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ABSTRACT  

 

A Single-Step Prediction of Inferior Alveolar Nerve Injury  

After Mandibular Third Molar Extraction  

Using Contrastive Learning and  

Bayesian Auto-Tuned Deep Learning Model 

 

Myoungho Lee 

 

Department of Dentistry 

The Graduate School, Yonsei University 

(Directed by Professor Kee-Deog Kim, D.D.S., M.S.D., Ph.D.) 

 

 

In recent years, artificial intelligence (AI) and deep learning have 

revolutionized various scientific and technological fields, showing tremendous 

potential in solving complex problems. Among the numerous applications of 

deep learning, image classification has emerged as a powerful technique that 

can identify and classify objects within images with impressive accuracy.    

The most frequently performed oral and maxillofacial surgery is mandibular 
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third molar extraction, and inferior alveolar nerve damage is one of the most 

serious postoperative complications that can occur temporarily or permanently. 

Therefore, many studies are being conducted to predict the occurrence of nerve 

damage after tooth extraction through the analysis of pre-extraction radiographs. 

However, there are limitations to evaluating the possibility of sensory 

abnormalities using images. If the clinician has little experience or lacks 

knowledge, risk factors may be difficult to detect and interobserver error may 

occur. Additionally, no matter how experienced the clinician or oral radiologist 

is, errors are likely to occur if the radiograph is unclear or multiple findings 

overlap. 

  To overcome these limitations, research has recently been conducted using AI 

to evaluate the relationship between the mandibular third molars and the inferior 

alveolar nerve. However, studies using deep learning also have unique 

limitations. 

   This is a step to detect or identify the inferior alveolar nerve and mandibular 

third molar, but no research has been conducted to analyze the correlation with 

clinical data regarding actual nerve damage after tooth extraction or to predict 

nerve damage using cone beam computed tomography (CBCT). This issue has 

arisen because most existing deep learning studies are limited to the use of 

panoramic images owing to the lack of CBCT data. 

  Additionally, manually selecting the most appropriate hyperparameters for a 
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deep learning model requires an extensive and time-consuming trial-and-error 

process when working with limited amounts of data, making it difficult to 

produce an accurate model. 

   

Therefore, in this paper, qualitative improvement of images using contrast 

limited adaptive histogram equalization (CLAHE) and quantitative 

improvement using data augmentation reduced the possibility of damage to the 

inferior alveolar nerve during tooth extraction using CBCT, and a model was 

designed using a contrastive learning method and a Siamese network. We 

propose creating an accurate model through high-parameter auto-tuning using 

transfer learning and Bayesian optimization. 

 

In contrast to previous studies which have focused on the segmentation of the 

mandibular third molar and the inferior alveolar nerve and evaluated the 

possibility of contact, post-tooth extraction was performed in a single step 

without a segmentation process in our study by learning the results of pre-

extraction radiographs and actual clinical sensory abnormalities. A model was 

created to predict the possibility of sensory abnormalities using preoperative 

radiographs. 

  



viii 
 

  In order to overcome the limitation that the number of patients who developed 

sensory abnormalities after tooth extraction was significantly lower than the 

number of patients who did not, the accuracy of the prediction results was 

secured by using contrastive learning and Bayesian optimization after image 

processing and amplification of the data. . 

  

  We will extend our current research to find a more accurate model to evaluate 

the possibility of sensory abnormalities before mandibular wisdom tooth 

extraction by using various cuts of multiple radiographs we have collected. By 

determining the evaluation areas of the most accurate radiographs and 

incorporating AI technology in the editing process of these radiographs, we can 

create a model that is more accurate and practical for clinical application. 

 

 

Keywords: Third molar extraction; inferior alveolar nerve; numbness; deep learning; 

CLAHE; data augmentation; contrastive learning; Siamese network; 

transfer learning; Bayesian optimization.
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Ⅰ. INTRODUCTION 

 

 The impaction of the mandibular third molars, commonly referred to as wisdom 

teeth, is a frequent occurrence, and their extraction is a routine dental surgery 

performed by both oral and maxillofacial surgeons and general dentists. 
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According to Jung Y and Cho B(2013), 60% of individuals over 25 years of age 

in the Republic of Korea choose to have their mandibular third molars extracted. 

However, this commonly performed surgery is associated with a variety of 

complications such as swelling, pain, bleeding, infection, dry socket, and 

perforation of the maxillary sinus. A study by the Korea Dental Medical Policy 

Research Institute (2023) revealed that 57.8% of dentists have encountered 

complications related to the extraction of impacted mandibular third molars, 

indicating a high frequency of complications. Among the numerous 

complications, inferior alveolar nerve (IAN) damage is considered one of the 

most serious side effects. Unlike other complications that can be improved with 

proper treatment and medication, IAN damage poses a high risk of irreversible 

and permanent damage, causing lifelong physical discomfort and trauma to the 

patient. Furthermore, IAN damage accounts for a significant proportion (23.3%) 

of complications (Korea Dental Medical Policy Research Institute, 2023). 

Consequently, dentists bear an increasing responsibility to predict and manage 

these adverse outcomes.  

 

In light of these issues, various studies have been conducted to predict the risk 

of IAN damage in order to prevent nerve damage after dental extractions and to 

ensure safe surgical procedures. In particular, numerous approaches involving 

the analysis of pre-surgical radiographic images have been employed. Rood J et 
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al. (1990) reviewed the literature and proposed seven criteria1 that can be used 

to determine the possibility of IAN damage based on panoramic radiographs. 

However, the analysis of panoramic radiographs has limitations, such as the 

inability to accurately assess the anatomical shape of the mandibular third molar 

roots and their relationship with the mandibular canal owing to limitations of 

the radiographic equipment (Kim J et al., 2006). Consequently, in an effort to 

overcome these limitations, the evaluation of cone beam computed tomography 

(CBCT) images prior to the extraction of the mandibular third molars became 

standardized, and research was conducted on the prediction of nerve damage 

using CBCT. According to a paper by Suomalainen A et al. (2010), CBCT can 

more accurately determine the number of tooth roots and their relationship with 

the mandibular nerve compared with other radiographic images, contributing to 

the prediction of risks prior to extraction. Nevertheless, despite advances in 

CBCT techniques, the use of radiographic imaging for predictions still has 

certain limitations. For instance, radiographs may be unclear or contain 

duplications or errors, and the prediction of nerve damage by the analyzing 

dentist can vary because of different levels of expertise and knowledge, making 

accurate prediction challenging. 

  

                                                 
1 1. Darkening of the root, 2. Deflected roots, 3. Narrowing of the root, 4. Dark and bifid root, 5. Interruption of the 

white lines, 6. Diversion of the inferior alveolar canal, and 7. Narrowing of the inferior alveolar canal. 
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 These limitations have been dramatically improved with the integration of 

artificial intelligence (AI) technology in the field of dental medical imaging. AI 

and deep learning have recently contributed to significant advancements and 

have been applied to solve complex problems across various scientific and 

technological fields (Goodfellow I et al. 2016). Among the applications of deep 

learning, image classification has emerged as a powerful technique capable of 

identifying and classifying objects within images with impressive accuracy 

(Krizhevsky A et al. 2017). Notably, the advancement of Convolutional Neural 

Network (CNN) techniques within the realm of deep learning has been 

particularly striking across various AI applications (LeCun Y et al. 2015). The 

advantage of CNNs in capturing metrical features from raw images has been 

actively employed not only in the medical field but also in dental treatment. 

 

 The application of deep learning-based CNN models in the field of dentistry 

has exhibited high accuracy and efficiency, demonstrating the potential for use 

in various clinical scenarios. For example, Lee J-H et al. (2018) presented an AI 

model that recognizes and classifies dental caries based on panoramic 

radiographic images, and Krois J et al. (2019) introduced a deep learning model 

for periodontal assessment using radiographs. Furthermore, Yu H et al. (2020) 

developed an AI model for new skeletal diagnosis using lateral cephalometric 
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radiographs, and Lee K et al. (2020) developed a deep learning model for 

diagnosing periarticular inflammation of the jaw joint using CBCT images. 

 

Research using AI models to analyze radiographic images has also been 

conducted in the field of wisdom tooth extraction. Jaskari J et al. (2020) and 

Zhu T et al. (2021) compared AI recognition of wisdom teeth and the IAN with 

actual dentist recognition, achieving satisfactory results. Moreover, Yoo J et al. 

(2021) and Kim B et al. (2021) attempted to assess the possibility of sensory 

abnormalities after extraction by classifying the difficulty of impacted 

mandibular third molar based on the relationship between the AI-recognized 

wisdom tooth and the IAN. In addition, Jeon K et al. (2023) presented an AI 

model for evaluating the actual approach between the impacted mandibular 

third molar and the nerve based on panoramic radiographic images. 

 

This study contributes to the effective pre-emptive prediction and evaluation 

of the mandibular third molar by demonstrating deep learning methods to 

enhance the accuracy and efficiency of the diagnosis and analysis of 

radiographic images. Despite recent advancements, the scarcity of CBCT data 

remains a common limitation among many deep learning studies. Effective 

predictions using CBCT require ample training data; however, the number of 

cases involving post-extraction sensory abnormalities is significantly lower than 
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the total number of extraction cases, leading to a shortage of CBCT training data. 

Networks trained with a limited amount of CBCT data are known to overfit on 

arbitrary data, reducing the accuracy of predictions (Casalegno F et al., 2019). 

Moreover, using a limited dataset necessitates a time-consuming and extensive 

trial-and-error process to manually select the most suitable hyperparameters for 

the deep learning model, thus further complicating the task. 

 

 To address this issue, the current study aims to collect a large quantity of 

training data from various radiographic images of patients with sensory 

abnormalities and to determine the most accurate type of radiographic image for 

the pre-extraction assessment of sensory abnormalities. Furthermore, it intends 

to develop a model capable of accurate pre-emptive predictions using a limited 

dataset through the application of recent deep learning advancements such as 

transfer learning or contrastive learning. By developing a CBCT deep learning 

model applicable to a small dataset with an auto-tuning feature for 

hyperparameters through Bayesian optimization, this study seeks to overcome 

the limitations of existing CBCT models and offer an improved method for 

accurately predicting post-extraction IAN damage in the mandibular third molar. 
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Ⅱ. MATERIALS and METHODS 

 

Data Acquisition 

A. Dataset 

Retrospective dental radiographic images from patients who visited the 

advanced general dentistry or oral and maxillofacial surgery departments at 

Yonsei University Dental Hospital between January 2018 and December 2020 

were investigated. The research protocol was approved by the Institutional 

Review Board (IRB) of Yonsei University Dental Hospital (IRB No.2-2021-

0110). All patient data was anonymized, and the requirement for written consent 

was waived in view of the retrospective study design. The study was conducted 

in accordance with the principles of the Declaration of Helsinki. 

 

 For the collection of dental radiographic images, patients who had undergone 

pre-extraction radiographs (panoramic view or CBCT) of the mandibular third 

molar were selected, and 1,000 individuals were randomly chosen. The 

inclusion criteria applied in the process of collecting dental radiographic images 

were as follows: (1) patients who had pre-extraction dental radiographs of the 

mandibular third molars and (2) patients whose IAN numbness symptoms were 

evaluated through follow-up observation after extraction. Conversely, the 
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exclusion criteria were as follows: (1) patients with unclear IAN damage and (2) 

patients with incomplete or unclear radiographic images owing to imaging 

errors. Based on these inclusion and exclusion criteria, dental radiographic 

images were collected in JPG format. Panoramic radiographs including the IAN 

and third molar were manually cropped to sizes of 200x200, 400x400, 600x600, 

800x800, and 1000x1000 pixels (px)(Figure 1). In a similar manner, periapical 

views including the IAN and the roots of the mandibular third molar were 

cropped to a size of 1980x1440 px. For reconstructed axial CBCT images, an 

experienced dentist with over ten years of practice manually separated the 

section of the IAN and the root of the mandibular third molar based on a line 

connecting the center of the teeth, cutting vertically at 1 mm intervals and 

horizontally at 4 mm intervals to sizes of 70x70, 140x140, and 210x210 

px(Figure 2). In CBCT cross-sections along curves, the cross-sectional 

radiographs of the IAN and the root surface of the third molar were first 

observed together based on a line connecting the centers of the teeth, and 

manually cut at 1 mm intervals towards the mesial direction to a size of 250x400 

px(Figure 3). For the panoramic CBCT view, an experienced dentist cropped 

the reconstructed panoramic view in which the inferior alveolar nerve and the 

third molar overlapped the most to sizes of 100x100, 150x150, and 200x200 

px(Figure 4). 
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 The determination of the presence or absence of IAN damage was carried out 

by dental specialists who classified the cases into two categories based on the 

analysis of electronic medical records (EMR) and dental radiographs: class 0 

for cases without IAN damage and class 1 for those with IAN damage. 

Following the application of the inclusion and exclusion criteria, 992 panoramic 

radiographs (252 indicating IAN damage and 740 normal), 839 axial CBCT 

radiographs (212 indicating IAN damage and 627 normal), and 834 cross-

sectional CBCT radiographs (212 indicating IAN  damage and 622 normal) 

were collected.  

For the development of the deep learning model, 902 panoramic radiographs 

size 400x400 (162 indicating IAN damage and 740 normal), 750 axial CBCT 

radiographs Reference plane (139 indicating IAN damage and 611 normal), and 

750 cross-sectional CBCT radiographs Reference plane (139 indicating IAN 

damage and 611 normal) were utilized. 
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Figure 1. Panoramic radiographs. 
The images are cropped around the areas where the nerve canal and the tooth are closest to each other and are shown in 
five different sizes. 

 

 
 

 

 

 
 

   

 
 

Figure 2. CBCT - Reconstructed axial CBCT images. 
In these images, an experienced dentist with over ten years of practice has based the cuts in the axial direction on a 
curve connecting the centerline of the tooth, focusing on the area where the nerve canal and the tooth are closest, 

cropping at 1 mm vertical intervals. 

CBCT, cone beam computed tomography. 
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Figure 3. CBCT - Cross-sections along curves.  

In these images, an experienced dentist used a curve connecting the centerline of the tooth as a guideline to crop in the 

coronal direction, starting from the surface where the nerve canal and the tooth first appear together and cropping nine 

images at 1 mm intervals towards the mesial surface. 
CBCT, cone beam computed tomography. 

 

 
 

 

 

 

 

 
 

 
 

 

Figure 4. CBCT - Synthetic panoramic image along curves, slightly anterior or posterior. 
In these images, an experienced dentist with over ten years of practice has cropped in three different sizes from the 

determined curve, focusing on the point where the inferior alveolar nerve and the lower third molar are closest, similar 
to a panoramic view. 

CBCT, cone beam computed tomography. 
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B. Label Reorganization for Contrastive Learning 

 We employed contrastive learning to counteract the risk of model inaccuracy 

secondary to overfitting, which is caused by the low number of patients with 

trigeminal nerve damage relative to those without damage. This approach does 

not progress through traditional recognition and classification processes, but 

instead accelerates classification. In the process of implementing contrastive 

learning, patients are divided into those with and those without sensory 

abnormalities, and then grouped into classes based on these distinctions. 

 

Pairs of images from patients with sensory abnormalities are combined, and 

pairs from patients without abnormalities are similarly grouped. A label of 1 is 

assigned to pairs within the same class (i.e., either all with or all without sensory 

abnormalities), and a label of 0 is assigned to pairs from different classes. For 

example, if there are 10 patients with sensory abnormalities and 10 without, 

rather than having only 20 total data points, the labeling results in 45 pairs 

within the same class and 100 pairs indicating different classes, generating a 

total of 145 labeled data points. This method significantly increases the amount 

of training data, thus mitigating issues related to limited sample sizes and 

enhancing the ability of the model to generalize. 
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C. Data Configuration 

Table 1. Data configuration 

Panorama Train Validation Test Total 

Normal 696 22 22 740 

Abnormal 116 23 23 162 

CBCT-axial Train Validation Test Total 

Normal 575 18 18 611 

Abnormal 101 19 19 139 

CBCT-cross Train Validation Test Total 

Normal 575 18 18 611 

Abnormal 101 19 19 139 

CBCT, cone beam computed tomography. 

 

 In view of the limited number of samples in our dataset, compounded by an 

imbalance between patients with sensory abnormalities and those without, a 

larger training dataset was required. Consequently, we allocated a higher 

proportion of the available data to training compared with a typical model 

development process. The data were randomly split into training, validation, 

and test datasets at a distribution ratio of 9:0.5:0.5, ensuring that patients were 

not duplicated across sets. 

Training data is utilized to educate the machine learning model, enabling it to 

learn data patterns and perform predictions or classifications based on these 

learnings. It is essential that training data include as many cases as possible to 

assist the model in generalizing beyond the training examples. Validation data 
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serves to assess the performance of the model and to tune its hyperparameters, 

acting as an intermediate checkpoint to verify how well the model performs on  

unseen data. 

Validation data thus plays a critical role during the training process by helping 

to adjust and optimize the model, ensuring that it does not overfit to the training 

data. Test data is used to evaluate the final performance of the model after 

training has concluded, testing how well the model operates on entirely new and 

unseen data. 

Test data is not used during the model development process but is crucial in 

assessing how the model will perform on real-world data, providing a measure 

of the effectiveness of the model and its readiness for practical application. 

 

 

Image Preprocessing 

A. Image contrast enhancement 

 To enhance the contrast of images, we utilized a technique known as contrast 

limited adaptive histogram equalization (CLAHE) (Zuiderveld K , 1994). 

CLAHE is a method that improves image contrast and is particularly beneficial 

for medical imaging or low-light images. Traditional histogram equalization 

distributes the histogram of the entire image uniformly, thereby improving 

contrast; however, this can lead to the loss of detail in brighter or darker areas. 
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CLAHE addresses this issue by dividing the image into small blocks or tiles and 

applying histogram equalization independently to each block, thereby 

enhancing local contrast. 

Additionally, CLAHE utilizes "limited contrast" to prevent the excessive 

application of histogram equalization that might increase noise in certain areas. 

We implemented CLAHE in our training dataset using the Albumentations 

library in Python (Buslaev A et al., 2020). To determine the optimal 

hyperparameters for CLAHE, we conducted a grid search analysis by adjusting 

the clip limit and tile grid size. The hyperparameters that were ultimately 

selected based on the minimization of loss in the validation dataset consisted of 

a clip limit of 2 to 4 and a tile grid size of (8, 8) for both panoramic and CBCT 

images. 

 

B. Image data augmentation 

 To address the severe imbalance between the number of patients with sensory 

abnormalities and those without, as well as the overall scarcity of data, we 

applied quantitative enhancements to our dataset. Image augmentation is crucial 

in the medical domain for increasing the precision of deep learning models, as 

it allows for the generation of diversified images from various positions and 

orientations, thereby creating a more generalized and robust model. 
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In our dataset, the number of images from patients without sensory 

abnormalities was approximately six times greater than that from patients with 

abnormalities. This discrepancy can lead to overfitting in the images of healthy 

patients, potentially decreasing the generalization ability and accuracy of the 

model as the number of images increases. In order to resolve this issue, we 

applied image augmentation techniques to the images of patients with neural 

damage in our training dataset. This integration of augmented images into the 

training dataset helped mitigate the problem of data imbalance. The employed 

image augmentation techniques included rotation, shifting, and horizontal 

flipping. Rotations were confined to a maximum angle of 30 degrees 

(rotate_limit=30), shifting occurred both horizontally and vertically 

(shift_limit=0.1), and flipping was only horizontal (HorizontalFlip=True). 
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(a) Model training process. 

Two images which can belong to either the same class or different classes are utilized. These images undergo the 

CLAHE algorithm to enhance their contrast before being fed into the deep learning model as inputs. Subsequently, the 
two input images pass through the backbone network and the embedding layer, resulting in the generation of 128-

dimensional embedding vectors. Through the application of contrastive learning, the deep learning model is trained to 

ensure that embedding vectors corresponding to images from the same class are positioned closely to each other in the 
latent space, whereas embedding vectors associated with images from different classes are preferentially located farther 

apart.  

CLAHE, contrast limited adaptive histogram equalization. 

 

 

 

 

 
 
(b) Model test process.  

The trained deep learning model leverages the acquired knowledge of embeddings to make predictions regarding the 

proximity of a new test image to either the normal class or the neural damage class within the latent space. 
 

 
Figure 5. Deep learning model pipeline. 
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Model Architecture 

A. Contrastive learning 

 To address the issue of limited data in this study, we employed contrastive 

learning in our approach. Contrastive learning is a pivotal technique used in 

machine learning(Figure 5), particularly within the domain of self-supervised 

learning. This method is utilized to learn useful representations from unlabeled 

data primarily by comparing similarities and differences within the data, thereby 

aiding the model in recognizing important features. The core concept of 

contrastive learning involves training the model by comparing similarities and 

differences between data points, such that the model is trained  

to bring pairs from the same category closer together and push pairs from 

different categories apart. This enables the model to better understand and 

effectively represent the intrinsic characteristics and patterns of the data. 

In contrastive learning, data points are first transformed into embeddings, which 

are vectors mapped from higher to lower dimensions. The embedded data is 

then used to measure distances between points, and a contrastive loss function 

is employed to train the model. As a result, the model maximizes the similarities 

within images belonging to the normal patient class while minimizing the 

differences between images of different classes, such as normal patients and 

those with neural damage. 
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B. Siamese Network 

 To implement contrastive learning, we utilized a Siamese network (Koch G et 

al., 2015), which is a specialized type of neural network used in the field of deep 

learning. A Siamese network comprises two identical subnetworks, each sharing 

the same structure and weights, which facilitates the learning and comparison 

of similarities or relationships between two input data points. This network 

design focuses on processing two input images through each subnetwork to 

extract features then uses these features to compute the degree of similarity 

between the images. The ultimate output of this network is the distance between 

the two images, which indicates their similarity; a shorter distance suggests 

greater similarity. 

The Siamese network is particularly valued for its ability to learn efficiently 

from small amounts of data, enabling it to deliver a robust performance even 

with limited datasets. 

 

C. Backbone Network 

 In the context of Siamese networks, the backbone network refers to the primary 

network that extracts embeddings from input images. These embeddings are 

crucial for appropriately capturing essential features from the input data, which 

are subsequently used to measure the distance between the vectors of two input 

data samples within the Siamese network. Typically, convolutional neural 
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networks (CNNs) are adopted as backbone networks because of their 

effectiveness in image processing tasks and their suitability for extracting 

prominent features from images. In this study, we evaluated five different CNN 

backbone models to identify the most efficient and appropriate CNN backbone 

model; the included models were as follows: MobileNetV2 (Sandler M et al., 

2018), ResNet101D (He D et al., 2019), Vision Transformer (ViT) (Dosovitskiy 

A et al., 2020), Twins-svt (Chu X et al., 2021), and SSL-ResNet50 (Yalniz IZ 

et al., 2019). 

 

 

Model Training 

A. Transfer Learning 

 Transfer learning is a method used in machine learning and deep learning to 

apply or reuse models trained on a specific task for a different task. This 

technique transfers learned knowledge to a new problem, thereby reducing the 

training time for new tasks, minimizing the required data, and enhancing overall 

performance. To effectively train Siamese networks, we utilized a CNN 

backbone network trained on a large dataset known as IMAGENET (Deng J et 

al., 2009). Images were resized to a resolution of 224x224 px, from which high-

level features were extracted. These high-level features were then processed 

through an embedding layer and inputted into a contrastive loss function. This 
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approach allows for the reuse of models trained with abundant data to enhance 

performance when data is scarce for new tasks. Additionally, because the model 

has already learned basic features, the time required for further training is 

significantly reduced. Consequently, transfer learning can offer better 

performance than training a model from the start for new tasks. 

 

B. Model Optimization 

 In this study, Bayesian optimization (Snoek J et al., 2012) was employed to 

 

 optimize the hyperparameters of a Siamese network. Bayesian optimization is 

 an effective method for solving optimization problems involving functions that 

are relatively expensive to evaluate. This approach is particularly useful when 

function evaluations are costly or time-consuming, such as in hyperparameter 

optimization of machine learning models. Bayesian optimization builds a model 

of the function (typically using a Gaussian process) based on past evaluations. 

This model probabilistically represents the uncertainty in the function and 

predicts which input values are likely to return the maximum or minimum of 

the function. Unlike a traditional grid search or random search, Bayesian 

optimization uses the model outcomes to predict subsequent search locations 

and accordingly directs the search process. This allows for automatic adjustment 

of search positions based on previous results, eliminating the need for manual  

tuning of hyperparameters. 
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To achieve this goal, we utilized the Tree-structured Parzen Estimator (TPE) 

algorithm (Bergstra J et al., 2011) and the Asynchronous Successive Halving 

Algorithm (ASHA) (Li L et al., 2020) provided by the Ray package in Python 

(Liaw R et al., 2018) to optimize four hyperparameters. 

 

 

Model Evaluation of Diagnostic Performance and Statistical 

Analysis 

 To overcome the limitation of having a disproportionately large ratio of patients 

with sensory abnormalities to those without any symptoms, our model utilized 

qualitative and quantitative data enhancements. The most suitable contrastive 

learning approach was applied for two-way classification, integrating transfer 

learning and Bayesian optimization during the training process. 

To evaluate the performance of the created model, we used quantitative metrics 

such as precision, recall, accuracy, and F1 score. Statistical significance was 

assessed by presenting statistical values as means with 95% confidence intervals. 

A non-parametric bootstrap method was employed to calculate the 95% 

confidence intervals of the F1 score and accuracy. This method entailed the 

random resampling of the cases from the test dataset n times in 1,000 bootstrap 

samples, using the 2.5th to 97.5th percentiles of the bootstrap distribution to  

define the 95% confidence interval. 
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To assess the real-world efficacy of the specially employed contrastive 

learning and Bayesian optimization, the McNemar test was utilized. We 

compared the performance of deep learning models with and without the use of 

five backbone networks, employing contrastive learning and Bayesian 

optimization. The criterion for hypothesis testing was set at a significance level 

of 0.001. 

 

 

Model Evaluation compared dentist prediction 

  This observer study was approved by the IRB of Yonsei University Dental 

Hospital. Human observation of the above-mentioned samples of 127 

radiographs was performed by two oral and maxillofacial surgeons (OMFS) 

with over ten years of experience, two general dentists with over ten years of 

experience (GD-10y), and two general dentists with one year of experience 

(GD-1y). The image used for evaluation was examined under the same 

conditions (crop, size, contrast, etc.) as the image tested by the developed 

model. Additionally, observer evaluation was performed using a 24.1-inch 

liquid-crystal display (LCD) monitor (LG, Seoul, Korea) with a screen 

resolution of 1920x1200 px in a dark room without sunlight. Each observer 

looked at the provided image and predicted whether there was IAN numbness 

or not (class 0 = no IAN numbness, class 1 = presence of IAN numbness) 
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without adjusting the brightness or contrast of the images or zooming in or out. 

Four weeks later, the same images were randomly shuffled and observer 

evaluation was conducted under the same conditions. Interobserver agreement 

between the observers within each group was also calculated. 

The performance of the developed model was compared to that of a human 

observer in terms of prediction of IAN numbness on validation data. The recall, 

specificity, accuracy, precision, and F1 score were determined for each 

developed model and each observer. Intraobserver and interobserver agreement 

were determined using quadratic weighted kappa (k). Statistical analysis was 

performed using Excel (Microsoft, WA, USA) and SPSS 25.0 (IBM, NY, USA). 
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Ⅲ . RESULTS  

 

Deep Learning Model Evaluation of Diagnostic performance 

Table 2. Performances of deep learning models employing contrastive learning. 

 Precision Recall Accuracy F1 score 

MobileNetV2 0.857 1.000 0.919(0.878-0.931) 0.923(0.905-0.935) 

Resnet101D 0.882 0.833 0.864(0.849-0.878) 0.857(0.845-0.870) 

Vision Transformer 0.809 0.944 0.864(0.853-0.876) 0.871(0.857-0.884) 

Twins-svt 0.750 1.000 0.838(0.822-0.850) 0.857(0.843-0.872) 

SSL-ResNet50 1.000 0.777 0.892(0.879-0.906) 0.875(0.860-0.889) 

Note: The data in parentheses are 95% confidence intervals. 

 
 To secure the most efficient CNN model, we evaluated the precision, recall, 

accuracy, and F1 scores of five backbone models: MobileNetV2, Resnet101D, 

ViT, Twins-svt, and SSL-ResNet50 (Table 2). Overall, the models 

demonstrated good performance with accuracy ranging from 0.838 to 0.919 and 

F1 scores between 0.857 and 0.923. 

SSL-ResNet50 exhibited the highest precision, whereas MobileNetV2 scored 

the highest in recall, accuracy, and F1 score. Specifically, MobileNetV2 

achieved a precision of 0.857, a recall of 1.000, an accuracy of 0.919 

(confidence interval 0.878-0.931), and an F1 score of 0.923 (confidence interval 

0.905-0.935). Resnet101D showed a precision of 0.882, a recall of 0.833, an 
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accuracy of 0.864 (confidence interval 0.849-0.878), and an F1 score of 0.857 

(confidence interval 0.845-0.870). 

 The ViT model reached a precision of 0.809, a recall of 0.944, an accuracy of 

0.864 (confidence interval 0.853-0.876), and an F1 score of 0.871 (confidence 

interval 0.857-0.884). Twins-svt demonstrated a precision of 0.750, a recall of 

1.000, an accuracy of 0.838 (confidence interval 0.822-0.850), and an F1 score 

of 0.857 (confidence interval 0.843-0.872). Finally, SSL-ResNet50 achieved a 

precision of 1.000, a recall of 0.777, an accuracy of 0.892 (confidence interval 

0.879-0.906), and an F1 score of 0.875 (confidence interval 0.860-0.889) 

. 

 

Comparative Study on the Efficacy of Contrastive Learning 

Table 3. F1 score improvements and corresponding P-values for various models utilizing 

contrastive learning (CL). 

 F1 score Improvement P-value 

MobileNetV2 144% (0.302 → 0.740) P < 0.001 

Resnet101D 266.8% (0.188 → 0.689) P < 0.001 

Vision Transformer 156.0% (0.275 → 0.704) P < 0.001 

Twins-svt 94.6% (0.370→ 0.719) P < 0.001 

SSL-ResNet50 429.4% (0.109 → 0.576) P < 0.001 

Note: The data in parentheses represent the disparities between the results obtained 

without CL and those achieved with CL.  

Improvement (%) = (With CL - Without CL) * 100/Without CL. 
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The data in Table 3 demonstrates substantial improvements in F1 scores across 

various models, suggesting the effectiveness of contrastive learning.  

MobileNetV2 showed a remarkable increase of approximately 144.8%, with F1 

scores rising from 0.302 to 0.740. Similarly, F1 scores in Resnet101D improved 

from 0.188 to 0.689, an increase of about 266.8%, and those in the ViT model 

rose from 0.275 to 0.704, marking an increase of 156.0%. Twins-svt also 

showed an improvement in F1 scores from 0.370 to 0.719, representing an 

increase of 94.6%. 

SSL-ResNet50 displayed the most dramatic improvement, with F1 scores 

surging from 0.109 to 0.576, which represents an increase of 429.4%. 

These results highlight the potential of contrastive learning to significantly 

enhance model performance in terms of F1 scores, as corroborated by 

statistically significant P-values (P < 0.001). This outcome underscores not only 

the effectiveness of contrastive learning techniques but also their robustness in 

enhancing model accuracy across diverse architectures. 

 

 

Comparative Study on the Efficacy of Bayesian Optimization 

Table 4. F1 score improvements and corresponding P-values for various models utilizing 

Bayesian optimization (BO). 

 F1 score Improvement P-value 

MobileNetV2 24.7% (0.740 → 0.923) P < 0.001 
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Resnet101D 24.4% (0.689 → 0.857) P < 0.001 

Vision Transformer 23.7% (0.704 → 0.871) P < 0.001 

Twins-svt 19.2% (0.719→ 0.857) P < 0.001 

SSL-ResNet50 51.7% (0.576 → 0.875) P < 0.001 

Note: The data in parentheses represent the disparities between the results obtained 

without BO and those achieved with BO.  

Improvement (%) = (With BO - Without BO) * 100/Without BO. 

 

  

 Table 4 illustrates the fact that Bayesian optimization can significantly enhance 

the performance of various machine learning models as measured by the 

harmonic mean of precision and recall, i.e., the F1 score.  

For MobileNetV2, the F1 score increased from 0.740 to 0.923, marking an 

improvement of 24.7%. This highlights the adaptability of MobileNetV2 to 

optimization techniques. Resnet101D improved the F1 score from 0.689 to 

0.857 with an increase of 24.4%, indicating significant benefits from fine-tuning 

using Bayesian methods. The ViT model saw an increase in F1 score from 0.704 

to 0.871, improving by 23.7%. This suggests that even newer architectures like 

ViT are well-suited to Bayesian optimization, despite employing mechanisms 

different from those of traditional CNNs. The F1 score in Twins-svt rose from 

0.719 to 0.857, an improvement of 19.2%, demonstrating good scalability and 

potential for enhancement through optimization. SSL-ResNet50 exhibited a 

dramatic increase in F1 score from 0.576 to 0.875, a rise of 51.7%. This 
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dramatic improvement underscores the hidden potential of semi-supervised 

learning (SSL) models when properly optimized. 

It is crucial to emphasize that the P-values for these improvements are all less 

than 0.001, confirming that the observed enhancements are not the result of 

random fluctuations but are genuine effects of the Bayesian optimization 

process. This underscores the potential of Bayesian optimization not only to 

fine-tune model parameters effectively but also to significantly enhance model 

performance across various architectures. 

 

 

Comparison of model predictions and dentist predictions 

 
 

Figure 6. Test results based on dentist’s clinical experience 

The higher the dentist's clinical experience, the higher the results in all outcomes. 
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Table 5. Comparison of the prediction accuracy of dentists and AI models. 

 

  

  

  
  

Two dentists  

with one year of 

experience 

Two dentists  

with over 10 years of 

experience  

Two specialists 

in oral and 

maxillofacial surgery 

 
AI model 

1st 2nd 1st 2nd 1st 2nd 

Score 138 145 143 156 179 160 0.838 

~0.919 
Accuracy 0.5433 0.5709 0.5630 0.6142 0.7047 0.6299 

 

  

Table 5 reveals a progression in accuracy from first-year specialists to 

experienced specialists to oral and maxillofacial surgeons, with evaluated 

accuracy rates ranging from a minimum of 0.5433 to a maximum of 0.7047. 

This demonstrates that in our study, the AI model was significantly more 

accurate than experienced dentists in assessing the likelihood of sensory 

abnormalities following wisdom tooth extractions(Figure 6). Human accuracy 

increases with the experience level of the dentist but nevertheless remains 

consistently lower than that of our AI model. 
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Ⅳ. DISCUSSION 

 
This research included patients who visited the Department of Integrated 

Dentistry or Oral and Maxillofacial Surgery at Yonsei University Dental 

Hospital between January 2018 and December 2020 for the extraction of their 

third molars and had pre-extraction dental radiographic images taken. The aim 

was to create a model capable of predicting the potential for damage to the IAN 

before the extraction of the lower third molar solely based on pre-surgical 

radiographic images, using deep learning to analyze both panoramic and CBCT 

radiographic images. 

The extraction of impacted mandibular third molars is a common dental 

surgery, and IAN damage is a typical postoperative complication. Although 

many cases of IAN damage are temporary, some can cause total or partial 

permanent damage. Therefore, dentists aim to predict these risks using 

radiographic images such as CBCT to ensure a safer surgical process and 

outcome. Recently, to surpass the limitations of dentists in predicting the 

preoperative risk of IAN damage, studies have been conducted on the diagnosis 

of impacted mandibular third molars using AI models. Since 2019, sixteen 

papers have been published regarding the use of radiographic image data and 

the application of CNN models in this context (Table 6). 

In 2019, a model was developed using panoramic radiographs to accurately 

detect the IAN and the impacted mandibular third molar. Efforts in 2020 
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focused on accurately identifying the IAN and mandibular third molar in CBCT 

images, along with attempts to create models using panoramic images that could 

distinguish actual contact between the IAN and the teeth, as observed in CBCT 

images. Subsequent efforts were made to improve accuracy by applying various 

methods and different CNN models. In 2021, Kim et al. conducted research to 

develop a model that could autonomously and preoperatively predict IAN 

damage; the model used actual patient images (both with and without damage) 

as training data and achieved an average accuracy rate of 0.827. 
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Previous studies have predominantly focused on marking or labeling pre-

training data to facilitate classification learning, thereby enabling the inference 

of the likelihood of IAN damage through the spatial relationship between the 

mandibular third molar and the IAN. In contrast, our research aimed to create 

the most accurate model capable of autonomously predicting IAN damage. This 

goal was achieved by collecting radiographic images from patients who have 

experienced IAN damage and those who have not, and subsequently employing 

various methods to analyze the data. 

 

To overcome the fundamental issue of data scarcity in medical models, efforts 

have been made to enhance the accuracy of deep learning models through three 

key processes: 

 

1. Image preparation: The process involved histogram equalization using 

CLAHE and data augmentation to increase the size of the dataset. 

 

2. Model architecture: The architecture was set to utilize contrastive learning, 

employing a Siamese network for this purpose. The shared CNN of the Siamese 

network employed five backbone networks (MobileNetV2, ResNet101D, ViT, 

Twins-svt, and SSL-ResNet50). 
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3. Training process: Optimization of various hyperparameters was achieved 

through the use of transfer learning and Bayesian optimization. 

 

These measures led to satisfactory outcomes across the five backbone 

networks in terms of precision, recall, accuracy, and F1 score. The precision 

ranged from 0.750 to 1.000, with SSL-ResNet50 showing the highest precision, 

followed by ResNet101D, MobileNetV2, ViT, and Twins-svt in that order. The 

recall scores ranged from 0.777 to 1.000, with MobileNetV2 achieving the 

highest recall score, followed by Twins-svt, ViT, ResNet101D, and SSL-

ResNet50 in that order. Accuracy ranged from 0.838 to 0.919, with 

MobileNetV2 being the most accurate model, followed by SSL-ResNet50, 

ResNet101D, ViT, and Twins-svt in that order; similarly, the F1 scores ranged 

from 0.857 to 0.923 in the same order. MobileNetV2 achieved high precision 

and recall, ResNet101D showed a balanced performance, ViT exhibited high 

recall but lower precision, Twins-svt achieved perfect recall with lower 

precision, and SSL-ResNet50 showed perfect precision but lower recall. The 

accuracy rates of these models were all much higher than those of the dentists 

in predicting the possibility of IAN damage. 

 

The effectiveness of contrastive learning and Bayesian optimization was 

validated using the McNemar test, demonstrating significant improvements in 
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overcoming the limitations of data scarcity. Contrastive learning improved F1 

scores across all models, with improvements ranging from 94.6% to 429.4%. 

Similarly, Bayesian optimization increased F1 scores across all models, with 

increases ranging from 19.2% to 51.7%. 

 

Unlike previous studies that focused on segmentation between the third molar 

and the IAN and evaluated their contact potential, this study created a model 

capable of predicting the possibility of IAN damage after extraction using pre-

extraction radiographic images and actual clinical outcomes of IAN damage 

without the need for segmentation. 

 

To address the challenge of the absolute scarcity of patients with post-

extraction sensory abnormalities compared with those without, the study 

utilized image processing and augmentation followed by contrastive learning 

and Bayesian optimization to ensure predictive accuracy. 

 

Our study had several limitations. First, when considering the complications 

of wisdom tooth extraction, our analysis could only account for aspects that can 

be reproduced through radiographic images, such as the distance to the nerve 

and the shape of the tooth root. Factors such as the inexperience of the surgeon, 

nerve damage during the extraction process, and patient characteristics such as 
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age and sex cannot be considered in our analysis. Second, the study sample 

exclusively utilized data from a single institution known as the Yonsei 

University Dental Hospital. Therefore, the applicability of our findings and the 

accuracy of the predictive models in diverse clinical settings must be validated 

with data from private dental practices and other institutions. 

  

A third limitation of our study was the small proportion of patients with sensory 

abnormalities relative to the total number of patients who underwent tooth 

extraction, which constrained the rate of increase in sample size. To overcome 

this limitation, we utilized rotation and transformation of the training data along 

with transfer and contrastive learning techniques. We plan to continue 

augmenting our dataset with additional data from patients experiencing sensory 

abnormalities to further our research and improve model training. 

  

Finally, another limitation was the unavoidable human intervention in the 

cropping process and data determination. In the collection of panoramic and 

CBCT images, the cropping performed by the doctor is essential, as the 

computer does not perform cropping autonomously. This reliance on human 

judgment introduces potential variability and subjective bias in the data 

preparation process. 
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This study aims to develop a more precise predictive model by utilizing a 

variety of radiographic data. We plan to implement the modeling techniques 

derived from this research to construct the most effective model and will expand 

our dataset by collecting additional data from patients experiencing sensory 

abnormalities. This expanded dataset will help to enhance the model's accuracy. 

Furthermore, the ultimate goal is to integrate a capability within the AI to 

autonomously crop images, thereby minimizing the need for dental practitioner 

intervention. By achieving these milestones, we intend to create a practical 

model that enables dentists to proactively manage potential post-extraction 

complications associated with wisdom teeth.  
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Ⅴ. CONCLUSION 

 

The principal advantage of this study lies in the fact that it applies a single-

step process to overcome the limitation of lack of data, which is a common 

limitation of information in the medical field. 

The first key aspect of our approach was the application of qualitative 

improvement through histogram equalization using CLAHE in the image 

preparation process and quantitative data amplification using data 

augmentation. 

Second, the model was set to contrastive learning and a Siamese network was 

used for this purpose, and five backbone networks were used as joint CNNs. 

Third, transfer learning was used in the learning process and several 

hyperparameters were optimized using Bayesian optimization. 

Through these efforts, the precision, recall, accuracy, and F1 scores were 

measured satisfactorily at a reliable level. Upon using the McNemar test to 

compare the results of our model to those obtained when the above-mentioned 

second and third steps were not performed,, an improvement of more than 100% 

was observed. 

 

  The accuracy of predicting IAN injury after the extraction of impacted 

mandibular third molars can be determined through preoperative radiographic 



40 
 

images. According to research, the precision of using radiographic images to 

predict nerve damage is significantly higher than that of relying on the 

assessment of dental practitioners. 

 

 By applying the results of this study to a larger dataset of radiographic 

images and incorporating AI in data processing, a clinically applicable 

prediction model for sensory disturbances following mandibular third molar 

extraction can be developed based on preoperative radiographic images. 
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국문요약 

 

하악 제 3대구치 발치후 

대조 학습과 Bayesian 최적화를 이용한 

단일단계의  

하치조신경 손상의 예상 모델 개발 

 

 

연세대학교 대학원 치의학과 

이 명 호 

지도 교수 : 김 기 덕 

 

 

최근 몇 년 동안 인공 지능(AI)과 딥 러닝은 다양한 과학 기술 

분야에 혁명을 일으키며, 복잡한 문제를 해결하는 데 엄청난 잠재력을 

보여주었다. 수많은 딥 러닝 애플리케이션 중에서 이미지 분류는 

인상적인 정확도로 이미지 내의 개체를 식별하고 분류할 수 있는 

강력한 기술로 부상했다.  
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구강악안면외과에서 가장 많이 시행되는 수술은 하악 제 3대구치 

발치이며, 하치조신경 손상은 일시적 또는 영구적으로 발생할 수 있는 

가장 심각한 합병증 중 하나이다. 따라서 발치 전 방사선 사진 분석을 

통해 발치 후 신경손상 발생을 예측하기 위한 많은 연구가 진행되고 

있다. 그러나 영상을 이용한 감각이상의 가능성 평가에는 한계가 

존재한다. 임상의의 경험이 적거나 지식이 부족하면 위험요인을 찾기 

어려워 관찰자간 오차가 발생할 수 있다.  또한 임상의나 구강 

방사선과 전문의가 아무리 경험이 많더라도 방사선 사진이 

불분명하거나 여러 소견이 중복되면 오류가 발생할 가능성이 있다.  

 

 이러한 한계를 극복하기 위해 최근 인공지능을 이용한 하악 

제 3대구치와 하치조신경의 관계를 평가하는 연구가 진행되고 있다.  

지금까지 대부분의 연구는 하치조신경과 하악 제 3 대구치를 

검출하거나 동정하는 단계로, 발치 후 실제 신경손상의 임상자료와의 

상관관계를 분석하거나 CBCT 를 이용하여 신경손상을 예측한 연구는 

수행된 바가 없다. 또한 대부분의 딥러닝 연구는 감각이상의 환자와 

그렇지 않은 환자의 CBCT 데이터 수의 불균형의 한계가 존재한다. 

 이러한 한계에 의해 딥 러닝 모델에 가장 적합한 하이퍼파라미터를 

수동으로 선택하는 작업은 제한된 적은 양의 데이터로 작업할 때 
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광범위하고 시간이 많이 걸리게 되며, 과접합과 같은 시행착오가 생길 

수 있어 정확한 모델을 생성하기 어렵다.   

   

따라서 본 논문에서는 이러한 한계를 극복하여, 하악 사랑니 발치 

시 하치조 신경의 손상 의 가능성을 평가하는 모델을 만들기 위해, 

CLAHE 를 이용한 이미지의 질적 증강과 Data augmentation 을 이용한 

양적 증강을 시행하였으며, Siamese Network 을 이용한 대조 

학습방식으로 모델을 디자인 하고, 이를 전이학습과 Bayesian 

Optimization을 이용한 하이파라미터의 auto-tuning을 통해 정확성을 

향상시켰다.  

 

이전까지의 연구들이 하악 제 3 대구치와 하치조신경의 

segmentation 에 집중하고 그 접촉 가능성을 평가하였던 반면, 발치 

전 방사선 사진과 실제 임상의 감각이상 결과를 학습하여, 

segmentation 의 과정 없이 단일 단계만으로 발치 술전 방사선 사진을 

통한 감각 이상의 가능성을 예측 할 수 있는 모델을 제작 하였다. 

  

 우리는 현재의 연구를 확장하여, 여러가지 종류와 방법으로 수집한 

다양한 방사선 사진을 이용하여 하악 사랑니 발치 전 감각이상의 
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가능성을 평가하는 보다 정확한 모델을 찾을 것이다. 또한 방사선 

사진의 편집 과정에 인공지능의 기술을 적용하여 실제 임상에서 

실용화 할 수 있는 사랑니 발치 전 하치조신경 손상의 가능성 평가 

모델을 만들 수 있을 것이다. 

 

 

 

핵심되는 말: 제 3 대구치 발치; 하치조신경; 감각이상; deep learning; 

CLAHE; data augmentation; 대조학습; Siamese network; 

전이학습; Bayesian optimization;  
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