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Refining microbiome diversity analysis by
concatenating and integrating dual 16S
rRNA amplicon reads
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Understanding the role of human gut microbiota in health and disease requires insights into its
taxonomic composition and functional capabilities. This study evaluates whether concatenating
paired-end reads enhances data output for gut microbiome analysis compared to the merging
approach across various regions of the 16S rRNA gene. We assessed this approach in both mock
communities and Korean cohorts with or without ulcerative colitis. Our results indicate that using the
direct joining method for the V1-V3 or V6-V8 regions improves taxonomic resolution compared to
merging paired-end reads (ME) in post-sequencing data.While predictingmicrobial function based on
16S rRNA sequencing has inherent limitations, integrating sequencing reads from both the V1-V3 and
V6-V8 regions enhanced functional predictions. This was confirmed by whole metagenome
sequencing (WMS) of Korean cohorts, where our approach improved taxa detection that was lost
using the ME method. Thus, we propose that the integrated dual 16S rRNA sequencing technique
serves as a valuable tool for microbiome research by bridging the gap between amplicon sequencing
and WMS.

Recent explorations into the human gut microbiome have captured wide-
spread interest due to its complex composition, functional capabilities, and
significant influence on human health and disease states1,2. The surge in
research activity is largely attributed to advancements in next-generation
sequencing (NGS) technologies, which have transformed our ability to
discern gut microbiota variances associated with a broad range of diseases
such as cancer3, obesity4, diabetes5, inflammatory bowel diseases (IBD)6,7,
neurological disorders8, and antibiotics resistance9,10. These technological
advances have enabled large-scale population studies, providing deeper
insights into the epidemiology of infectious diseases11 and facilitating the
analysis of extensive microbiome datasets12,13.

Predominantly, 16S rRNA amplicon sequencing and whole meta-
genome sequencing (WMS) are pivotal in unraveling gut microorganism
diversity and exploring the epidemiological factors that influence micro-
biome configurations14,15. These methods have greatly advanced our
understanding of the dynamics that shape the human gut microbiome,
encompassing microbial taxa, epidemiological impacts, evolutionary pat-
terns, and demographic variables such as ethnicity, environmental condi-
tions, dietary habits, and age16–18. However, gut microbiome studies often
face challenges due to inherent experimental biases. Such biases in taxo-
nomic identification may stem from the choice of taxonomic marker genes

(e.g., 16S rRNA for bacteria, 18S rRNA for eukaryotes, and ITS regions for
fungi) and their target regions19,20, diversity in sequencing platforms21,22,
inconsistencies in data quality23, and variations in reference databases24. For
example, the selection of the 16S rRNA regions critically affects the reso-
lution and the precision in bacterial detection and classification25, leading to
discrepancies in estimating the presence of certain bacterial groups26,27.
Notably, V4-V5 region should be avoided in the infant feces28, whereas the
V1-V3 region is recommended for soil and saliva samples29.Utilizing the full
read length (V1-V9 region) is also recommended to reduce sequencing error
rates30.

Both 16S rRNA sequencing andWMS have their unique benefits and
face distinct challenges. WMS provides in-depth insights into microbial
communities and functional data but requires substantial computational
resources and ongoing reference database updates31–33. It also deals with
challenges, such as host DNA depletion and variability in 16S rRNAprimer
coverage34–36. In contrast, 16S rRNA sequencing is a cost-effective and
efficient alternative for specific applications, particularly when using
methodologies that minimize inherent biases37. Our study compares ana-
lytical methodologies within 16S rRNA sequencing, focusing on merging
paired-end reads (ME) and direct joining (DJ). These methods aim to
broaden the range of captured microbial data and reduce biases associated
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with merging methods. ME merges reads based on overlapping sequences,
potentially loosing valuable genetic informationwhenoverlaps areminimal.
DJ, however, concatenate forward and reverse reads directly, retaining all
genetic information and enhancing the dataset completeness—essential for
accurately depicting microbial communities38,39.

We compare the quality of sequencing data between concatenated and
merged reads, focusing on sequencing errors and the impact of different 16S
rRNA regions on identifying rare microbial taxa in diverse cohorts,
including healthy individuals and patients with ulcerative colitis (UC).
Using correction formulas derived from mock community datasets24, we
have refined taxonomic classifications precision, aiding in the identification
of unique metabolic pathways associated with health and UC. Through
comparative functional profilingwithmultiple analytical pipelines based on
16S rRNA sequencing andWMS, we seek potential diagnostic markers and
therapeutic targets. This comprehensive approach elucidates the role of the

gut microbiome in health and disease, utilizing dual 16S rRNA amplicon
sequencing to improve clarity and specificity, advancing our understanding
of microbial ecosystems and promoting targeted interventions that could
profoundly affect patient care and therapeutic outcomes.

Results
Comparative validation of concatenation and merging methods
for gut microbiome analysis
Our research assessed the effectiveness of concatenating versus merging
pair-end reads across various 16S rRNA regions, using the ZIEL-II mock
community datasets (SRP291583), which includes 19 bacteria across 18
genera. We applied ME and DJ alongside inside-out (IO) concatenation
techniques (Fig. 1). Observations revealed a decline in sequence quality
towards the 3’-end across all regions (Supplementary Fig. 1), with con-
catenation generally achieving better alignment of non-chimeric reads with

Fig. 1 | Analytical strategy for region-specific 16S rRNA amplicon sequencing
andwholemetagenome sequencing (WMS).This workflow outlines the analysis of
amplified 16S rRNA sequences (V1-V3, V6-V8, and V1-V9). The steps include: 1)
Adapter trimming with fastp; 2) Merging paired-end sequences for regions
excluding V1-V9 using DADA2 in QIIME2, while V1-V9 single-end sequences
undergo separate analysis; 3) Concatenating paired-end sequences through JTax
using both direct joining (DJ) and inside-out (IO) techniques, with lengths trimmed
based on median quality score 20 (Detailed trim positions in Supplementary Fig. 1);

4) Subjecting all region-derived sequences—merged, concatenated, or intact (V1-
V9)—to qualityfiltering, denoising, and chimera removal viaDADA2; 5)Classifying
amplicon sequence variants (ASVs) produced across three analytical pipelines
against 16S rRNADBs (GG2, SILVA, and RDP); 6) Conduct functional profiling via
PICRUSt2. For WMS, data processing ranged from shallow (4 GB) to deep (36 GB)
sequencing reads, using Trimmoatic and TRF, aligned against hg38 with default
settings, and analyzed for taxonomic and functional profiling with HUMAnN 3.0.
This figure was created using Biorender.com.
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the SILVA database across all tested 16S rRNA regions (Fig. 2a and Sup-
plementary Data 1).

Concatenation using the DJ method notably enhanced microbial
diversity and evenness, evidenced by higher Richness and Shannon effective
numbers compared to the ME method, particularly in the V1-V3, V3-V4
and V7-V9 regions (Fig. 2b). Non-metric multidimensional scaling
(NMDS) suggested that adjacent regions within the 16S rRNA gene exhibit
similar microbial communities, with significant differences in the V34 and

V79 regions (Fig. 2c), highlighting each region’s distinct response to the
concatenation and merging techniques. The ME method particularly
overestimated Enterobacteriaceae abundance in the V3-V4 (1.95-fold) and
V4-V5 (1.92-fold) regions—discrepancies largely corrected by the DJ
method, though not entirely in the V4-V5 region (Fig. 2d).

To substantiate the performance benefits of concatenation over the
merging approach, we conducted a detailed correlation analysis by com-
paring the theoretical and actual measured relative abundances across

Fig. 2 | Validation of taxonomic resolution and richness of 16S rRNA sequencing
reads using mock community datasets. a The comparison of the mapped reads ratio
from the SRP291583 dataset. ME: the method merging raw paired-end reads, DJ: con-
catenating raw paired-end reads. b Alpha diversity metrics across methods, including
observed species and Shannon index. cNMDS plot based on Jaccard distance across the
analytical methods. d Family-level relative abundance, with “Others” indicating taxa

below 1% relative abundance. The relative abundance for the theoretical composition of
ZIEL-IImock community24 is indicated by anasterisk (*). eThedistributionof difference
values between theoretical and actual values for each family. f Comparison of relative
abundance between theoretical values (T.V.) and specific 16S rRNAregions fromZIEL-2
mock datasets. g Evaluation of precision, recall, and F-measure for the ME and DJ
pipelines using the V1-V3 and V6-V8 regions, based on the SILVA DB.
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different region-specificmethods, excluding the less reliableV1-V2 andV4-
V5 regions (Supplementary Fig. 2). The DJmethod improved the detection
accuracy of several microbial families not identified by the ME method in
the V3-V4 region, though it continued to face challenges with over-
estimations in the V4-V5 region (Fig. 2e). Detailed comparisons to theo-
retical values (TVs) revealed that specific DJ methods, especially V13-DJ
(1.021) and V68-DJ (1.023), achieved median values closest to the ideal of
1.0 (Fig. 2e). However, there were notable discrepancies in other regions,
indicating some inherent limitations in family-specific detection accuracy.
For instance, V13-DJ significantly underdetected Bifidobacteriaceae (0.17),
andV68-DJoverestimatedAtopobiaceae (2.13) (Fig. 2e).The results showed
that both V68-DJ and V13-DJ methods provided a more accurate and
consistent representation ofmicrobial abundances, enhancing the quality of
taxonomic and functional insights derived from gut microbiome analyses
(Supplementary Fig. 2).

Additional issues were observed in the V6-V8 and V7-V9 regions,
where unclassified Enterobacterales were detected. Moreover, the V34-ME
analysis demonstrated poor performance with significant outliers such as
Microbacteriaceae and Pseudomonadaceae. V34-DJ (0.88) improved but
still presented outliers, such as Prevotellaceae (Fig. 2e). In addition, V4-DJ
still presented one outlier, such as Microbacteriaceae and V45-DJ still did
not detect several families. Given these findings, we excluded V1-V2, V4,
V4-V5, and V7-V9 from further analysis due to their lower correlation
values (<0.66) and the presence of outliers or undetected families, which
could skew the gut microbiome analysis.

In conclusion, our results indicate the importance of selecting suitable
16S rRNA regions for analysis, advocating for the use of V1-V3 and V6-V8
regions when employing concatenating methods with the SILVA database
(DB) to increase accuracy and reduce biases in analyzing the gut microbial
community (Fig. 2f, g). This approach highlighted that the V1-V3 region
consistently achieved higher recall values than the V6-V8 region. The ME
method exhibited the lowest F-measure values, with significant dis-
crepancies observed in the detection of families like Listeriaceae, Bifido-
bacteriacae, and Eggerthellaceae (Fig. 2g). Remarkably, Coprobacillaceae
detectionwas excessivelyhigh in theV13-MEmethod (23.4%), compared to
the ideal (9.60%) and V13-DJ (17.4%) approaches (Fig. 2d). The V13-DJ
method notably increased precision by 8% and the F-measure value by 5%
relative to the V13-ME method. Despite challenges in estimating relative
abundance, the V6-V8 region demonstrated superior precision in ampli-
fying gut microbial 16S rRNA genes, underscoring the crucial role of
method selection in microbiome analysis (Fig. 2g).

Optimizing accuracy in gut microbiome analysis: the role of
concatenated method and selection of 16S rRNA databases
The accuracy of estimating microbial relative abundance critically depends
on the choice of 16S rRNAgene regions and readprocessingmethodologies.
We conducted an in-depth analysis using mock community data, focusing
on the V1-V3 and V6-V8 regions, and calibrated coefficient values for
specific family groups, selecting the most appropriate 16S rRNA DBs:
Greengenes2 (GG2), SILVA, and the Ribosomal Database Project (RDP).
Sequences were trimmed and processed for database matching using either
the merging or concatenating method using V1-V3 and V6-V8 regions
(Supplementary Fig. 3).

Our findings showed that the V13-ME method consistently over-
estimates relative abundance, particularly inflating families like Enter-
obacteriaceae_A and Pseudomonadaceae up to 93% relative to their
expected values (24.7%) in the Zymo mock dataset. In contrast, con-
catenating methods—DJ and IO—yielded more accurate estimations at
22.0%and 24.1%, respectively (Supplementary Fig. 4a). Further assessments
across different databases and primer sets revealed that the ME method
consistently displayed the lowest correlation coefficients (R-values), parti-
cularly in the ZIEL-I mock dataset with the lowest R-values linked to the
GG2 database (Supplementary Figs. 5–7). TheMEmethod exhibited biases
in the V1-V3 16S rRNA region, notably underrepresenting families such as
Bacillaceae (1.1%), Enterococcaceae (0.3%), Lachnospiraceae (0.0%), and

Staphylococcaceae (0.8%) (Supplementary Figs. 4a and 6a). Conversely,
concatenation approaches, particularly using SILVA and RDP databases,
markedly improved accuracy over the ME method. While the ME method
achieved the highest R-value with the V6-V8 region and SILVA database in
the ZIEL-II dataset, it faced challenges, particularly with the GG2 database
(Supplementary Fig. 7). Notably, updates to family names like Eggerthel-
laceae, Erysipelatoclostridiaceae, and Verrucomicrobiaceae were observed,
and theMEmethod’s failure to detect Listeria welshimeriwithin the V1-V3
region contrasted with the successful identification of Listeriaceae by the
concatenating methods (Supplementary Fig. 4).

Comparative efficacy of concatenation versusmerging in gut
microbiome analysis
In our analysis, we evaluated the effectiveness of ME and concatenating
methods using two significant datasets: SRP131748, which includes 60
samples from fecal and oronasal secretion, and SRP115494, containing 69
rectal samples, serving as supplementary data (Supplementary Data 2)7,40.
We investigated the performance of concatenating methods (DJ and IO)
over ME in the primary dataset (SRP131748), targeting the V1-V3 region.
These methods achieved significantly higher non-chimeric read alignment
with 16S rRNA databases, marking 58.64% for DJ and 59.12% for IO,
compared to only 47.42% for ME, demonstrating their enhanced efficiency
in SRP131748 (P < 0.05) (Supplementary Data 3). In addition, in the
SRP115494 dataset targeting the V4 region, the concatenation methods
marked 66.05% forDJ and 68.17% for IO, compared to only 42.12% forME,
underlining their improved detection capabilities (P < 0.05).

Further investigationswithin SRP131748demonstrated thatDJ and IO
methods not only provided higher alpha diversity but also depicted more
distinct microbial profiles than ME (Supplementary Figs. 8a, 9a–d, and
Supplementary Data 3). A notable finding was the detection of an Enter-
ococcus strain in the oronasal secretion-prediabetes group (disease) by the
concatenating methods, which was absent in the control group (healthy)
analyzed by ME (Supplementary Fig. 9e, f). Additionally, Phascolarcto-
bacterium, previously undetectable byME, was significantly identified with
the DJ and IO methods, highlighting their increased detection capabilities
(Supplementary Fig. 10).

The supplementary dataset, SRP115494, targeting the V4 region,
also indicated a decline in sequence quality towards the 3’-end (Sup-
plementary Fig. 8b). Like findings in SRP131748, we reaffirmed the
consistency of microbiome diversity between concatenating methods
(DJ and IO) and ME across different sample types and conditions
(Supplementary Fig. 11a and Supplementary Data 3). Microbial alpha
diversity analysis revealed distinct differences across patient groups.
IBD patients, including those with Crohn’s disease (CD) and UC,
showed lower microbial diversity than non-IBD controls, with ME
showing the least diversity (Supplementary Figs. 11b). At the family
level, the DJ method enriched taxa such as Veillonellaceae, Erysipelo-
trichales, Pseudomonadales, and Staphylococcaceae, contrasting with
ME which predominantly identified Lachnospiraeceae_NK4A136_g
(Supplementary Figs. 11c–e). Moreover, taxa like Oscillospirales,
[Eubacterium] eligens_g, and Rombutsia were detected only by the
concatenating methods (Supplementary Fig. 12a, b).

In conclusion, the concatenation approach has demonstrated its
potential to enhance microbial community diversity analysis, enabling a
more comprehensive identification of specificmicrobial families and genera
across both IBD and non-IBD cohorts (Supplementary Fig. 10). This
method effectively might improve the resolution and accuracy of gut
microbiota analysis, bridging the gap between traditional sequencing
approaches and the nuanced demands of modern microbiome research.

Impactof 16S rRNAregionselectionon taxonomic assignment in
gut microbiota
To evaluate the effect of different 16S rRNA regions on taxonomic assign-
ments, we analyzed fecal samples fromaKorean cohort, comprising healthy
individuals (n = 8) and patients with UC (n = 8) (Supplementary Data 4).
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We employed primer pairs targeting V1-V3, V6-V8, and V1-V9 regions,
analyzing sequence quality and read integrity across these regions (Sup-
plementary Fig. 13a). Quality analysis indicated sequence deterioration
towards the3’-end inboth forward and reverse reads,which could introduce
biases, particularly in the reverse (Supplementary Fig. 13b–d).

The concatenation methods (DJ and IO) showed increased non-
chimeric reads compared to theMEmethod, particularly in the V1-V3 and
V6-V8 regions, demonstrating their effectiveness in managing sequence
quality impacts (Supplementary Fig. 14a, b). Differences in non-chimeric
reads between DJ and IO were not significant, nor were differences in
richness and taxonomic resolution from previous datasets analyses (Sup-
plementary Fig. 9). Alpha diversity analyses further supported the increased
sensitivity of the DJ method in the V1-V3 region over ME (Supplementary
Fig. 14c). Significant variations were observed in the detection of Bacter-
oidota and Actinobacteriota between in healthy and UC samples across the
studied regions. The V1-V3 region showed less variability in detecting

Actinobacteriota, whereas the V6-V8 region was more consistent for Bac-
teroidota (Fig. 3a–c). At the family level, the V1-V3 and V1-V9 regions
more consistently identified Bacteroidaceae, whereas the V6-V8 region was
more sensitive to Bifidobacteriaceae, irrespective of the method used
(Fig. 3b, c).

Genus-level heat tree visualizations between healthy and UC groups
highlighted the influence of 16S rRNA region selection on taxonomic
assignments, showing theDJmethod’s ability to reduce bias for families like
Akkermansiaceae and Lactobacillaceae in the V1-V3 region (Fig. 4a, b).
However, biases persisted for families such as Clostridiaceae and Bifido-
bacteriaceae based on the V6-V8 region. The V1-V3 region analysis also
enriched Enterobacteriaceae and Bacteroidales, including families like
Bacteroidaceae, Rikenellaceae, andMarinifilaceae, showing a clear contrast
to the V6-V8 region.

Comparative taxonomic resolution with the WMS method revealed
significant discrepancies in the relative abundance of Bacteroidota,

Fig. 3 | Comparison of richness and taxa classification between analytical
methods. a Phylum-level relative abundance comparison. b Family-level relative
abundance, with “Others” denoting taxa below 1% relative abundance.

c Comparative relative abundances of Bacteroidota, Bacteroidaceae, Actinobacter-
iota, and Bifidobacteriaceae across ME and DJ methods. Asterisk (*) means a P
value < 0.05.
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Fig. 4 | Heat trees and heatmaps of gutmicrobial communities in health and UC.
a Phylogenetic distribution of bacterial taxa within the gut microbiome. The tree
illustrates the hierarchical relationships among various bacterial orders, families,
and genera. The hierarchical structure includes labels for all taxa demonstrating
significant differences in any pairwise comparison between 16S rRNA regions.
b Pairwise comparisons between specific variable 16S rRNA regions in health and

UC. Red or blue colors of nodes and leaves indicate a log-2-fold increase in median
abundance (Benjamini-Hochberg adjusted Wilcoxon rank sum q < 0.05).
c, dHeatmap showing themedian relative abundance (%) of detected families across
methods (i.e., 16S rRNA sequencing and WMS) for healthy individuals (c) and UC
patients (d). Families not detected by each method are indicated with an “x” on a
white background.
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Actinobacteriota, and Bifidobacteriaceae between V1-V3, V1-V9, and
WMS methods for both healthy individuals and UC patients (Fig. 3c).
Eleven families detected by WMS were missed by the V13-ME method in
the healthy group, whereas V13-DJ identified nine families (e.g., Barne-
siellaceae,Lactobacillaceae, Streptococcaceae, and Sutterellaceae) also seen in
WMS (Fig. 4c). However, Barnesiellaceae, Lactobacillaceae and Sutter-
ellaceae, detected in WMS, were absent in both V68-ME and V68-DJ
analyses. In the UC group, families like Eggerthellaceae, Lactobacillaceae,
Streptococcaceae, Oscillospiraceae, and Selenomonadaceae, missed by V13-
ME, were identified by V13-DJ. Notably, V68-DJ uniquely detected Oscil-
lospiraceae, absent in WMS. Analysis using V19 indicated overestimated
abundances of Erysipelotrichaceae, Veillonellaceae, and Selenomonadaceae
compared to othermethods (Fig. 4d). While concatenation-based methods
demonstrated superior microbial detection relative to merging methods
when validatedwithWMS, they still exhibited biased taxonomic resolution.

In conclusion, our findings underscore the critical importance of
selecting appropriate 16S rRNA regions and analytical methods to better
represent gut microbial diversity and minimize taxonomic biases. Despite
the advantages of the concatenating method, relying solely on one 16S
rRNA region may still result in biased outcomes, emphasizing the need for
comprehensive methodological approaches in microbiome research.

Advancing gut microbiota profiling accuracy with correction
coefficient-based adjustments for dual 16S rRNA reads
To improve the precision of gut microbiota analysis, we developed a
methodology based on correction coefficients that integrates reads from
both the V1-V3 andV6-V8 16S rRNA regions.We introduced the adjusted
16S rRNA (Adj-16S) sequencing method, applying correction coefficients
based on analyses of dual 16S rRNA regions to more accurately adjust
relative abundance values (Fig. 5a). For instance, the correction coefficient
for Enterobacteriaceae using V13-DJ (ω13:En:

i ) was calculated as 1.26 by
comparing the theoretical value (29.5) with the observed value (23.5), and
similar for V68-DJ (ω68:En

i ) (Fig. 5b). These adjustments provided a more
accurate representation of taxonomic profiles. Utilizing mock datasets
(Zymo, ZIEL-I, ZIEL-II) and the SILVA DB, we calculated correction
coefficients for each 16S rRNA region, using weighted averages41 across 22
families. Weighted coefficient values for the V1-V3 (ω13:f

i ) and V6-V8
(ω68:f

i ) regionswere determinedbydividing the relative abundance from the
respective regions, V1-V3 (x13:f

i ) andV6-V8 (x68:f
i ), by the total abundance

from both regions. The means of these weighted coefficient values
ðϖ13:f

i and ϖ68:f
i Þwere computed using data fromeight independent datasets

across three mock datasets. The adjusted relative abundances for both the
V1-V3 (x13:f 0

i ) andV6-V8 (x68:f 0

i ) regions were then calculated, leading to a
formula representing the total adjusted relative abundance
’
Pn

i¼1
x
13:f 0
i þx

68:f 0
i

� �
. These adjustments showed that the V6-V8 region more

accurately reflected ideal community compositions, particularly for families
like Actinomycetaceae, Bifidobacteriaceae, and Tannerellaceae. Conversely,
the V1-V3 region was more responsive to Coprobacillaceae, Micro-
bacteriaceae, and Pseudomonadaceae (Fig. 5c).

Based on these findings, we recommend adopting the Adj-16S for
more precise profiling of 16 Korean gut microbial communities (Fig. 5d, e
and SupplementaryData 5). This approach showed thatBacteroidaceaewas
more prevalent in the V1-V3 region (16.44%) compared to the V6-V8
region (3.50%). In the UC cohort, Bacteroidaceae levels were 8.91% in V1-
V3 and only 2.27% in V6-V8. However, the Adj-16S revealed relative
abundances of Bacteroidaceae at 9.06% for healthy individuals and 5.22%
for UC patients, values that closely align with those obtained from WMS,
which were 7.74% for healthy individuals and 5.08% for UC patients.
Similarly, Bifidobacteriaceae was more abundant in the V6-V8 region
(20.97%) than in the V1-V3 region (0.29%) among healthy individuals.
Applying the calculated coefficients to balance discrepancies between the
two regions resulted in a uniform representation of abundances, with
improved concordance evidenced by correlation metrics at the family and
genus levels compared toWMSdata (Supplementary Fig. 15). Furthermore,
the Adj-16S method detected 21 families, including Butyricicoccaceae,

Clostridia_UCG-014, Coprobacillaceae, and Monoglobaceae, which were
not identified in WMS analyses (Supplementary Data 5).

The Adj-16S method significantly delineated the microbial differ-
ences between healthy individuals and UC patients, revealing disparities
in the detection of families like Odoribacteraceae and Bacillota_un-
classified that were pronounced in WMS but not in 16S rRNA analyses
(Fig. 5f). Families such as [Eubacterium] and Rikenellaceae distinctly
categorized healthy from UC groups. Oscillospiraceae and Akkerman-
siaceae, predominantly found in the healthy cohort, illustrate the
nuanced capability of concatenated 16S rRNAmethods alongsideWMS
in detecting critical microbial differences. Marinifilaceae, Rumino-
coccaceae, and Anaerovoracaceae were only significantly detected in the
merging methods. These findings underscore the necessity of metho-
dological precision in 16S rRNA-based profiling, affirming the con-
catenated approach for its improved accuracy and consistency in
representing microbial abundances, closely aligned with the compre-
hensive insights provided by WMS analyses.

Comparative functional profiling in gut microbiota: insights from
Adj-16S and WMS analysis
To further explore the functional capabilities of the gut microbiota, we
conducted a comparative analysis using the Adj-16S method alongside
traditional 16S rRNA amplicon sequencing techniques and WMS (Fig. 1).
For the 16S rRNAdata, predictive functional profiling was performed using
PICRUSt2, while the WMS data were analyzed using HUMAnN 3.0. Our
study identified several key functional pathways that were significantly
different (P value < 0.05) between healthy individuals andUC patients (Fig.
6a). TheV13-MEmethod identified 28 pathways in healthy subjects and 35
in UC patients, numbers which were at least twice those identified by other
analytical methods. Conversely, the Adj-16S method pinpointed fewer
pathways—14 in healthy subjects and 11 in UC patients. The WMS
approach uniquely detected 12 pathways not identified by any 16S-based
methods, with some pathways found to be common across 16S rRNA
methods and WMS (Supplementary Fig. 16a, b). A direct comparison
revealed that five pathways were common between Adj-16S and WMS
analyses, indicating 25 unique pathways inWMS and 20 unique to Adj-16S
across both subject groups.

Further validation through quantitative real-time PCR (qRT-PCR)
analysis of 50 genes representing these pathways confirmed 18 significantly
divergent pathways between the groups, with 12 additional pathways dif-
fering in the reverse comparison (Fig. 6b and Supplementary Data 7). This
validation underlined the predictive accuracy of our methods, with the
concatenation-based approach using V13-DJ and V68-DJ demonstrating
relatively higher accuracy and F1 scores compared tomergedmethods (Fig.
6c). The false positive rate (FPR) for Adj-16S was 0.36, showcasing its
precision relative to 0.53 for V13-DJ (FRR: 0.53) and V68-DJ (FPR: 0.38).
However, the V19 method, despite having the lowest FPR, demonstrated
limitations in detecting a higher number of true positives (TPs) or true
negatives (TNs) (Fig. 6c, d).

A Venn diagram analysis emphasized the efficacy of the Adj-16S
method in detecting the highest number (12) of TPs and TNs pathways
compared to other techniques (Fig. 6e). The Adj-16S method detected all
pathways except for SULFATE-CYS-PWY, uniquely identified by the V13-
DJ method. While the V13-DJ method missed three pathways (PYR-
IDOXSYN-PWY,P23-PWY, andPWY-3781), theV68-DJmethod failed to
detect five (PWY-5855, PWY-7456, PWY-6467, PWY-6590, and SUL-
FATE-CYS-PWY). Notably, the Adj-16S method closely aligns with other
methods in capturing nearly all TN pathways for UC.

Collectively, our findings emphasize the importance of selecting
appropriate 16S rRNA regions and employing concatenating methods to
enhance accuracy and reduce biases in the functional profiling of gut
microbiota. This study not only clarifies the differences between functional
profiles derived fromAdj-16S compared to theMEandDJmethods but also
highlights the potential for discovering unique biomarkers or therapeutic
targets within these methodologies (Fig. 6e).
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Fig. 5 | Adjusted relative abundance in Korean gut microbial communities.
a Schematic diagram illustrates a systematic approach to adjusting microbiome com-
position by applying correction coefficients, leading to a desired microbial balance.
b Bar graphs representing detailed taxonomic resolution derived fromV1-V3 and V6-
V8 regions compared to theoretical values usingmock community dataset. cWeighted
coefficient values derived from the V1-V3 andV6-V8 regions using eight independent
datasets for 22 families. d A raincloud plot showing the adjusted total relative

abundance by applying weighted coefficient values for the Korean cohort.
eComparison of adjusted 16S rRNA (Adj-16S) andWMS profiles for healthy and UC
cohorts. [Eubacterium]: [Eubacterium]_coprostanoligenes_group. f Heatmap of
family-level gut microbiota differences between healthy and UC groups by analytical
method. The color scale is gray (0.1 ≤ P value), red (P value < 0.1), and white (Not
detected). Statistical analysis was performed using Welch’s t test.
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Discussion
In this study,we enhanced gutmicrobiota profiling througha concatenation
approach using pivotal 16S rRNA gene regions, V1-V3 and V6-V8. This
method diverges from conventional practices that rely primarily on single-
region amplicons and merged reads. Our goal was to refine taxonomic
assignment and deepen functional characterization of the gut microbiome,
crucial for deciphering its role in health and disease. Previous research has
often failed to provide robust experimental validation linking specific
microbes to health outcomes or distinguishing functional differences
between diseased and healthy states6,42,43.

OurAdj-16Smethod aimed tominimize biases inherent inusing single
16S rRNA regions. This approach significantly increased mapped read
ratios and microbial identification resolution, thereby improving our

understanding of taxonomic structures within the gut microbiota (Sup-
plementary Figs. 4 and 9e–g). For instance, it clarified the presence of
specific taxa such asOscillospirales andRomboutsia in non-IBD individuals
and taxa such as the Family_XII_AD3011_group inCD,with greater clarity
compared to conventional methods. Notably, Romboutsia, known for its
beneficial acetate and propionate production44, is diminished in CD com-
pared to healthy individuals45,46. Similarly, the Oscillospiraceae family,
associated with anti-inflammatory valeric acid, shows higher abundance in
healthy individuals than in those with CD47. Notably, beneficial taxa asso-
ciated with anti-inflammatory and metabolic benefits showed differential
abundance in healthy versus CD individuals, highlighting potential ther-
apeutic targets. Additionally, our analysis has refined the taxonomic reso-
lution for taxa such as Roseburia and Phascolarctobacterium in the V1-V3

Fig. 6 | Functional pathway analysis in healthy and UC groups by WMS and 16S
rRNA-derived PICRUSt2. aNumber of functional pathways associated with each
group. b Comparison of 50 genes between healthy (n = 8) and UC (n = 8) groups
using qRT-PCR. The analysis aimed to calculate log22

−ΔΔCt values (UC vs.
Healthy) for candidate genes relative to 16S Ct values. The significance of dif-
ferences between healthy and UC samples was assessed using a t test (*, P
value < 0.1). cHistogram of precision, recall, accuracy, misclassification rate, and

F1 score for the datasets. Values in parentheses indicate the sum of true positive
(TP) plus true negative (TN) results. For score calculation, metabolic pathways
with a P value < 0.1 were used. d The false positive (FP) rate was determined by
dividing FP by the sum of FP and TN. e Venn diagrams illustrating the dis-
tribution of TPs (left/healthy) and TNs (right/UC) identified by various analy-
tical methods.
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region (Supplementary Figs. 9 and 10). Furthermore, the concatenating
method improved differentiation between gut microbiota of healthy indi-
viduals and those with UC, emphasizing the value of multiple regions for a
comprehensive analysis (Fig. 3). By applying correction coefficients derived
frommock community datasets, we aligned our relative abundance profiles
more closely withWMSdata, enhancing the accuracy of our analyses (Fig. 5
and Supplementary Fig. 15).

Our predictive functional profiling further delineated significant
metabolic pathways associated with both healthy individuals and UC
patients. Notably, pathways such as HEME-BIOSYTHESIS-II, PWY-5845
(menaquinol-9 biosynthesis), and PWY-5850 (menaquinol-6 biosynthesis)
were prevalent in healthy individuals, which were not detected by other 16S
rRNA-basedmethods andWMS(SupplementaryFig. 16b).These pathways
are implicated in vitamin K deficiencies commonly observed in IBD
patients48 and may serve as vital biomarkers for IBD diagnosis48,49. Inter-
estingly, these pathways did not appear significant in WMS findings,
underscoring the unique strengths of the Adj-16S method. Conversely,
pathways such asNAGLIPASYN-PWYwere identifiedasmoreprevalent in
healthy individuals than in UC, which contradicts some reports associated
with CD50. For UC, consistent detection of six metabolic pathways such as
PWY-5189 (tetrapyrrole biosynthesis II), PWY-621 (sucrose degradation
III), METH-ACETATE-PWY, and PWY-7315 (dTDP-N-acet-
ylthomosamine biosynthesis) across all analytical methods, including Adj-
16S and various concatenated 16S rRNA sequencing methods, corre-
sponded with literature suggesting altered metabolic states in UC patients
(Fig. 6e). These findings align with observations that healthy individuals
have higher levels of tetrapyrrole and its derivatives compared to the UC
group51, suggesting a compensatory biosynthesis in UC might instigate
heightened biosynthesis (PWY-5189). The β-fructofuranosidase gene
linked to Eubacterium rectale was found in healthy samples and genomes
related to Lachnospiraceae bacterium isolate MGYG-HGUT-02492, which
is more abundant in UC. Furthermore, we observed the activation of starch
degradation pathways in individuals with inflammatory bowel syndrome
with diarrhea52, possibly indicating a connection to gut dysbiosis in UC.
Pathways involved in the biosynthesis of compounds linked to inflamma-
tion, such as kynurenic acid (METH-ACETATE-PWY) and lipopoly-
saccharide biosynthesis (PWY-7315) were found to be elevated in UC53,54,
suggesting potential involvement in inflammatory processes. Interestingly,
these pathways did not manifest as significant in WMS data, except for
NAGLIPASYN-PWY and METH-ACETATE-PWY, indicating nuanced
differences in the detection capabilities of various sequencing methodolo-
gies. Additionally, ARG+ POLYAMINE-SYN, GALACT-GLUCURO-
CAT-PWY, PWY-5130, PWY-7663, and PWY-8073, all associated with a
healthy status, and 1CMET2-PWY, HSERMETANA-PWY, P125-PWY,
PWY-1861, PWY-6270, PWY-6527 associatedwithUC, were corroborated
by the WMS method.

The metabolic pathways uncovered using the Adj-16S and WMS
methodologies offer promising avenues for a deeper understanding of UC,
providing potential pathways for diagnostics and therapeutic development.
The advanced 16S rRNA-based analytical method and WMS could illu-
minate our understanding of gutmicrobiota structure55,56. Despite exploring
deep shotgun sequencing analysis, our findings indicate that this technique
did not notably improve our discrimination between the functional path-
ways of healthy individuals and those with UC (Supplementary Fig. 17).
Even when varying sequencing depths—4 GB, 18 GB, and 36GB—were
employed, the ability to distinguish between these states didnot significantly
change57. However, WMS is recognized for its capability to capture both
taxonomic and functional features of bacteria and fungi, whichmay remain
elusivewith 16S rRNAsequencing55. Recent advancements inmetagenome-
assembled genomes (MAGs) present a promising opportunities for
exploring the ‘dark matter’ of the human gut microbiota58. Yet, the WMS
approach in this study, basedon reference-basedmethods likeMetaPhlAn3,
faces limitations in detecting only cataloged species, thus missing a vast
array of uncultivated microbes. To overcome these challenges, newer
methods such asMetaPhlAn4 integrate both reference genomes andMAGs

to expand species-level genome bins, enabling more comprehensive taxo-
nomic profiling59. Continuous updates to databases (e.g., GTDB60 and
UHGG61) and hybrid approaches that blend reference-based and assembly-
based strategies, are crucial for refining metagenomic analysis. Although
functional analysis was partially validated through qRT-PCR in this study,
the predictive results from 16S rRNA-based functional analysis using
PICRUSt2 rely on a limited set of reference data. Therefore, to enhance the
efficiency of the Adj-16S method, updating transitional ecological classifi-
cations to align with continuously updated databases would be beneficial.
Additionally, assessing these computational methods with integrated mul-
tiomics data is critical for advancing our understanding of microbial
functions and interactions in the gut microbiota.

Our study acknowledges the limitations inherent in the scale and
diversity of our mock community dataset. To refine the accuracy of our
equations, expanding this dataset with a more extensive and diverse
range of mock communities is essential. Such expansion would
strengthen our foundation for using concatenated V1-V3 and V6-V8
16S rRNA regions to achieve a thorough gut microbiome analysis.
While this method is optimized for analyzing the adult gut micro-
biome, its applicability to other environments (e.g., soil and marine
environments) or human body sites (e.g., skin, saliva, and urinary
tract) might require tailored analytical approaches. Additionally, the
acquisition of robust results regarding differences in bacterial com-
positions between healthy individuals and UC patients requires the
application of multiple differential abundance methods (e.g., ALDEx2
and ANCOM-II)62 rather than just LEfSe method used in this study.
However, a small sample size (fewer than 10 per group) can lead to a
higher false discovery rate with bias correction algorithms such as
ANCOM-II compared to Wilcoxon63. In addition, the method’s per-
formance can be optimized by implementing pipelines (e.g., TIC
pipeline) that enhance the clustering of unclassified taxa64.

In summary, concatenating unmergeable reads has fine-tuned the
resolution of our gut microbiome profiling, allowing us a more detailed
representation of the gut ecosystem. We have identified distinct metabolic
pathways that differentiate healthy individuals from those with UC. Our
approach offers an efficient, cost-effective, and labor-intensive approach for
unraveling the complex interactions between hosts andmicrobes in the gut.
This advancement enhances our ability to accuratelymap and comprehend
these interactions is poised to make substantial impacts on developing
targeted interventions, potentially revolutionizing patient care and ther-
apeutic approaches.

Methods
Microbial community datasets
We utilized the SRP115494 (Longitudinal Multiomics of the Human
Microbiome in IBD)7 and SRP131748 (Human Metagenome on pre-
diabetic humans)40 datasets from NCBI for our microbiome analysis
strategy. Additionally, the SRP291583 dataset24, comprising mock com-
munity datasets, was employed to validate gut microbiome analysis and
develop correction coefficient formulas.

Preparation of human gut stools
Stool samples were collected from healthy Korean individuals (n = 8) and
UCpatients (n = 8), aged19 to45, randomly recruited following approval by
the institutional reviewboard (IRB) of SeveranceHospital (IRBNo. 4-2020-
1487) (details in SupplementaryData 4).Written consentwas obtained, and
participants underwent a survey capturing basic information, including
demographics, medical history, current medications, and gastrointestinal
symptoms potentially affecting gut microbiota composition. Exclusion
criteria included diagnosis with the disease during the study period,
underlying diseases (e.g., malignancy, multiorgan failure, or peptic ulcer),
current medications affecting the gastrointestinal tract that could not be
discontinued seven days prior (e.g., proton pump inhibitors, antacids, and
antibiotics), pregnancy, or failure to pass blood and stool screening tests.
Stool samples were collected in conical tubes and transported to Yonsei
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Severance FMT center, Seoul, Korea, where they were stored at -80 °C until
DNA extraction.

DNA extraction and 16S rRNA amplicon sequencing
Fecal DNA was extracted using the QIAamp PowerFecal Pro DNA Kits
(QIAGEN,Germany) following themanufacturer’s instructions. Amplicon
libraries were prepared according to Illumina’s 16S metagenomic sequen-
cing library preparation protocol using 12.5 ng ofDNA from each sample65.
Various 16S rRNA partial regions were amplified with specific primers
using MiSeq platform: V1-V3 with 27 F/534 R (27 F: 5’-AGAGTTT-
GATCCTGGCTCAG-3’, 534 R: 5’-ATTACCGCGGCTGCTGG-3’), V6-
V8 with 968 F/1378 R (968 F: 5’-AACGCGAAGAACCTTAC-3’, 1378 R:
5’-CGGTGTGTACAAGGCCCGGGAAC-G-3’). The 16S rRNA V1-V9
region was sequenced using the Pacbio Sequel platform, excluding four
samples (N022, N031, UC007, UC009). The 16S rRNA full length was
amplified with V1-V9 region using 27 F/1492 R (27 F: 5’-AGAGTTT-
GATCMTGGCTCAG-3’, 1492 R: 5’-TACGGYTACCTTGTTAYGACTT-
3’). For long-read sequencing, DNA libraries were prepared using the
Procedure & Checklist—Amplification of Full-Length 16S Gene with Bar-
coded Primers for Multiplexed SMRTbell® Library Preparation and
Sequencing66. The median reads per sample were 116,528 for the V1-V3
region, 115,738 for V6-V8, and 19,426 for V1-V9.

Analytical pipelines
We employed five analytical pipelines for 16S rRNA and WMS raw data.
After trimming adapter sequences using fastp v0.23.2, 16S rRNAreadswere
merged with DADA2 plugged in QIIME267. The sequence length was
trimmed based on QIIME2 Phred quality score (Q score) plots (Supple-
mentary Figs. 1, 3, 8, and 13). The sequence trim was determined as the
position where amedianQ score lower thanQ20 was first found. The reads
weremergedwith at least a 12 bp overlap as a default value inQIIME267 and
aquality score ofQ20. In theV1-V9 region,weused all single-end sequences
for which Q scores were above 20. Denoising and removal of chimera
sequences were performed using DADA2.

In the concatenating method (DJ and IO), sequences were trimmed
with fastp v0.23.268, and the processed forward and reverse reads were then
subjected to concatenation via JTax69. DJ method: 5’-forward reads-3’-
NNNNNNNN-3’-reverse complement of reverse reads-5’, IO method: 3’-
reverse complementof reverse reads-5’-NNNNNNNN-5’-forward reads-3’.
The concatenated position is connected to NNNNNNNN. During the
concatenation of forward and reverse sequences, an overlapping portion of
the sequences was generated, prioritizing the use of the forward sequence
whenever possible. Reverse sequences were employed to fill gaps in the
concatenation where the ideal PCR fragment length was not achieved. For
example, in previous datasets7,40, where the trim position of forward
sequences was 249 and that of reverse sequences was 43 on the V4 target
region, concatenated sequences of 292 bp were generated (Supplementary
Fig. 8). Similarly, for datasets7,40, where the trim position of forward
sequences was 301 and that of reverse sequences was 207 on the V1-V3
target region, concatenated sequences of 508 bp were produced. Subse-
quently, the same trimming approach was applied to other 16S rRNA
regions (Supplementary Figs. 3 and 13). Single-end sequences obtained
from the concatenating method were then used for further analysis.
Amplicon sequence variants (ASVs) were generated by DADA2 for taxa
classification and functional profiling.

Shotgun sequencing
We performed shallow to deep WMS at 4 GB, 18 GB, and 36 GB levels to
compare gut microbiota structures with 16S rRNA-based metagenome
sequencing.WMS libraries, preparedwith at least 100 ngof totalDNAusing
the IlluminaTruSeqNanoDNAprotocol for 350 bp libraries (Illumina, San
Diego, CA), were sequenced on the Illumina Novaseq 6000 platform. This
generated 2 × 150 bp paired-end reads with a minimum of 27.7 million
reads per sample. Sequencing depths achieved a median of 29.9 million
reads for 4 GBp samples, 139.6 million for 18 GBp, and 255.9 million for

36 GBp.KneadData v0.12.0, incorporatingTrimmomatic v0.39.270 andTRF
v.4.09.171, was used to filter low-quality and adapter-laden WMS reads.
Human-origin reads were removed using the human reference genome
GRCh3872.

Taxonomic classification
Non-chimeric reads obtained from each method (ME, DJ, and IO) were
aligned to databases: Greengenes2 (v2022.10), SILVA (v138.1), and RDP
(v11). Taxa classification of ASVs was performed using feature-classifier
classify-sklearn plugged in QIIME2. Relative abundance and richness
metrics, such as Richness, Shannon effective numbers, and Simpson effec-
tive numbers, were visualized using phyloseq73, vegan74, and ggplot2 R
packages. Before calculating Hill numbers75 and relative abundance, we
implemented a 0.25% cutoff retaining only ASVs observed at a relative
abundance >0.25% in at least one sample76.Weused the SILVAdatabase for
taxonomic assignments, except in Supplementary Figs. 5–7, which illustrate
differences in relative abundance depending on the 16S rRNA database.
Additionally, we updated the taxonomic assignments from an older version
by using https://lpsn.dsmz.de. Differential heat trees of taxonomic com-
positions, provided by feature-table with QIIME2 and phyloseq in each
sample, were visualized using Metacoder77. Linear discriminant analysis
effect size (LEfSe)78 was used to evaluate differential ASV abundance by
analytical methods and healthy/diseased states.

Coefficient-based adjustments for dual 16S rRNA reads
Utilizing mock datasets (Zymo, ZIEL-I, ZIEL-II) and the SILVA DB, we
calculated coefficient values for each 16S rRNA region using weighted
averages41, covering 22 families. Weighted coefficient values for the V1-V3
(ω13:f

i ) and V6-V8 (ω68:f
i ) regions were determined by dividing the relative

abundance from the V1-V3 (x13:f
i ) and V6-V8 (x68:f

i ) regions by the total
abundance [the sum of the relative abundances from the V1-V3 region
(x13:f

i ) and the V6-V8 region (x68:f
i )], respectively. The means of these

weighted coefficient values ðϖ13:f
i and ϖ68:f

i Þwere computedusing data from
eight independent datasets across three mock datasets. The equations
applied are as follows:
• For the V1-V3 region:

ω13:f
i ¼ x

13:f
i

x
13:f
i þ x

68:f
i

ð1Þ

and the mean

ϖ13:f
i ¼ 1

n

Xn
i¼1

ω13:f
i ð2Þ

Similarly, we calculated weighted coefficient values for the V6-V8
region (ω68:f

i ) as the relative abundance from the V6-V8 region
(x68:f

i ) divided by the total abundance (x13:f
i þ x

68:f
i ), with themean

of these values from the V6-V8 region (ϖ68:f
i ) presented as follows:

• For the V6-V8 region:

ω68:f
i ¼ x

68:f
i

x
13:f
i þ x

68:f
i

ð3Þ

and the mean

ϖ68:f
i ¼ 1

n

Xn
i¼1

ω68:f
i ð4Þ

The adjusted relative abundances for both the V1-V3 (x13:f 0

i ) and V6-
V8 (x68:f 0

i ) regions were then calculated as follows:

x
13:f 0

i ¼ ϖ13:f
i � x13:f

i ð5Þ
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and

x
68:f 0

i ¼ ϖ68:f
i � x68:f

i ð6Þ

These adjusted relative abundances lead to the formula representing
the total adjusted relative abundance:

Total relative abundance ’
Xn
i¼1

x
13:f 0

i þ x
68:f 0

i

� �
ð7Þ

Functional profiling
For function profiling prediction, processed 16S rRNA sequencing ASVs
were analyzed based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database79 using Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt2)14, with limitations noted
for the IOmethod.WMS reads were analyzed by HUMAnN 3.0, including
MetaPhlAn380, mapping to the UniRef90 DB.

Pipeline performance measures with mock community
Performance was evaluated at the family level using TP, FP, false negative
(FN), precision, recall, and F-measure38. TP was calculated when relative
abundance values from each pipeline matched ideal values from the mock
community dataset. FP was calculated when values from each pipeline were
overestimated andmisclassified compared to themock community. FNwas
calculated when values were not detected. The calculations for performance
metrics are defined as follows: Precision = TP/(TP+ FP), Recall = TP/
(TP+ FN), F-measure = 2 × precision × recall/(precision+ recall).

Quantitative PCR validation
We performed quantitative PCR analysis on samples from eight healthy
individuals and 8 patients withUC to quantify the abundance of genes from
selected pathways. Primers were designed using the Primer-BLAST tool81.
Primers listed in Supplementary Data 7 targeted representative genes from
each pathway, with standard primers (515 F: 5’-
GTGCCAGCMGCCGCGGTAA-3’/806 R: 5’-GGAC-
TACHVGGGTWTCTAAT-3’) for 16S rRNA82. The qRT-PCR reaction
was conducted with a final primer concentration diluted to 0.5 μM,
including 5 ng of genomic DNA in a 10 μl final reaction volume, using the
iQ SYBR Green Supermix (BIO-RAD). The quantitative PCR conditions
were as follows: pre-denaturation at 95 °C for 3min; denaturation at 95 °C
for 10 s for 40 cycles; and annealing at 55 °C for 30 s, followed bymelt curve
analysis. The qRT-PCR analysis aimed to calculate 2−ΔΔCt values between
candidate genes and 16S Ct values. The statistical significance of the dif-
ferences between healthy individuals andUC samples was assessed using a t
test (P < 0.1).

Statistical analysis and visualization
Weused the t test, ANOVAofOrigin software, and two-sidedWelch’s t test
of STAMP software83 to assess the significance of differences in the abun-
dant microbiome and functional profiles between the healthy and UC
patient groups.

Availability of supporting source code and requirements
Programming languages: Python 3.9.7, R 4.2.2.

Home page: https://github.com/TLlab/JTax.
Other requirements: BioPython module, R packages (ggplot2, phylo-

seq, vegan, metacoder, ggpubr, and microbiomeMarker84), STAMP, and
Oirigin software.

Data availability
The SRP131748 and SRP115494 datasets are available on theNCBI orHMP
portal (https://portal.hmpdacc.org/). The SRP291583 dataset is also avail-
able on the NCBI. Our 16S rRNA sequencing and WMS raw data

supporting the results of this article are available from the Sequence Read
Archive, with project ID: PRJNA1088906, PRJNA1088910 in the NCBI.

Code availability
We have uploaded the codes necessary to perform the Adj-16S method
(https://github.com/kyoung-su/Adj-16S).
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