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INTRODUCTION

Research on circadian rhythms has been extensively conducted 
across various species, including humans, leading to significant 
discoveries. Even before the advent of digital health technologies, 
past findings in circadian rhythm research were groundbreaking 
enough to receive prestigious scientific recognition, including the 
Nobel Prize [1]. Nevertheless, digital health technologies, such as 
wearable devices, mobile applications, remote monitoring, artifi-
cial intelligence (AI), and machine learning, have created new op-
portunities for advancing circadian rhythm research and its clin-
ical applications.

The gold standard for assessing circadian rhythms is dim light 
melatonin onset (DLMO), which involves periodically collecting 
saliva, blood, or urine samples in the evening under dim light 
conditions to measure the rise in melatonin levels, a key marker 
of the body’s biological night. DLMO is widely used in circadian 
rhythm research due to its high accuracy in determining circadi-
an phase. However, this method requires strict laboratory condi-
tions or structured at-home saliva sampling, making it costly, labor-
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intensive, and impractical for large-scale or continuous monitoring. 
In contrast, wearable devices offer a non-invasive alternative by 
continuously tracking body movement, heart rate, temperature, 
and light exposure over extended periods [2]. This approach sig-
nificantly differs from traditional laboratory-based studies, which 
primarily rely on single-point measurements. The introduction of 
wearable devices has enabled long-term data collection, allowing 
for the continuous tracking of 24-hour circadian variations and a 
more comprehensive analysis of circadian rhythms. These devic-
es also facilitate data collection in natural environments such as 
homes and workplaces, providing a more accurate representation 
of real-life circadian rhythms. Furthermore, AI-based analysis of 
data collected from wearable devices is actively being explored to 
detect circadian rhythm abnormalities and predict diseases at an 
early stage [3,4].

Most wearable devices are used primarily for health promotion 
rather than medical purposes, with sleep and activity tracking be-
ing the most commonly utilized features. Many of these devices 
go beyond simple sleep-wake assessments to provide physiologi-
cal indicators such as respiration, skin temperature, blood oxy-
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gen saturation, heart rate, and heart rate variability (HRV), allow-
ing more comprehensive evaluation of circadian rhythms. Unlike 
traditional laboratory environments, wearable devices enable 
large-scale, long-term, real-world sleep data collection without 
bothering or discomfort.

In clinical settings, patients bring data from their wearable de-
vices to physicians, which has become not uncommon in sleep 
clinics. However, the varying specifications of wearable devices 
and the lack of transparency in their signal-processing algo-
rithms create challenges in assessing data reliability and validity. 
Moreover, no standardized guidelines exist for interpreting such 
data in clinical practice. Nonetheless, an increasing number of 
individuals track their physiological data using wearable technol-
ogy and seek medical intervention based on these insights. In 
addition, consumer-grade wearable devices are being used for re-
search on sleep/circadian rhythms more and more [5]. Until now, 
wearable devices that measure circadian rhythms, represented by 
sleep-wake pattern analysis, have been mainly in the form of wrist-
watches, but now other forms of devices such as rings are increas-
ing rapidly [6].

Over the past decade, research using wearable devices to study 
circadian rhythms has increased significantly. A search of the 
PubMed database for “wearable device” shows an increase in pub-
lished studies from 524 in 2014 to 4,215 in 2024, representing an 
8-fold increase. A search combining “wearable device” and “circa-
dian” reveals an increase from only one study in 2014 to 34 stud-
ies in 2024 as of the search date of February 19, 2025. However, 
when the search is limited to “human” and “clinical studies,” the 
average annual publication rate remains low, at approximately 
one study per year. This indicates that clinical applications remain 
limited while research in this area is expanding.

This review aims to examine recent research on circadian rhythms 
using wearable devices, focusing on the following key areas: 1) 
the types of wearable devices utilized in circadian rhythm re-
search, 2) the types of circadian rhythm-related data provided by 
wearable devices, 3) the parameters and analysis methods em-
ployed in wearable-based sleep and circadian rhythm research, 4) 
studies on the association between circadian rhythms measured 
by wearable devices and disease risk, 5) development of wearable 
technology for estimating DLMO using multi-sensor data, and 
6) limitations and future considerations associated with using 
wearable devices in circadian rhythm research.

WEARABLE DEVICES FOR CIRCADIAN 
RHYTHM RESEARCH

Wearable devices employed in circadian rhythm research and 
clinical applications can be categorized into three groups: 1) de-
vices specifically designed for research and clinical use, 2) con-
sumer-grade devices, and 3) new research/clinical-grade wear-
able devices [5]. However, the distinction between consumer-
grade and research/clinical-grade wearable devices is becoming 
increasingly blurred.

Traditional research and clinical devices are represented by ac-
tigraphy, which mainly uses a 3-axis accelerometer sensor, and 
sometimes also includes sensors for light exposure and skin tem-
perature measurement. Unlike consumer-grade devices, tradition-
al devices do not provide feedback to users and allow direct ac-
cess to raw data [7]. They evaluate movement based on changes 
in gravitational acceleration detected by the sensor, and convert 
the measured movement into an estimate of sleep and wakeful-
ness using a validated, publicly accessible algorithm. These devic-
es are typically worn on the non-dominant wrist but can also be 
worn on other body parts, such as the ankle, leg, or waist, depend-
ing on the specific research application [8].

Consumer-grade wearable devices were originally developed 
for fitness, providing feedback to wearers. These devices typically 
include accelerometers and photoplethysmography (PPG) sen-
sors to measure heart rate and HRV. More recent models incor-
porate a wide range of additional sensors for estimating skin con-
ductance, temperature, global positioning system tracking, and 
electrocardiography, which are becoming useful for assessing sleep 
and circadian rhythms. Most consumer-grade devices do not allow 
access to raw data, and their sleep classification algorithms remain 
proprietary. Information on device performance for some sleep 
assessments is available, although it varies significantly with ap-
proach, hardware, and software [8,9]. Data are often stored in the 
cloud and interfaced with applications. Advancements in sensor 
technology, including AI-based algorithms, have driven the evo-
lution of traditional actigraphy into modern consumer wearables, 
such as the Fitbit, Apple Watch, Oura Ring, and WHOOP, ex-
panding accessibility and real-world circadian monitoring capa-
bilities. Early consumer-grade wearables were poorly validated, 
and in 2018, the American Academy of Sleep Medicine stated that 
these devices were not yet reliable enough for direct clinical use, 
and they suggested that consumer-grade wearables could serve 
as adjunctive tools for patient communication and reference ma-
terials [10]. Since then, several validation studies have been con-
ducted to assess the accuracy and reliability of consumer-grade 
wearables compared to traditional actigraphy and gold-standard 
methods such as polysomnography (PSG). De Zambotti et al. [11] 
compared two consumer-grade wearable devices against actigra-
phy and PSG. The results showed that the consumer-grade wear-
able devices overestimated total sleep time compared to actigra-
phy. While its sensitivity for detecting sleep was high (approximately 
95%), its specificity for detecting wakefulness was low (approxi-
mately 60%). Stone et al. [12] examined eight consumer-grade 
wearable devices in comparison to PSG. Interday stability and in-
traday variability indices were consistent between the one device 
and actigraphy, while the other one showed slightly greater vari-
ability in circadian metrics. This suggests that some consumer 
wearables can reliably estimate circadian parameters, but further 
validation across diverse populations is needed. Recent sleep as-
sessment capabilities offered by consumer-grade devices were 
initially intended to enhance wellness, but now straddle the line 
between wellness and medical products.
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New research and clinical wearable devices distinguish them-
selves from consumer-grade devices by allowing access to raw data 
and disclosing sleep-wake classification algorithms [5]. Many of 
these devices feature advanced PPG sensors, mobile app integra-
tion, and cloud-based data storage. Although primarily focused 
on sleep and circadian rhythm research, they often have other 
health-promoting functions as well.

CIRCADIAN DATA FROM WEARABLE 
DEVICES

Wearable devices provide a range of physiological and behav-
ioral data that can be used to analyze circadian rhythms. The pri-
mary categories of data include movement from accelerometer, 
HRV, skin temperature, light exposure, and respiratory patterns. 
These metrics allow researchers to assess circadian phase shifts, 
amplitude, and stability. 

As mentioned earlier, wearable devices used in sleep/circadian 
rhythm research, whether research-purpose or consumer-grade, 
contain an accelerometer. Raw accelerometer data is typically 
provided at a relatively high sampling frequency. The data collect-
ed while worn, before being converted in any form, is referred to 
as “raw data.” The term “raw data” refers to the actual signal val-
ues recorded by the device’s sensors at a specific sampling fre-
quency. Researchers can edit and transform this raw data to cre-
ate parameters of a type that is relevant to their intended use. 

PPG sensors capture changes in blood volume during the car-
diac cycle using light reflection or transmission [7]. PPG mea-
sures pulse rate and pulse rate variability, which can be used to 
estimate sleep stages. Pulse rate variability from PPG corresponds 
to HRV. HRV is influenced by parasympathetic regulation of car-
diac rhythm, baroreflex, mechanical stimulation, and hormones. 
Therefore, HRV measured at rest is used as an indicator of para-
sympathetic regulation of cardiac rhythm in the context of stress 
response. The current limitation is that PPG sensor values mea-
sured while stationary are reliable, but values measured while 
moving are difficult to trust [13]. Although PPG values are only 
an indirect estimate of cardiac activity, they can indicate physio-
logical activities and processes that cannot be captured by other 
signals [14]. 

Wearable devices equipped with wearable thermistors and in-
frared sensors can also measure body temperature fluctuations 
over a 24-hour period to assess circadian rhythms. Wearable de-
vices equipped with ambient light sensors can assess light expo-
sure patterns that are important for circadian phase changes. 
Some wearable devices can monitor respiration rate and blood 
oxygen levels, which vary with the sleep-wake cycle [15].

WEARABLE-BASED CIRCADIAN 
RHYTHM ANALYSIS METHODS

Wearable devices use algorithms to provide sleep-related pa-
rameters by distinguishing between sleep and wake states [16]. 

Bedtime and wake time are behavioral indicators that are typical-
ly self-reported. Bedtime refers to the time a person attempts to 
fall asleep, while wake time is when they end their sleep attempt. 
Most devices automatically detect the start and end of each sleep 
period. The time between bedtime and wake time is used to cal-
culate key sleep metrics such as sleep onset latency, time awake 
after sleep onset, total sleep time, and sleep efficiency [8]. Addi-
tionally, devices estimate sleep stages using either publicly avail-
able algorithms or proprietary methods based on heart rate and 
HRV patterns, which characterize different sleep stages [16].

Circadian rhythms are analyzed by collecting physiological and 
behavioral markers over extended periods using wearable devic-
es. These devices track activity patterns, physiological signals, and 
environmental factors to infer the body’s internal biological clock. 
The most common approach involves wearable devices equipped 
with accelerometers that measure body movements. This data is 
then processed to estimate sleep-wake cycles, daily activity levels, 
and 24-hour activity rhythms, providing insights into circadian 
patterns. Key circadian rhythm indices include interday stability, 
intraday variability, and relative amplitude [17]. Interday stability 
measures the consistency of daily activity patterns, with higher 
values indicating more stable rhythms. Intraday variability reflects 
how fragmented activity is throughout the day, with higher values 
indicating greater irregularity. Relative amplitude quantifies the 
difference between the most active 10 hours and the least active 
5 hours. Additionally, circadian parameters such as amplitude 
and acrophase can be estimated by fitting a cosine curve to activ-
ity data [18].

Circadian changes in heart rate and HRV, measured using PPG, 
are key indicators of circadian rhythm. Heart rate is typically low-
er at night and higher in the morning, while HRV is generally 
higher during sleep and lower during wakefulness [13]. Circadi-
an rhythms can also be assessed using continuous glucose moni-
toring sensors, skin temperature sensors, and light exposure sen-
sors. Data from these parameters can be integrated and analyzed 
to provide comprehensive insights into circadian patterns. The 
sleep regularity index is a parameter used to evaluate the consis-
tency of an individual’s sleep patterns and assess circadian rhythms. 
It is calculated by measuring the probability that a person’s sleep 
state remains the same at two different points within a 24-hour 
period. A value closer to 100% indicates a more consistent sleep 
pattern [18].

The most commonly used method to assess the robustness of 
circadian rhythms is multicomponent cosinor analysis, which 
models periodic data and estimates key variables such as ampli-
tude and acrophase [18]. Non-parametric actigraphy indices cap-
ture features like circadian irregularity and light exposure, while 
moving linear regression models are used to evaluate sleep-wake 
patterns at short intervals, often for characterizing basic sleep vari-
ables. Additionally, limit-cycle oscillator modeling and approxima-
tion-based least squares methods are also used to assess circadian 
rhythm robustness [18].

How should deviations in circadian rhythm robustness identi-
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fied through analysis be interpreted? Such deviations—manifest-
ing as decreased amplitude, deviations from sinusoidal patterns, 
phase delays, impaired phase alignment, increased day-to-day in-
stability, and fragmented circadian activity—are associated with 
elevated risks to both physical and mental health. The interpreta-
tion of key indicators that deviate from normal circadian rhythms 
involves considering multiple factors collectively. However, it can 
be summarized as follows: For circadian rhythm-related indica-
tors, a decrease in amplitude typically indicates a weakening of 
the circadian rhythm, meaning the difference between daytime 
and nighttime activity is reduced. However, it may also represent 
the normalization of a temporary amplitude increase caused by 
factors such as jet lag or shift work. A phase delay generally refers 
to a delayed sleep-activity pattern, where an individual goes to 
bed and wakes up later than usual. This interpretation should 
consider individual genetic factors and environmental influenc-
es, such as light exposure. An abnormal circadian waveform indi-
cates a deviation from the expected pattern. While it often sug-
gests a loss of regularity, it may also reflect an adaptation to specific 
environmental conditions. Variability in circadian rhythms can 
occur within a single cycle or between consecutive cycles. Increased 
fragmentation or irregularity corresponds to higher intraday 
variability or interday variability and typically signifies a loss of 
rhythm regularity. However, it can also represent a flexible response 
to a dynamic environment or indicate that the circadian rhythm 
does not follow a strict 24-hour cycle. Misalignment occurs when 
the correlation between different indicators is disrupted, with fac-
tors such as genes, age, seasonal changes, and meal timing influ-
encing rhythm alignment [18].

WEARABLE-MEASURED CIRCADIAN 
RHYTHMS AND DISEASE RISK

Recent studies have explored the association between circadi-
an rhythm disruptions and disease risks using wearable devices. 
Numerous studies have utilized the UK Biobank and US National 
Health and Nutrition Examination Survey (NHANES) databases. 
While most research focuses on disruptions in the circadian 
rhythm of physical activity, some studies also examine deviations 
in temperature and light exposure rhythms. 

A prospective study has shown that increased circadian rhythm 
amplitude is associated with higher all-cause mortality and a 
greater incidence of infectious diseases, cancer, cardiovascular 
disease, and respiratory disease, based on activity data [19]. An-
other study using UK Biobank data found that decreased circa-
dian rhythm amplitude is linked to a higher prevalence of mental 
disorders and negatively correlates with subjective mental health 
[20]. Studies have shown that circadian phase shifts are associat-
ed with cognitive decline in older adults and an increased risk of 
death and cardiovascular disease, with both findings based on ac-
tivity data collected from wearable devices [21-23]. Recently, Shim 
et al. [3] developed a model called CoSinorAge that estimates 
physical age as a digital biomarker by analyzing circadian rhythms, 

demographic variables, lifestyle factors, and health conditions. 
This study was conducted on more than 80,000 middle-aged and 
elderly individuals in the UK and the US, using accelerometer 
data collected through wearable devices to analyze circadian 
rhythms. According to the study results, a 1-year increase in Co-
SinorAge was associated with an 8%–12% increase in overall 
mortality and cause-specific mortality, a 3%–14% increase in the 
likelihood of developing age-related diseases such as cardiovas-
cular disease, diabetes, and neurodegenerative disorders, and an 
accelerated decline in physical function and overall health status. 
A decrease in circadian rhythm amplitude, measured through body 
temperature or light exposure using wearable devices, has also 
been linked to an increased risk of non-alcoholic fatty liver disease, 
diabetes, kidney disease, hypertension, and pneumonia [24-26]. 

DEVELOPMENT OF WEARABLE 
TECHNOLOGY FOR ESTIMATING 
DLMO USING MULTI-SENSOR DATA

DLMO is the gold standard for assessing circadian rhythms, 
but it is invasive, time-consuming, and impractical for large-scale 
or real-world monitoring because it is measured via repeated sa-
liva, blood, or urine sampling in a laboratory or controlled envi-
ronment. To address these limitations, researchers have devel-
oped models for estimating DLMO using wearable technology and 
multi-sensor data fusion. Estimation of DLMO leverages non-in-
vasive physiological markers, such as HRV, body temperature, 
movement patterns, and light exposure, to infer melatonin phase 
without requiring direct hormonal sampling [27]. 

Recent advancements in wearable technology and machine 
learning have enabled the development of non-invasive DLMO 
proxies. This approach integrates multiple physiological signals to 
estimate melatonin onset in real time. Data collected from wear-
able devices, including heart rate, HRV, body temperature, and 
light exposure, can help predict melatonin secretion. Melatonin 
release is linked to parasympathetic activation, which lowers heart 
rate and increases HRV at sleep onset. It is also associated with 
thermoregulation, leading to increased skin temperature and de-
creased temperature at night. Since melatonin suppression is high-
ly sensitive to blue light exposure, tracking the timing and inten-
sity of light exposure can help estimate circadian phase delays or 
advances. Ongoing research explores the use of AI-driven analy-
sis of multi-sensor data to predict melatonin secretion. One AI-
based model, incorporating HRV, body temperature, and activity 
data from wearable devices, estimated DLMO with an area under 
the curve of 77% compared to standard melatonin testing [28].

CHALLENGES AND FUTURE DIRECTIONS 
IN CIRCADIAN RHYTHM RESEARCH 
USING WEARABLE DEVICES

Research on circadian rhythms using wearable devices faces 
several challenges. Current commercial devices often lack valida-
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tion against gold-standard methods like PSG, limiting their reli-
ability. Restricted access to raw data and proprietary algorithms 
reduces transparency and hinders independent verification. Ad-
ditionally, variations in device accuracy across different environ-
ments, such as among shift workers or individuals with sleep dis-
orders, further complicate their application.

The Sleep Research Society convened an expert panel to pro-
mote the informed and appropriate use of sleep tracking technol-
ogy, particularly wearable devices for sleep and circadian research 
[5]. The panel has published guidelines and recommendations to 
support the effective and reliable application of wearable technol-
ogy in these fields. The summary of the recommendations is as 
follows: 1) When selecting a wearable device for research, it is es-
sential to choose one that aligns with the study’s objectives. De-
vice selection will depend on whether the goal is to measure sleep 
duration or analyze sleep stages. 2) Additionally, consider wheth-
er collecting physiological data such as heart rate, skin tempera-
ture, and oxygen saturation is necessary. 3) Data accessibility is 
also crucial; verify whether the device allows access to raw data 
and if it provides application programming interface or software 
development kit support for researchers to process and analyze 
data. 4) Lastly, since device performance may vary depending on 
participants’ age, health status, and lifestyle, ensure that the de-
vice has been validated for use in the study’s target population.

When interpreting data from wearable devices, it is important 
to note that their sleep stage detection may be less accurate than 
PSG. Wearable devices may miscalculate sleep duration or inac-
curately detect rapid eye movement and deep sleep stages. For 
studies requiring precise sleep stage detection, it is essential to use 
a device that has been validated against PSG to ensure accuracy 
and reliability. Finally, it is recommended to evaluate the mea-
surement accuracy of wearable devices not only in controlled lab-
oratory settings but also in real-world environments to ensure their 
reliability and applicability in everyday life.

Future research should prioritize validating wearable devices 
across diverse populations and settings, ensuring their accuracy 
and reliability. Standardizing data collection methods and pro-
moting open-access algorithms will enhance transparency and 
comparability between studies. Moreover, integrating wearable 
devices with digital therapeutics could open new avenues for di-
agnosing and managing circadian rhythm disorders, paving the 
way for personalized healthcare solutions [29,30]. Ultimately, in-
terdisciplinary collaboration and advancements in machine learn-
ing will be essential for unlocking the full potential of wearable 
devices in both research and clinical practice.

CONCLUSION

Wearable technology has significantly advanced research on 
human circadian rhythms, yet standardization of data collection 
and analysis methods remains a critical challenge. Future studies 
should focus on large-scale population-based research, advanced 
mathematical modeling, and interdisciplinary collaboration to 

enhance our understanding of circadian rhythms. By addressing 
current limitations and improving the accuracy and reliability of 
wearable-derived circadian rhythm data, these technologies have 
the potential to revolutionize both scientific research and clinical 
applications in circadian medicine. Further efforts should be di-
rected toward integrating wearable data into healthcare systems, 
ensuring data interoperability, and establishing validated clinical 
guidelines to optimize their application in medical practice.
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