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Interpretable multimodal transformer for
prediction of molecular subtypes and
grades in adult-type diffuse gliomas
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Molecular subtyping and grading of adult-type diffuse gliomas are essential for treatment decisions
and patient prognosis. We introduce GlioMT, an interpretable multimodal transformer that integrates
imaging and clinical data to predict the molecular subtype and grade of adult-type diffuse gliomas
according to the 2021 WHO classification. GlioMT is trained on multiparametric MRI data from an
institutional set of 1053 patients with adult-type diffuse gliomas to predict the IDH mutation status,
1p/19q codeletion status, and tumor grade. External validation on the TCGA (200 patients) and UCSF
(477 patients) shows that GlioMT outperforms conventional CNNs and visual transformers, achieving
AUCs of 0.915 (TCGA) and 0.981 (UCSF) for IDH mutation, 0.854 (TCGA) and 0.806 (UCSF) for 1p/19q
codeletion, and 0.862 (TCGA) and 0.960 (UCSF) for grade prediction. GlioMT enhances the reliability of
clinical decision-making by offering interpretability through attention maps and contributions of

imaging and clinical data.

Adult-type diffuse gliomas are the most common malignant primary brain
tumors'. The 2021 World Health Organization (WHO) classification of
central nervous system tumors simplifies the classification of adult-type
diffuse gliomas”. Unlike the 2016 WHO classification which assigned
multiple entities in adult-type diffuse gliomas, the current classification
simplifies adult-type diffuse gliomas to only three types based on isocitrate
dehydrogenase (IDH) mutation and 1p/19q codeletion status: IDH-mutant
and 1p/19g-codeleted oligodendroglioma (herein oligodendroglioma),
IDH-mutant astrocytoma, and IDH-wildtype glioblastoma™. The new
classification emphasizes different prognoses within each type according to
its biological behavior’, while grading continues to have an impact on
survival in adult-type diffuse gliomas™’.

Genetic testing is costly and time-consuming and may not be available
in resource-limited regions, while tissue insufficiency in biopsy may lead to
incomplete diagnosis. Thus, a complementary noninvasive method to
predict molecular information is crucial for predicting prognosis and
planning the treatment strategy. Magnetic resonance imaging (MRI) fea-
tures have been shown to be predictive of molecular subtyping and tumor
grading”"’. Leveraging this insight, deep learning (DL)-based studies using

MRI have been conducted for molecular subtyping and/or grading of adult-
type diffuse gliomas. However, most DL studies were conducted based on
the previous 2016 WHO classification, resulting in the inclusion of tumors
outside the family of adult-type diffuse gliomas in the current 2021 WHO
classification'"”"”. Furthermore, prior DL studies employed traditional
convolutional neural networks (CNNs)''"". Despite its widespread appli-
cation, CNNs often fail to capture the global context of MRI data due to its
inherent local processing nature. Thus, an advanced DL method that can
effectively interpret the intricate spatial characteristics in glioma may be
imperative.

A key advancement in DL has been the emergence of transformers',
which overcame the limitations of sequential data processing with an
innovative self-attention mechanism that allows for dynamic encoding of
relationships between all parts of the input data simultaneously. Initially
making a significant impact in the field of natural language processing
(NLP), the application of transformers has been extended to image
processing'”*'. Consequently, the success of transformer models in both
vision and language domains has catalyzed a broader exploration of their
capabilities, particularly in multimodal research. This includes significant
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applications within the medical field by integrating imaging with clinical
data using transformer architectures”. We hypothesized that multimodal-
based transformer models may provide a robust and interpretable DL fra-
mework for molecular subtyping and grading of adult-type diffuse gliomas.

In this study, we aimed to develop and validate a robust and inter-
pretable multimodal transformer, glioma multimodal transformer
(GlioMT), for molecular subtyping and grading of adult-type diffuse glio-
mas, in accordance with the 2021 WHO classification.

Results

Patient characteristics

The clinicopathological characteristics of the institutional set (n =1053),
The Cancer Genome Atlas (TCGA) external validation set (n = 200), and
the University of California, San Francisco (UCSF)* external validation set
(n=477) are summarized in Table 1. Although the distribution of sex was
not statistically different between the three cohorts (P=0.265), age
(P=10.001), molecular subtype (P <0.001), CNS WHO grade (P <0.001),
and MGMTp methylation status (P < 0.001) showed significant differences
between three cohorts, reflecting the heterogeneity of real-world datasets.

MR image processing

To accurately predict molecular subtypes and tumor grading using MRI
data, we conducted a series of experiments to determine the optimal number
of input slices for training our model. The results of the ablation study are
presented in Supplementary Fig. 1. To identify the most optimal number of
slices, a vision transformer'’, ViT-base, was used for the ablation study. For
prediction of IDH mutation and 1p/19q codeletion status, the model was
trained and evaluated using the top 75% of axial slices by tumor area,
achieving the highest area under the curves (AUCs) of 0.965 and 0.786,
respectively, on internal validation. For the tumor grade prediction task, the
model was trained and evaluated using the top 50% of slices, achieving the
highest AUC of 0.925 on internal validation. Consequently, the top 75%,
75%, and 50% of slices according to tumor area were used for the prediction
of IDH mutation, 1p/19q codeletion, and tumor grade, respectively, to train
and validate all DL models.

Comparison of model performance between CNN, visual trans-

former, and GlioMT

The performances of the DL models are summarized in Supplementary
Tables 1-3 for IDH-mutation, 1p/19q codeletion, and tumor grade pre-
diction tasks, respectively. The model with the highest average AUC across
two external validation sets was selected as the top-performing model. Table
2 provides a summary of the top-performing models from each DL model
category—CNN, Visual Transformer, and GlioMT—along with the corre-
sponding ROC curves and statistical analyses in Fig. 1. Across all prediction
tasks, GlioMT consistently outperformed the other models, followed by
visual transformer and then CNN.

In the prediction of IDH mutation status, GlioMT achieved AUCs of
0.915 (95% CI 0.869-0.955) on TCGA and 0.981 (95% CI 0.968-0.991) on
UCSF, with statistically significant differences compared to both CNN
(P<0.01 on TCGA and P<0.001 on UCSF) and visual transformer
(P<0.05 on both TCGA and UCSF). The visual transformer and CNN
showed lower performance than GlioMT, with AUCs of 0.901 and 0.862 on
TCGA and 0.971 and 0.950 on UCSF, respectively.

For the prediction of 1p/19q codeletion status, GlioMT achieved AUCs
of 0.854 (95% CI 0.770-0.929) on TCGA and 0.806 (95% CI 0.646-0.946)
on UCSF. Although there were no statistically significant differences com-
pared to visual transformer (P > 0.05), GlioMT still showed higher AUCs,
with visual transformer achieving AUCs of 0.831 on TCGA and 0.737 on
UCSEFE. CNN showed the lowest performance, with AUCs 0of 0.773 on TCGA
(P <0.05) and 0.740 on UCSF (P = 0.381).

For the prediction of tumor grade, GlioMT achieved the highest AUCs
of 0.862 (95% CI 0.806-0.912) on TCGA and 0.960 (95% CI 0.942-0.977)
on UCSF. The visual transformer showed lower performance than GlioMT,
with AUCs of 0.840 on TCGA (P =0.254) and 0.947 on UCSF (P < 0.05),

while CNN showed the lowest performance with AUCs of 0.793 on TCGA
(P<0.001) and 0.932 on UCSF (P <0.001). As shown in Fig. 1d, GlioMT
outperformed both CNN and visual transformer in most one-vs-rest
comparisons across tumor grades. Although the visual transformer slightly
outperformed GlioMT for grade 2 in TCGA, GlioMT demonstrated
superior performance in all other comparisons, including grades 3 and 4.

Effectiveness of clinical data encoding using BERT

The performance of our GlioMT model, which utilizes pre-trained BERT
for clinical data encoding, is summarized in Supplementary Table 4.
Compared to alternative methods such as simple concatenation, a single
fully connected (FC) layer, and trainable embeddings, GlioMT achieved the
highest average AUC (0.896) across multiple tasks, including IDH mutation
status, 1p/19q co-deletion status, and tumor grade classification, on external
validation sets (TCGA and UCSF).

Interpretability of GlioMT

Figure 2a—c shows attention maps for correctly predicted cases according to
IDH mutation status, 1p/1p codeletion status, and tumor grade using
GlioMT. The attention maps generated by GlioMT distinctly highlighted
tumor areas, reflecting the specific imaging signature that assists in pre-
diction. For example, GlioMT focused on the T2-FLAIR mismatch sign fora
patient with IDH-mutant astrocytoma, whereas for a patient with IDH-
wildtype glioblastoma, GlioMT focused on ring-enhancing areas (Fig. 2a).
In 85.9% of accurately classified cases, the model demonstrated a precision
score exceeding 0.5, indicating that the majority of the attention region was
correctly focused within the tumor regions.

Supplementary Fig. 2 shows attention maps for misclassified cases that
were confused by focusing on regions outside of the tumor area in prediction
of IDH mutation status, 1p/lp codeletion status, and tumor grade,
respectively. In 42.4% of misclassified cases, the precision score was below
0.5, indicating that nearly half of the misclassified cases were confused by
focusing on regions outside the tumor area. In the remaining 57.6% of
misclassified cases in which the model accurately activated the tumor region
(precision score above 0.5), accurate prediction of IDH mutation status, 1p/
1p codeletion status, and tumor grade was also confusing to radiologists
(Supplementary Fig. 3). For example, in majority (69.0%) of misclassified
cases in predicting IDH mutation status in which the model accurately
activated the tumor region, tumors lacked characteristic imaging findings
according to IDH mutation status; IDH-mutant tumors showed enhance-
ment with necrosis while IDH-wildtype tumors lacked enhancement and/or
necrosis, which made prediction of IDH mutation status also difficult to
radiologists.

Furthermore, the contribution score of each modality is presented as a
horizontal bar graph below each attention map in Fig. 2. These scores
quantify the relative importance of different input features—imaging fea-
tures, age, and sex—in the model’s predictions. Across all tasks, imaging
features consistently had the highest impact on the model’s predictions,
followed by age and sex.

Discussion

Our study introduces a novel DL model utilizing a GlioMT that inte-
grates imaging and clinical data for molecular subtyping and grading in
adult-type diffuse gliomas according to the 2021 WHO classification.
Our GlioMT model demonstrated superior performance in predicting
adult-type diffuse gliomas compared to CNNs and visual transformers.
Specifically, GlioMT achieved AUCs of 0.915-0.981, 0.806-0.854, and
0.862-0.960 for prediction of IDH mutation status, 1p/19q codeletion
status, and tumor grade, respectively, indicating generalizable results
with a potential for clinical application. To the best of our knowledge,
this study is the first to 1) apply the updated 2021 WHO classification
criteria in a DL model for molecular subtyping and grading of adult-type
diffuse gliomas, 2) demonstrate the utility of GlioMT integrating ima-
ging and clinical data, which shows its superiority and robustness over
conventional CNNs and visual transformers in large external validation
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Table 1 | Clinicopathological characteristics of the patients in
the institutional developmental, TCGA, and UCSF external
validation sets

Characteristics Institutional External validation P value

set (n=1053) set (n =677)
TCGA UCSF
(n =200) (n=477)

Age 54.9+14.7 52.3+14.9 56.8+15.2  0.001
Sex 0.265

Female 441 (41.9) 94 (47.0) 192 (40.3)

Male 612 (58.1) 106 (53.0) 285 (59.7)
Molecular subtype <0.001

Oligodendroglioma 144 (13.7) 29 (14.5) 13 (2.7)

IDH-mutant 157 (14.9) 57 (28.5) 90 (18.9)
astrocytoma

IDH-wildtype 752 (71.4) 114 (57.0) 374 (78.4)
glioblastoma
Tumor grade <0.001

CNSWHO grade2 164 (15.6) 44 (22.0) 46 (9.6)

CNS WHO grade 3 109 (10.4) 58 (29.0) 29 (6.1)

CNSWHO grade 4 780 (74.1) 98 (49.0) 402 (84.3)
MGMTp methylation <0.001
status

Methylated 505 (48.0) 122 (61.0) 289 (60.6)

Unmethylated 534 (50.7) 49 (24.5) 109 (22.8)

Unknown 14 (1.3) 29 (14.5) 79 (16.6)

Data are presented as mean + standard deviation for continuous variables, or as number with
percentage in parentheses for categorical variables. P values are based on comparisons between
the institutional set, TCGA set, and UCSF set using one-way analysis of variance (ANOVA) for
continuous variables and the chi-square test for categorical variables.

CNS central nervous system, IDH isocitrate dehydrogenase; MGMTp O°-methylguanine-DNA
methyltransferase promoter, TCGA Tumor Cancer Genome Atlas, UCSF The University of
California, San Francisco, WHO World Health Organization.

sets, and 3) providing interpretability to clinicians not only by attention
maps via images but also by showing contribution of imaging and
clinical data to the model’s final prediction.

Previous studies applying DL for the prediction of molecular
subtypes and/or grades of adult-type diffuse gliomas have encoun-
tered limitations in study design''~". Histological grade 2 or 3 IDH-
wildtype diffuse gliomas, not otherwise specified (NOS) or not else-
where classified (NEC), which no longer belong in the family of adult-
type diffuse gliomas in the 2021 WHO classification’, were included in
datasets of previous studies according to the 2016 WHO classification.
Moreover, there are no longer grade 2 or grade 3 IDH-wildtype glio-
mas in the 2021 WHO classification®. This inclusion of outdated
classifications led to incorrect ground truth labels that are not aligned
with the current classification. Additionally, several prior works
focused solely on the prediction of IDH mutation status'"'**. Fur-
thermore, the lack of external validation in several studies undermines
confidence in the robustness of their findings in real-world clinical
settings'"'”.

Of note, previous DL studies with external validation have relied on
models based on traditional CNNs for the classification of gliomas'*™",
with suboptimal performances than our study, and external validation
was only performed on TCGA datasets. A previous study based on
ImageNet-pretrained VGG-16 showed an accuracy of 81.6% on TCGA
dataset in predicting IDH mutation and 1p/19q codeletion status on a
2-tiered approach based on conventional T1, T2 and T1C images'".
Although this study also reported a higher accuracy of 85.7% for pre-
dicting IDH mutation and 1p/19q codeletion status in a 3-class approach
when including diffusion-weighted images, caution should be taken in

Table 2 | Comparison of classification results for the TCGA and UCSF external validation sets with CNN, Visual transformer, and GlioMT

UCSF

DL network TCGA

Classification task

Specificity (%)

91.2

Sensitivity (%)

83.5

Accuracy (%)

AUC (95% CI)
89.5

Specificity (%)

79.8

Sensitivity (%)

79.1

Accuracy (%)

79.5

AUC (95% Cl)

0.950 (0.926-0.970)

0.862 (0.807-0.911)

CNN

IDH mutation

81.6 96.5

93.3

0.971 (0.952-0.985)
0.981 (0.968-0.991)
0.740 (0.580-0.875)

74.4 89.5

83.0

0.901 (0.852-0.942)
0.915 (0.869-0.955)
0.773 (0.663-0.869)
0.831 (0.741-0.909)
0.854 (0.770-0.929)
0.793 (0.722-0.859)
0.840 (0.779-0.895)

Visual transformer
GlioMT
C

97.3

85.4

94.8
5

87.7

82.6

85.5
65.1

53.3

69.2

5.3

52.6

89.7

NN

1p/19q codeletion

61.5 85.6

82.5

0.737 (0.559-0.890)
0.806 (0.646-0.946)
0.932 (0.907-0.956)

345 91.2

72.1

Visual transformer

GlioMT
CNN

76.7

76.9

76.7

84.2

58.6

75.6

54.4 88.0

82.0

47.6 7.7

65.0

Tumor grade

70.6 92.7

66.1

85.7

0.947 (0.925-0.966)
0.960 (0.942-0.977)

49.8 81.2

54.1

65.5

Visual transformer

GlioMT

Forthe 1p/19q codeletion task, the TCGA and UCSF validation sets included only 86 and 103 cases, respectively. For the IDH mutation and tumor grade prediction tasks, the TCGA and UCSF validation sets included 200 and 477 cases, respectively. Best AUC is highlighted in

bold.

91.0

90.4

80.4

70.0

0.862 (0.806-0.912)

DL deep learning, AUC the area under the receiver operating characteristic curve, C/ confidence interval, CNN convolutional neural network, CNS central nervous system, IDH isocitrate dehydrogenase, TCGA Tumor Cancer Genome Atlas, UCSF The University of California,

San Francisco, WHO World Health Organization.
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Fig. 1 | Comparison of AUC performance between CNN, visual transformer, and
GlioMT. Receiver operating characteristic (ROC) curves for IDH mutation status,
1p/19q codeletion status, and tumor grade prediction tasks on the (a) TCGA and (b)
UCSEF external validation sets. For tumor grade, which involves three classes (Grade
2, Grade 3, and Grade 4), ROC curves were generated using a one-vs-rest approach,
followed by macro-averaging to produce the final curves. (c) AUC comparison for

Dataset

Dataset

each task across both TCGA and UCSEF validation sets. (d) AUC comparison for each
grade (Grade 2, Grade 3, and Grade 4) using a one-vs-rest approach across the
TCGA and UCSF validation sets. Error bar represents the 95% confidence interval
(CI). To compare the statistical differences in AUCs, DeLong’s test was used for the
binary classification tasks (IDH mutation and 1p/19q codeletion), and the boot-
strapping method was employed for the multiclass classification task (tumor grade).

interpreting this result because external validation was not possible in
this sub-study due to lack of diffusion-weighted images'*. Another study
implementing a 3D CNN reported AUCs of 0.90, 0.85, and 0.81 for
prediction of IDH mutation status, 1p/19q co-deletion status, and tumor
grade, respectively’”. Meanwhile, another study added clinical

information (age) and radiomics features as numeric inputs to a ResNet
model in addition to imaging data, showing an AUC of 0.86 for pre-
diction of IDH mutation status". Inherent limitations remain in the DL
architecture of these prior researches; CNN models suffer from the
intrinsic locality limitation of convolution operations, potentially
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Fig. 2 | Visualization of attention maps and modality contribution scores of
correctly predicted cases generated by GlioMT. The figure shows results for three
tasks: a IDH mutation status, b 1p/19q codeletion status, and ¢ tumor grade in
TCGA and UCSF external validation sets. For each task, the upper row shows the
attention maps, while the lower row shows the modality contribution scores.
Attention maps focused on the relevant tumor region including both enhancing and
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non-enhancing areas, for all correctly predicted patients. Notably, in a 36-year-old
male with IDH-mutant astrocytoma (a, left), the attention map accurately high-
lighted the tumor with “T2-FLAIR mismatch sign”. Modality scores varied between
patients; in overall showing that imaging features have the highest contribution score
on the model’s predictions, followed by age and sex.

missing broader contextual information necessary for understanding
complex glioma characteristics'”**. Moreover, while some studies have
incorporated additional data types, the integration often remains sub-
optimal, limiting the model’s comprehensive predictive capability™.

Addressing these limitations, our study introduces a novel multi-
modal transformer, GlioMT, leveraging the latest breakthrough in DL.
GlioMT effectively integrates and analyzes data from multiple mod-
alities, overcoming the inherent limitations of CNNs. As transformers
employ a self-attention mechanism that allows for a more global
understanding of the data, a detailed evaluation of glioma with its
widespread infiltrative nature is available’, enabling more nuanced
understanding of the tumor characteristics that are critical for accurate
classification. In addition, a transformer-based LLM for clinical data
processing was applied for integration of clinical data. Previous CNN-
based studies often converted clinical data into numeric inputs or
learnable parameters to be fused with image features at the feature
level*****. However, this approach has limitations in effectively cap-
turing the intricate relationships between different data modalities. In
this study, a transformer-based LLM, namely BERT?, was used for
encoding clinical data such as age and sex by converting them into text
form (e.g., “A magnetic resonance image of an old patient”). The
strength of BERT encoding can be attributed to its pre-training on vast
amounts of text data, enabling it to transform clinical data into rich
embeddings that align effectively with high-dimensional MRI features.
By incorporating clinical data into imaging data, which are known to
vary among different molecular subtypes and grades of gliomas”,
GlioMT achieves higher performance compared to traditional CNNs
and visual transformers.

Previous studies with CNN-based models often yielded attention maps
that show broad, non-discriminative activation regions, which fail to offer
detailed explainability'*"”. In contrast, our approach employs a specialized
attention visualization methodology™ designed for transformer archi-
tectures, resulting in more detailed and insightful attention maps. Specifi-
cally, the attention maps of GlioMT precisely target relevant tumor areas,
enhancing our understanding of the factors influencing the model’s pre-
dictions. In misclassified cases, 42.4% of the attention maps focused not only
on tumor areas but also on non-tumor areas, and 16.7% completely failed to
focus on the tumor areas, which can serve as a warning to clinicians to
prevent to blindly trust the model’s prediction in such cases. Such detailed
interpretation not only validates the diagnostic decisions of our model but
also demonstrates the potential to provide reliable results to clinicians for
clinical application. Additionally, our study provides scores indicating the
contribution of clinical and imaging modalities to the model’s predictions.
These scores offer local interpretability to clinicians; a clearer picture of how
different information influences the model’s outputs in each case. Of note,
our results show that imaging features overall have the most significant
contribution to the model’s predictions, followed by age and sex, which is
similar to our decision-making process in clinical setting.

Our study has several limitations. First, our study was based on a 2D
rather than a 3D DL model, chosen for the greater availability of ImageNet
pre-trained models and computational efficiency. While this choice aligns
with our focus on using readily accessible and computationally manageable
models, 3D models may be superior in capturing volumetric spatial rela-
tionships within the brain, potentially enhancing diagnostic accuracy.
Future studies should explore the integration of 3D DL models to under-
stand the complex geometries of tumors more effectively. Second, our study
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Fig. 3 | Patient flowchart. This figure shows the patient flowchart in the institutional, TCGA external validation, and UCSF external validation sets.

utilized conventional MRI sequences without integrating advanced imaging
sequences such as diffusion-weighted or dynamic susceptibility contrast
imaging. The goal of this study was to utilize routine clinical sequences and
provide robustness of the model, which requires the use of external vali-
dation sets. However, the absence of advanced imaging sequences in most of
these external sets limits their inclusion in our study. Nonetheless, additional
quantitative imaging has been shown to highlight unique features according
to molecular subtype and grade of adult-type diffuse gliomas”, and should
be incorporated in the future to improve the performance.

In conclusion, GlioMT, integrating imaging and clinical data, showed
robust performance in molecular subtyping and grading of adult-type dif-
fuse gliomas according to the 2021 WHO classification. The interpretability
provided by attention maps has the potential to improve the accuracy of
clinical decision-making.

Methods

Study design and ethical approval

Requirement for patient consent was waived owing to the retrospective
study design. This study was approved by the Institutional Review Board of
Severance Hospital (No. 4-2024-0040). The study was conducted in
accordance with the Declaration of Helsinki.

Patient population

Between June 2005 and December 2022, 1226 patients with diffuse gliomas
were included in the institutional developmental set. The inclusion criteria
were as follows: 1) diffuse gliomas confirmed by histopathology, 2) known
IDH mutation and 1p/19q codeletion status, and 3) aged >18 years. The
exclusion criteria were as follows: 1) histological grade 2 or 3 IDH-wildtype
diffuse gliomas which did not undergo testing of genetic parameters
(TERTp, EGFR gene, or chromosome +7/—10), thereby diagnosed as IDH-
wildtype diffuse glioma, NOS (1 = 114)”, 2) histological grade 2 or 3 IDH-
wildtype diffuse gliomas which were negative to all three genetic parameters
(TERTp, EGEFR gene, and chromosome +7/—10), thereby diagnosed as for
IDH-wildtype diffuse glioma, NEC (n =21), 3) presence of H3 K27M
alteration, leading to a diagnosis of diffuse midline glioma, H3 K27-altered
(n=36), and 4) preprocessing error (n=2). A total of 1053 adult-type
diffuse glioma patients were included in the institutional set. For training
and internal validation, the institutional set was randomly split into 80%
(n=841) and 20% (n = 212), respectively.

For external validation, identical criteria were applied to patients from
TCGA (http://cancergenome.nih.gov) and UCSF sets”, resulting in the
inclusion of 200 and 477 adult-type diffuse glioma patients, respectively.
Figure 3 shows the patient flowchart.

Molecular classification

All patients were diagnosed according to the 2021 WHO classification’.
IDH1/2 mutation and 1p/19q codeletion status was assessed. The presence
of H3 K27M mutation was evaluated in tumors with midline location.
Targeted next-generation sequencing (NGS) was performed by Illumina
TruSight Tumor 170 panel in the institutional set since 2015”. In the
institutional and TCGA external validation sets, 20 patients and 18 patients
with histological grade 2 or grade 3 IDH-wildtype gliomas with either
TERTp mutation, EGFR gene amplification, or chromosome +7/—10 were
classified as IDH-wildtype glioblastoma according to their molecular pro-
files, respectively.

MRI protocol

Preoperative MRI was performed using a 3.0-T MRI scanner (Achieva or
Ingenia, Philips Healthcare, Best, the Netherlands) equipped with an eight-
channel sensitivity-encoding head coil in the institutional setting. The
imaging protocol included T1-weighted (T1) turbo spin-echo images with
inversion recovery (TR, 2000 ms; TE, 10 ms; TI, 1000 ms; FOV, 240 mm;
section thickness, 5 mm; matrix, 256 x 256), T2-weighted (T2) turbo spin-
echo images (TR, 3000 ms; TE, 80 ms; FOV, 240 mm; section thickness,
5mm; matrix, 256 x 256), and T2-weighted fluid-attenuated inversion
recovery (FLAIR) images (TR, 10,000 ms; TE, 125 ms; T1, 2500 ms; FOV,
240 mm; section thickness, 5 mm; matrix, 256 x 256). Additionally, three-
dimensional postcontrast T1-weighted (T1C) turbo field echo images (TR,
9.8ms; TE, 4.6ms; FOV, 240 mm; section thickness, 1 mm; matrix,
224 x 224) were acquired after intravenous injection of gadolinium-based
contrast (0.1 mL/kg of gadobutrol, Gadovist; Bayer Schering Pharma, Ber-
lin, Germany).

Image processing

Image preprocessing involved isovoxel resampling to 1 mm?®, N4 bias field
correction, and co-registration of T1, T2, and FLAIR images to T1C images,
utilizing ANTs. Skull stripping was performed using HD-BET"". Signal
intensity was z-score normalized.
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Fig. 4| The DL workflow for classifying molecular subtypes and grading of adult-
type diffuse gliomas. a Workflow for slice selection from multiparametric MRI (T1/
T1C/T2/FLAIR) using nnU-Net to predict tumor regions. The top n% of slices by
tumor area are selected, with a single slice randomly chosen per patient for model
training. Traditional deep learning models based on b CNN and c visual

transformer. d Overview of GlioMT for classification of adult-type diffuse gliomas
according to the 2021 WHO classification. MR images are encoded using a visual

transformer, while clinical data are processed by LLM-based text encoder, specifi-
cally BERT. During training, all layers of the BERT model are frozen.

Figure 4a illustrates the workflow for determining the input image
of the DL network. Initially, automatic tumor segmentation was per-
formed to identify the tumor region. For this purpose, nnU-Net” was
employed, which achieved a Dice score of 0.95 on our previous insti-
tutional dataset”. The predicted masks representing the total tumor
(including contrast-enhancing tumor, non-enhancing tumor, and
necrosis) were utilized to facilitate the automatic selection of axial slice
images containing significant tumor regions. Subsequently, axial slices

of tumor mask were sorted according to the area of tumor, and only a
subset of slices with substantial tumor areas were selected. To utilize the
input slices that are beneficial for training, an ablation study was con-
ducted for each task: prediction of IDH mutation status, 1p/19q code-
letion status, and tumor grade. From this subset of selected slices, a single
slice was then randomly chosen for each patient. Finally, each chosen
slice from T1, T1C, T2, and FLAIR was concatenated into a single input
image with dimensions of 224 x 224 x 4.
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CNNs, visual transformers, and GlioMTs

The DL-based models for classifying molecular subtypes and grading adult-
type diffuse gliomas are shown in Fig. 4b-d. For the processing of input
images, either CNNs, which employ convolution and pooling layers, or
visual transformers, which utilize self-attention layers, were used (Fig. 4b, c).
Five representative CNN models (such as ResNet™, DenseNet”, or
EfficientNet™) and two representative visual transformers (such as Vision
Transformer [ViT]" or Swin Transformer'®), were implemented.

In our GlioMT (Fig. 4d), a visual transformer was used for multi-
parametric image processing. In addition to imaging data, clinical data
such as age and sex were included as a part of the input data and converted
into well-designed prompts (e.g. a magnetic resonance image of a male
patient). Since the sparse age distribution in our dataset could lead to the
model struggling with insufficient data for a particular age range, we
dichotomized age with an age threshold of 45 years which maximizes the
standard chi-square statistics, into young and old age. Supplementary Fig.
4 illustrates the P values of chi-square tests between two age groups, with
age thresholds ranging from 25 to 70 years, according to IDH mutation
status, 1p/19q codeletion status, and tumor grade. The clinical prompts
were encoded with BERT, which is a widely used transformer-based
large language model (LLM). To integrate imaging and clinical features, a
multimodal fusion module was employed, consisting of a series of
attention blocks based on the ViT". Finally, a multi-layer perceptron head
was used to classify the IDH mutation status, 1p/19q codeletion, and
tumor grade.

A comparative analysis was conducted across three different cate-
gories of DL models: traditional CNNs, visual transformers, and our
GlioMT. During the evaluation, each axial slice in the subset selected
through image processing for each patient was individually assessed and
the final probability for each patient was calculated by averaging the
predicted probabilities from these slices. The image encoder (CNNs and
Transformers) was implemented using the “timm” library (v0.9.2), and
the text encoder BERT using the “transformers” library (v4.36.1). To
enhance performance, image encoders were initialized with ImageNet
pre-trained weights. Since these networks were originally designed for
three-channel RGB images, the first layer’s weights were extended to
accommodate four-channel MRI data by adding the R channel and
scaling the weights by a factor of 3/4. All models and training codes were
implemented using Python 3.9 and PyTorch 1.13.12.

Effectiveness of clinical data encoding using BERT

To demonstrate the effectiveness of clinical data encoding using BERT in
GlioMT, a comparative ablation study was conducted on three different
clinical data encoding methods, as illustrated in Supplementary Fig.
5a-c. First, multiparametric images were encoded through a visual
transformer to generate “MRI Features.” The three comparative meth-
ods include: (a) converting clinical data into simple numerical values for
concatenation with MRI features, (b) using a single fully connected (FC)
layer to encode clinical data into features with the same dimension as the
MRI features, and (c) dichotomizing the clinical data, as in our proposed
approach, followed by encoding it into features with the same dimension
as the MRI features using trainable embeddings. To ensure a fair com-
parison across all experiments, a specific random seed was fixed to
control the randomness in data augmentation and model weight
initialization.

Interpretability of GlioMT

To demonstrate the interpretability of GlioMT, which enables under-
standing the decision-making process of DL models, a rollout-based
attention visualization method*® was utilized to generate attention maps
for GlioMT. Similar to the use of various interpretability techniques in
CNN-based studies to understand feature importance’ ™, the rollout-
based attention visualization method™ provides detailed insights into
the focused areas of attention layers in transformers, making it suitable
for the inherent characteristics of transformer architectures. To

quantitatively evaluate whether the attention map focuses on the tumor,
the attention map was binarized using a threshold of 0.5, and the pre-
cision score was calculated by comparing it to the tumor mask predicted
by nnU-Net™. The precision score indicates the proportion of correctly
identified tumor area within the binarized attention map compared to
the total tumor area. Additionally, to quantify the contribution of each
modality (imaging data, age, and sex) to the model’s predictions,
modality contribution scores were calculated using Layer-wise Rele-
vance Propagation”.

Statistical analysis

The diagnostic performance was measured in terms of the area under the
curve (AUC), accuracy, sensitivity, specificity, and receiver operating
characteristic (ROC) curve. For binary classification problems, the
optimal threshold for predicted probabilities was determined on the
internal validation set using Youden’s index; an identical threshold was
then applied to external validation. For the multiclass performance
assessment in predicting tumor grades, AUCs were computed using a
one-vs-rest approach. The overall AUC, sensitivity, and specificity were
macro-averaged across tumor grades. The clinicopathological char-
acteristics were compared between the institutional set, TCGA set, and
UCSEF set using one-way analysis of variance (ANOVA) for continuous
variables, and the chi-square test for categorical variables. Delong’s test
was used for comparing the AUCs across different DL models and cal-
culating 95% Cls for the binary classification tasks (IDH mutation and
1p/19q codeletion). For the multiclass classification tasks (tumor grade),
bootstrapping with 5000 iterations was employed. Statistical significance
was set at P<0.05. All statistical analyses were performed using R
(version 4.4.1) and Python (version 3.9.16).

Data availability

The institutional data used in this study are not publicly available due to
compliance with patient privacy protection, but are available upon rea-
sonable request, while the TCGA and UCSF sets are publicly available
(https://www.cancerimagingarchive.net).

Code availability

The source code used in this paper is available under the Apache License 2.0
at https://github.com/bys9595/GlioM T git.
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