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Abstract: Colorectal cancer (CRC) is a major cause of cancer-related mortality, highlighting
the need for accurate and non-invasive diagnostics. This study assessed the utility of
tumor-associated circulating transcripts (TACTs) as biomarkers for CRC detection and
integrated these markers into machine learning models to enhance diagnostic performance.
We evaluated five models—Generalized Linear Model, Random Forest, Gradient Boosting
Machine, Deep Neural Network (DNN), and AutoML—and identified the DNN model
as optimal owing to its high sensitivity (85.7%) and specificity (90.9%) for CRC detection,
particularly in early-stage cases. Our findings suggest that combining TACT markers with
AI-based analysis provides a scalable and precise approach for CRC screening, offering
significant advancements in non-invasive cancer diagnostics to improve early detection
and patient outcomes.

Keywords: colorectal cancer; tumor-associated circulating transcripts blood-based assay; cancer
biomarkers; qPCR; machine learning; non-invasive cancer diagnosis; deep neural network

1. Introduction
Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality

worldwide, and survival rates vary significantly based on early detection and timely
intervention [1–3]. Traditional diagnostic methods, such as colonoscopy and fecal occult
blood testing (FOBT), are effective but have limitations. Colonoscopy, although accurate,
is invasive and leads to low compliance, whereas non-invasive options, such as FOBT,
show limited sensitivity, particularly for early-stage CRC detection. Therefore, an innova-
tive, non-invasive diagnostic tool that combines high accuracy with patient compliance is
urgently needed to improve early detection outcomes.

With advances in cancer diagnostics, liquid biopsy has emerged as a promising al-
ternative, enabling the real-time monitoring of cancer progression through minimally
invasive methods. Tumor-associated circulating transcripts (TACTs), a novel class of RNA
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biomarkers, have been used for the early diagnosis of breast cancer (BC) [4]. Given the
unique tumor biology and progression patterns of CRC, assessing the expression levels and
diagnostic relevance of these TACT markers is crucial, specifically in CRC, to determine
their broader applicability across cancer types.

Recent progress in cancer diagnostics has prompted the investigation of circulating
biomarkers that can be detected using liquid biopsies [5,6]. TACTs include a panel of
10 markers that have previously demonstrated high diagnostic accuracy in detecting BC
through RNA-based liquid biopsy. Given the biological similarities between CRC and BC,
such as common epithelial-to-mesenchymal transition (EMT) pathways, we hypothesized
that these markers could exhibit differential expression patterns in CRC and may possess
diagnostic significance in CRC [7].

Machine learning is increasingly utilized in biomedical research to analyze compli-
cated datasets and identify patterns that may not be evident through traditional statistical
approaches [8–11]. We evaluated five distinct machine learning models—Generalized Lin-
ear Model (GLM), Random Forest (RF), Gradient Boosting Machine (GBM), Deep Neural
Network (DNN), and automated machine learning algorithm (AutoML)—to determine
which model could most accurately predict CRC using TACT marker data.

This study aimed to evaluate whether the 10 TACT markers, previously shown to be
effective in BC, can provide similar diagnostic utility in CRC. To this end, we investigated
the relevance of each marker in CRC by analyzing its blood expression levels among
patients with CRC and healthy controls, thereby offering potential insights into cancer-type-
specific diagnostic panels. In addition, this study sought not only to validate TACT markers
for CRC but also to enhance the diagnostic performance of these biomarkers by integrating
artificial intelligence (AI) and machine learning models. After assessing the sensitivity,
specificity, and overall accuracy of each model, the DNN model was found to be the most
effective. The DNN model exhibited enhanced performance, showing increased sensitivity
and specificity relative to the other models, positioning it as a promising approach for
advancing AI-driven diagnostic tools for CRC. Integrating TACT markers with AI analysis
introduces a novel approach for CRC screening, presenting the possibility of a non-invasive,
precise, and scalable diagnostic method that may enhance patient outcomes and lower
healthcare expenses. Therefore, the results of this study may facilitate the development of
a blood-based assay that improves CRC screening, especially for individuals hesitant to
participate in invasive procedures.

2. Results
2.1. TACT Marker Expression in CRC Cell Lines

In this study, we first evaluated the expression of 10 TACTs previously identified in
BC diagnostics to assess their relevance in CRC detection. Using data retrieved from The
Human Protein Atlas [12], we analyzed the RNA expression levels of these markers in
63 CRC cell lines. We evaluated the cancer specificity of these markers by determining their
expression in other types of cancers.

These results are summarized in Figure 1, where the bar graph illustrates the RNA
expression levels of the 10 TACT markers in the CRC cell lines. EPCAM and NPTN
exhibited significantly elevated expression levels in CRC cell lines, with EPCAM showing
the highest expression among all the markers. The high expression levels suggest that these
two markers are particularly relevant for CRC detection. Markers, including KRT19, MKI67,
and VIM, were also highly expressed. In contrast, the markers ERBB2, TERT, and SNAI2
were undetectable in CRC cell lines, suggesting they may not be useful for CRC diagnosis.
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Figure 1. Comparison of RNA levels of tumor-associated circulating transcripts (TACT) markers in
CRC cell lines and immune cells. The bar chart shows the RNA expression levels (in normalized
transcripts per million, nTPM) of 10 TACT markers across 63 colorectal cancer cell lines (blue bars)
compared with their maximum expression levels in immune cells (Max. TPM) (orange bars).

2.2. TACT Marker Expression in CRC Cell Lines vs. Immune Cells

As this study aimed to develop a blood-based diagnostic assay, ensuring that the
selected markers were minimally expressed in immune cells was crucial, as high expression
in immune cells could interfere with assay specificity and introduce background noise. To
this end, we compared the RNA expression levels of the 10 TACT markers in CRC cell
lines with their expression in immune cells using data from The Human Protein Atlas [9].
Figure 1 shows a comparison of the RNA expression levels between CRC cell lines and
immune cells, identifying the markers more likely to be specific to CRC and less likely to
cause background interference.

2.3. Comparative Analysis of TACT Marker Expression in Patients with CRC and Healthy Control
Blood Samples

Following initial confirmation that not all 10 TACT markers were specifically associ-
ated with CRC, we next aimed to determine whether these markers could be detected at
statistically significant levels in the blood of patients with CRC compared with healthy
controls. Two hundred and six participants were recruited for this experiment: 107 patients
with stage I–IV CRC and 99 healthy controls. Table 1 summarizes the demographic and
clinical characteristics of participants in both the training and test cohorts. Data were cate-
gorized by age (under 50 and 50+ years), sex (male and female), and CRC stage, following
TNM classification (Stages I–IV). This categorization provides an overview of the patient
and control group distributions, serving as a baseline for evaluating the representative-
ness of the study cohort and the generalizability of the model results across age, sex, and
disease stages.

To recruit a sufficient number of patients with CRC, the study utilized two cohorts
from a gastroenterology department and a health screening center. Details of the study
design are described in Table 1. In the gastroenterology department, blood samples were
obtained from patients who had provided informed consent and were scheduled to undergo
a colonoscopy. Colonoscopy was performed after blood collection, and patients with
cancer confirmed by biopsy were included in the study. At the health screening center,
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informed consent was obtained from individuals undergoing routine health checkups.
Blood samples were collected prior to colonoscopy procedures being performed. Patients
without significant endoscopic findings were classified as healthy controls.

Table 1. Clinicopathologic characteristics of patients with colorectal cancer (CRC) and healthy controls.

Cohort

Training Cohort, n (%) Test Cohort, n (%)

Healthy Control
(n = 77) CRC (n = 72) Healthy Control

(n = 22) CRC (n = 35)

Age
<50 41 (53.0) 8 (11.0) 13 (59.0) 4 (11.5)
≥50 36 (47.0) 64 (89.0) 9 (41.0) 31 (88.5)

Sex

Male 38 (50.0) 41 (57.0) 6 (27.0) 20 (57.0)
Female 39 (50.0) 31 (43.0) 16 (73.0) 15 (43.0)

CRC Stage

I 28 (39.0) 16 (46.0)
II 14 (19.5) 4 (11.0)
III 16 (22.0) 7 (20.0)
IV 14 (19.5) 8 (23.0)

The results of TACT RNA expression analysis are shown in Figure 2.
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Figure 2. Expression levels of TACT markers in healthy controls and patients with colorectal cancer
(CRC). The scatter plots compare the expression levels of 10 TACT markers—EPCAM, KRT19, ERBB2,
TERT, MKI67, MCAM, VIM, FOXA2, SNAI2, and NPTN—between healthy controls (HCs) and
patients with CRC. Each data point represents an individual sample, with statistical significance
evaluated using t-tests. Significance levels are visually indicated, with p-values marked as follows:
p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***). The distinct expression profiles of TACT markers in CRC
are highlighted, supporting their potential as diagnostic indicators. ns: no significance.

Our findings indicated distinct expression patterns for TACT markers in CRC com-
pared with those in BC, with specific markers (e.g., KRT19, FOXA2, and SNAIL2) showing
significant upregulation in CRC, whereas others (e.g., EPCAM, ERBB2, and MKI67) were
downregulated. This suggests cancer-type specificity in the RNA marker profiles, under-
scoring the need for tailored panels. Statistically significant differences were confirmed
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using p-values and 95% confidence intervals, which enhanced the reliability of these find-
ings for clinical applications.

Several markers exhibited decreased expression in the blood of patients with CRC
compared with that in HCs. Markers such as EPCAM, ERBB2, MKI67, MCAM, and NPTN
showed statistically significant reductions in their expression levels. This was particularly
unexpected, given their established association with cancer proliferation and EMT processes
in other cancer types, such as BC. The expression levels of the 10 TACTs in CRC and BC
samples are summarized in Table 2. TACT markers were categorized based on their
biological roles as epithelial (EPCAM and KRT19), proliferation (ERBB2, TERT, and MKI67),
or EMT (MCAM, VIM, FOXA2, SNAI2, and NPTN) markers. For comparison, findings
from the previous study on BC were included [5]. The marker expression profiles in CRC
vs. BC suggest cancer-type specificity with distinct expression patterns, emphasizing the
need for tailored diagnostic markers for each cancer type.

Table 2. Comparative analysis of TACT marker expression in breast cancer (BC) and colorectal cancer
(CRC).

Group TACT

BC CRC

Difference
Between Means

(BC–HC)
p Value

Difference
Between Means

(CRC–HC)
p Value

Epithelial markers EPCAM 7.1 *** −0.3 ***
KRT19 12.3 *** 0.7 *

Proliferation
markers

ERBB2 0.8 ** −0.3 ***
TERT 1.5 ** 0.1 ns
MKI67 1.5 *** −0.4 ***

Epithelial-to-
mesenchymal

markers

MCAM 5.3 * −0.3 ***
VIM 0.2 * 0.02 ns

FOXA2 3.9 ** 3.7 ***
SNAI2 3.4 ** 2.6 ***
NPTN 0.2 * −0.1 **

Statistically significant differences in expression are indicated by asterisks: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***),
and ns for non-significant.

Notably, VIM and TERT, which have shown diagnostic potential in BC studies, did
not exhibit statistically significant differences in expression between the CRC and healthy
control groups, indicating a divergence in the behavior of these markers between different
cancer types.

These results highlighted the variability of TACT marker expression in different can-
cers. Although these markers hold diagnostic promise for BC, their expression profiles
in CRC suggest that a tailored approach is necessary for CRC diagnostics. The varying
expression levels across the 10 TACT markers indicate that CRC-specific panels must be
developed to achieve high sensitivity and specificity for early CRC detection. Conse-
quently, we selected eight statistically significant TACTs—EPCAM, KRT19, ERBB2, MKI67,
MCAM, FOXA2, SNAI2, and NPTN—which we designated as colorectal TACTs (C-TACTs).
Subsequently, these markers were used to develop an AI model to detect CRC.

2.4. Development of AI Models Using C-TACTs

The dataset of 206 blood samples (107 patients with CRC and 99 HCs) collected
from the participants was randomly divided into training and test sets in a 7:3 ratio. The
training dataset was used for model development, and the test dataset was used to validate
the developed model and demonstrate its final performance (Figure 3). By inputting
data from the training dataset, the model was trained to differentiate the CRC group
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from the control group, and model performance was confirmed using the area under the
receiver operating characteristic curve (AUROC) and area under the precision–recall curve
(AUPRC) utilizing independent data from the test dataset. The evaluated machine learning
algorithms included GLM, DNN, RF, GBM, and AutoML.
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Figure 3. AI model development and validation process. The flowchart depicts the process of dataset
division and model validation. The full dataset was split into training (70%) and test (30%) sets to
build and validate the machine learning models, respectively. Cross-validation was performed within
the training set to enhance model robustness. The rigorous approach used to ensure the reliability of
the AI model’s performance is illustrated, emphasizing the methodological rigor in validating the
diagnostic utility of the tumor-associated circulating transcript marker panel. HC, healthy controls;
CRC, colorectal cancer.

Using the test set (35 patients with CRC and 22 HCs), the AUROC and AUPRC values
for the different models were as follows: 0.912 and 0.929 for the DNN model; 0.841 and
0.847 for the AutoML model; 0.879 and 0.928 for the RF model; 0.891 and 0.930 for the GBM
model; and 0.844 and 0.844 for the GLM model, respectively (Figure 4).

The performance metrics, particularly sensitivity and specificity, are summarized
in Figure 5. Compared with the other four models, the DNN model exhibited superior
accuracy (87.7%), sensitivity (85.7%), and specificity (90.9%).

Subsequently, we evaluated the sensitivity of the DNN models for each CRC stage.
Our analysis revealed that the DNN model exhibited superior sensitivity in detecting stage
I CRC cases (Figure 6). This finding suggests that the model is particularly effective in
identifying early-stage CRC, potentially enhancing early detection and improving patient
outcomes. Early detection at stage I is critical because it is associated with a significantly
higher survival rate and more effective treatment options. Therefore, the high sensitivity
of the DNN model in stage I cases underscores its potential utility as a screening tool,
particularly for at-risk patients who may benefit from early interventions.

The sensitivity and specificity of the C-TACT DNN model were evaluated across
various age and sex groups in the test cohort. The model exhibited elevated sensitivity
across all groups (Figure 7). These results suggest that the C-TACT DNN model maintains
high accuracy across diverse demographic groups, making it a promising tool for early,
non-invasive CRC detection.
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Figure 4. Receiver operating characteristic (ROC) and precision–recall (PR) curves for machine
learning model performance. The composite plot displays ROC and PR curves for five machine
learning models—deep neural network (DNN), automated machine learning algorithm detecting
method (AutoML), random forest (RF), gradient boosting machine (GBM), and generalized linear
model (GLM). The curves offer a visual assessment of each model’s diagnostic performance, with
the area under each curve (AUC) quantitatively reflecting the model’s ability to distinguish between
colorectal cancer and control samples. The ROC curves focus on sensitivity vs. 1-specificity, while
the PR curves capture precision vs. recall, providing insights into the models’ effectiveness in a
diagnostic context.
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Figure 5. Comparison of model accuracy, sensitivity, and specificity. The bar chart illustrates the
accuracy, sensitivity, and specificity of the five machine learning models—deep neural network
(DNN), automated machine learning algorithm detecting method (AutoML), random forest (RF),
gradient boosting machine (GBM), and generalized linear model (GLM)—in diagnosing colorectal
cancer. Each model’s performance is color coded across these metrics, highlighting the DNN model’s
superior accuracy (87.7%), sensitivity (85.7%), and specificity (90.9%). This chart underscores the
DNN model’s robustness, establishing it as the most promising approach among the evaluated
colorectal cancer (CRC) detection models.
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Figure 6. Sensitivity of AI models across colorectal cancer (CRC) stages. The bar chart shows the
sensitivity of the AI models in detecting CRC across stages I–IV, based on C-TACT marker data. This
model’s high sensitivity in early-stage CRC cases demonstrates its potential utility for early detection,
where timely intervention can greatly impact patient outcomes. The figure illustrates the diagnostic
reach of the deep neural network (DNN) model across cancer stages, emphasizing its applicability in
detecting CRC from the earliest stages.
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Figure 7. Sensitivity and specificity of C-TACT DNN model across age and gender. The figure presents
the deep neural network (DNN) model’s diagnostic performance across different demographic
subgroups in the test cohort. Sensitivity and specificity are shown for participants under 50 and
those 50 and older, as well as across male and female groups. These results indicate that the model
maintains high accuracy across diverse demographic groups, reinforcing its suitability for broad
application in colorectal cancer screening.

2.5. Analysis of Different Cancer Types Using a C-TACT DNN Model

To further assess the robustness of the prediction model, we applied the DNN-based
model to BC and ovarian (OC) and cervical (CC) cancers, with eight samples for each
cancer type. Owing to the absence of complete information for all 10 markers, we utilized
only nine markers, excluding MCAM. To mitigate this constraint, we supplemented the
absence of MCAM data by utilizing the expression profile of MKI67, which has a similar
expression pattern to MCAM in CRC. The prediction outcomes based on the DNN model
are presented in Figure 8.

The model demonstrated variable positive rates across these different cancer types,
indicating its potential adaptability, but also highlighted some limitations in generalizability
across distinct malignancies. However, the differences observed in specificity may reflect
variations in the expression patterns of TACTs that are unique to each cancer type. These
results imply that although the model can be applied broadly to different cancers, additional
optimization and marker adjustments may be necessary to enhance the diagnostic precision
for each specific cancer type. Adaptation of the DNN model using selected markers tailored
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to individual cancers could further improve performance, allowing for more accurate and
reliable non-invasive screening across multiple cancer types.

Int. J. Mol. Sci. 2025, 26, 1477 9 of 16 
 

 

cancer type. Owing to the absence of complete information for all 10 markers, we utilized 

only nine markers, excluding MCAM. To mitigate this constraint, we supplemented the 

absence of MCAM data by utilizing the expression profile of MKI67, which has a similar 

expression paNern to MCAM in CRC. The prediction outcomes based on the DNN model 

are presented in Figure 8. 

 

Figure 8. Cross-cancer prediction using the C-TACT DNN model. The figure illustrates the positive 

prediction rates when applying the deep neural network (DNN) model to samples from different 

cancer types (breast, ovarian, and cervical), each represented by eight samples. While the model 

shows variable positive rates, this analysis highlights the adaptability of the TACT markers across 

malignancies while also identifying limitations in cross-cancer specificity. This analysis suggests 

potential avenues for expanding the model’s diagnostic scope, with marker adjustments to enhance 

cancer-type specificity. 

The model demonstrated variable positive rates across these different cancer types, 

indicating its potential adaptability, but also highlighted some limitations in generaliza-

bility across distinct malignancies. However, the differences observed in specificity may 

reflect variations in the expression paNerns of TACTs that are unique to each cancer type. 

These results imply that although the model can be applied broadly to different cancers, 

additional optimization and marker adjustments may be necessary to enhance the diag-

nostic precision for each specific cancer type. Adaptation of the DNN model using selected 

markers tailored to individual cancers could further improve performance, allowing for 

more accurate and reliable non-invasive screening across multiple cancer types. 

Overall, these results suggest that the substitution strategy, although beneficial in 

some cases, may not be uniformly applicable to all cancer types. The effectiveness of each 

marker varies depending on cancer type, emphasizing the need for context-specific 

marker selection. 

3. Discussion 

This study highlights the promising utility of RNA-based liquid biopsies, specifically 

through a multi-marker panel of TACTs combined with machine learning, as a non-inva-

sive diagnostic tool for CRC. Unlike traditional CRC diagnostic methods, such as colon-

oscopy or stool-based DNA tests, which often face limitations in early detection and pa-

tient compliance, RNA biomarkers offer unique advantages by capturing real-time gene 

expression. This dynamic approach provides insights into the ongoing biological pro-

cesses, including tumor proliferation, immune evasion, and EMT, which are essential for 

understanding cancer progression [5,13]. In particular, the capacity to detect these 

Figure 8. Cross-cancer prediction using the C-TACT DNN model. The figure illustrates the positive
prediction rates when applying the deep neural network (DNN) model to samples from different
cancer types (breast, ovarian, and cervical), each represented by eight samples. While the model
shows variable positive rates, this analysis highlights the adaptability of the TACT markers across
malignancies while also identifying limitations in cross-cancer specificity. This analysis suggests
potential avenues for expanding the model’s diagnostic scope, with marker adjustments to enhance
cancer-type specificity.

Overall, these results suggest that the substitution strategy, although beneficial in
some cases, may not be uniformly applicable to all cancer types. The effectiveness of
each marker varies depending on cancer type, emphasizing the need for context-specific
marker selection.

3. Discussion
This study highlights the promising utility of RNA-based liquid biopsies, specifically

through a multi-marker panel of TACTs combined with machine learning, as a non-invasive
diagnostic tool for CRC. Unlike traditional CRC diagnostic methods, such as colonoscopy
or stool-based DNA tests, which often face limitations in early detection and patient com-
pliance, RNA biomarkers offer unique advantages by capturing real-time gene expression.
This dynamic approach provides insights into the ongoing biological processes, including
tumor proliferation, immune evasion, and EMT, which are essential for understanding
cancer progression [5,13]. In particular, the capacity to detect these processes in real time
enhances early detection capabilities, which are critical for improving CRC outcomes.

A notable finding in this study was the cancer-type specificity observed among TACT
markers, such as EPCAM and ERBB2, which displayed differential expression patterns
between CRC and BC. These markers were significantly upregulated in BC, reflecting
their roles in cell adhesion and proliferation, which are commonly associated with BC
tumorigenesis [14]. However, their downregulation in CRC suggests an interaction with
the unique CRC microenvironment, potentially influenced by factors such as leukocytosis,
a common inflammatory condition in patients with CRC that may dilute tumor-derived
diagnostic panels, as biomarkers can be differentially regulated depending on the cellular
context and microenvironmental conditions of the tumor. This differentiation may be
crucial for developing accurate diagnostic tools adaptable to various cancers, highlight-
ing the value of further research to clarify the molecular mechanisms underlying these
observed differences.
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Our study also demonstrated the strengths of RNA-based diagnostics compared with
cfDNA-based methods. Although cfDNA provides valuable insights into genetic mutations,
it predominantly captures a static genomic profile that may overlook real-time changes
in gene expression, which are critical for monitoring active tumor processes [15]. RNA
markers, particularly those derived from circulating tumor cells and exosomes, allow for
the dynamic monitoring of tumor biology, capturing shifts in gene expression that reflect
the tumor’s immediate response to biological cues and treatments [16]. The stability of
exosomal RNA, coupled with its ability to reflect the tumor microenvironment, makes
RNA-based assays particularly advantageous for early cancer detection, where the timely
identification of molecular changes is crucial [17].

Integrating multiple RNA markers instead of relying on a single biomarker further en-
hances diagnostic robustness. Previous BC studies have demonstrated that single biomark-
ers often lack sufficient sensitivity because they do not fully capture the biological com-
plexity inherent in tumor development and metastasis [5]. By employing a multi-marker
approach, this study addresses these limitations, with the DNN model achieving high sensi-
tivity (85.7%) and specificity (90.9%) for CRC detection. The DNN model demonstrated the
best diagnostic performance in our study, making it the optimal model for CRC detection.
DNNs are machine learning algorithms that learn hierarchical patterns through multiple
layers of interconnected neurons, allowing them to model complex nonlinear relationships
in high-dimensional data [10,11]. Their key advantages include the ability to automatically
extract meaningful features from raw data, scalability in handling large datasets, and the
use of techniques such as dropout and batch normalization to prevent overfitting. DNNs
have been widely applied in CRC research, particularly for analyzing histopathological im-
ages and genomic data, achieving high accuracy in detecting malignancies, and identifying
biomarkers associated with prognosis and personalized treatment [18,19]. They also play a
significant role in endoscopic image interpretation, aiding in diagnosing polyps and CRC
lesions early. In our study, the DNN model outperformed the other models, demonstrating
its ability to uncover complex patterns and deliver reliable predictions for blood-based
CRC diagnostics.

The performance of the established DNN model rivals established methods such as
stool-based DNA tests (e.g., Cologuard; Exact Sciences Corporation, Madison, WI, USA)
and emphasizes the clinical potential of our approach [20]. Additionally, the ability of
the model to maintain high accuracy across different age groups supports its potential
utility in both routine screening and early detection efforts for at-risk populations that
might otherwise avoid invasive procedures. We demonstrated the high sensitivity of
the AI models across CRC stages I–IV (Figure 6), emphasizing their potential for early
detection. Additionally, to evaluate the cross-cancer applicability of the C-TACT markers,
we applied the DNN model to breast (BC), ovarian (OC), and cervical (CC) cancer samples
(Figure 8). The model achieved positive prediction rates of 88% (BC), 75% (CC), and 0%
(OC), highlighting the adaptability of the TACT markers while identifying limitations in
cross-cancer specificity. However, the specificity of TACT markers across CRC subtypes
and their potential cross-reactivity with non-malignant gastrointestinal diseases was not
investigated. Future studies will incorporate subtype-specific analyses and additional
cohorts with non-malignant diseases to strengthen the diagnostic utility of TACT markers.

Many TACT markers used in the present study, such as EPCAM and MKI67, have been
implicated in fundamental biological processes relevant to various cancer types, including
cell proliferation and EMT. Therefore, this study suggests that the RNA panel may be
applicable beyond CRC, potentially serving as a foundation for multicancer diagnostic
platforms. Despite some markers, such as EPCAM, being broad-spectrum, their unique
expression patterns, combined with other TACT markers, formed a CRC-specific diagnos-



Int. J. Mol. Sci. 2025, 26, 1477 11 of 15

tic panel. While the same 10 markers were previously applied in BC research, distinct
expression profiles enabled the construction of cancer-specific panels. For CRC, 8 markers
were selected for their significant differential expression, optimizing the diagnostic panel’s
specificity and sensitivity. However, the adaptability of this approach to other cancers, such
as cervical or ovarian cancer, warrants further investigation, particularly to understand how
these markers might function differently depending on cancer type and stage. Validation
studies on diverse cancer types could broaden the applicability of this diagnostic model
and underscore its utility as a comprehensive screening tool for multiple cancers.

Despite these promising findings, certain limitations of this study must be acknowl-
edged. The relatively small sample size in this study could have affected the robustness of
our results and limited the generalizability of our findings to a broader CRC population.
We acknowledge that the data used in this study were collected from specific healthcare in-
stitutions, which may limit the generalizability of our findings. Future studies will include
participants from multiple regions and diverse populations to improve data representative-
ness and reduce selection bias. Larger and more diverse cohorts are necessary to confirm
these results and ensure diagnostic accuracy across different demographic and clinical
subgroups, including patients with varying cancer stages and comorbidities. Additionally,
our TACT marker selection was based on previous studies on BC, which may not fully
capture CRC-specific biological mechanisms. Future studies should explore CRC-specific
markers, investigate the mechanistic roles of each marker in CRC progression, and enhance
the scientific rigor of marker selection.

Moreover, while we observed that markers such as EPCAM and ERBB2 were downreg-
ulated in CRC, further research is required to clarify the impact of inflammatory responses,
such as leukocytosis, on the detectability of circulating RNA in patients with CRC. This line
of inquiry could provide insight into the reliability of certain RNA markers under specific
clinical conditions, potentially leading to improved diagnostic accuracy for CRC and other
inflammation-associated cancers.

This study primarily focused on evaluating the diagnostic potential of 10 tumor-
associated circulating transcript (TACT) markers for CRC detection using a liquid biopsy
approach. While these markers were selected based on their biological relevance as circulat-
ing RNA biomarkers, we acknowledge that a more comprehensive approach incorporating
genomic data, including cancer-driving mutations, gene rearrangements, and pathogenic
isoform variants, would provide deeper insights into CRC biology. Future research will
explore the integration of transcriptomic and genomic data, enabling a more holistic di-
agnostic framework. Additionally, expanding the marker panel to include established
CRC driver genes and utilizing larger, multi-institutional datasets will further enhance the
robustness and applicability of the diagnostic model.

In summary, this study established the feasibility of multi-marker RNA-based liquid
biopsy, powered by machine learning, as a potential non-invasive diagnostic tool for
CRC. Future studies expanding the model’s validation to larger and more diverse patient
populations, refining marker selection, and testing its applicability across multiple cancer
types could pave the way for a robust and versatile RNA-based diagnostic platform with
substantial implications for personalized cancer screening and management.

4. Materials and Methods
4.1. Patient Cohorts

Whole blood samples were collected from 107 patients with CRC and 99 healthy
controls (HC) recruited from the Department of Gastroenterology at Severance Hospital,
Gangnam Severance Hospital, and Gangbuk Samsung Hospital, Seoul, Republic of Korea
(IRB #4-2017-0148, #3-2017-0024). Healthy controls were recruited through routine health
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screening at Wonju Severance Christian Hospital (IRB #CR319115). The inclusion criteria for
patients included histological confirmation of CRC based on colonoscopy and histological
results with dysplasia grade level, villous component protein, and size and number of
polyps, according to the European Society of Gastrointestinal Endoscopy (ESGE). The
exclusion criteria included prior CRC resection or evidence of hereditary colorectal cancer
syndrome. The staging criteria for patients with CRC from stages I to IV followed the
guidelines set forth by the ESGE. Among the 107 blood samples collected from patients
with CRC, 44 were classified as stage I, 18 as stage II, 23 as stage III, and 22 as stage IV. This
classification was based on the widely accepted TNM staging system, ensuring consistency
with the ESGE standards for accurate patient stratification and treatment planning. The
HC group included individuals with no significant findings after colonoscopy and no other
cancers. Informed consent was obtained from all the participants. The clinicopathologic
characteristics of the participants are shown in Table 3.

Table 3. Clinicopathologic characteristics of study participants.

Cohort Healthy Control, n (%) Colorectal Cancer, n (%)
Age

<50 54 (82.0) 12 (18.0)
≥50 45 (32.0) 95 (68.0)

Sex
Male 44 (42.0) 61 (58.0)

Female 55 (54.5) 46 (45.5)
CRC Stage

I 44 (41.0)
II 18 (16.5)
III 23 (21.5)
IV 22 (21.0)

CRC, colorectal cancer.

4.2. Blood Collection

Blood samples were collected by venipuncture using a 3 mL Tempus™ Blood RNA
Tube (Thermo Fisher Scientific, Waltham, MA, USA) as secondary or subsequent order
blood collection to avert the entry of epithelial cells into the blood. Following blood
collection, the tube was vortexed for 10 s to ensure complete mixing of the blood with 6 mL
stabilizing reagent contained in the tube. Subsequently, the Tempus Blood RNA Tube was
maintained in an upright position at room temperature (18 to 25 ◦C) for no longer than
5 days before processing or moving to a refrigerator (2 ◦C to 8 ◦C) or freezer (−20 ◦C).

4.3. RNA Isolation and cDNA Synthesis

RNA was extracted using a Tempus Spin RNA Isolation Kit (Thermo Fisher Scientific)
following the manufacturer’s protocol. The quality of the isolated RNA was assessed using
an RNA 6000 Nano LabChip with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA) and a NanoDrop spectrophotometer (Thermo Fisher Scientific).

Complementary DNA (cDNA) was synthesized using a High-Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific). RNA calculated based on the measured concen-
tration was diluted with nuclease-free water to achieve a concentration of 2 µg/14.2 µL. A
mixture was prepared using 10× RT buffer, 25× deoxynucleotide triphosphate (dNTP) mix,
10× RT random primers, and MultiScribe™ Reverse Transcriptase (Invitrogen, Carlsbad,
CA, USA) at a ratio of 10:4:10:5. All reagents were contained in a High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). The total volume of
the reaction mixture was modified according to the number of samples, and 5.8 µL of the
mixture was distributed into each sample. Each sample was mixed thoroughly and briefly
centrifuged to ensure even distribution.
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Subsequently, cDNA was synthesized using random hexamers and dNTPs in a thermal
cycler (Bio-Rad Laboratories, Hercules, CA, USA). The reaction was initiated at 25 ◦C for
10 min to allow priming and enzyme activation (Step 1), followed by incubation at 37 ◦C
for 50 min to facilitate reverse transcription (Step 2). Subsequently, the reaction mixture
was heated to 85 ◦C for 5 min to inactivate the reverse transcriptase enzyme (Step 3). All
steps were conducted in accordance with the manufacturer’s instructions.

4.4. Quantitative PCR (qPCR)

The amplification of each gene was quantitatively measured using TaqMan® Array
CRC (TAC) Cards on a QuantStudio™ 7 pro-Real-Time PCR System (Thermo Fisher Scien-
tific). qPCR was performed using 50 µL TaqMan® Advanced Master Mix (Thermo Fisher
Scientific) and 50 µL template cDNA to bring the final volume to 100 µL. Each reaction
was conducted in duplicate using the same TAC. The TaqMan Fast Advanced Master
Mix contained AmpliTaq Fast DNA Polymerase, uracil-N-glycosylase (UNG), dNTPs with
dUTP, and ROX dye (passive reference). Gene expression levels were determined by
normalization to the internal housekeeping gene GAPDH.

The relative gene expression was assessed using the comparative Ct (∆∆Ct) method [21].
The amount of target, normalized to an internal housekeeping gene and relative to a cali-
brator, was given by 2−∆∆Ct, which was then normalized according to Equation (1):

∆∆Ct = [∆Ct(test) = Ct(target test) − Ct(reference test)] − [∆Ct(calibrator)
= Ct(target calibrator) − Ct(reference calibrator)]

(1)

4.5. Machine Learning Models

We developed and evaluated five machine learning models—GLM, RF, GBM, DNN,
and AutoML—using TACT marker data to identify the optimal approach for CRC detection.
To enhance model robustness and minimize overfitting, several strategies were employed.
First, 5-fold cross-validation was conducted during training to evaluate performance
across multiple data splits, ensuring generalizability within the dataset. Second, the
dataset of 206 blood samples (107 CRC patients and 99 healthy controls) was randomly
divided into training (70%) and independent test sets (30%). The test set, which was
not involved in training or cross-validation, was reserved for final validation to assess
generalizability to unseen data. The model parameters were tuned to optimize sensitivity
and specificity, ensuring a balanced diagnostic performance. To assess the predictive
accuracy of each model, ROC and PR curves were analyzed alongside the AUC metrics for
a comprehensive evaluation.

Each model was processed in two sets: training and testing. For the training and
validation of the model using artificial intelligence analysis, 70% of the total subjects,
including 72 patients with CRC and 77 healthy volunteers, were used (the training set), and
the model was created. The remaining 30% of the total population, including 35 patients
with CRC and 22 healthy volunteers, were used to test the model.

4.6. Statistical Analysis

Two-group comparisons were performed using Student’s t-test in GraphPad Prism
software (version 9.0; GraphPad Software, San Diego, CA, USA). Statistical significance
was set at p < 0.05. ROC and PR curves were generated using the gglot2 package in R
software (version 4.4.2, R Foundation for Statistical Computing, Vienna, Austria).

5. Conclusions
This study demonstrated the potential of a multi-marker RNA-based liquid biopsy

approach combined with machine learning as a promising non-invasive diagnostic tool
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for CRC. By leveraging TACTs, our DNN model achieved high sensitivity and specificity,
suggesting that this approach can significantly enhance early CRC detection and improve
patient outcomes by addressing the compliance limitations associated with invasive meth-
ods. Furthermore, the ability of RNA-based diagnostics to capture real-time gene expression
underscores their advantage over static cfDNA mutation analysis, providing a dynamic
assessment of tumor biology.

However, to establish broader clinical utility, future studies with larger and more
diverse cohorts are essential to confirm the generalizability of this approach. Additionally,
refining marker selection to target CRC-specific pathways and validating this RNA panel
across other cancer types may pave the way for a multicancer diagnostic platform. By
expanding these investigations, RNA-based diagnostics hold promise as versatile tools for
personalized cancer screening and monitoring, potentially transforming early detection
strategies for various malignancies.
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