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Continuous multimodal data supply chain
and expandable clinical decision support
for oncology

Check for updates

Jee Suk Chang 1,7, Hyunwook Kim2,7, Eun Sil Baek3, Jeong Eun Choi4,6, Joon Seok Lim5,
Jin Sung Kim1 & Sang Joon Shin2

The study introduces a clinical decision support system (CDSS) developed at a single academic
cancer center, integrating real-time clinical, genomic, and imaging data for over 170,000 patients
across 11 cancer types. We have developed the Yonsei Cancer Data Library (YCDL) data integration
framework to continuously collect and update multimodal datasets comprising over 800 features per
case. Quality control measures, using 143 logical comparisons, addressed missing data and outliers,
achieving median accuracies of 92.6% for surgical and 98.7% for molecular pathology. An Extract-
Transform-Load (ETL) process with natural language processing transformed unstructured data,
enabling survival analyses stratified by tumor stage, which revealed significant stage-dependent
differences. The CDSS dashboard visualizes patient trajectories and key milestones. User feedback
from oncology professionals showed strong acceptance, with satisfaction scores exceeding 4 out of
5. This framework demonstrates the potential of multimodal data integration to enhance clinical
decision-making andpatient outcomes,with future research needed to validate its generalizability and
scalability.

Oncology data is multidimensional and diverse, encompassing a vast array
of information such as patient characteristics, stage, tumor, and imaging
data1. The advent of electronic medical records (EMR) and emerging data
sources has caused a transformative surge in health information2. This data
deluge often exceeds human cognitive limits for decision-making3 and has
led oncology professionals to spend more time navigating EMR than
engaging with patients to seek fragmented health data from disparate
sources, which exacerbates burnout4.

Fortunately, rapid advancements in computational techniques, notably
machine learning and artificial intelligence (AI), herald new possibilities for
harnessingextensive and intricatemedical data for individualized, data-driven
care5. These technologies have demonstrated potential in refining imaging6

and pathology diagnostics7, prognosticating clinical outcomes, optimizing
radiation treatment planning8, and accelerating drug development9,10. AI has
also significantly impacted foundational research in oncology11.

However, challenges related to validation and generalizability12mean
that the current methodologies for data management and model

development fall short of the maturity required for broad-scale AI
adoption. Transitioning from the present ad-hoc data aggregation and
curation approach to a dynamic “metadata supply chain” is essential for
providing contextualized, robust data in real-time13. By capturing pivotal
data in real-time, thismetadata supply chain can lay the groundwork for a
clinical decision support system that vividly maps patient journeys,
potentially transforming clinical workloads. Recent advancements have
also led to the development of other multimodal frameworks, integrating
diverse data types such as clinical, genomic, and imaging data to enhance
precision in patient care, exemplified by the MEDomics framework
developed by Morin et al.14.

In this study, our objective was to present our collaborative endeavor
for establishing a comprehensive data supply chain in oncology. This
system seamlessly integrates clinical, genomic, and imaging data, repre-
senting a persistent, flexible, and expandable model. The infrastructure
holds the potential to expedite the development of clinical decision sup-
port systems and AI applications for risk stratification, diagnosis, and
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treatment in oncology, paving the way for individualized patient-
centered care.

Results
Data collection and infrastructure are illustrated in Fig. 1, with detailed
procedures described in the Methods section. Through this process, at the
time of analysis, the DB contained records of the feature sets of 171,128
individuals diagnosed with 11 different cancers at a single academic cancer
centerbetween January 2006andMarch2022 (Table 1). For each individual,
817 essential features in the common columns and a median of 61 features
(range: 38–109) in the cancer-type-specific columnswere updated daily and
continuously. To facilitate the extraction of structured information from
unstructured medical text documents, Natural Language Processing (NLP)
techniques were applied during data processing.

During the quality control (QC) process, we established a compre-
hensive set of 143 human-driven logical comparisons, including 70 focused
on identifying missing data, 41 ensuring temporal validity (e.g., the com-
pletion date of radiotherapy should coincide with or follow its initiation
date), 15 pinpointing outlier data (suchas age atmenarche between8 and20
years), 13 selecting the relevant values among multiple time points, and 4
dedicated to spotting duplicated or inconsistent data. The QC logic out-
comes showed consistent results across 11 different cancer types, com-
prising a total of 1,523 datasets. We initially set the estimated daily QC case
count to 10%, which translated to approximately 81 cases per day.

We generated survival graphs for each of the 11 distinct cancers in our
dataset, segmented by tumor stages (Fig. 2). As expected, except for prostate

cancer, there is a significant variation in survival rates depending on the
stage of cancer; generally, higher stages are associated with lower survi-
val rates.

The efficacy of our data framework in rapidly generating and evalu-
ating clinical hypotheses was demonstrated in a study, focusing on rectal
cancer, published in 202215. Following the initiation of the study design in
December 2020 and subsequent approval from the institutional review
board, researchers requested baseline data on patients, tumors, and treat-
ments, as well as peripheral blood neutrophil and lymphocyte counts,
spanning the period from the initial diagnosis to the respective dates of
primary rectal surgery for study participants. Data abstraction for 1386
individuals was efficiently executed using our framework, encompassing a
total of 14 distinct clinical features. All features were validated through
meticulous chart reviews by researchers, with head-to-head comparisons
ensuring the accuracy and reliability of the data prior to its utilization in the
study. User feedback further supported its reliability and effectiveness. This
proficiency enabled researchers to commence a pilot analysis in January
2021, merely a month post the initial data acquisition.

The results of evaluating the accuracy of the NLP models used in our
ETL process are as follows. For the first analysis, the median number of
features for surgical pathology and molecular pathology was 26 (range:
20–33) and13(range: 9–16), respectively.Themedianaccuracyandmissing
rate for surgical pathologywere 92.6% (range: 86.5–98.8%) and 4.9% (range:
0.5–10.7%), respectively. Formolecular pathology, themedian accuracyand
missing rate were 98.7% (range: 92–100%) and 0.6% (range: 0–8%),
respectively (Supplementary Table 1). For the second analysis, the NLP
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Fig. 1 | Overview of the YCDL framework. The original data from the EMR/OCS,
which contains clinical data for all patients visiting the hospital, serves as the source
data for the cancer-specific YCDL database. After the original data is transferred to
the DW server, data marts are created from the DW tables in the DSC database,
grouped by related topics. Separate databases are established for each cancer type,
named “DSC_cancertype,” to prevent excessive time spent on complex SQL query
execution. The DSC database condenses data from 18 tables and 433 columns by
integrating relevant tables from the DW database and joining with code master or
terminology tables to include code-code name columns for immediate

comprehension of codes. Similarly, the YCDL_DB maintains separate physical
databases for each cancer type, where data is loaded. A patient-centric data model
was developed, underpinned by patient identification numbers dispensed by the
hospital information system, serving as a linchpin for linking anonymized datasets.
All data processing, transfer, and storage were performed within the network
infrastructure of the hospital. The YCDL site allows the execution of individual Data
Manipulation Language (DML) to load YCDL data. The transfer of data from the
original source to the DW/DSC DB is automated, with ETL processes running daily
at 10 AM, transferring cancer-specific target data.
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classification model demonstrated accuracy across 1000 individual CT
reports, withmultilabel selection applied as follows: CompleteResponse/No
Evidence of Disease (CR/NED), Partial Response (PR), Stable Disease (SD),
ProgressiveDisease (PD), and Indeterminate (232) achieving anAUROCof
0.956 and an F1 score of 0.823. The model showed 72.3% (95% CI,
59.5–85.1) accuracy in predicting the day of disease progression within
a ± 30-day window and 55.3% (95% CI, 41.1–69.5) accuracy in predicting
the best response category and its timing within ±45 days. Notably, the
model was more accurate in predicting CR/NED at 72% compared to SD
and PR, which had accuracies of 27.3% and 15.4%, respectively.

We successfully developed a clinical decision support systemwith four
layouts. In the upper-left layout, shown in Fig. 2, three selected image series
are displayed alongside their corresponding three-dimensional tumor
visualizations, using DICOM files of individually, manually contoured
lesions (Supplementary Movie 1, Fig. 3a). In the middle-upper layout, the
output of the longitudinal tumor tracking is in the form of a graph (Fig. 3b).
The section with the hope of predicting individual patient outcomes has
been reserved for future integration of any potential model (Fig. 3c). The
lower layout presents a comprehensive overview of a patient’s healthcare
journey, allowing readers to intuitively understand the chronological
sequence of events and progression of the patient’s treatment (Fig. 3d,
Supplementary Movie 2). This offers holistic and interactive patient sum-
maries on a graphical timeline anchored by real-time data captured within
our framework. Users can easily assess patient data in a temporal context
with a single click, and the depth of information can be fine-tuned using
zoom features and pop-up boxes.

To assess the satisfaction of using CDSS with EMR, we surveyed 33
healthcare oncology providers, including professors, residents, and physi-
cian assistants, for five randomly selected cases (breast, colorectal, lung,
gastric, and liver cancer). The median EMR usage experience among the
participants was 9 years (range: 1–19 years). The satisfaction scores of
patient chart assessment using EMR along with CDSS are detailed in
Table 2. The results showed that, in almost all areas, the scores averaged
above 4 out of 5 points, with 5 being the highest possible score.While those
with longer EMR usage experience ( ≥ 10 years) reported lower satisfaction
with the user interface, there were no significant differences in other aspects
based on the years of EMR usage experience.

Discussion
We successfully developed a cancer-specific information technology (IT)
infrastructure designed to facilitate the longitudinal collection of compre-
hensive health data, an accomplishment realized through extensive cross-
departmental collaboration. Using our IT infrastructure, we created a
database that automatically updates the data on a regular basis, each with
over 800 unique characteristics. Manually collating such an expansive array
of features is challenging. To ensure data integrity, we initially implemented
rigorous data QC methods, starting with manual logic applications and
subsequently transitioning to an automated management system. This
approach, conducted within closed-loop systems, led to a steady enhance-
ment in data precision. while we did not verify the accuracy of all features,
the simpler ETL processes demonstrated high accuracy, whereas more
complex NLP tasks such as RECIST categorization highlighted the need for
expert correction and ongoing model improvement and maintenance. For
example, the suboptimal results in SD and PR suggest the limitations of
evaluating RECIST criteria solely from textual information without incor-
porating imaging analysis. Another potential issue could be the unbalanced
dataset across individual categories, as cases in SD and PR represent the
smallest absolute numbers, which may affect predictive performance. Of
practical significance, our system highlights the potential for real-time
capture of disease state and treatment data, exemplified by a proof-of-
concept for rapid clinical hypothesis testing and offering a holistic view of a
patient’s journey with a single click. This not only alleviates the clinical
burden but also optimizes the research workflow. Survey results from
oncology healthcare providers revealed generally high user satisfaction and
strong expectations for the potential of CDSS (Table 2). Our evaluationT
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employs questionnaires designed for diverse healthcare professionals and
encompasses multiple usability metrics—efficiency, effectiveness, and the
ability to identify user errors. Nonetheless, further evaluations across dif-
ferent institutional and national settings, incorporating methods such as
user trials, interviews, and heuristic evaluations16, are essential to fully
validate the system’s utility and generalizability.

Understanding the crucial role of a reliable automatic data supply chain,
several research groups have collaboratively developed frameworks to cap-
ture and transport oncologic data14,17. Morin et al.14 introduced MEDomics,
an information technology infrastructure that integrates seamlessly with
multipleEHRDBs to ensureuniformdata collection.Their researchamassed
data fromnearly 175,000 patients with cancer at theUniversity of California,
San Francisco, between 2010 and 2019. Employing rule-based selection
techniques, they identified individuals with high-quality data, narrowing
them down to 3782 breast cancer and 2054 lung cancer cases. Lower-quality
data were more prevalent among individuals located further away from the
institution; a trend associated with increased mortality rates. Jung et al.17

showcased ROOT, an auto-updating data warehouse that consolidates

comprehensive clinical data of 67,617 individuals diagnosed with head and
neck, thoracic, and esophageal cancers at the Samsung Medical Center in
Korea between 2008 and 2020. These endeavors underscore the importance
of data governance and active participation of all stakeholders. Considering
geographic disparities and practice variations, in-house development might
be best positioned to cater to the specific needs of end users.

Building an automated data warehouse using oncology EMR data
poses inherent challenges because of the varying degrees of data com-
pleteness, inconsistencies, and conflicting or evolving records18. In this
context, a nationwide initiative was launched to create a comprehensive
cancer data library aimed at standardizing terminology and classification
within our country. Concurrently, institutional efforts aimed to gather
extensive feedback and integrate preexisting registries from diverse cancer
groups. The recent proposal of Operational Ontology for Oncology (O3)
seeks to achieve multi-institutional and multi-stakeholder consensus, low-
ering the barriers for collaborative information aggregation19. Our next task
involves identifying differences and similarities between our defined fea-
tures and the variables proposed by O3, and if possible, updating the
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Fig. 2 | Kaplan–Meier survival curves by tumor stage for 11 cancer types.
Kaplan–Meier survival curves for patients with cancer in YCDL target data, stra-
tified by tumor stage. Survival rates were compared across 11 distinct cancer types:
A breast cancer, B colorectal cancer, C lung cancer,D gastric cancer, E liver cancer,

F melanoma, G kidney cancer, H prostate cancer, I thyroid cancer, J pancreatic
cancer, and K biliary tract cancer. The curves illustrate stage-dependent survival
variations, with generally lower survival rates at higher stages, except for prostate
cancer where no significant variation was observed.

https://doi.org/10.1038/s41746-025-01508-2 Article

npj Digital Medicine |           (2025) 8:128 4

www.nature.com/npjdigitalmed


necessary parts. Tomanage the vast variability of data sources and types, we
devised algorithms that harness structured data from diverse origins and
process unstructured content using ETL procedures. ETL operations pre-
sent unique challenges, especially when dealing with components present-
ing multiple ETL-related complications. Collaboration with teammembers

well-versed in treatment workflows and medical informatics, combined
with close cooperation with the IT department, was pivotal in under-
standing the system functionality and nuances of data interpretation. Both
data governance and ethical deliberation are instrumental in ensuring data
security and patient privacy.

In the absence of formalized frameworks, challengesmay arise in query
fulfillment and data management20. However, our data supply chain
addresses this issue through an end-to-end workflow for data quality
assurance, ensuring continual evaluation and improvement. Conflicting,
missing, or incorrect data were identified through human-driven logical
comparisons and rectified by making logical corrections or adjusting the
algorithms. Since its implementation, the quality assurance workflow has
been continuously refined, accumulating data checks acrossmultiple cycles.
This iterative process enhances dataquality and reduces the need for human
intervention. Engagement with various groups familiar with the data
sources and limitations is essential.

Our YCDL framework has numerous potential clinical and research
applications. Although limited data have evaluated clinically relevant
outcomes in oncology care, emerging evidence suggests that CDSS using
EMR data can positively impact care quality21. The most actively resear-
ched area is non-knowledge-based CDSS, which leverages machine
learning and AI to predict patient outcomes22, as follows: A recent ran-
domized controlled trial byHong et al.23 demonstrated accurate triaging of
patients with cancer and reduced acute care rates using an EMR-based
machine learning algorithm. Coombs et al.24 showed that a proposed
machine learning tool using real-world EMR data could identify patients
with cancer at risk for a 60-day emergency department visit. Another
potential application is the generation and rapid testing of clinical
hypotheses, as suggested by Morin et al.14, which would not have been
feasible using traditional data approaches. The YCDL enabled the col-
lection of a vast amount of data, including laboratory results and patient

Fig. 3 | Proposed clinical decision support system with four layouts. a Three-
dimensional display of overall disease burden, with individual lesions contoured
manually or automatically in advance. b Longitudinal tumor tracking output in the
form of a graph. c Section displaying survival curves for assessing and predicting

individual patient outcomes by integrating any potential model. d Comprehensive
overview of a patient’s cancer journey including treatment history, follow-up, and
disease status.

Table 2 | Satisfaction scores from 33 healthcare providers for
comprehensive patient assessment usingCDSSwithEMR in 5
random cases

Total (165
responses)

EMRusage
< 10 years

EMRusage
≥ 10 years

Satisfaction
measures

Mean SD Mean SD Mean SD p

Ease of system use 4.14 0.83 4.20 0.86 4.05 0.78 NS

Results understanding 4.26 0.75 4.29 0.83 4.22 0.60 NS

Terminology
understanding

4.02 0.89 4.02 0.99 4.02 0.70 NS

Usefulness of the
system

4.28 0.78 4.32 0.86 4.20 0.64 NS

User interface 3.97 0.93 4.09 1.00 3.78 0.76 <.001

Information accuracy 4.05 0.89 3.99 1.00 4.15 0.67 NS

Information timeliness 4.25 0.74 4.24 0.81 4.26 0.62 NS

Information reliability 4.01 0.87 3.98 1.01 4.06 0.58 NS

Up-to-datedness 4.35 0.81 4.38 0.90 4.31 0.64 NS

Decision support 4.21 0.79 4.22 0.84 4.20 0.71 NS

Processing time 4.09 0.93 4.17 0.99 3.97 0.81 NS

Task satisfaction 4.18 0.77 4.23 0.84 4.11 0.66 NS

SD standard deviation, NS not significant.
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features, thereby facilitating the first pilot analysis. Additionally, auto-
matic flagging of eligible patients for clinical trials shows promise24.

Our study demonstrates that data consolidation and a continuous
multimodal data supply chain can automatically generate visual timelines
and enhance decision support—characteristics of a knowledge-based
CDSS22. With advancements in systemic drugs, patients with stage IV
cancer now live longer and have complex treatment histories25. A quick
overview of a patient’s cancer journey allows physicians to efficiently
characterize both the disease and the individual, potentially reducing
burnout and ensuring quality care26. Commercial clinical decision support
software such asNAVIFYOncologyHub27, Syapse28, andFlatironAssist29,
are undergoing evaluation for integration into the EMR system to provide
a comprehensive view of a patient’s journey. Chen et al. demonstrated the
potential of AI-assisted summarization tools using medical records,
particularly when the input data is accurate30. With emerging local
therapies31, AI can play a significant role in detecting and segmenting
normal tissues and tumors32, as well as tracking lesions over time in
relation to treatment33. However, further research on tumor auto-
segmentation is warranted.

This study has several limitations that should be considered when
interpreting our results. First, our method represents the experience of a
single institution, and large-scale adjustments may be necessary for
implementation elsewhere. Our system was not developed with direct
consideration for interoperability standards such as HL7 and FHIR. Given
that our ETL processes are based on our hospital’s data, we have primarily
focused on optimizing performance within our own hospital environment.
However, as the national FHIR standard evolves and is finalized, we plan to
expand our system accordingly to ensure compliance. Second, the data
supply chain approach is designed as an expandable infrastructure that
accommodates updated ontologies and evolving demands. Establishing a
strong leadership in data governance, implementing sharing agreements,
and promoting open science practices are essential for a robust metadata
supply chain. This requires dedicated departments to ensure job security.
Collaborative efforts such as workshops and knowledge transfers promote
an understanding of the benefits offered by the metadata supply chain and
AI technologies. Future work will incorporate additional cancer types such
as brain tumors and raremalignancies.Once theETLprocess isfinalized,we
aim to make it publicly accessible. Our hospital primarily diagnoses and
follows up with patients within our institution; however, inter-hospital data
sharingmaybecomenecessary in certain cases. TheNLPmodels used inour
ETL process, such as logic-based segmentation, demonstrated sufficiently
good accuracy, and we believe that applying language models could further
enhance these outcomes. While large language models have made
remarkable progress in terms of performance and are likely to performwell
indatacenter environments, their adoptionmaybe limitedby concernsover
cost-effectiveness. In such scenarios, smaller language models—with their
reduced computational requirements and reliance on less training data—
could represent a practical and efficient option for addressing specific
tasks34. Additionally, our study did not demonstrate whether multimodal
data is superior to single-modal data in predicting patient outcomes35.
Finally, the current version of the YCDL framework only captures survival
and recurrence data despite the growing recognition of the importance of
quality of life and toxicity profiles as critical outcomes.

In conclusion, this study underscores the critical role of developing a
streamlined data integration framework to organize and visualize the sub-
stantial volume of oncology patient data, supporting and enhancing clinical
decision-making. The integration of real-time updates into our framework
is particularly significant, enabling the incorporation of evolving treatment
trends and up-to-date information. This collaborative effort to establish a
robust data infrastructure highlights its potential to advance personalized
care, accelerate the adoption of AI-driven applications, and refine clinical
workflows. Furthermore, adopting comprehensive data supply chains and
AI technologies requires a commitment to strong data governance, the
embrace of open science principles, and strengthened collaboration within
the medical community.

Methods
Development of multimodal data supply chain
Our researchwas conducted in accordancewith theDeclaration ofHelsinki
after approval of theprotocol by the InstitutionalReviewBoardof Severance
Hospital (ReferenceNumber: 4-2021-1241). Theneed for informed consent
waswaivedby the ethics committee because the study involved retrospective
analysis of anonymized data, posing minimal risk to participants. First, we
established a development server using a Windows-based, 12-core com-
puter with 64 GB of memory and Serial Attached SCSI (SAS) disk drives of
100 GB and 2 TB, and four RTX 5000 GPUs. Operational servers, con-
stituting High Availability (HA) systems, included a database (DB) server
(2Ea) with a 10-coreCPU, 128GBmemory,OS SSD 100GBof storage/SCL
2019, DB Safer, Hiware, EMS, and Backup (DB), and a web-based server
with a 12-core CPU, 64 GB memory, OS SSD 100 GB of storage/Hiware,
EMS, and Backup (File).

The dataflow and computational modules are illustrated in Fig. 3. The
original data from the EMR/OCS, which contains clinical data for all
patients visiting the hospital, serves as the source data for the cancer-specific
YCDL database. Data access is strictly managed to ensure security and
privacy. Only authorized personnel can access the data, and even then, they
must go through two layers of identity verification within the hospital’s
internal network, which is isolated from the internet to prevent external
threats. For research purposes, all data provided is either anonymized or
pseudonymized to prevent the identification of individual patients, ensuring
the protection of personal information while enabling research activities.
Data are managed in compliance with ISO 27001 (international certifica-
tion) and ISMS (domestic certification) standards for data protection reg-
ulations. The first data transfer from source data is governed by three
conditions: the Target Patient Number (AlsUnitNo), a de-identified num-
ber assigned to each patient based on a diagnosis codematching the ICD-10
code of the primary cancer; the Target Encounter Number (AlsChosNo), a
de-identifiednumbergeneratedduringpatient visits, which is selectedas the
encounter number for the primary cancer if the patient number from the
first condition matches the target diagnosis code related to the primary
cancer; and the creation of aMain Target Table, which distinguishes cancer
types by the target patient and encounter numbers. If the target patient
number exists in the tables on the DW server, all data related to the target
encounter number are transferred. Cancer types are not distinguished in the
DW tables. Additionally, the latest data from code master or terminology
tables are also transferred. To improve the data quality andmitigate the risks
associated with erroneous or omitted data, we tailored the selection
approaches for each cancer type. The selection was based on the Interna-
tional Classification ofDiseases forOncology (ICD) and physician-assigned
ICD-Mcodes aswell as validity criteria designated by the cancer registration
program. A comprehensive breakdown of the selection methodologies for
each cancer type is provided inTable 3.We received authorization for access
to all digital records from the EMR system and billing data from the
Oncology Care System.

After the original data is transferred to the DW server, data marts are
created from the DW tables in the Data Science Center (DSC) database, a
proprietary name, grouped by related topics. Separate databases are estab-
lished for each cancer type, named “DSC_cancertype,” to prevent excessive
time spent on complex SQL query execution. The DSC database condenses
the data from 18 tables and 433 columns by integrating relevant tables from
the DW database and joining with code master or terminology tables to
include code-code name columns for immediate comprehension of codes.
Similarly, the YCDL_DB maintains separate physical databases for each
cancer type. Eachcancer-specific database has tableswhere data is loaded. In
this process, a patient-centric data model was developed, underpinned by
the patient identification numbers dispensed by the hospital information
system. This served as a linchpin for linking the anonymized datasets. In the
clinical data extraction stage, we developed an Extract-Transform-Load
(ETL)process, which includesNLP, for each feature (Fig. 4). It facilitated the
daily movement of data from the DSC source DB to the YCDL target DB.
TheDSCDB is a repository that contains unstructured and semi-structured
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data, including medical record text, imaging files, and next-generation
sequencing (NGS) results. The YCDL site enables the execution of indivi-
dual database queries to extract data from the source system and load it into
the YCDL target system. Examples of data extraction from DSC DB to
YCDL are provided in the Supplementary Figs. 1-9, using SQLqueries,MS-
SQL user-defined functions, and Python user-defined functions. All data
processing, transfer, and storage were performed within the network
infrastructure of thehospital. The transfer of data from theoriginal source to
the DW/DSC DB is automated, with ETL processes running daily, trans-
ferring cancer-specific target data. Access to sensitive data is strictly con-
trolled through a role-based permission system, which assigns access levels
basedonuser roles and responsibilities. To ensure systemreliability anddata

integrity, fail-safe mechanisms are in place, including automated daily
backups, geographically redundant storage, and real-time system mon-
itoring to detect and address issues proactively. The user management
system further enforces security through role-based access control, enabling
administrators to define and customize specific roles, permissions, and
access rights tailored to each user group’s needs.

In the initial phase of data processing, we tailored the database corpus
from the DSC DB, optimizing the extraction and management of medical
terminology, abbreviations, and recurrent misspellings (e.g., within
pathology reports). Subsequently, the procured data underwent transfor-
mation through a specialized ETL algorithm designed to harmonize ter-
minology based on assertions and the interrelationships of medical

Table 3 | Selection methods for each cancer type

Cancer Id Cancer Type DBName Criteria

01 Breast cancer YCDL_BRST (1) Cancer Registry : ICDOCda=C50% AND available=Y AND ICDOCdMb <M9590

02 Colorectal cancer YCDL_CLRC (1) Cancer Registry: ICDOCd = (C18%, C19%, C20%) AND ICDOCdM=M81403(Adenocarcinoma) AND available=Y

03 Lung cancer YCDL_LUNG (1) Cancer Registry : ICDOCd=C34% AND available=Y AND ICDOCdM < M9590 AND ICDOCdM NOT LIKE ‘%/2'

04 Gastric cancer YCDL_GSTR (1)CancerRegistry : ICDOCd=C16%ANDavailable=YANDavailable=YAND ICDOCdM<M9590AND ICDOCdMNOT
LIKE ‘%/2'

05 Liver cancer YCDL_LVER (1) Cancer Registry : ICDOCd=C22.0 AND available=Y AND ICDOCdM < M9590 AND ICDOCdM NOT LIKE ‘%/2'

06 Melanoma YCDL_MLNM (1) Cancer Registry: ICDOCdM_EngNm (pathology) LIKE ‘%Melanoma%‘ AND available=Y(2) The cancer diagnosis
group =D0023(Malignant melanoma) in CAP systemc.(3) There are records of ‘%Melanoma%‘, ‘%Malignant Spitz%‘

in the pathology diagnosis results.(4) There are records of ‘%Melanoma%‘, ‘%Malignant Spitz%‘ in the imaging test.
(excluded ‘%r/o%‘)

07 Kidney cancer YCDL_KDNY (1) Cancer Registry : ICDOCd=C64% AND available=Y AND ICDOCdM < M9590 AND ICDOCdM NOT LIKE ‘%/2'

08 Prostate cancer YCDL_PRST (1)CancerRegistry : ICDOCd=C61%ANDavailable=YANDavailable=YAND ICDOCdM<M9590AND ICDOCdMNOT
LIKE ‘%/2'

09 Thyroid cancer YCDL_THRD (1) Cancer Registry : ICDOCd=C73% AND available=Y AND ICDOCdM <M9590 AND ICDOCdM NOT LIKE ‘%/2'

10 Pancreatic cancer YCDL_PNCT (1) Cancer Registry : ICDOCd=C25% AND available=Y AND ICDOCdM < M9590 AND ICDOCdM NOT LIKE ‘%/2'

11 Bile duct cancer YCDL_BLDT (1) Cancer Registry : ICDOCd = (C22.1, C23.9, C24.0, C24.1, C24.8, C24.9) ANDavailable=YAND ICDOCdM<M9590
AND ICDOCdM NOT LIKE ‘%/2'

aICDOCd = ICD-O (International Classification of Diseases for Oncology) Codes.
bICDOCdM =Morphology section of the ICD-O Code.
cCAP system =Chemotherapy Assistance Program for ordering oncology medications.

DSC DB YCDL DB

ETL

EMR Text, Images, External Data
(Genome), xml..

Query Builder

ETL
Query Runner

Target DataConfirmation of recurrence 
using colorectal cancer CT
Report

Corpus Type definition

Efficient extraction and
management of 
medical term, 

abbreviation, and
repeated misspelling

Corpus  DML 

Corpus add

Corpus Extract

DML Column Mapping

Data Extract

Accuracy = 0.802

Source Data

Mapping pathway from source data to target data

Extract Data Memory Data Final Data

Customized database corpus

Data mapping Logic AI based classification

ExtractConfigurationDefinition Transform Load

raw data

Mapping Logic

Structured data

tokenizer

YCDL_Cancer

YCDL_Cancer

Fig. 4 | The Extract-Transform-Load (ETL) process within the YCDL framework.
In the clinical data extraction stage, we developed an ETL process, which includes
Natural Language Processing (NLP), for each feature. The DSC DB serves as a
reservoir containing rawmedical text, (semi-) unstructured data, imaging files, next-
generation sequencing (NGS) results, and Extensible Markup Language (XML)
formats. In the initial phase of data processing, we tailored the database corpus from

the DSC DB, optimizing the extraction and management of medical terminology,
abbreviations, and recurrent misspellings (e.g., within pathology reports). Subse-
quently, the procured data underwent transformation through a specialized ETL
algorithm designed to harmonize terminology based on assertions and the inter-
relationships of medical concepts. NLP was instrumental in utilizing CT and MRI
interpretation counts from follow-up visits as criteria for individual selection.
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concepts. To enhance user convenience in handling extensive cancer patient
data, we developed amodel based on imaging reports to determine the best
responses and the timing of disease progression36. Imaging reports from
6574 patients were gathered, amounting to 97,119 CT readings. Among
these, 9000 CT reports corresponding to 2859 patients were randomly
subjected to multilabel manual labeling by four radiology experts, based on
the RECIST version 1.1 classification (CR/NED, PR, SD, PD). The pre-
trained BERT-base-uncased model was employed and fine-tuned for the
downstream tasks of multilabel classification. 6765 reports were used for
training, while the remaining 1000 reportswere divided equally between the
validation and test sets. The subsequent preprocessing phase employed
tokenization techniques to structure the extracted data. SQL queries were
harnessed to mine data from the primary DSC DB, facilitated by a DML
management interface. For certain datasets requiring intricate extraction
protocols, bespoke ETL strategies were devised using Python scripts crafted
for each specific operation (Supplementary Fig. 10).

The overall process of NGS analysis has been detailed in our previous
publication37. TargetedDNAandRNAsequencingwasperformedusing the
TruSight Tumor 170 (TST170, Illumina, San Diego, CA) and TruSight
Oncology 500 (TSO500, Illumina) panels. Secondary analysis, including
read alignment, variant calling, and variant annotation, utilized the TST170
Local App and the TSO500 Local App, respectively. For tertiary analysis,
which involves additional annotation, variant filtering, prioritization, and
producing interpretable output, we utilized an in-house pipeline designed to
discard false positive variants, germline variants, and SNPs, ensuring the
accuracy and reliability of the results. Variant interpretationsweremanually
reviewed by institutional pathologists in accordance with guidelines from
the Association for Molecular Pathology, the American Society of Clinical
Oncology, and the College of American Pathologists38. Pathogenic variants
categorized as Tier 1 were automatically and systematically collected and
transferred to YCDL. A substantial proportion of the procedural steps were
automated using OncoSTATION (Geninus, Seoul, Korea), as shown in
Supplementary Fig. 11.

Data quality control and accuracy assessment
After development, we implemented this system with our electronic health
data, beginning with records from 2006. The profiles were updated using
electronic health records, ensuring a comprehensive view of relevant

oncological components over time. The present analysis is based on data
collected up to March 2022. Key constituents of these profiles included
demographics, diagnoses, clinical examination reports, pathology reports,
treatment histories, and encounter specifics (Tables 4 and 5). The structures
of these individual profiles were categorized into common, cancer-specific,
and index columns. The common features held universal information
across multiple cancer types (e.g., age, sex, and cancer diagnosis date) and
accounted for 817 features, which was nearly 80% of the total. The cancer-
specific features contained data relevant only to specific cancer types (for
instance, pulmonary function test in lung cancer) and comprised
approximately 20% of the tables (Table 6). Data feature definitions and
formats for all features across all cancer types have been included in the
Supplementary data 1, with necessary translations from Korean to English.

Wedevelopedaweb-based computational platform forQCofdata that
scrutinizes potential data defects both automatically andmanually on adaily
basis, focusing onminimizing the role of the human component (Fig. 5). All
data extracted and stored in the YCDL_cancer data repository were con-
tinuously evaluated and optimized to establish high-quality data outputs,
adhering to standardizeddata and terminology. Programs for logical checks
were configured to evaluate the distribution and continuity of data extracted
by the SCL. Based on the QC results, the ETL code was continuously
modified, thereby refining theQC logic to enhance the quality and accuracy
of the automation.We examined four data qualitymeasures (completeness,
timeliness and usefulness, consistency, and accuracy) for all variables, in
accordance with established data standards and pertinent aspects of data
quality (Table 7). For instance, the logic was set such that the birth date of
individuals would precede the date of the initial diagnosis. The analyses
revealed that the batch processing method accurately identified erroneous
data points, aligned with the established logic. Each piece of data was
meticulously reviewed and optimized by a Quality Control Manager. Sig-
nificant discrepancies or inaccuracies prompted an in-depth examination of
the source data and respective ETL processes.Moreover, a hierarchy of data
sourceswas established to resolve conflicts. TheQCstepswere continuously
iterated within distinct closed-loop systems, adhered to operational ontol-
ogy, and executed by independent QC personnel. This methodology gra-
dually enhanced the accuracy of the cleansed target data with minimal
intervention (Supplementary Fig. 12).We assessed the completeness of each
individual’s accumulated features, including fundamental characteristics

Table 4 | Tables in the DSC database

DB No. DB Name DB code Table No. Table Name Table Description

1 Patients PT 1 CNCR_PATINFO Patient basic information

1 Patients PT 2 CNCR_BODYINFO Body measurement information

2 Diagnosis DG 3 CNCR_DX Diagnoses relating to a hospital visits

2 Diagnosis DG 4 CNCR_CRDINFO Copayment Decreasing Policy

2 Diagnosis DG 5 CNCR_CSLT Consultant Information

3 Examination EM 6 CNCR_LAB Events relating to laboratory tests

3 Examination EM 7 CNCR_IMAGE Events relating to Imaging test

4 Pathology PH 8 CNCR_PATHOLOGY Events relating to Pathology

5 Operation OP 9 CNCR_OP Surgery

6 Treatment TX 10 CNCR_REGIMEN Chemo-therapy

6 Treatment TX 11 CNCR_RT Radiation-therapy

6 Treatment TX 12 CNCR_DRUG Medicines prescribed

6 Treatment TX 13 CNCR_PROC Procedure (included medical operation)

7 Progress TE 14 CNCR_FRM Clinical Forms

8 aCancer registry TM 15 CNCR_TUMOR_RGT Tumor Registry (personal details and cancer diagnosis)

8 Cancer registry TM 16 CNCR_TUMOR_TRANS Tumor Registry (included cancer recurrence/metastasis)

8 Cancer registry TM 17 CNCR_TUMOR_TRC Tumor Registry (included cancer patient follow-up)

8 Cancer registry TM 18 CNCR_TUMOR_TRET Tumor Registry (included cancer treatment)
aCancer registry = database of information on cancer patients.
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such as date of birth, initial diagnosis date, age, diagnosis code (ICD), TNM
and overall stages, and ICDO morphology code.

To verify the accuracy of the NLPmodels used in our ETL process, we
first evaluated the segmentation accuracy of logic-based NLP in both sur-
gical andmolecular pathology reports.We randomly selected 50 items from
the top 30% in data completeness for each cancer type, where data com-
pleteness was defined as the ratio of columns filled with segmented data to
the total number of pathology report features for each cancer type.Assessing
the timing of the best response category is critical in understanding clinical
outcomes during retrospective cancer patient data analysis. Rapid access to
this information improves the efficiency of evaluating disease progression
and treatment responses. Accordingly, we assessed the NLP model’s accu-
racy in automatically categorizing RECIST criteria36, predicting the timing
of disease progression events within a ± 30-daywindow, and identifying the
best response and its timing within a ± 45-day window.

The developed data warehouse showcased survival graphs by tumor
stages and demonstrated the framework’s ability to expedite data collection
for quick clinical hypothesis testing. Kaplan–Meier survival graphs were
generated in all cancer types according to tumor stage with 95% confidence
intervals. Survival time was defined as the time interval between initial
diagnosis and death or the last follow-up. To demonstrate the efficiency of
our data framework as a proof-of-concept for swiftly generating and eval-
uating clinical hypotheses, we present a detailed chronological progression
of a previously published retrospective study. The clinical question chosen
by one of the authors was whether the peripheral blood neutrophil-to-
lymphocyte ratio before, during, or after neoadjuvant chemoradiotherapy
for locally advanced rectal cancer is associated with an increased risk of
distant metastases after primary rectal cancer surgery.

CDSS development and evaluation
To underscore the capabilities of our data framework for clinical applica-
tions,wedevelopedaCDSSwith a comprehensive andmodular architecture
to support efficient digital content creation andmanagement, utilizing data
from the YCDL server. The current User Interface (UI) front-end compo-
nents are as follows: (1) patient information, (2) DICOM image visualiza-
tion for PACS-integrated three-dimensional tumor display (viewing and
interactive visualizationofmedical images and segmentation information in
DICOM format), and (3) a longitudinal view of the complete patient
journey (timeline visualization of patient data over time, highlighting key
events and data points). Additionally, components for survival prediction
based on data from previously treated patients, personalized news/journals,
and clinical trial information are being developed for integration. TheCDSS
front end was built using JavaScript frameworks such as Svelte or React. It
provides an interactive UI for users and handles the visualization of data
received from the CDSS backend. Key functionalities include user interac-
tion management and data visualization module processing. The CDSS
backend is implemented using FastAPI, a high-performance web frame-
work for building APIs with Python. It processes data requests from the
front end and performs computations for various modules. Key function-
alities include handling RESTful API requests, DICOM data processing,
web scraping services, and visualization of DICOM data using the VTK
library. The Front-EndModules include a 2D/3DVisualizationModule and
a Timeline Module. The 2D/3D Visualization Module visualizes DICOM

DSC_Cancer YCDL_CancerETL

Query Builder

Source Data Target Data

ETL Query

Web based QC system

QC Data

Original Data

Pass
Logic

Miss

Data  Manual QC QC Daily Batch

Rule based Check Logic

Fig. 5 | Quality management of data in the YCDL framework. We developed a
web-based computational platform for data quality control (QC) that scrutinizes
potential data defects both automatically and manually on a daily basis, focusing on
minimizing the role of the human component. All data extracted and stored in the
YCDL_cancer data repository were continuously evaluated and optimized to
establish high-quality data outputs, adhering to standardized data and terminology.
Programs for logical checks were configured to evaluate the distribution and

continuity of data extracted by the SCL. Based on the QC results, the ETL code was
continuously modified, thereby refining the QC logic to enhance the quality and
accuracy of the automation. The analyses revealed that the batch processing method
accurately identified erroneous data points, aligned with the established logic. Each
piece of data was meticulously reviewed and optimized by a Quality Control
Manager.

Table 6 | Column characteristics by cancer type

Number
of
Common
Columns
(A)

Number
of
Cancer-
specific
Columns
(B)

Number
of Index
Columns
(C)

Number
of Total
Columns
(D)

Percentage
of Cancer-
specific
Columns
(B/D)

Breast 817 91 459 908 10%

Colorectal 817 109 459 926 12%

Lung 817 53 459 870 6%

Gastric 817 61 459 878 7%

Liver 817 99 459 916 11%

Melanoma 817 51 459 868 6%

Kidney 817 47 459 864 5%

Prostate 817 38 459 855 4%

Thyroid 817 63 459 880 7%

Pancreatic 817 44 459 861 5%

Bile duct 817 67 459 884 8%
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images received fromtheBack-EndasVTK images, supportingboth2Dand
3D visualization of medical imaging data. The Timeline Module, based on
EMR data, visualizes patient data as a timeline, arranging data chron-
ologically to show key events and data points, and supporting interactions
like zooming and dragging. The backendmodules include an AAAModule
and a DICOM Image Transformation Module. The AAAModule handles
authentication, authorization, and accounting using JWT (JSON Web
Token) for secure processing. The DICOM Image TransformationModule
converts and processes DICOM images into VTK images using the VTK
library. The overview of the described architecture is depicted in Supple-
mentary Fig. 13.

The data flow is as follows: Users initiate requests through the web UI.
The front end processes the user’s request and routes it to the appropriate
frontendmodule. The backend processes data requests and interacts with the
required backend modules. The latter processes EMR and DICOM data to
generate or retrieve necessary information. The processed data is returned
through each layer, ultimately displaying results in the User Interface. This
design bolsters the accessibility of the system, guarantees platform indepen-
dence, and ensures that users can access services across various device types.

Manual tumor segmentation data are required to use the three-
dimensional tumor display with a longitudinal tumor-tracking function. If
deep learning-based tumor auto-segmentation algorithms are developed,
these models can be integrated into the pipeline39,40. The PACS-integrated
method enables physicians to comprehensively track changes in overall
trajectory patterns over a long period, fosters an environment that better
explains the disease course to patients, and facilitates communication with
referring physicians. Longitudinal changes in the overall disease burden
were automatically generated using the prepared manual contours and
displayed as graphs. The images were de-identified; however, if another
image of the same patient was transferred later, the new images were allo-
cated the same de-identified number, facilitating tumor tracking.

To investigate the effectiveness of the CDSS, we conducted a mock
simulation with physicians (n = 33), comparing EMR-only assessments to
assessments using both the EMR and CDSS. The simulation incorporated
user evaluations to gather physician feedback on the patient assessment
process.After selecting thefive randomly selected cases of patientswithbreast
cancer, colorectal cancer, lung cancer, stomach cancer, and liver cancer,
participants were requested to complete a survey for each case after assess-
ment of cases using EMR and CDSS. Using the evaluation framework from
Kim et al.41, we investigated a total of 12 measures. For system quality, we
assessed ease of system use, results understanding, terminology under-
standing, usefulnessof the system, anduser interface.For informationquality,
we evaluated information accuracy, information timeliness, information
reliability, and up-to-dateness. For support factors, we examined decision

support, processing time, and task satisfaction. Allmeasures were coded on a
6-point scale, with 5 being the highest score and 0 being the lowest score.

Data availability
TheYonseiUniversityHealth System (YUHS) inaugurated the SeveranceData
Portal (SDP), a comprehensive medical big data platform, on 2 May 2023
(available at: https://sobig.yuhs.ac/portal). The SDP provides an accessible
portal tailored for the research community, with a focus on medical investi-
gations. It is supportedbya ‘DataLake’ searchportal thatempowers researchers
to locate and harness extensive data sets aligned with their specific research
goals. In the forthcoming expansion phase, YUHS intends to enhance the
platform through the integration of pioneering digital medical imaging infor-
mation systems, such as Picture Archiving and Communication Systems
(PACS), along with digital pathology data and genomic analysis datasets.
Access to the SDP is governedby stringent policies devised to safeguardpatient
confidentiality and to ensure adherence to all pertinent legal and ethical stan-
dards. Researchers aiming to utilize the SDPmust submit an access application
specifying the proposed data usage, which is then subjected to a thorough
review process to ensure compliance with established data governance criteria.

Code availability
The custom code and scripts used in the generation and analysis of datasets
for this study are not publicly available due to institutional restrictions.
However, researchers interested in accessing the code cando soby contacting
the corresponding author directly. Access to the code will be granted on a
case-by-case basis, contingent upon appropriate IRB approval and institu-
tionalpermissions.The specific versionsof softwareused in this study include
TensorFlow 2.10, NumPy 1.23.5, and pandas 2.0.0, Microsoft SQL Server
2019, JavaScript (ES11, ES2020), and Python version 3.10.8. The version of
YCDL used in this study was v1.4. The key variables and parameters used in
the data analysis are uploaded in the supplementary data (Excel file format).
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