0.001). To determine MSI-H and
MSS tiles in a slide, we used 0.5 as the cutoff for the mean predictive probability of

each tile beingMSI-H over the dropout samples. MSI status is provided for reference
and was not used in the comparison. Unknown denotes slides without available MSI
status information. bAnalysis of the stromal-to-tumor ratio withinMSI-H predicted
tiles, comparing responders and non-responders (Wilcoxon test, p = 0.0016). This
metric assesses the microenvironment’s cellular composition, providing insights into
the tumor-stroma dynamics that may influence ICI responsiveness.
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instances pairedwith a bag-level label.MostMILmethods derive a bag-level
representation by aggregating instance features, a strategy known as the
embedding-level MIL approach38. The simplest approaches are pooling
methods, such as mean or max pooling, but these operations are non-
trainable. The attention-based methods aggregate instance-level features
through a weighted sum, where the weights are trainable and learned from
the data38. Variants of transformers (multi-head self-attention)70 have been
integrated intoMILmethods tomodel the correlation among instances in a
bag40. Recently, self-supervised learning methods have been integrated into
the MIL framework to learn improved representations in an unsupervised
manner71,72. Previous studies onMSI predictionmodels have utilized one or
a combination of these MIL learning frameworks, including attention
mechanisms, transformers, and self-supervised learning47,73–75. As pre-
viously mentioned, our DGP models aggregate scores (log odds) from
individual tiles within a slide to generate slide-level predictions. While our
approachmay have less learning capacity compared to the embedding-level
MIL approach, it offers increased interpretability, such as providing spatial
MSI distribution across a slide. In addition, the experimental results, when
compared with multiple MIL methods, demonstrate that our approach
achieves comparable prediction performance while exhibiting consistent
and stable results across diverse validation and training datasets.

It is important to note that caution must be exercised when applying
MIL methods to the MSI prediction task. The assumption on the label
generation process in standard MIL may be overly restrictive and fail to
accurately reflect how slide-level MSI labels are assigned in current MSI
testing methods, such as PCR or IHC. In standard MIL, the bag-level
(slide-level) label is determined by the presence of positive instances
(tiles) within the bag69. For instance, a slide is labeled as positive if it
contains even a single positively labeled tile among numerous negative
tiles. While this assumption is well-suited for tasks like tumor detection,
where a slide is classified as normal only if no tumor is present, it is less
appropriate for MSI prediction. For example, in IHC-based MSI testing,
tumors are classified as dMMR (MSI-H) if there is a complete absence of
nuclear staining for any MMR protein in tumor cells, while normal cells
retain nuclear expression. Tumors are labeled as pMMR (MSS) other-
wise. Due to tumor heterogeneity, MSS slides can still contain MSI-H
regions within the tumor. This distinction highlights a fundamental
difference between MSI prediction and tumor detection tasks. This
restrictive assumption about the label generation process in MIL may not
significantly affect most MIL methods when predicting unseen slides.
However, certain MIL methods rely heavily on this assumption during
training. For instance,76 employed self-supervised contrastive learning
based on the assumption that all instances from negative bags inherently
belong to the same set (class). This approach may introduce noise into
the model due to the tumor heterogeneity, as discussed earlier. We
therefore use the term “weakly supervised learning” rather than “multiple
instance learning” to describe the MSI prediction using whole slide
images.

Quantifying the uncertainty in the prediction allows us to understand
what a prediction model does or does not know. A high degree of uncer-
tainty at a specific test pointmay indicate that themodel’s lack of confidence
in its prediction, possibly because the test point is out of the training data
distribution, or because there are unknown variables or noise within the
observations. These underlying causes of high prediction uncertainty align
closely with two different types of uncertainty: epistemic and aleatoric
uncertainty77,78. Epistemic uncertainty is related to the randomness of the
model parameters due to the insufficient number of training data and canbe
reduced if we collect more data. Conversely, aleatoric uncertainty refers to
intrinsic noise in the observations and is irreducible. Once the prediction
uncertainty is computed,we can refer the test points, orWSIs in this context,
with high uncertainty to human experts for in-depth evaluation. This step
can potentially reduce prediction errors on challenging test points, thereby
enhancing the overall performance of the prediction model. Standard deep
learning-basedmethods, limited to providing point estimates, are unable to
capture prediction uncertainty51. The final outputs of these methods (e.g.,

softmax probabilities in neural networks) are frequently misinterpreted as
uncertainty, but unfortunately, they are known to be overconfident for test
points far from the training data53 and miscalibrated52. On the other hand,
Bayesian approaches can intrinsically generateuncertainty in theprediction,
providing adistributionover aprediction inBayesian learning (by averaging
the likelihood over the posterior distribution of the model parameters).
Gaussian Process (GP)79, a nonparametric Bayesian method for nonlinear
function estimation, allows us to compute a prediction distribution in the
formof aGaussian distribution,where the variance captures the uncertainty
in the prediction. DGP26,80, a multi-layer hierarchical extension of GPs,
inherits the attractive properties of GPs, including nonparametric prior
modeling and well-calibrated uncertainty estimation, while providing a
moreflexible and generalizable prior distribution thanGPs. It is noteworthy
that a GP is nothing more than a special case of a DGP (i.e., a single-
layer DGP).

Image preprocessing
Each pathology image was divided into multiple non-overlapping patches
(the size of each image tile is set to 256 × 256 μm). Only image tiles con-
tainingmainly tumorwereused in the experiments: an image tile containing
non-tissue regions or consisting of ≥50% of white background was dis-
carded. To detect tumor from image patches, we trained a ResNet-18model
on TCGA-CRC data. For the GC-ICI cohort, a U-Net-based tumor detec-
tion model was employed to predict tumor regions. This approach was
selected because the cohort includes biopsy slides, which are smaller in size
compared to resection slides and are believed to require higher-resolution,
pixel-level tumor predictions rather than tile-level predictions. All
remaining image tiles were color normalized usingMacenko normalization
method66 to suppress possible variations across samples or different data
cohorts. Then, each image patch was fed to the trained tumor
detection model.

Feature transfer learning
For our DGP model, we used transfer learning to extract features from
image patches: a feature vector for an image tile was calculated using a pre-
trained model (feature extraction in transfer learning81). Tumor tiles were
transformed into image features using either CTransPath28 or one of the
nine MSIDETECT CNNs12. These features were subsequently utilized as
inputs for our DGP models described below.

Problem definition
The task of predicting the MSI status from a whole slide image can be
defined in weakly supervised learning.We are given pairs of an input image
and an output label, i.e., fðI i; yiÞgNi¼1, where I i represents the ith image, yi is
a binary label, i.e., yi∈ {0, 1}, where yi= 1 forMSI-H and yi= 0 forMSS, and
N is the total number of the training images. Each image is divided into
multiple non-overlapping small image patches each of which can be pro-
cessed separately. Using transfer learning to deal with a small number of
training labels, each image I i can be represented by a set of image feature
vectors, i.e.,Xi ¼ ½xi1; xi2; :::xNi

�> 2 RNi ×D, where xij 2 RD andNi is the
number of image patches in the ith image. All training input data can be

denoted by X ¼ ½X>
1 ; :::;X

>
N �

> 2 RNT ×D, where NT ¼PN
i¼1 Ni, and all

training output labels by y ¼ ½y1; :::; yN �>. The objective is to learn a
classifier that takes a set of N* image tiles of a new WSI, i.e., X� ¼
½x�1; :::; x�N�

�> 2 RN� ×D as input and estimates its prediction probability
given the training data i.e., pðy� ¼ 1jX�; X; yÞ.

In order todeal with theweakly supervised learning problemdescribed
above, where there is only a single slide-level label available for a set of
multiple feature vectors computed from image tiles in aWSI, we propose to
use the aggregation of image tile-level probability estimates ofMSI-H based
on the geometric mean of the odds operator29. We first assume that we can
access the probability of each images tile (xij) being MSI-H in the ith WSI,
i.e., pij = P(yij = 1∣xij) and that the log-odds (of the tile-level probability
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estimates) are sampled from the Normal distribution centered at the true
log-odds as in29. Then, the maximum likelihood estimator of the true log-
odds in this model setting is given by the geometric mean of the odds:

pi ¼

QNi
j¼1

pij
1�pij

� �1=Ni

� �a
1þ QNi

j¼1
pij

1�pij

� �1=Ni

� �a ¼ σ
a
Ni

XNi

j¼1

log
pij

1� pij

 ! !
; ð1Þ

where σ is the sigmoid function and a > 0 is the extremization parameter.
Note that a larger value of amakes pi more extreme (pi becomes closer to
either 1 or 0).We then introduce a simple extension of (1) to the uneven tile

weights by replacing the uniform weights (1/Ni) with weight terms ~ξij ≥ 0

(with
PNi

j¼1
~ξij ¼ 1). We define a nonlinear function mapping from image

tile vectors, i.e.,RD, toR2 each output dimension of which are denoted by
[ϕ]1 or [ϕ]2: [ϕ]1 directly models the log-odds of each image tile, i.e.,

½ϕðxijÞ�1 ¼ logð pij
1�pij

Þ and [ϕ]2 models the weights with additional transfor-

mations, i.e., ~ξij ¼ ξij=
PNi

j¼1 ξij, where ξij ¼ 0:1þ 0:9 � σð½ϕðxijÞ�2Þ. To
ensure notational consistency throughout the paper, we define the
(normalized) likelihood of the mapping functions ϕ with the introduction
of a loss function L as follows82:

pðyi ¼ 1jXi; ϕÞ / exp �Lðyi; pξi Þ
� �

; ð2Þ

where p
~ξ
i ¼ σ a

PNi
j¼1

~ξij log
pij

1�pij

� �� �
is the uneven weighted extension of

(1). Note that, when the cross entropy is used as the loss function, i.e.,

Lðyi; pξi Þ ¼ yi log p
ξ
i þ ð1� yiÞ logð1� pξi Þ, where the right side on (2)

becomes nothing but σ ~yia
PNi

j¼1
~ξij log

pij
1�pij

� �� �
, where ~yi is the signed

binary label, i.e., ~yi ¼ 2ðyi � 0:5Þ� �
.

DGPs with random feature expansion
This subsection shows that themapping function ϕ can bemodeled using a
DPG with random feature (RF) expansions31,32. More formally, we assume
that ϕ is modeled by L layers of GPs (i.e., a DGP with L layers):

ϕðLÞðxÞ ¼ f ðLÞ °. . . °f
ð1Þ

� �
ðxÞ ð3Þ

where the superscript (l),where 1 ≤ l ≤ L, denotes the lth layer and f (l) in each
layer is a multivariate function whose the output dimensionality is D(l), i.e.,
f ðlÞ 2 RDðlÞ

. Each output dimension is assumed to be modeled by an indi-
vidual GP, and thus there are D(l) number of GPs in each layer.

To understand this modeling more clearly, let us consider the latent

function values of the all the training data points X up to the lth layer:

FðlÞ 2 RNT ×D
ðlÞ ¼ ϕðlÞðXÞ≜ f ðlÞ °. . . °f

ð1Þ
� �

ðXÞ. Assuming that all the GPs

in each layer share the same covariance matrix, we have

pðFðlÞjFðl�1ÞÞ ¼QDðlÞ
k¼1 N ðFðlÞ

:;kj0;K ðlÞÞ, i.e., each columnFðlÞ
:;k ismodeled by a

GP with the covaraince matrix K ðlÞ 2 RNT ×NT whose ði; i0Þ element is
defined over the output function values of the previous layer i.e.,
κðlÞðf ðl�1Þ

i ; f ðl�1Þ
i0 Þ, where κ(l) is the covariance function the lth layer and fi is

the ith row vector of Fðl�1Þ 2 RNT ×Dðl�1Þ
, i.e., f ðl�1Þ

i ¼ ðFðl�1Þ
i;: Þ>. Note that,

the layer depth at zero is defined to be the input layer,
i.e., Fð0Þ ¼ X 2 RNT ×D.

Note that, the total number of instances,NT, can bemassive even if the
number of imagesN is small (e.g., the number of whole slide images is a few
hundreds, but each image can have thousand image tiles). In addition, the
memory space of and the time complexity of algebraic operations on each
covariance matrix are N2

T and N3
T , respectively, which makes a GP prohi-

bitive even for a dataset of hundreds of images. To alleviate this computa-
tional issue, we consider the low-rank approximation of the covariance

matrices {K(l)}:

K ðlÞ � ΦðlÞðΦðlÞÞ> ð4Þ

whereΦðlÞ 2 RNT ×m andm⩽NT. This approximation leads a Bayesian
linear model that can approximate the GP latent function values83.
Using the notational abuse, let us define F(l) ≜ Φ(l)W(l), where the
priors over the linear weight matrix W ðlÞ 2 Rm×DðlÞ

assumed to be
i.i.d. Gaussians, i.e., W ðlÞ ¼Qn;kN ðW ðlÞ

n;kj0; 1Þ. One can easily see the
validity of this linear model approximation by check-
ing cov ðFðlÞ

:;kjFðl�1ÞÞ ¼ ΦðlÞE½W ðlÞ
:;kðW ðlÞ

:;kÞ
>�ΦðlÞ � K ðlÞ.

To implement the low-rank approximation in (4), we employ random
feature expansions31,32. First consider the arc-cosine kernel function as the
covariance between two input points h and h0 84 (in our case the input h is
assumed to be the output of the previous layer of the DGP model, i.e.,
h ¼ f ðl�1Þ

i and h ¼ f ðl�1Þ
j with arbitrary indices i and j):

κðh; h0jθÞ ¼ 2
Z

H ω>h
� �

ω>h
� �p

H ω>h0
� �

ω>h0
� �pN ðωj0; IÞdω; ð5Þ

where H is the Heaviside step function. Note that we can approximate the
integration with finite samples drawn from the Gaussian
(ω1; :::;ωm � N ðωj0; IÞ). With the fact that when p= 1,H(⋅)(⋅)p becomes
ReLU( ⋅ ), the low rank matrixΦ(l) in the approximation (5) can be written
by

ΦðlÞ ¼
ffiffiffiffi
2
m

r
max 0; Fðl�1ÞΩðl�1Þ� �

; ð6Þ

where Ωðl�1Þ ¼ ½ω1; :::;ωm� 2 RDðl�1Þ ×m and Fðl�1Þ 2 RNT ×Dðl�1Þ
are the

outputs of the previous layer by the definition. Recalling that F(l) = Φ(l)W(l)

andW(l) orΩ(l) can be defined as network weights with a prior distribution
(Gaussian), a DGP with random feature expansion can be reduced to a
Bayesian neural network.

Model inference
We train themodel in Bayesian learning framework with the black-box (BB)
α-divergence minimization85,86 which can be, roughly speaking, understood
as a stochastic gradient version of power expectation and propagation (EP)87.
Power EP, which is based on the local α-divergence minimization88, gen-
eralizes EP to include variational inference (VI) (α→ 0) or EP (α = 1) as a
special case with a general setting of the parameter α. However, it does not
scale well because its implementation involves storing a local approximation
parameter (also known as a site parameter) of each likelihood factor (each
data point) inmemory. Furthermore, since Power EP (as well as EP) is based
onmessage passing, its solution is not guaranteed to converge to a stationary
point of the energy function. On the other hand, since the BB-α divergence
minimizationdirectly optimizes the energy functionwith respect to the global
(single) parameter which is combined from the site parameters without
performing message passing85, we can directly apply any gradient descent
methods or desirably stochastic gradients methods for the optimization and
thus this method is applicable for large-scale problems. In particular, in this
work we use the further approximate version of BB-α divergence mini-
mization proposed in86 because it leads a simple and efficient (variational)
inference method along with the use of Monte Carlo Dropout30,89.

We first define the approximate posterior distribution over the model
parameters ψ≜fΩðlÞ;W ðlÞgL�1

l¼0

� �
. We show here only the case of the linear

model parameter W(l) (the superscript for the layer number is omitted for
rotational brevity), but the posterior distributions over the other variables
can be defined in exactly the sameway. The posterior distribution overW is
defined as a mixture of two Gaussian distributions30:

qðWÞ ¼
Ym
k¼1

q ðwkÞ; ð7Þ
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where

qðwkÞ ¼ πwN ðwkjmW;k; τIÞ þ ð1� πwÞN ðwkj0; τIÞ ð8Þ

where πw∈ [0, 1]. Let us then defineMW = [mW,1, . . . ,mW,m]. Introducing a
binary variable vector zw each element of which follows the Bernoulli dis-
tribution, i.e., zw,k ~ Bernoulli(πw) for k = 1, . . . ,m and letting τ tend to zero,
random samples drawn from the posterior (7) can be approximated by

cW ¼ MW diag ½zw�; ð9Þ

where the operator diag[v] is a diagonal matrix with the vector v and each
element in the binary vector zw can switch on or off the corresponding
columnofcW with theprobabilityπw.Weapply the sameconstruction to the
posterior distributions of the other variables and define the variational

parameters θ ¼ MðlÞ
Ω ;M

ðlÞ
W

n oL

l¼1
. Now, we can define the BB-α divergence

energy function86 of our model for a mini-batch Ob using Monte Carlo
expectation with random samples (fbψsg

S
s¼1) drawn from the variational

posterior distribution over themodel parameters which is parameterized by
the variational parameters θ, i.e., qθ(ψ):

Lα qθðψÞ
� � ¼ KL½qðψÞ k p0ðψÞ� � N

αjObj
P
i2Ob

logEqθðψÞ pðyijXi;ψÞα
	 


;

¼ P
M2θ

π
2 k Mk2F � N

αSjObj
P
i2Ob

log
PS
s¼1

exp �αLðyi;bp ξ

i;sjbψsÞ
n o

;

ð10Þ

whereπ=πw=πΩ andbp ξ

i;s is a forwardpass ofp
ξ
i at theparameter bψs,p0 is the

prior distribution (a Gaussian distribution for one column in each para-
metermatrix) and the Kullback-Leibler (KL) divergence in the first line was
also approximated as in30. To create amini-batchOb, a batch-sized number
(i.e., jObj) of slides were randomly selected. Since each whole slide image
(WSI) can contain thousands of tumor image tiles, up to 300 tiles per slide
were randomly sampled using the tlle-level attention weights for model
training. This method was inspired by a recent study demonstrating that
random subsampling can enhance prediction performance over no
sampling for binary classification in multiple-instance learning with WSIs
when a sufficient number of tiles (100 to 1000) are included90.

Prediction for a new test image
The predictive distribution of a test image (feature vectors) X� can be
computed as

pðy�jX�; y;XÞ � qðy�jX�Þ ¼ EqθðψÞ pðy�jX�;ψÞ
	 


: ð11Þ

Again, the above expectation can be approximated using random sam-
ples of the model parameters by resampling the binary Bernoulli vari-
ables (i.e., using Monte Carlo dropout). For example, the predictive

distribution of a test image being MSI-H is given by qðy� ¼ 1jX�Þ �
1
S

PS
s¼1 expf�Lð1;bp ξ

�;sjbψsÞg ¼ 1
S

PS
s¼1
bp ξ

�;s (recall that σ is the sigmoid

function and bp ξ

�;s is a forward pass of pξ�;s from the DGP model with the

sampled model parameter bψs at the test image X*). To evaluate the
uncertainty in prediction, we calculate the variance of the predictive
distribution as follows91

varqθðy�Þ ¼ Eqðy�jX�Þ½y2�� �Eqðy�jX�Þ½y��
2

¼ EqθðψÞ Eqðy�jX�;ψÞ½y�� �Eqðy�jX�;ψÞ½y��
2

h i
þEqθðψÞ Eqðy�jX�;ψÞ½y�� �Eqðy�jX�Þ½y��

n o2
� � ð12Þ

where the first term in the last equation is aleatoric uncertainty and the
second term epistemic uncertainty78,91. Again, the variance can be
approximated with random samples drawn from qθ(ψ):

varqθðy�Þ �
1
S

XS
s¼1

bp ξ

�;s � bp ξ

�;s
� �2

þ 1
S

XS
s¼1

bp ξ

�;s � bp ξ

�
� �2

; ð13Þ

where bpξ� ¼ 1
S

PS
s¼1
bpξ�;s.

Prediction improvement using prediction uncertainty
As MSI-SEER typically made misclassifications at low prediction uncer-
tainty, prediction performance can be improved by discarding the most
uncertain predictions. First, Bayesian confidence scores (BCSs) are com-
puted from the predictive variances defined in Eq. (13). Predictions are then
sorted based on their BCSs, and the most uncertain predictions (those with
the lowest BCSs) are discarded at a specified discard rate.

Performance evaluation
For the evaluation metrics, we used the area under the ROC curve (AUC),
whose value range is from 0 to 1. An AUC close to 1 indicates that a model
has good predictive power. To compare the performance of two classifica-
tionmethods, we usedDeLong’s method37, which tests whether the AUCof
one model is significantly different from that of another model.

Implementation
In addition to the number of layers in the DGPmodel (L), our DGPmodel
incorporates several user-defined hyperparameters. These include the
parameter α in the black-box α divergence formulation (Eq. (10)) in
Methods), and the rank of the approximate covariance matrix in each GP
layer (m). The black-box α divergence formulation simplifies to expectation
and propagation (EP) when α = 1 or to variational inference (VI) when α
converges to 0. For all experiments, we set α = 0.5, as prior studies have
shown that using a non-standard setting of α, e.g., α= 0.5, outperformed EP
(α = 1) or VI (α→ 0)85. The rank of the approximate covariancematrix (m)
was fixed at 100 across all GP layers and experiments.

To train our DGP models and optimize the objective function, Eq. (10)
in Methods, we employed stochastic gradient methods. Specifically, we used
the Adam optimizer with the learning rate of 0.001, β1 = 0.9, β2 = 0.999 and
ϵ = 1e−7. The maximum number of training epochs was set to 100.

We trained CNN-based deep learning models according to the same
training steps described by Laleh et al.33 for comparison. We used ResNet,
ShuffleNet, and EfficientNet as the backbone CNN Models pretrained on
ImageNet. The models were finetuned end-to-end for the MSI prediction
task with a training epoch of 8 and a patience of 5. Training was stopped if
the validation loss did not decrease. For all CNNs, we trained models with
learning rates set to 1e−4, weight decay at 1e−5, batch size of 512; usingAdam
optimizer and freeze ratio of layers at 0.5. BothDGPmodels andCNNswere
implemented in PyTorch using Python 3.7.

Data availability
The Macenko color-normalized and downsampled tile images of TCGA-
CRC and TCGA-STAD, utilized in the experiments described in the main
article, are available at https://zenodo.org/records/2530835. Whole slide
images of the CPATC-COAD cohort are available at https://www.
cancerimagingarchive.net/collection/cptac-coad/. Whole slide images
from the remaining data cohorts are available from the corresponding
authors upon reasonable request. For inquiries related to the Mayo Clinic
colon cohort, please contact Rish K. Pai at pai.rish@mayo.edu.

Code availability
TheDGPmodelswere implemented inPython,with accompanying Jupyter
notebooks illustrating the training and inference processes. The source
codes are available at https://github.com/hwanglab/MSI-SEER.
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