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ABSTRACT

Implications of Cortactin expression in pathogenesis
of oral squamous cell carcinoma

Min-Ji Kim

Department of Dentistry
The Graduate School, Yonsei University

(Directed by Professor Woong Nam)

Early diagnosis and treatment of oral squamous cell cancer are common challenges in the field of
oral surgery. Cortactin(CTTN), a major structure protein of invadopodia in cancer tissues, can
mediate various changes in the biological behavior of cancer cells. However, the related molecular
mechanisms are largely unknown.

In our study, the implications of expression of cortactin on biological behavior of OSCC cells
were investigated in vitro. Moreover, the clinicopathological importance of CTTN expression was
also investigated in OSCC cohort.

Decreased proliferation, motility, and invasion ability were found in CTTN knockdown OSCC
cells than related control cells. Moreover, increased apoptosis was found in CTTN knockdown
OSCC cells than in related control cells. Furthermore, IL-1f expression was significantly decreased
after CTTN knockdown in OSCC cells than control cells. Supportively, significant associations were
found between IL-18 and CTTN expression in OSCC cohort. In OSCC cohort, CTTN
overexpression showed positive correlation with lymph node metastasis, desmoplastic reaction, and
poor prognosis.

In conclusion, CTTN exhibits oncogenic activity in OSCC, and these results further support

CTTN as a novel prognostic molecular biomarker in OSCC patients.

Keywords: CTTN, Lymph node metastasis, Desmoplasia, Molecular biomarker, OSCC



Implications of Cortactin expression in pathogenesis
of oral squamous cell carcinoma
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1. Introduction

In South Asia, which includes India and Sri Lanka, oral squamous cell carcinoma (OSCC)
accounts for at least 40% of cancer cases. It is the most common cancer caused by the oral habits of
smoking, reverse smoking, and chewing betel nut [1]. The percentage of cancer cases in Japan that
are OSCC-related is between 1% and 2%, and it is steadily rising [2]. The quality of life for patients
with OSCC is often negatively impacted by mastication, speech, and deglutition problems.
Furthermore, there is still a poor prognosis for OSCC, throughout the previous 20 years, the overall

S-year survival rate has stayed at about 56% [3].

It was initially discovered that cortactin is one of the main substrates for src kinase [4]. It was
named cortactin because it is confined to cortical actin structures [5]. Not much was known about
its function, except that it linked to actin filaments, the presence of SH3 domain, and the
phosphorylation of its C-terminus by src kinase. [5]. After this, it was discovered that the cortactin
gene was identical to Ems1 [6], which is often overexpressed in head and neck malignancies because
it is located in the 11q13 amplicon [7]. A poor prognosis has been linked to 11q13 amplification on
multiple occasions, including advanced pathological stages, lymph node and distant metastases, and
decreased survival rate [7—13]. This amplicon contains a large number of other genes. Nevertheless,
cortactin is commonly found in cell motility structures such as invadopodia and lamellipodia [6,7]

and the frequent overexpression of it in tumors with 11q13 amplification has sparked significant



interest in its role across various assays, including single-cell motility [16], wound healing [16,17],
and transwell migration [14,15]. On the other hand, throughout many of the identical tests, sSiRNA
targeting cortactin reduces cell motility [16,18-25]. Cortactin-deficient flies exhibit defective
migration of border cells in egg chambers during Drosophila melanogaster oogenesis, revealing that
cortactin influences cell migration both in vitro and in vivo [26]. In vivo, ECM breakdown is
typically vital to cell migration through tissues. Since cortactin is required for invasion via matrix
barriers such as transwell filters covered in gelatin or Matrigel, it seems to be a key player in this
process [16,27-31]. Cortactin has a crucial role in subcellular invadopodia, actin-rich protrusions
linked to the breakdown of extracellular matrix [32]. They distinguish themselves by colocalizing
numerous proteins, including membrane trafficking proteins, proteases, focal adhesions, and
lamellipodia [33]. Osteoclasts, macrophages, and other normal cells that have to penetrate tissue

barriers or reorganize extracellular matrix (ECM) include podosome structures [34,35].

Cortactin is strongly localized to regions of focal ECM breakdown, it is commonly employed as
an invadopodia marker. Cortactin is known to be an important protein that contributes to the
formation of podosomes and invadopodia [36,37,38—42]. During invadopodia formation, actin
polymerization was completed by the linking impact of Cortactin [43]. However, interestingly,
studies found that cortactin promotes actin polymerization in podosomes but not in lamellipodia
[44]. Cortactin downregulation also related with the podosome as well as invadopodia dynamics in
cells that have undergone src transfection or overexpression [45, 46]. Cortactin has various bingding
partners, and the cortactin phosphorylation can triggers various signaling pathways involving

activation of those binding partners [46-48].

Many human malignancies, such as those of the head, neck, and esophagus, as well as colorectal,
stomach, hepatocellular, breast, and ovarian cancers, overexpress cortactin [9,11,46—49]. Over-
expression of CTTN was thought to be a poor prognostic predictor for head and neck cancer, which
is consistent with its well-characterized, cell biology activities in cell motility and ECM
disintegration [50]. Given its variety of binding partners, CTTN could serve many purposes. Using
OSCC cell lines and tissues as a model, we assessed the expression of CTTN and its potential
clinicopathological implications in OSCC patients. Given its variety of binding partners, CTTN can
be assumed to perform various activities. Using OSCC cell lines and tissues as a model, we assessed

the expression of CTTN and its potential clinicopathological implications in OSCC patients



2. Materials & Methods

2.1. Patients and samples

In this study, 198 patients with OSCC who underwent surgical treatment at Yonsei University
Dental Hospital from 1995 to 2010 were selected. The median age of the cohort was 61 years (23-
91 years). This cohort includes 72 (69.9%) male and 31(30.1%) female. Lesion sites included the 64
(35.9%) tongue, 9(4.5%) retromolar triangle, 12 (6.1%) retromolar trigone, 48 (24.2%) mandible,
34 (17.2%) maxilla, 29 (14.6%) buccal cheek, and 2 (1.0) lip. Patients with the T1-T2 stage
accounted for 121 (61.1%) and patients with the T3-T4 stage accounted for 77 (38.9%). Lymph node
involvement, vascular invasion, and perineural invasion were found in 51 (25.8%), 19 (9.6%), and
18 (9.1%) OSCC patients (Table 1). Each patient was followed for at least 5 years to assess long-
term outcomes. The research protocol has received ethical approval from the Yonsei University
Health System Dental Hospital Institutional Review Board (IRB No. 2-2011-0044). This approval
ensures that the research is conducted by ethical guidelines, protecting the rights and well-being of

all participants involved in the research.



Table 1. Clinicopathological characteristics of 103 patients with OSCC

Clinicopathological variables No. of patients (%)
Total cases 103
Age, years
Median age (range) 57(32-79)
<60 57(55.3)
>60 46(44.7)
Gender
Male 72(69.9)
Female 31(30.1)
Site
Tongue 37(35.9)
Retromolar trigone 26(25.2)
Gingiva 40(38.8)
T stage
T1-T2 43(41.7)
T3-T4 60(58.3)
N stage
Negative 53(51.5)
Positive 50(48.5)
Vascular invasion
Absent 57(55.3)
Present 46(44.7)
Perineural invasion
Absent 78 (75.7)
Present 25(12.6)




2.2. Immunohistochemistry

OSCC paraffin-embedded tissues were cut into 4um and then performed immunohistochemical
analysis. Sections were dewaxed with xylene, and then hydrated with a fractional alcohol solution.
Antigen retrieval was performed using a Citrate buffer (Sigma-Aldrich, USA) via a pressure cooker,
and endogenous peroxidase activity was blocked by 4% H>O: (Junsei Chemical Co., Ltd, Japan).
CTTN (Mouse monoclonal antibody against) primary antibody was purchased from Abcam
(Cambridge, MA, USA) with working dilution 1:2000. Incubated at room temperature for 2 hours.
The REAL EnVision Rabbit/rat HRP detection system from Dako (Carpinteria, CA, USA) was used
for secondary antibody incubation and 3,3'-diaminobenzidine (DAB) color development.
Counterstaining was performed using hematoxylin for 1 minute. We prepared phosphate-buffered
saline (PBS) instead of a primary antibody as a negative control. The protein expression level was
scored using the weighted tissue scoring method, and the total tissue score was calculated according
to staining intensity and percentage of positive cells. For further analysis, patients were divided into
two groups: a low expression group (total score 0-100) and a high expression group (total score 101-

300) according to their total tissue scores.

2.3. Cell lines and cell culture

HSC-2 and CA9-22 OSCC cell lines were purchased from the Korean Cell Line Bank (Seoul,
Korea). HyClone™ Minimum Essential Medium (MEM) with Earle's Balanced Salts (MEM/EBSS,
HyClone Laboratories, Inc., Logan, UT, USA) culture medium was used. The supplement included
10% fetal bovine serum (FBS; Gibco BRL, Grand Island, NY, USA), 100 U/mL of penicillin, 100
mg/mL streptomycin, 0.4 g/mL hydrocortisone, 5 pg/mL transferrin, 5 pg/mL insulin, 1x10'°M
cholera toxin, and 2x107!'M triiodothyronine. Cells were maintained in a 5% CO: cell culture

incubator at 37°C.



2.4. Small interfering RNA (siRNA) transfection

CTTN expression was blocked by three independent pools of small interfering RNA (siRNA)
oligonucleotides targeting CTTN. A specific number of cells were seeded in a 6-well plate. Before
transfection, the cells starvated with serum-free and (-) P/S medium for 4h. CTTN targeting siRNAs
as well as related scramble control (Invitrogen, Carlsbad, CA, USA) were transfected using
Lipofectamine™ 2000 (Invitrogen, Carlsbad, CA, USA). Downregulation efficacy of CTTN mRNA

expression was confirmed by real time PCR analysis.

2.5. Cell cycle and apoptosis assay by flow cytometry

Each group of OSCC cells were harvested and stained with propidium iodide using a Cell cycle
Analysis kit (ab287852, Abcam, USA) according to manufacturer’s protocol. Each group of stained
cells determined by flow cytometry (LSR Fortessa, Becton Dickinson, USA). Apoptotic cells were
determined using the FITC Annexin V Apoptosis detection kit I (BD Pharmingen™, Cat: 556547,
USA). After stained with Annexin V-FITC and PI, population of stained cells were detected by flow
cytometry.

2.6. Wound healing assay

Cells were seeded with culture media in 6-well culture plates. Incubate the cells at 37°C with 5%
CO: until they form a confluent monolayer. Use a sterile pipette tip (200uL tip) to scrape a straight
line through the cell layer. Gently wash the cells with sterile PBS (phosphate-buffered saline) to
remove shed cells and debris. Replace the PBS with a fresh cell culture medium and immediately
take images of the wound area using an inverted microscope. Return the cells to the incubator and
allow them to migrate. At predetermined time points, take images of the same wound area. To assess
wound healing, three points were randomly selected for marking. Using Image-J software (National
Institutes of Health, Maryland, USA), the horizontal migration distance of cells from the starting

point (0 hours) was measured and analyzed.



2.7. Transwell invasion assay

The cell invasion assay was performed using a cell culture insert (Falcon, NY, USA). Matrigel
was diluted in serum-free medium added into the upper chambers and dried for 7h at RT for gel
coating. Then, 1x10° cells in medium were seeded into the coated upper chamber. For induction of
cell invasion, 2% and 20% FBS was added in upper chamber and lower chamber, respectively. After
36 hours of cell seeding, invading cells were stained with 0.1% crystal violet and counted using

microscope.

2.8. Total RNA extraction and reverse transcription PCR analysis

Total RNA was extracted with TRIzol reagent (Invitrogen, Carlsbad, CA, USA). After cDNA
synthesis, 1X SYBR-Green Master Mix (Applied Biosystems) was used. The Mx3005P QPCR
system (Agilent Technologies, Santa Clara, CA, USA) was supplemented with 10 pmol primer and
1.5ul cDNA for quantitative real-time PCR analysis under the following conditions: initial
denaturation at 95°C for 10 min; Then 40 cycles of 95°C for 20 seconds, 50°C for 30 seconds, and

72°C for 45 seconds were performed. The oligonucleotide primers for PCR are listed in Table 2.



Table 2. Sequence of primers

Primer 5'to3’

GAPDH Forward:5’-GGCACAGTCAAGGCTGAGAATG-3’
Reverse:5’-ATGGTGGTGAAGACGCCAGTA-3
TGF-B Forward:5’-GGGACTATCCACCTGCAAGA-3’
Reverse:5’-CCTCCTTGGCGTAGTAGTCG-3’
IL-1a Forward:5’-CAGAGGGCCTGTACCTCATC-3’
Reverse:5’-GGAAGACCCCTCCCAGATAG-3’
IL-1B Forward:5’-AGCCATGGCAGAAGTACCTG-3’
Reverse:5’-CCTGGAAGGAGCACTTCATCT-3’
IL-17 Forward:5’-TGCCTTCAGCAGAGTGAAGA-3’
Reverse:5’-GGTCTTGGTTCTCAGCTTGG-3’
PCNA Forward:5’-ATTGGGATCATCTTGCTGGT-3

Reverse:5’-GAGAGGCGCCTGATCTCTTC-3’




3. Results

3.1. Influence of CTTN knockdown on proliferation of OSCC cell lines

In this study, viable cells were 0.71+£0.07 and 0.82+0.13 fold decreased in cells with CTTN
downregulation than the related control cells, both in CA9-22 and HSC-2 cells, respectively (i).
Moreover, 0.78+0.05 and 0.8140.06 fold decreased PCNA expression was also found in cells with
CTTN downregulation than the related control cells both in CA9-22 and HSC-2 cells, respectively
(ii).
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Figure 1. OSCC cell lines with CTTN Knockdown presented decreased proliferating ability. (i)
Number of viable cells were significantly decreased in CTTN knockdown OSCC cell lines than the
related control cells. (ii & iii) Both CTTN and PCNA mRNA expression was significantly decreased
in CTTN knockdown OSCC cell lines than related control cells (*P<0.05 vs. control).
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3.2. Influence of CTTN knockdown on cell cycle analysis

In this study, S phase cell population decreased 0.47£0.09 and 0.821+0.06 fold in CTTN
knockdown cells than the control cells in CA9-22 and HSC-2 cells, respectively (Figure 2).

1.5
CA9-22 3 Control
EZ3 CTTN siRNA

0.5

Relative Fold Change

3 Control
EZ3 CTTN siRNA

Relative Fold Change

Figure 2. Influence of CTTN knockdown on cell cycle analysis. CTTN knockdown mediates
significantly decreased S phase cell population in OSCC cell lines. Both CA9-22 and HSC-2 cell
lines showed significant decrease in S phase population after CTTN siRNA transfection (*P<0.05

vs. control).
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3.3. Influence of CTTN knockdown in apoptosis of OSCC cell lines

In flow cytometry analysis, both Ca9-22 (1.68+0.14 fold) and HSC-2 (1.90+0.16 fold) showed

significantly increased late phase apoptosis after CTTN knockdown (Figure 3).
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Figure 3. Influence of CTTN knockdown in apoptosis of OSCC cell lines. CTTN knockdown can

increase late phase cell apoptosis in OSCC cell lines (*P<0.05 vs. control).
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3.4. Effect of CTTN knockdown on motility of OSCC cells

In wound healing assay, wound closure rate was 0.61+0.03- and 0.45+0.12-fold decreased both

in CTTN knockdown CA9-22 and HSC-2 cells than related control cells in this study (Figure 4).
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Figure 4. Effect of CTTN knockdown on motility of OSCC cells. CTTN knockdown can attenuate

wound closure rate of OSCC cell lines (*P<0.05 vs. control).
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3.5. Effect of CTTN knockdown on invasive capacity of OSCC cells

In this study, number of invading cells were 0.2+0.22- and 0.340.16-fold decreased after CTTN
knockdown than the control cells, both in CA9-22 and HSC-2 cells (Figure 5).
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Figure 5. Effect of CTTN knockdown on invasive capacity of OSCC cells. CTTN knockdown can

significantly decrease invasion ability of OSCC cell lines (*P<0.05 vs. control).
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3.6. Effect of CTTN knockdown on cytokine expression of OSCC cells

To assess the influence of CTTN knockdown in cytokine expression of OSCC cells, cytokines of
related to fibrosis in cancers were determined by real-time PCR analysis. Results showed that IL-1f
expression was significantly decreased in CTTN knockdown cells compared to the related control
cells in both CA9-22 and HSC-2 (Figure 6). There are no significant differences between each group
of cells in IL-1a, TGF-B, and IL-17mRNA expression (Figure 6).

15
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Figure 6. Effect of CTTN knockdown on cytokine expression of OSCC cells. CTTN knockdown
significantly decreases IL-1p expression of OSCC cell lines (*P<0.05 vs. control).
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3.7. Clinicopathological significance of CTTN expression in 103 OSCC
patients

3.7.1. CTTN expression was significantly associated with desmoplastic reaction

CTTN expression was found in cytoplasm of tumor cells and stroma cells including vascular
endothelial cells as well as cancer-associated fibroblasts in OSCC tissues. The representative
expression patterns of CTTN in OSCC was shown in Figure 7. In our cohort, 64 (62.1%) patients
showed desmoplastic reactions, and both tumoral and stromal CTTN expression was significantly

related to desmoplastic reaction in OSCC patients (*P<0.05).

150- )
[ Desmoplasia: Low
02 * €3 Desmoplasia: High
(7
= 1004
8
-
°
=
g %7
[
o
0 r T

s &
o"«e o“‘\.
Figure 7. Representative expression patterns of CTTN in OSCC tissues. CTTN expression was

significantly associated with desmoplastic reactions in OSCC patients.
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3.7.2. Significant association was found between CTTN expression with IL-1p

expression in OSCC patients.

IL-1B expression was found in both OSCC cells and stroma tissues. As a proinflammatory
cytokines, IL-1Bexpression was significantly associated with desmoplastic reaction as well as CTTN

expression in our cohort (Figure 8).
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Figure 8. IL-1Bexpression was significantly associated with desmoplastic reaction as well as CTTN

expression in our cohort (*P<0.05).
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3.7.3. Association was found between CTTN expression and clinicopathologic

variables

A significant association was found between CTTN expression with LN metastasis in our cohort.
There are no significant association was found between CTTN expression and T stage, vascular
invasion, and perineural invasion in our cohort (Table 3). Furthermore, patients with high CTTN

expression showed poor prognosis than patients with low CTTN expression (Figure 9).

Table 3. Relationship between tumoral CTTN expression and clinicopathological characteristics of

103 OSCC patients

No. of cases CTTN expression

Clinicopathologic variables (%) Tow High P
T stage

T1-T2 43(41.7) 33(76.7) 10(23.3) s

T3-T4 60(58.3) 33(55.0) 27(45.0) '
LN status

Negative 53(51.5) 31(58.6) 22(41.4) 0.012

Positive 50(48.5) 14(27.8) 36(72.2) '
Vascular invasion

Absent 57(55.3) 30(52.6) 27(47.4)

Present 46(44.7) 29(63.0) 17(37.0) s
Perineural invasion

Absent 71(68.9) 46(64.8) 25(35.2) s

Present 32(31.1) 17(53.2) 15(46.8) o
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4. Discussion

OSCC is a type of cancerous tumor that often spreads to other regions by metastasizing from its
initial invasion of the local bone and lymph nodes. Globally, there are currently about 500,000 new
cases identified annually, and the 5-year survival rate is just about 50%. The response to varied
therapy is significantly lower in advanced stage OSCC, and oral cancer continues to be a leading
cause of mortality despite advancements in multimodal treatment and the fact that early-stage tumors
respond effectively to combination therapy (Neville and Day, 2002). After surgical resection, speech
and swallowing difficulties complicate treatment and can result in facial deformity or a
poor prognosis overall. Cancer patients' morbidity and mortality are directly correlated with their
invasiveness and potential for metastasis. In order to discover OSCC early and track the evolution
of the cancer, it is necessary to comprehend the underlying mechanisms of targets for cancer therapy

and biomarkers.

There is increasing proof relating the expression of disorder genes to cancer invasion and
metastasis [20]. The carcinogenesis and metastasis of many malignant tumors, such as colon, breast,
and esophageal squamous cell carcinoma, have been associated with aberrant activation of CTTN
[16,21-23]. It hasn't been established yet how important CTTN is for prognosis in OSCC.
Nevertheless, our findings demonstrated that OSCC tissues have elevated CTTN expression.
Pathologic analysis of the tissues from OSCC patients revealed a strong relationship between CTTN
expression and lymph node metastases and desmoplastic reaction, two well-known poor prognostic
markers of OSCC. A Kaplan-Meier analysis revealed a lower overall survival time for patients with
high CTTN expression. CTTN silencing in vitro suppressed the motility and invasive potential of
OSCC cells. These findings suggest that CTTN might play a role as an oncogene in the advancement
of OSCC.

The tumor microenvironment contains tumor cells that interact with surrounding cells via the
lymphatic and circulatory systems, influencing cancer development and progression, and it has been
widely associated with carcinogenesis [46]. Furthermore, by stimulating and
facilitating uncontrolled cell proliferation, nonmalignant cells in the tumor microenvironment play

crucial roles in all stages of carcinogenesis [47]. The cancer literature has extensively investigated

21



the tumor microenvironment, emphasizing its function in the development and progression of
tumors. Numerous elements of the tumor microenvironment have been found to affect the behavior
and progress of malignancy in previous research [45-51]. The tumor microenvironment includes
malignant cells as well as tumor vasculature, lymphocytes, adipocytes, dendritic cells, fibroblasts,
and cancer-associated fibroblasts [45]. The diverse immune capacities of each of these cell types
affect whether the tumor can survive and impact surrounding cells. This study revealed a
considerable increase in CTTN expression in the stroma cells of OSCC tissues, but no significant
prognostic effect was observed in our experimental cohort. The clinicopathologic relevance of

CTTN expression in various cell types of OSCC stroma tissues may need further investigation.

The term "desmoplasia" describes the development of stroma, or dense connective tissue [23].
Desmoplasia has been studied as a prospective useful predictive factor for survival because it is a
common indicator of wound healing and cancer progression. In this study, we found a positive
correlation between desmoplastic reaction and CTTN expression in patients with OSCC.
Furthermore, CTTN knockdown resulted in a significant decrease in cytokines associated with

desmoplasia reactions, such as IL-18 expression.
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5. Conclusion

We concluded that CTTN overexpression can increase the oncogenic activity of OSCC cells via
promotes the ability of proliferation, migration, and invasion. Moreover, CTTN may also can
increase desmoplastic reactions via promotes cytokine expression of cancer cells that can trigger
fibrosis in OSCC patients. Further studies were needed for investigate the underlying molecular

mechanism of CTTN in OSCC progression.
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