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BACKGROUND The analysis of cardiovascular borders (CVBs) in chest x-rays (CXRs) traditionally relied on subjective

assessment and does not have established normal ranges.

OBJECTIVES The authors aimed to develop a deep learning-based method for quantifying CVBs on CXRs and to explore

its clinical utility.

METHODS This study used a prevalidated deep learning to analyze CVBs. A total of 96,129 normal CXRs from 4 sites

were used to establish age- and sex-specific normal ranges of CVBs. The quantified CVBs were standardized into z-scores

for newly inputted CXRs. The clinical utility of the z-score analysis was tested using 44,567 diseased CXRs from 3 sites

(9,964 valve disease; 32,900 coronary artery disease; 1,299 congenital heart disease; 294 aortic aneurysm; 110 medi-

astinal mass).

RESULTS For distinguishing valve disease from normal controls, the area under the receiver operating characteristic

curve for the cardiothoracic ratio was 0.80 (95% CI: 0.80-0.80), while the combination of right atrium and left ventricle

borders had an area under the receiver operating characteristic curve of 0.83 (95% CI: 0.83-0.83). Between mitral and

aortic stenosis, z-scores of CVBs were significantly different in the left atrial appendage (1.54 vs 0.33, P < 0.001), carinal

angle (1.10 vs 0.67, P < 0.001), and ascending aorta (0.63 vs 1.02, P < 0.001), reflecting disease pathophysiology.

Cardiothoracic ratio was independently associated with a 5-year risk of death or myocardial infarction in the coronary

artery disease (z-score $2, adjusted HR: 3.73 [95% CI: 2.09-6.64], reference z-score <�1).

CONCLUSIONS Deep learning-derived z-score analysis of CXR showed potential in classifying and stratifying the

risk of cardiovascular abnormalities. (JACC Adv. 2025;4:101687) © 2025 The Authors. Published by Elsevier on

behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AI = artificial intelligence

AR = aortic regurgitation

Arch = aortic arch

AS = aortic stenosis

AUC = area under the receiver

operating characteristic

CAD = coronary artery disease

CCTA = coronary computed

tomography angiography

CHD = congenital heart disease

CT = cardiothoracic

CVB = cardiovascular border

CXR = chest x-rays

DAO = descending aorta

LAA = left atrial appendage

LV = left ventricle

MS = mitral stenosis

PT = pulmonary trunk

RA = right atrium

SVC/AO = superior vena cava/

ascending aorta

TV = tricuspid valve

VHD = valvular heart disease
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A dvancements in artificial intelli-
gence (AI) have significantly
changed the way chest x-rays

(CXRs) are analyzed, enabling the automatic
diagnosis of diseases affecting the lungs,
pleura, and bones.1-3 Recent studies have
also demonstrated AI’s potential in cardio-
vascular disease for diagnosing heart failure,
predicting cardiovascular disease risks, and
identifying various types of valvular diseases
using CXRs.4-8 AI systems trained to predict
cardiovascular abnormalities in CXRs can
provide saliency maps for their explainabil-
ity, which highlight the areas focused on
making diagnoses.5,7 However, it is impor-
tant to note that these heatmaps might
have limitations, particularly in pinpointing
specific abnormalities or diagnosing rare
diseases.9

The cardiothoracic (CT) ratio, a traditional
metric derived from CXRs, often lacks spe-
cific reference values and may not effectively
reveal changes in cardiovascular borders
(CVBs) such as dilatation of the aorta or
pulmonary trunk (PT).10,11 We have devel-
oped a fully automated, deep learning-
based software that analyzes CVBs
comprehensively.12 This AI software might offer us
an opportunity to establish precise normal ranges
and detect various patterns of CVB enlargement
associated with cardiovascular diseases. Z-scores,
which represent the number of SDs a data point is
from the mean of a normally distributed population,
are frequently used to compare quantitative test
results with reference data. The precise normal
ranges of CVBs may help the standardization of all
CVBs into simple z-scores for newly inputted CXRs.
We therefore conducted the ADC (“Automated
Diagnosis of Cardiovascular abnormalities using
chest x-ray”) study to develop a deep learning-
based method for quantifying CVBs on CXRs and
to explore its clinical utility.
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STUDY DESIGN. The ADC was a retrospective,
multicenter study initiated by investigators and
included 140,696 CXRs from 3 academic centers in 2
countries (South Korea, the United States), as well as
2 public U.S. data sets.13,14 The study protocol
received ethical approval from the Institutional Re-
view Boards of all participating institutions, and
informed consent was waived for all participants
(Asan Medical Center, Seoul, Korea; 2023-1001;
Severance Hospital, Seoul, Korea; 4-2020-0628;
Emory University, Atlanta, Georgia, USA;
STUDY00005513). The study design is summarized in
the Central Illustration. Briefly, we utilized a preva-
lidated deep learning model to automatically delin-
eate CVBs on 96,129 normal CXRs.12 This deep
learning-based analysis enabled the quantification of
CVBs and the establishment of age- and sex-specific
normal ranges for both Korea and the United States.
These normal ranges facilitated the standardization
of individual CVBs into simple z-scores for newly
inputted CXRs (Figure 1). The clinical utility of the z-
score mapping was evaluated across various disease
groups, including valvular heart disease (VHD), cor-
onary artery disease (CAD), congenital heart disease
(CHD), aortic aneurysm, and mediastinal mass.

STUDY COHORTS. The study cohorts consisted of
140,696 unique patients and CXRs as summarized in
Figure 2. The normal cohorts (Figure 2A) used to
establish reference ranges of CVBs encompassed data
from Asan Medical Center (Seoul, Korea) labeled as
“Normal Korean” (n ¼ 71,493) and 3 American data
sets collectively labeled as “Normal American”
(n ¼ 24,636). The data set from Asan Medical Center
spanned from 2002 to 2016, including 428,000 in-
dividuals who underwent both CXR and transthoracic
echocardiography within a 6-month period, with
71,493 meeting the criteria for normality in both tests
(Supplemental Table 1, Supplemental Figure 1). Data
extraction and analysis were performed by the Big
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CENTRAL ILLUSTRATION Automated, Standardized, Quantitative Analysis of Cardiovascular
Borders on Chest X-Rays Using Deep Learning

Lee J-G, et al. JACC Adv. 2025;4(5):101687.

AUROC ¼ area under the receiver operating characteristic curve; CAD ¼ coronary artery disease; CHD ¼ congenital heart disease; other

abbreviations as in Figures 1, 3, and 5.
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FIGURE 1 Z-Score Mapping Process for Cardiovascular Borders in Chest X-Rays

1. A standard posterior-anterior chest x-ray is used as the input for the AI analysis. 2. AI algorithms automatically identify and delineate the CVBs on the chest x-ray.

3. The software measures the dimensions from the midline to key points on the CVBs to calculate the cardiothoracic (CT) ratio and the dimensions of individual CVBs.

The width of each CVB is defined as the distance between the center points of each CVB and the midline of the CXR. The CT ratio was calculated by dividing the

maximum width of the right lower CVB (corresponding to the right atrium) and the left lower cardiovascular border (corresponding to the left ventricle) by the

maximal horizontal thoracic diameter. 4. The measurements are then standardized into z-scores based on the normal range, allowing for comparison according to age

and sex. AI ¼ artificial intelligence; CVB ¼ cardiovascular border; CXR ¼ chest x-ray; LAA ¼ left atrial appendage; SVC/AO ¼ superior vena cava/ascending aorta.
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Data Research Center at Asan Medical Center utilizing
the CardioNet database, a meticulously curated
database integrated within the electronic health re-
cords.15 The selection criteria for normal CXRs
involved a comprehensive review of structured
echocardiography records, radiological reports, and
International Classification of Diseases Codes, care-
fully excluding any cases indicative of cardiac, pleu-
ropulmonary diseases, or skeletal anomalies such as
scoliosis. The Normal American data set was derived
from 2 publicly accessible data sets—one from the Na-
tional Institutes of Health Clinical Center (NIH sub-
group)13 and another from Stanford University
Hospital (CheXpert Subgroup)14—as well as a data set
from Emory University Medical Center, Atlanta, USA
(Emory Subgroup) (Supplemental Table 2). For these
data sets, CXRs without lung lesions and cardiomegaly
were chosen after evaluations of structured radiolog-
ical reports and labels. Individuals in the Emory sub-
group were selected based on having normal results in
both CXR and echocardiography.

The study enrolled 5 disease groups (Figure 2B)
including the VHD group (n ¼ 9,964), patients eval-
uated for CAD with coronary computed tomography
angiography (CCTA) without any other heart disease
(CAD group, n ¼ 32,900),16 individuals who had un-
dergone surgery for atrial or ventricular septal defects
(CHD group, n ¼ 1,299), patients confirmed with
thoracic aortic aneurysms by computed tomography
(aneurysm group, n ¼ 294), and patients with biopsy-
proven mediastinal masses (mass group, n ¼ 110). The
VHD group was recruited from 3 institutions: Asan

https://doi.org/10.1016/j.jacadv.2025.101687


FIGURE 2 Study Cohort Construction

(A) Normal cohort. (B) Disease cohorts.

Continued on the next page
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Medical Center, Severance Hospital, and Emory Uni-
versity Medical Center, while the remaining disease
groups (CAD, CHD, aneurysm, and mass) were
recruited from Asan Medical Center. Further details
about each disease subgroup are provided in the
Supplement (Supplemental Tables 3 to 5,
Supplemental Figure 2). The VHD group included
patients with moderate or severe VHD who were
identified using a combination of the International
Classification of Diseases-10 codes and structured
echocardiography reports and was further catego-
rized according to the dominant or most severe valve
disease into the aortic stenosis (AS), aortic
regurgitation (AR), mitral stenosis (MS), mitral
regurgitation, and tricuspid valve (TV) subgroups.
The CAD group data, which was used for the prog-
nostication testing in this study, included a median
follow-up of 2.9 years (IQR: 1.0-4.5 years) and was
segmented into significant CAD subgroups based on
>50% stenosis observed in CCTA.16 The primary long-
term clinical outcome was the composite of death
from any cause or myocardial infarction at 5 years
after CCTA.16 The aneurysm group was composed of
patients with an ascending aorta >4.5 cm or a
descending aorta (DAO)/arch larger than 4 cm as
confirmed by CT. The mass group retrospectively

https://doi.org/10.1016/j.jacadv.2025.101687
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FIGURE 2 Continued
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enrolled patients with mediastinal masses confirmed
by CT-guided biopsy.

AI MODEL. The CVB analysis software has been pre-
viously validated against multi-institutional data
sets.12 This AI software automatically delineates each
CVB when a CXR is inputted. The width of each CVB
was calculated by measuring the distance from the
midline of the CXR to the centerpoint of the height
(Figure 1). Each CVB was named based on its normal
anatomical location as follows: superior vena cava/
ascending aorta (SVC/AO), right atrium (RA), aortic
arch (Arch), PT, left atrial appendage (LAA), left
ventricle (LV), DAO, and the carinal angle (the angle
between the lower borders of the right and left main
bronchi). The definitions of each CVB are detailed in
Supplemental Table 6. For CVB analysis, only CXRs
taken in the posteroanterior direction with the
patient standing and with proper lung inflation were
analyzed. Our AI model automatically excludes
inappropriate CXRs, such as anteroposterior/lateral
images or suboptimal lung inflation images (eg,
hyperinflation or hypoinflation or asymmetric lung
areas). Detailed information on the deep learning al-
gorithm and imaging analysis workflow is provided in
the Supplemental Methods (Supplemental Figure 3).
This AI model is available for external validation and
public use via our noncommercial research website
(www.adcstudy.com), which provides real-time CXR
analysis capabilities (Supplemental Figure 4).

ANALYSIS OF AI MEASUREMENTS. While most of the
extracted CVB metrics approximated a symmetrical
distribution, some variations in kurtosis across

https://doi.org/10.1016/j.jacadv.2025.101687
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TABLE 1 Baseline Characteristics and Measurements of Echocardiography and Chest X-Ray

Normal Korean
(n ¼ 71,493)

Normal American
(n ¼ 24,636)

VHD
(n ¼ 9,964)

CAD
(n ¼ 32,900)

CHD
(n ¼ 1,299)

Aneurysm
(n ¼ 294)

Mass
(n ¼ 110)

Demographics

Age, y 54.2 � 11.4 46.3 � 16.5 56.9 � 15.4 57.2 � 10.0 46.5 � 14.2 59.4 � 13.9 47.4 � 18.4

Male 42,932 (60.1) 13,566 (55.1) 4,304 (43.2) 20,047 (60.9) 482 (37.1) 214 (72.8) 54 (49.1)

Height, cm 164.1 � 8.7 NA 160.5 � 9.2 164.4 � 8.7 161.8 � 9.1 167.2 � 10.1 90.7 � 29.4

Weight, kg 63.8 � 10.7 NA 60.1 � 10.9 66.6 � 11.3 59.5 � 11.3 67.6 � 12.4 65.7 � 13.3

Body mass index, kg/m2 23.6 � 2.9 29.3 (9.2)a 23.4 � 3.4 24.5 � 3.0 22.6 � 3.3 24.1 � 3.7 24.3 � 3.9

Body surface area, m2 1.70 � 0.18 NA 1.64 � 0.18 1.74 � 0.18 1.63 � 0.19 1.77 � 0.20 1.94 � 1.97

Echocardiography

LV EDV index, mL/m2 83.4 � 20.8 NA 105.1 � 49.7 89.2 � 26.4 87.4 � 29.7 109.3 � 45.9 90.7 � 29.4

LV ESV index, mL/m2 30.8 � 8.6 NA 45.8 � 32.5 33.5 � 13.0 34.7 � 15.5 47.1 � 32.4 34.2 � 16.7

LV ejection fraction, % 63.1 � 3.7 61.3 (4.98)a 59.4 � 10.1 62.6 � 8.3 60.9 � 7.1 59.0 � 9.4 62.8 � 6.2

Ascending aorta, mm 32.1 � 3.5 NA 32.9 � 7.0 33.1 � 6.7 31.4 � 4.4 36.9 � 5.3 32.4 � 4.5

Chest x-ray

Acceptance rate, % 98.2
(71,493/72,772)

96.8
(24,636/25,444)

96.2
(9,964/10,357)

95.5
(32,900/34,446)

97.3
(1,299/1,335)

89.9
(294/327)

98.2
(110/112)

CT ratio 0.48 � 0.05 0.47 � 0.06 0.56 � 0.08 0.49 � 0.06 0.55 � 0.08 0.56 � 0.07 0.49 � 0.05

SVC/AO, mm 28.4 � 6.8 29.3 � 8.5 32.6 � 9.4 29.7 � 7.2 29.8 � 9.2 37.8 � 11.3 36.3 � 12.4

Right atrium, mm 39.1 � 7.8 41.4 � 9.4 46.2 � 11.3 40.8 � 8.2 44.1 � 12.4 48.0 � 11.9 40.8 � 8.7

Aortic arch, mm 38.3 � 6.7 35.3 � 8.3 39.4 � 8.2 39.5 � 6.8 37.2 � 8.0 52.6 � 14.0 40.9 � 9.4

Pulmonary trunk, mm 38.5 � 6.4 37.8 � 7.9 43.3 � 8.6 39.8 � 6.8 47.0 � 9.2 46.2 � 10.4 45.3 � 10.1

Left atrial appendage, mm 46.4 � 7.3 46.7 � 9.1 53.9 � 10.2 48.1 � 7.8 58.1 � 10.6 54.1 � 10.8 53.2 � 10.0

Left ventricle, mm 84.6 � 10.5 85.6 � 14.2 96.6 � 14.0 88.7 � 11.3 98.7 � 14.4 101.9 � 14.2 85.9 � 10.9

Descending aorta, mm 33.3 � 8.6 29.1 � 9.5 42.2 � 11.2 36.2 � 9.4 35.0 � 11.5 56.3 � 16.0 35.2 � 9.5

Carinal angle, degree 71.1 � 8.7 72.3 � 9.6 79.3 � 11.2 72.1 � 9.6 77.7 � 11.1 80.7 � 12.1 77.9 � 8.9

Values are mean � SD, n (%), or % (n/N). aThe data derived from the 203 normal subjects from Emory University.

CAD ¼ coronary artery disease; CHD ¼ congenital heart disease; CT ¼ cardiothoracic; EDV ¼ end-diastolic volume; ESV ¼ end-systolic volume; LV ¼ left ventricle; NA ¼ not available; SVC/AO ¼ superior
vena cava/ascending aorta; VHD ¼ valvular heart disease. Acceptance rate represents the proportion of inputted chest posteroanterior x-rays that were successfully analyzed and found to be free of lung
hyperinflation or hypoinflation. Body mass index and LV ejection fraction in the Normal American from Emory University subgroup.
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different metrics as well as skewness in DAO were
noted (Supplemental Figures 5 and 6). To account for
these discrepancies, each CVB metric underwent a
transformation to a Box-Cox normal distribution us-
ing Generalized Additive Models for Location, Scale,
and Shape.17 Percentile curves were plotted for indi-
vidual measurements, and z-scores were
computed.17,18 Then, the dimensions of each CVBs
were standardized into z-scores.

STATISTICAL ANALYSIS. Continuous variables are
presented as means and SDs, while categorical vari-
ables are presented as counts and percentages.
Z-scores for each disease group are shown along with
their means and 95% CIs. The diagnostic performance
of CVB metrics in detecting specific diseases was
evaluated using the area under the receiver operating
characteristic (AUC), calculated with the pROC pack-
age (version 1.18.5) and included sensitivity, speci-
ficity, accuracy, positive predictive value, and
negative predictive value with cutoff point deter-
mined by the maximum Youden index. Diagnostic
performance was assessed for the VHD, CAD, and
CHD groups, as well as for subgroups within VHD. For
each disease category, a control group 3 times the size
of the disease group was randomly selected from the
Normal Korean cohort. Additionally, we performed
5-fold cross-validation to validate the model’s per-
formance across multiple splits, reducing bias and
enhancing generalizability. Multivariable logistic
regression analysis was used to identify CVBs signif-
icantly associated with the presence of disease. Only
CVB metrics that demonstrated a P value <0.01 in
univariable analysis and had low intercorrelations
(r < 0.20) were included in the multivariable analysis.
The multivariable model was developed using 60% of
the randomly divided data and validated using the
remaining 40%.

For the CAD group, Kaplan–Meier survival ana-
lyses were conducted using the survival package
(version 3.5.5), and Cox proportional hazards
regression models were used to examine the rela-
tionship between CVB z-scores and patient out-
comes, independent of known cardiovascular risk
factors. These analyses focused on the composite
outcome of death from any cause or myocardial

https://doi.org/10.1016/j.jacadv.2025.101687
https://doi.org/10.1016/j.jacadv.2025.101687


FIGURE 3 Age-Related Percentile Curves for Cardiovascular Borders in Normal Chest X-Ray

Percentile graphs of cardiovascular borders according to age for normal men (A) and women (B). The data in red or blue represent Normal

Korean individuals, and the data overlapped in gray represent that of Normal Americans. Note that the age range of 20 to 100 years includes

extrapolated values at the extremes CT ¼ cardiothoracic; LA ¼ left atrium; other abbreviation as in Figure 1.

Continued on the next page
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infarction following CCTA. The Framingham Risk
Score, body mass index, the presence of diabetes
mellitus, estimated glomerular filtration rate, symp-
toms at CCTA, and obstructed CAD (defined as $50%
diameter stenosis) on CCTA were incorporated into
the multivariable regression models, consistent with
previously published results.16 The CVB z-scores
were categorized as follows: z-score <�1, �1
# z-score <0, 0 # z-score <1, 1 # z-score <2, and
z-score $2.
RESULTS

STUDY POPULATION. The study population comprised
96,129 individuals in the normal cohorts and 44,567
patients in the disease cohorts (Table 1, Figure 2). The
mean age ranged from 46.5 years in the CHD group to
59.4 years in the aneurysm group. The VHD group
included 1432 AS (14.4%), 1756 AR (17.6%), 2897 MS
(29.1%), 2971 mitral regurgitation (29.8%), 785 TV
disease (7.9%), 72 pulmonary valve disease (0.7%),



FIGURE 3 Continued
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and 51 multivalve disease (0.5%) cases (Supplemental
Table 7). Echocardiography results show LV ejection
fraction and other cardiac dimensions, with disease
groups often showing enlarged measurements
compared to normal.

NORMAL RANGE OF CVBs. Supplemental Table 8
summarizes the normal ranges for CVBs on poster-
oanterior CXR for different age groups in both Korean
and American populations according to sex. Figure 3
presents a set of graphs depicting age-related
percentile curves for various CVBs in normal in-
dividuals; detailed graphs for Normal American and
Korean cohorts were provided in the Supplemental
Figures 7 to 10. For both populations, the CT ratio
tends to increase with age; similarly, the diameters
for SVC/AO, RA, Arch, LV, and DAO also increased
with age, reflecting physiological changes in the car-
diovascular system as age advances. Intercohort
comparisons revealed slightly larger CVBs in the
American group, differences that were mitigated after
adjusting for CT ratio.

Z-SCORES OF CVBs IN DISEASE GROUPS. In the
analysis of disease groups, z-scores for CVB were
generally elevated, with the VHD and CHD groups
displaying significantly higher z-scores compared to
the CAD group (Figure 4, Supplemental Table 9).
Specifically, the mean z-scores for the CT ratio were
0.39 in CAD, 1.27 in CHD, and 1.40 in VHD. Figure 4

https://doi.org/10.1016/j.jacadv.2025.101687
https://doi.org/10.1016/j.jacadv.2025.101687
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FIGURE 4 Comparative Z-Score Forest Plot for Disease Classification

Each parameter is represented by a horizontal line, with data points indicating the mean Z-score and error bars showing 95% CIs. (A)

Comparison across different disease groups: coronary artery disease, congenital heart disease, and valvular heart disease. (B) Comparison

across specific valvular heart disease: aortic stenosis, mitral stenosis, and tricuspid valve disease. Abbreviations as in Figures 1 and 3.
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highlights the variations in z-scores across diseases,
showcasing the disease-specific changes in CVB pa-
rameters. MS, often accompanied by left atrial
enlargement, showed marked increases in the LAA (z-
score ¼ 1.54) and carinal angle (z-score ¼ 1.10) as a
result of the left atrial pushing upward; this was in
marked contrast to AS where the increase in the SVC/
AO (z-score ¼ 1.02) indicated dilation of the ascending
aorta. In CHD, including atrial or ventricular septal
defects, the z-score of the Arch (0.01) was relatively
low, reflecting the reduced cardiac output of the left
heart due to left-to-right shunt disease. The aortic
aneurysm group showed significant increases in the
arch (1.95) and DAO (2.65) z-scores, indicating aneu-
rysmal changes. Mediastinal mass conditions also
demonstrated elevated z-scores, especially for the
SVC/AO (1.04) and the PT (1.03), which may indicate a
mass shadow or compression caused by the tumor.

DIAGNOSTIC PERFORMANCE. The diagnostic evalu-
ation of CVBs highlighted the CT ratio z-score as a
robust metric across VHD, CAD, and CHD groups
(Figure 5). The AUC for detecting VHD using the CT
ratio reached 0.80 (95% CI: 0.80-0.80), which was
increased to 0.83 (95% CI: 0.83-0.83) when combined
with RA and LV metrics. CHD detection benefited
from a CT ratio AUC of 0.76 (95% CI: 0.76-0.77), which
improved to 0.83 (95% CI: 0.83-0.83) when PT and
carinal angle were added. Among the subgroups of
VHD, TV disease detection had the highest AUC of
0.88 (95% CI: 0.87-0.88) using the CT ratio. Detailed
information on demographics, AUC, sensitivity,



FIGURE 5 Performance of the Z-Score Mapping of Cardiovascular Borders for the Detection of Cardiovascular Disease

AUC ¼ area under the receiver operating characteristic curve; CA ¼ carinal angle; DAO ¼ descending aorta; LAA ¼ left atrial appendage; LV ¼ left ventricle;

PT ¼ pulmonary trunk; RA ¼ right atrium; other abbreviations as in Figures 1 and 3.
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specificity, cutoff, positive predictive value, and
negative predictive value is provided in
Supplemental Tables 10 to 17.

PROGNOSTIC VALUE. In the cohort of 32,900 CAD
patients, there were 390 (1.18%) instances of all-cause
death or myocardial infarctions. CT ratio z-scores
indicated an increasing risk with higher scores
(Figure 6). Patients with a CT ratio z-score of 2 or
higher were at a significantly elevated risk (adjusted
HR: 3.73; 95% CI: 2.09-6.64), showing a higher per-
centage of cumulative events (4.6% vs 0.6%,
P < 0.001) over 5 years compared to the reference
group with a z-score less than �1 (HR: 1.00). Elevated
risks were also observed with higher z-scores ($2) for
SVC/AO, RA, DAO, and carinal angle, while the Arch,
PT, LAA, and LV z-scores not reaching statistical sig-
nificance (Supplemental Table 18, Supplemental
Figures 11 to 18).

CASE EXAMPLES. We presented 8 CXR case exam-
ples (Supplemental Figures 19 to 26), illustrating the
application of z-score mapping in diagnosing various
cardiomediastinal diseases. The cases span a range of
conditions, including AS, MS, AR, atrial septal defect,
aortic aneurysms, and mediastinal masses.

DISCUSSION

In the ADC study, we established normal values for
CVBs and introduced a new methodology for utilizing
CXRs in cardiovascular disease diagnosis. Our main
findings are as follows. First, z-score mapping for
CVBs was feasible in disease diagnosis. In certain
cases, combining different CVBs enhanced diagnostic
accuracy beyond the CT ratio. Second, variations in
z-scores, reflecting the underlying disease patho-
physiology, indicate that CXRs could be useful in
classifying diseases, such as distinguishing between
aortic and mitral valve diseases. As demonstrated
through our case presentations, the changes in indi-
vidual CVB z-scores may be correlated with the
pathophysiological changes observed in patients’
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FIGURE 6 All-Cause Death or Myocardial Infarction Stratified by Cardiothoracic Ratio Z-Score in the Coronary Artery Disease Group,

All-Cause Death or Myocardial Infarction Were Stratified by Z-Score Categories of the CT Ratio

Adjusted HRs were compared with the lowest Z-score group (<�1). (A) Percent of death or myocardial infarction and adjusted HR increased

across ascending Z-score categories. (B) Cumulative event rate for each Z-score category of the CT ratio during a follow-up duration of

5 years. Abbreviation as in Figure 3.
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echocardiograms or CT scans. The z-score mapping
allows for a more objective and quantifiable method
of interpretation compared to traditional approaches
to CXR analysis. Lastly, measures of CVB, including
the CT ratio, showed potential in predicting clinical
outcomes, adding value to traditional risk scoring
systems.

Regarding the quantitative analysis of CXR, previ-
ous studies have focused on automatically extracting
the CT ratio 19-22 and biological age 23 from CXRs using
AI. As demonstrated in the ADC study, the variability
of the CT ratio’s normal values based on age and sex
indicates limitations in applying a single cutoff 0.5.
Moreover, conditions such as PT and ascending aortic
dilatation cannot be adequately assessed by the CT
ratio alone. The significance of this ADC study lies in
standardizing various CVBs into a single parameter of
z-score, not just the CT ratio, particularly showing
some success in making differential diagnoses that
were not previously possible with the CT ratio.
Extracting biological age from CXR has shown prom-
ising prognostic value when added to existing
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cardiovascular risk matrices, offering a potential new
utility for CXR.23 Since, CXR-derived biological age
and CVB z-scores are numerical data and likely in-
dependent, combining them could offer potential for
clinical practice and research applications.

The use of “end-to-end” supervised learning,
where AI directly learns from CXRs with abnormal-
ities compared to a control group, is a widely adopted
approach in current AI research. This method has
been extensively applied in the field of cardiovascular
disease to predict conditions such as acute chest pain
syndrome,24 aortic dissection,25 LV systolic dysfunc-
tion,6 structural LV disease,7 VHD,5 AS,26 and atrial
fibrillation,27 using CXRs. Other studies have also
tried to predict the 10-year risk for major adverse
cardiovascular events using CXRs.8 These studies
often employ saliency maps to improve the explain-
ability of AI, indicating the specific areas of the image
that the AI prioritized to reach its decision. However,
saliency maps can struggle with the precise localiza-
tion of abnormalities and may pose interpretative
challenges when applied to diseases not included in
the algorithm’s training.9 Z-score mapping, by
providing interpretable numerical values indepen-
dent of specific diseases, can help overcome these
limitations, offering broader applicability across
various cardiomediastinal conditions. This advance-
ment may offer a modernized approach to interpret-
ing CXRs, aligning with clinicians’ preference for
quantifiable metrics, such as blood tests and echo-
cardiographic parameters. Moreover, this numerical
approach facilitates a more objective comparison
during the follow-up of CXRs, making it easier to
interpret changes over time in a patient’s condition.

For the utilization of z-score mapping of CXR in
real-world clinical practice, it is crucial to establish
the most appropriate clinical application scenarios.
For example, z-score mapping of CXRs could serve as
a gatekeeper before proceeding to more costly and
complex tests such as echocardiography. Another
promising scenario could involve using z-score map-
ping of CXRs as a screening tool to detect left-to-right
shunt diseases before they progress to irreversible
pulmonary hypertension. Such applications could
significantly enhance the utility of CXR, providing a
cost-effective, accessible, and noninvasive method.
Particularly, using CXRs for VHD or CHD in screening
scenarios could be a viable alternative in underde-
veloped countries where health care infrastructure is
insufficient.28

This study has the following limitations: First, the
CVB analysis is subject to limitations of the CXR
modality compared to echocardiography or CT. As
demonstrated in case 4 (ASD) and cases 6 and 7
(mediastinal mass), CVBs can be influenced by adja-
cent structures. Therefore, the interpretation of CVB
analysis must be based on understanding of the spe-
cific disease’s pathophysiology and topographical
anatomical knowledge in CXR. Second, although this
study presents diagnostic performance, z-score
pattern analysis, and prognostic value, it has not
provided definitive cutoff values refined enough for
application in actual practice. This is because,
although the normal ranges and disease cohorts
included data from multiple institutions, they did not
encompass a wide variety of ethnicities and real-world
conditions, including disease groups. Future research
should conduct more extensive studies across a wide
range of clinical application scenarios. Third, while we
utilized diverse data sets from Korea and America to
establish normal values for CVB analysis, we were
unable to perform an analysis of detailed race compo-
sition. Lastly, our AImodel’s performance has not been
sufficiently validated in real-world clinical settings
that accurately reflect disease prevalence. Future
prospective studies using consecutively enrolled,
disease-specific data that truly reflect prevalence will
be necessary for further validation.

The ADC study has introduced a fully automated,
deep learning-derived z-score analysis of CXR
showed potential in detecting, classifying, and strat-
ifying the risk of cardiovascular abnormalities.
Further research is needed to determine the most
beneficial clinical scenarios for this method.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: This

study demonstrates that deep learning-based quantifi-

cation of CVBs in CXRs can provide objective, reproduc-

ible measurements that go beyond the traditional CT

ratio. By establishing age- and sex-specific normal ranges

and standardizing values into z-scores, our approach im-

proves the detection of valve disease and offers prog-

nostic insights in CAD. Understanding these imaging

biomarkers is crucial for enhancing diagnostic accuracy

and risk stratification in cardiovascular care.

TRANSLATIONAL OUTLOOK: Our findings suggest

that automated, deep learning-derived z-score analysis of

CVBs has the potential to transform clinical practice by

streamlining CXR interpretation and improving patient

management. Future prospective studies in diverse pop-

ulations are necessary to validate these findings and

integrate the technology into clinical workflows. Ulti-

mately, such advancements may lead to earlier detection

and more targeted interventions for cardiovascular

diseases.
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