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Purpose: Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data 
on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standard-
ized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We devel-
oped digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods: Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, 
pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s 
electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United 
States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods 
based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clini-
cal terms (SNOMED CT) in Korea.
Results: The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-
based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 
89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 
(US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 
(Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion: Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight 
the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
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INTRODUCTION

Rare diseases, which occur in <50 per 100000 people, require 
continuous and often lifelong management, and consume 
substantial medical resources.1 More than 6000 rare diseases 
affect approximately 30 million individuals across Europe and 
the United States (US).2 Together, lack of awareness, data scar-
city regarding the disease burden, progress and complications, 
and a limited number of specialists, prolong the diagnostic pe-
riod by approximately 4 years, a phenomenon termed “diag-
nostic odyssey”.3 Due to the challenges in diagnosis and the lack 
of cost-effectiveness in research caused by their rarity, large 
investment in infrastructure for epidemiological studies of 
rare diseases seems remote.4 Although more than 440 rare en-
docrine diseases exist across a wide range of organs including 
pituitary, thyroid, and adrenal glands, ovaries, testes, and bones, 
essential epidemiological data on these diseases remain lack-
ing.4,5 For example, the prevalence of nonsurgical hypoparathy-
roidism has been reported in approximately five countries, 
but no accurate incidence has been reported.6 

Observational data from multiple healthcare resources, such 
as electronic health records (EHR), can provide evidence for 
rare diseases.7,8 In addition, strengthening global research and 
collaboration by connecting medical specialists and their data 
offers opportunities to improve care for rare diseases.9 However, 
the explosive growth of available data in healthcare has not 
supported a consecutive surveillance system for rare diseases 
across time and regions owing to inconsistencies in data for-
mat, semantic heterogeneity, and lack of consensus on digital 
phenotypes.10 The common data model (CDM), which stan-
dardized data contained in different databases into a standard-
ized format with a standardized vocabulary, can address this 
problem.11 Converting multiple heterogeneous databases to 
CDM allows researchers to execute identical study protocols 
across databases with minimal effort.12 The initial mapping of 
the local code to the standard concepts of the CDM in each da-
tabase requires detailed knowledge of the local data; however, 
once the local code is translated into a common representa-
tion, the detailed knowledge requirement is minimal.12 The 
observational medical outcome partnership (OMOP) CDM 
has a comprehensive vocabulary and scheme,13,14 which are 
developed and maintained by the observational health data 
sciences and informatics (OHDSI) standardized vocabular-
ies.11,15 The OHDSI research network based on OMOP CDM is 
capable of building multinational and large-scale observation-
al data networks worldwide.16

To leverage this international data network for research on 
rare endocrine diseases, it is crucial to develop and validate a 
standardized set of digital phenotypes. Digital phenotypes refer 
to a set of clinical concepts and pseudocode representations of 
clinical practices.17 The effect of vocabulary mapping on fidelity 
and transportability in digital phenotypes has been rigorously 
validated across OMOP CDM databases for common diseases, 

including heart failure, diabetes mellitus, appendicitis, and 
cataracts.18 Despite the comprehensive nature of the OMOP 
vocabulary for rare diseases, as demonstrated by Zoch, et al.,9 
the influence of vocabulary mapping and the granularity of 
the original vocabulary on digital phenotyping for rare diseas-
es has yet to be explored.

In the present study, we developed and validated digital 
phenotypes for three rare endocrine diseases based on OMOP 
CDM: medullary thyroid cancer, nonsurgical hypoparathy-
roidism, and pheochromocytoma/paraganglioma. In addi-
tion, we evaluated the impact of granularity of vocabulary in 
the International Classification of Diseases (ICD)-10 system-
atized nomenclature of medicine clinical terms (SNOMED 
CT), and Read vocabulary.19 

MATERIALS AND METHODS

Data sources
Data were obtained from three databases: rare endocrine dis-
eases (RED)–CDM cohort from EHRs in Severance Hospital, 
one of the largest tertiary medical institutions in South Korea; 
IQVIA medical research database for UK general practitioners, 
known as the health improvement network (THIN); and IQVIA 
US hospital database for general hospitals.20 The EHR system at 
Severance Hospital was constructed using both ICD-10 and 
SNOMED CT vocabularies, which we subsequently utilized in 
our research. 

OMOP standard vocabulary 
The healthcare systems of different countries usually have their 
own vocabulary for medical conditions. The US and Korea im-
plement country-specific ICD-10 vocabularies: ICD-10-CM 
(US) and KCD7 (Korea), respectively. The UK has developed 
and maintained Read codes for the national health system.21 In 
the OMOP CDM, the diverse original vocabularies for medical 
conditions are mapped into the OMOP standard vocabulary 
based on SNOMED CT. 

Evaluation of sensitivity and positive predictive value
We extracted the entire patient cohort from the Severance Hos-
pital data if they had at least one diagnosis of medullary thyroid 
cancer, hypoparathyroidism, or pheochromocytoma/paragan-
glioma. A through manual review was then conducted to eval-
uate the actual disease status. Following this, patients who 
were classified as part of the disease group according to each 
digital phenotyping were identified. 

To estimate the sensitivity and positive predictive value 
(PPV), three specialists (Namki Hong, Kyoung Jin Kim, and 
Seunghyun Lee) reviewed the EHR data and confirmed the 
diagnosis. In case of disagreement, an expert with more than 
10 years of experience (Yumie Rhee) made the final decision. 
PPV was calculated as the proportion of patients with diseases 
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confirmed by physicians among those detected using the digi-
tal phenotyping. Sensitivity was calculated as the proportion of 
patients with positive results based on the digital phenotype 
among those with an actual disease in the RED–CDM.

Study population and digital phenotyping 
The digital phenotyping performance was confirmed by apply-
ing it to the RED–CDM cohort from January 1, 2011 to Decem-
ber 31, 2020 at Severance Hospital. Digital phenotyping based 
on ICD-10 and reported in prior literature was defined as ICD-
10-originated OMOP concepts-level 1 (ICD-10-1).22-24 If the PPV 
and sensitivity in ICD-10-1 did not reach at least 80%, the in-
clusion and exclusion criteria for each digital phenotyping 
were updated under discussion among experts, and this was 
defined as ICD-10-originated OMOP concepts-level 2 (ICD-
10-2). In each disease, digital phenotyping was revised for the 
following reasons. 

Medullary thyroid cancer
Experts’ manual review suggested that the low sensitivity of 
ICD-10-1 in medullary thyroid cancer may be attributed to the 
exclusion criteria of a history of thyroglobulin test. Thyroglobu-
lin test is a tumor marker to evaluate the therapeutic effect and 
monitor recurrence in patients with papillary and follicular 
thyroid cancer; this test is generally performed in patients with 
thyroid cancer.25 In the RED–CDM cohort, 120 patients with 
medullary thyroid cancer who underwent thyroglobulin testing 
after surgery were observed. Therefore, in phenotyping based 
on ICD-10-2, the exclusion condition of a history of thyroglob-
ulin test was deleted.

Nonsurgical hypoparathyroidism
The PPV of ICD-10-1 was lower than expected compared to the 
PPV of 91% reported in previous studies.26,27 Due to the nature 
of CDM, confirming whether surgery was performed at another 
hospital, along with diagnosis and laboratory test codes was 
challenging. Most cases of surgical hypoparathyroidism that 
occurred after thyroid surgery at other hospitals were errone-
ously classified as nonsurgical hypoparathyroidism at our in-
stitution. To correct this misclassification, we excluded pa-
tients who were taking levothyroxine.

Pheochromocytoma/paraganglioma
The low PPV of ICD-10-1 was attributed to issues with the def-
inition of catecholamine measurement—a total of two or more 
catecholamine tests, including one or more tests before sur-
gery. Until the 2023 guideline update, adrenal incidentalomas 
were monitored annually with hormonal assessments, includ-
ing catecholamine measurements, for a period of 4 to 5 years.28,29 
Surgical intervention was indicated if an increase in size or ab-
normal adrenal function was detected during the follow-up.28 
Consequently, under the ICD-10-1 definition, not only patients 
diagnosed with pheochromocytoma but also those who un-

derwent surgery after more than 2 years of hormonal follow-
up testing, despite not having pheochromocytoma, were er-
roneously classified as part of the disease group. Therefore, for 
phenotyping based on ICD-10-2, the inclusion criteria of cate-
cholamine measurements were revised to require at least one 
catecholamine test before surgery and more than one cate-
cholamine test after surgery. Meanwhile, neuroblastoma arises 
from primitive sympathetic ganglion cells and can secrete cate-
cholamines; in some cases, neuroblastoma is indistinguishable 
from pheochromocytoma/paraganglioma based on preopera-
tive clinical features alone. Therefore, a history of being diag-
nosed with neuroblastoma at least once during the study peri-
od was added to the exclusion criteria.

In addition, when the SNOMED CT code was applied instead 
of the ICD-10 code as a cohort entry condition in the ICD-10-2 
definition, it was defined as SNOMED CT-originated OMOP 
concepts (Fig. 1). The difference between each entry condition 
code in the ICD-10 and SNOMED CT used in digital phenotyp-
ing is described in Supplementary Table 1 (only online). For ex-
ample, in medullary thyroid cancer, ICD used the entry condi-
tion code of the primary malignancy of the thyroid gland (ICD-
10: C73, concept code: 94098005), whereas SNOMED CT used 
a more detailed entry condition code for medullary thyroid car-
cinoma (concept code: 255032005). Based on this digital phe-

Fig. 1. Studyflow. In ICD-10-originated OMOP concepts-level 1, we used 
the operational definitions reported in previous Korean studies based on 
ICD-10. In ICD-10-originated OMOP concepts-level 2, we aimed to im-
prove sensitivity or positive predictive value through expert consensus. 
The changes made from ICD-10-originated OMOP concepts-level 1 to 
ICD-10-originated OMOP concepts-level 2 were as follows: 1) for medul-
lary thyroid cancer, we removed the exclusion criterion of “thyroglobulin 
test”; 2) for nonsurgical hypoparathyroidism, we added “patients taking 
levothyroxine” to the inclusion criteria; 3) for pheochromocytoma/para-
ganglioma, we revised the inclusion criterion from “measuring catechol-
amine at least twice during the entire period” to “measuring catechol-
amine at least once before and once after surgery”. In SNOMED CT-
originated OMOP concepts, the vocabulary was changed from ICD-10 to 
SNOMED CT. The performance of these three digital phenotyping was 
tested using the RED–CDM database in South Korea, and subsequently 
applied to the IQVIA database (United Kingdom and United States). ICD-
10, International Classification of Diseases-10; OMOP, observational med-
ical outcome partnership; SNOMED CT, systematized nomenclature of 
medicine clinical terms; RED–CDM, rare endocrine disease–common 
data model.

The operational definition of  
rare endocrine diseases proposed 

in  previous literature

Modified operation definition of  
rare endocrine diseases  

by expert consensus

ICD-10-originated
OMOP concepts-level 1

ICD-10-originated
OMOP concepts-level 2

SNOMED-CT-originated
OMOP concepts

Performance testing in RED-CDM database in South Korea

Apply findings to the IQVIA (United Kimgdom, United States) database
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notyping, the number of patients at Severance Hospital and 
IQVIA (US and UK) was investigated (Table 1, Supplementary 
Figs. 1 and 2, only online).

Statistical analysis
The crude incidence rate was estimated using the total num-
ber of events divided by the total follow-up period duration for 
all patients. The incidence per 100000 person-years was calcu-
lated as the total number of events divided by the total number 
of person-years. Age was classified into nine age ranges: 0–9, 
10–19, 20–29, 30-39, 40–49, 50–59, 60–69, 70–79, and 80–89 
years. Patients older than 90 years were not included. All statis-
tical analyses were performed using R version 4.1.3 (R Founda-
tion for Statistical Computing, Vienna, Austria). The study proto-
col and analysis codes are available in the reference provided.30

RESULTS

Digital phenotyping verification 
Each digital phenotyping was defined as described in Supple-
mentary Fig. 2 (only online). The actual number of patients in 
the RED-CDM database for medullary thyroid cancer, non-
surgical hypoparathyroidism, and pheochromocytoma/para-
ganglioma were 130, 116, and 172, respectively. For medullary 
thyroid cancer, only 17 patients were identified using ICD-10-1 
during the study period. The PPV and sensitivity of phenotyp-

ing using ICD-10-1 were 100% and 13%, respectively. Using 
ICD-10-2, the sensitivity increased from 13% to 100%, whereas 
PPV decreased to 96%. When using the SNOMED CT-origi-
nated OMOP concept, the sensitivity and PPV were 97% and 
100%, respectively.

In nonsurgical hypoparathyroidism, the PPV of phenotyping 
based on ICD-10-1 was 72% and the sensitivity was 100%. After 
applying ICD-10-2, the PPV of ICD-10-2 phenotyping increased 
from 72% to 82%. When using SNOMED CT-originated OMOP 
concepts, the PPV improved from 82% to 84%.

In pheochromocytoma/paraganglioma, the PPV of ICD-10-
1 was 58%, and the sensitivity was 90%. After applying ICD-10-
2, the PPV increased from 58% to 62%. Moreover, in SNOMED 
CT-originated OMOP concepts, the PPV improved from 62% 
to 89% (Table 2).

Digital phenotyping applied to multicenter, 
international research of three rare endocrine diseases
We applied this digital phenotyping to IQVIA (US and UK) da-
tabase. Detailed incidence of each disease is described in Sup-
plementary Table 2  (only online).

Medullary thyroid cancer
In the RED–CDM for South Korea, the incidence rates per 
100000 person-years defined by phenotyping based on ICD-
10-1, ICD-10-2, and SNOMED CT were 0.09, 0.65, and 0.64, re-
spectively. The crude incidence rates in South Korea for ICD-
10-1, ICD-10-2, and SNOMED CT phenotype were 0.38, 2.69, 
and 2.66, respectively. In the US cohort, the incidence rates per 
100000 person-years of ICD-10-1 and ICD-10-2 phenotype were 
0.06 and 0.08, respectively. The crude incidence rates in the US 
for ICD-10-1 and ICD-10-2 phenotype were 0.015 and 0.19, re-
spectively. Meanwhile, the incidence using the SNOMED CT-
originated OMOP concept in the US was 0. In the UK cohort, 
the incidence was confirmed as a zero count for all digital phe-
notyping. 

Nonsurgical hypoparathyroidism
The incidence rates per 100000 person-years in the RED–CDM 
for South Korea defined by phenotyping based on ICD-10-1, 
ICD-10-2, and SNOMED CT were 0.77, 0.56, and 0.50, respec-
tively. The crude incidence rates per 100000 persons of ICD-
10-1, ICD-10-2, and SNOMED CT phenotype were 3.19, 2.31, 
and 2.06, respectively. In the US cohort, the incidence rates per 
100000 person-years for ICD-10-1, ICD-10-2, and SNOMED CT 
phenotype were 0.76, 0.42, and 0.31, respectively. The crude in-
cidence rates per 100000 persons in the US for ICD-10-1, ICD-
10-2, and SNOMED CT phenotype were 1.88, 1.04, and 0.77, 
respectively. In the UK cohort, the incidence rates per 100000 
person-years for ICD-10-1, ICD-10-2, and SNOMED CT phe-
notype were 0.07, 0.04, and 0.04, respectively. The crude inci-
dence rates per 100000 persons in the UK for ICD-10-1, ICD-
10-2, and SNOMED CT phenotype were 1.28, 0.74, and 0.70, 

Table 1. Characteristics of Included Populations in Each Database

Characteristics RED-CDM_KR IQVIA_US IQVIA_UK
Total No. of patients 5.8 M 106.5 M 13.7 M
Person-years 13267073 96628400 8358871
Data type EHR EHR EHR
Dates of service 2005–2022 2007–2022 1994–2022
Dates of research 2011–2020 2011–2020 2011–2020
Care sites Single center 1.1 K 832
Age group (yr)

0–9 432207 (13.5) 11209306 (16.7) 670282 (27.7)
10–19 219826 (6.9) 6667446 (9.9) 192940 (8.0)
20–29 593756 (18.6) 9032804 (13.4) 450238 (18.6)
30–39 472993 (14.8) 8559708 (12.7) 383195 (15.8)
40–49 429024 (13.4) 8092993 (12.0) 247147 (10.2)
50–59 449025 (14.0) 8825658 (13.1) 185478 (7.7)
60–69 336422 (10.5) 7840416 (11.7) 140031 (5.8)
70–79 198203 (6.2) 5902123 (8.8) 88466 (3.7)
80–89 43182 (1.4) 1095835 (1.6) 66382 (2.7)

Sex
Male 1499624 (46.9) 30149373 (44.9) 1160409 (47.9)
Female 1698985 (53.1) 37076916 (55.2) 1263750 (52.1)

RED-CDM, rare endocrine disease-common data model; KR, South Korea; 
US, United States; UK, United Kingdom; No., number; M, million; EHR, elec-
tronic health records; K, thousand.
Data are presented as n (%).
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respectively.

Pheochromocytoma/paraganglioma
In the RED–CDM cohort of South Korea, the incidence rates 
per 100000 person-years for ICD-10-1, ICD-10-2, and SNOMED 
CT phenotype were 1.45, 1.28, and 0.87, respectively. The crude 
incidence rates of ICD-10-1, ICD-10-2, and SNOMED CT phe-
notype were 6.00, 5.31, and 3.63, respectively. In the US cohort, 
the incidence rate per 100000 person-years of ICD-10-1 phe-
notype was 0.42, and that of ICD-10-2 phenotype was 0.23. The 
crude incidence rate in the US for ICD-10-1 phenotype was 
1.04, and that of ICD-10-2 phenotype was 0.57. The incidence 
using the SNOMED CT OMOP concept in the US was 0. In the 
UK cohort, the incidence rates per 100000 person-years for 

phenotyping based on ICD-10-1, ICD-10-2, and SNOMED CT 
were 0.02, 0.01, and 0.01, respectively. The crude incidence 
rates in the UK for ICD-10-1, ICD-10-2, and SNOMED CT phe-
notype were 0.33, 0.17, and 0.17, respectively (Table 3, Supple-
mentary Fig. 3, only online).

Challenges in applying digital phenotyping to 
multicenter, international research
In the UK, zero counts were obtained from the thyroid cancer 
entry code (ICD-10 code C73) in the ICD-10-based definition of 
medullary thyroid cancer (Supplementary Table 3, only online). 
Failure in detection of the diagnostic codes was likely. Also, no 
SNOMED CT mapping was identified in the US corresponding 
to medullary thyroid cancer or pheochromocytoma/paragan-
glioma.

DISCUSSION

In this study, the digital phenotyping was developed for three 
rare endocrine diseases: medullary thyroid cancer, nonsurgical 
hypoparathyroidism, and pheochromocytoma/paraganglio-
ma. The performance of digital phenotyping was investigated 
and indicated that using SNOMED CT with high vocabulary 
granularity can be helpful regarding rare endocrine diseases. 
We also proposed ICD-10-originated concepts of three diseases, 
referred to as ICD-10-2, which demonstrated comparable sen-
sitivity and PPV to SNOMED CT-originated OMOP concepts.

The main finding of our study, that adopting SNOMED CT 
in routine clinical practice provides improved granularity in 
rare endocrine diseases, is consistent with previous literature. 
Several studies have compared the coverage between differ-
ent vocabularies. For each concept, including diagnoses, 
treatments, and procedures, SNOMED CT showed greater 
coverage compared to ICD-10 and ICD-9-CM. In addition, 

Table 2. PPV and Sensitivity According to Each Digital Phenotyping Method in Korea

Cohort definitions
Number of patients detected 

by digital phenotyping (n)
Number of true 

positive patients (n)
Total number of actual 

patients in the cohort (n)
PPV (%) Sensitivity (%)

Medullary thyroid cancer
ICD-10-1   17   17 130 100   13
ICD-10-2 135 130 130   96 100
SNOMED CT 126 126 130 100   97

Nonsurgical hypoparathyroidism
ICD-10-1 162 116 116   72 100
ICD-10-2   98   80 116   82   69
SNOMED CT   93   78 116   84   67

Pheochromocytoma/ paraganglioma
ICD-10-1 266 155 172   58   90
ICD-10-2 231 144 172   62   84
SNOMED CT 159 141 172   89   82

ICD-10-1, ICD-10-originated OMOP concept-level 1; ICD-10-2, ICD-10-originated OMOP concept-level 2; PPV, positive predictive value; ICD-10, International Clas-
sification of Diseases-10; OMOP, observational medical outcome partnership; SNOMED CT, systematized nomenclature of medicine clinical terms.

Table 3. The Incidence Rate Per 100000 Person-Years of Medullary 
Thyroid Cancer, Nonsurgical Hypoparathyroidism, and Pheochromocy-
toma/Paraganglioma According to Digital Phenotyping

Korea US UK
Medullary thyroid cancer

ICD-10-1 0.09 0.06 N/A
ICD-10-2 0.65 0.08 N/A
SNOMED CT 0.64 N/A N/A

Nonsurgical hypoparathyroidism
ICD-10-1 0.77 0.76 0.07
ICD-10-2 0.56 0.42 0.04
SNOMED CT 0.50 0.31 0.04

Pheochromocytoma/paraganglioma
ICD-10-1 1.45 0.42 0.02
ICD-10-2 1.28 0.23 0.01
SNOMED CT 0.87 N/A 0.01

ICD-10-1, ICD-10-originated OMOP concept level 1; ICD-10-2, ICD-10-origi-
nated OMOP concept level 2; KR, South Korea; US, United States; UK, United 
Kingdom; ICD-10, International Classification of Diseases-10; OMOP, obser-
vational medical outcome partnership; SNOMED CT, systematized nomencla-
ture of medicine clinical terms
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studies conducted on rare diseases indicated that SNOMED 
CT could support research and evidence-based care due to its 
improved coverage.31,32 A study of 6519 rare diseases using the 
Unified Medical Language System showed that 11% of disor-
ders matched ICD-9-CM, 21% matched ICD-10, and 44% 
matched SNOMED CT.32 Furthermore, ICD-10 coding for rare 
diseases is insufficient; only 300 of 6000–8000 diseases can be 
documented using ICD-10.33 A previous study using the Dan-
ish national registry also demonstrated that the detailed gran-
ularity of SNOMED CT aids in the identification of pheochro-
mocytoma better than ICD-8 or ICD-10.34 

However, compared to previous studies, our study had some 
limitations due to the lack of epidemiological data, with only 
one study reporting age-standardized incidence rates and no 
study reporting crude incidence rates (Supplementary Table 4, 
only online). This study revealed a certain tendency when 
compared with previous research; in South Korea, the inci-
dence using phenotyping based on ICD-10-1 differed from that 
reported in previous nationwide cohort studies.22-24 In contrast, 
ICD-10-2 and SNOMED CT phenotyping showed similar or 
higher incidence rates to those previously reported. Consider-
ing that the RED–CDM uses data from tertiary referral centers, 
a higher incidence rate in the RED-CDM cohort than those re-
ported in previous studies is reasonable. In particular, the inci-
dence rates of phenotyping based on ICD-10-1 and ICD-10-2 
were higher than those reported at the Mayo Clinic in the US, 
using RED–CDM, whereas the incidence rate of phenotyping 
based on SNOMED CT was similar to that reported at the Mayo 
Clinic.35 This finding suggests that SNOMED CT could provide 
accurate results. Also, the incidence in this study was similar to 
that reported in the US36 and lower than that reported in the 
UK.37,38 The difference between the incidence rates reported in 
previous literature from the UK and our study may be related 
to the fact that the UK database mainly includes primary care, 
whereas previous studies were based on the hospital setting.37 
In both the US and UK, zero counts were observed for certain 
rare endocrine diseases due to a mismatch of diagnostic codes 
in our study. The reason for the zero count results of SNOMED 
CT-based digital phenotyping in the US data may be due to the 
insufficient granularity of the diagnostic inputs. In the UK THIN 
database, the reason for the absence of all digital phenotyping 
of medullary thyroid cancer is unclear; however, it may be in-
fluenced by mismatched or unmatched diagnostic codes. This 
finding is consistent with previous literature on UK Biobank 
codes, which demonstrated that only 2.7% of Read codes suc-
cessfully mapped to ICD-10-codes.39 These results highlight 
the challenges of conducting international epidemiological 
studies using standardized coding systems like ICD-10, espe-
cially for rare disease, as they may present obstacles to consis-
tent implementation across diverse settings. 

While the OMOP CDM provides a comprehensive ontology 
system to harmonize international data semantically,15 there 
are limitations in that most data sources are routinely collect-

ed; and the analysis is the secondary use of those data. As pre-
viously shown by Ostropolets, et al.,40 heterogeneity in the gran-
ularity level across data sources can affect the performance of 
digital phenotyping.

To the best of our knowledge, this is the first study to pres-
ent and validate digital phenotypes of rare endocrine diseases 
in multinational databases. This study may serve as a reference 
for future researchers who wish to undertake similar data map-
ping projects. In addition, our study suggests that the global 
monitoring of rare diseases is possible through CDM. More-
over, we demonstrated the strength of adopting SNOMED CT 
in routine clinical practice for monitoring rare endocrine diseas-
es. These findings have important implications for global health 
policy regarding rare disease management. Policymakers 
should consider mandating or incentivizing the adoption of 
granular terminologies like SNOMED CT in healthcare systems 
to enable more effective monitoring and research of rare dis-
eases. Such policies could facilitate the development of interna-
tional collaborations and data sharing initiatives, ultimately 
leading to improved understanding, diagnosis, and treatment 
of rare diseases worldwide. 

A limitation of this study is that we did not investigate vo-
cabularies other than ICD-10, SNOMED CT, and Read codes. 
Phenotyping for another rare disease may be more accurate 
when using terminology from other specialty fields, including 
the NCI Thesaurus for cancer description41 and RadLex for ra-
diological text.42 Moreover, the superior granularity of SNOMED 
CT compared to ICD-10 definitions is particularly evident in 
one of the three diseases in our study; however, when classify-
ing the presence of diseases based solely on diagnostic codes, 
without using digital phenotyping with operational definitions, 
SNOMED CT demonstrated greater accuracy compared to 
ICD-10 (data not shown). Also, comparing the incidence rates 
of this rare endocrine diseases across different countries has 
been challenging due to the lack of reported data. Future re-
search should expand the scope of this study to include a 
broader range of rare diseases, leveraging specialty-specific 
terminologies and data to enhance phenotype accuracy by 
integrating genomic,43 imaging,44 and text data.45 Additionally, 
future studies should aim to include a larger number of data 
sources from diverse healthcare settings and geographic re-
gions to further validate the generalizability of the digital phe-
notypes and assess the impact of different data capturing sys-
tems and coding practices on phenotype performance.

In summary, our study developed the digital phenotyping of 
three rare endocrine diseases, which may prove useful in future 
studies related to rare endocrine diseases. Furthermore, we 
showed that rare endocrine diseases can benefit from using 
SNOMED CT with a high vocabulary granularity. We also 
demonstrated that by applying various concepts, ICD-10 digi-
tal phenotyping can achieve performance comparable to 
SNOMED CT, making it applicable even in cases where ICD-
10 is required. 
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