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ABSTRACT 

 
Ensemble Monte Carlo dropout based uncertainty quantification in 

automated classification of spinal bone metastasis using abdominal CT 
scans 

 

 

Purpose: To enhance the automatic detection and classification of spinal bone metastases from 

abdominal computed tomography (CT) scans, this study aimed to address the challenges in 

diagnostic sensitivity and efficiency by integrating uncertainty quantification.  

 

Methods: This retrospective study analyzed 11,468 abdominal CT images from 116 patients 

diagnosed with spinal bone metastases and included data from 11 healthy normal-control 

participants, contributing 957 images to the dataset. The images were annotated and classified into 

"normal," "disc," and "metastasis." We introduced a novel and efficient technique for uncertainty 

quantification called ensemble Monte Carlo dropout (EMCD). This technique leverages the 

DenseNet201 architecture with added dropout layers for uncertainty management and employs 

YOLOv5m for precise spine region detection, complemented by a weighted voting ensemble for 

classification. The uncertainty quantification was articulated through numerical values, predictive 

probability intervals, and Uncertainty-CAM visualizations. Our performance evaluations focused on 

assessing spine detection efficiency, metastasis classification accuracy, and the robustness of the 

model against both healthy controls and out-of-distribution data. 

 

Results: The YOLOv5m model achieved a high mean average precision of 0.995 in spine 
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detection. The EMCD model showed superiority in multi-class classification with an area under the 

receiver-operating-characteristic curve (AUC) of 0.93, outperforming traditional and other 

uncertainty quantification models. At 50% data retention, the EMCD model reached an AUC of 0.96 

and an accuracy of 96%. Moreover, it maintained a high accuracy of 90% on a normal-control 

dataset. Additionally, the model demonstrated excellent calibration with an Expected Calibration 

Error (ECE) of 0.09. 

 

Conclusion: The EMCD model significantly advances the automated detection of spinal bone 

metastases, offering superior diagnostic accuracy and a novel approach for uncertainty 

quantification. This contributes to more informed clinical decision-making and highlights the 

potential of integrating advanced artificial intelligence methodologies to improve patient care. 

 

 

 

                                                                                

Key words : Spine; Computed Tomography; Metastasis; Deep learning; Uncertainty 
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1. Introduction 

The bone is the third most common site of metastasis after the lungs and liver, and it is 

associated with an advanced stage and poor prognosis1-3. Approximately two-thirds of cancer 

patients develop bone metastasis4. Almost all patients with cancer have metastasis to some part of 

the body5. Skeletal metastasis is clinically significant because of its associated symptoms and 

complications, including back pain, pathologic fractures, muscle weakness, and bowel and bladder 

incontinence6. Thus, accurate and early detection of bone metastases is important for proper 

treatment planning. Computed tomography (CT) is widely accessible and cost-effective. Therefore, 

in clinical practice. Therefore, in the clinical setting, CT is the predominant imaging modality 

employed for both initial cancer staging and subsequent follow-up evaluations7-9. However, 

detection of bone metastasis using CT is not sensitive10. This is partly due to the fact that early bone 

metastasis is only seen as subtle changes on CT10, but also due to radiologist burnout. Thousands of 

chest or abdominal CT scans are acquired during the clinical follow-up management of patients with 

malignancies, such as lung, prostate, or breast cancer. Because traditional whole vertebral screening 

is time-consuming, efforts have been made to enhance bone metastasis detection using various 

algorithms to remove bony structures11-13.  

Recent advancements in artificial intelligence (AI), particularly in machine learning and deep 

learning (DL), have shown promise for improving the detection of bone metastases in spinal CT 

scans, potentially serving as a valuable tool in aiding early diagnosis and informing treatment 

decisions14-17. Despite their high predictive accuracy, DL models face criticism for their "black box" 

nature, which obfuscates their decision-making processes and could lead to challenges in clinical 

adoption18. The classification of vertebral bone metastases poses significant challenges owing to the 

complex structure of the spine and diversity of lesions. Recent studies have demonstrated the 

potential of DL to address these challenges. Koike et al. developed an AI-based computer-aided 

detection system utilizing DL for the classification of lytic vertebral bone metastases from 79 CT 

scans, achieving an accuracy of 0.872 and area under the receiver operating characteristic curve 

(AUC) of 0.94116. Noguchi et al. introduced a DL algorithm aimed at assisting radiologists in 
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detecting bone metastases on CT images by analyzing more than 269 CT scans, with improvements 

in the free-response receiver operating characteristic scores from 0.746 to 0.89917.  

The field of DL has explored various methodologies for uncertainty quantification (UQ), 

among which the Bayesian approach and deep ensembles (DE) are prominently utilized19. The 

Bayesian approach, as exemplified by Gal et al., introduces stochastic variations in the model's 

weights to assess prediction uncertainty, with Monte Carlo dropout (MCDO) being a notable 

technique20. However, MCDO can be challenging to integrate with all DL architectures, often 

underperforms compared to conventional convolutional neural networks, and may lack robustness 

against noisy data. DE proposed by Lakshminarayanan et al., employ multiple DL models for 

prediction and offer a spectrum of possible outcomes21. While generally performing well, they can 

suffer from shared biases among ensemble models if they are not sufficiently diverse. The ensemble 

Monte Carlo dropout (EMCD) technique, introduced in this study, is designed to overcome these 

limitations by integrating MCDO's stochastic evaluation with the diversified predictive capability 

of DE. The EMCD aims to enhance the reliability and interpretability of uncertainty quantification 

in DL models, providing clinicians with a more nuanced understanding of the model's confidence in 

its predictions, especially for complex diagnostic tasks such as vertebral bone metastasis 

classification.  

This study introduces a two-step DL methodology aimed at the automated detection and 

classification of vertebral regions from abdominal CT images. Our approach involves the initial 

detection and extraction of vertebral areas, followed by multiclass classification to determine the 

status of the vertebrae as normal, disc, or metastasis alterations indicative of metastases. A key 

objective was to quantify the uncertainty of classification outcomes, thereby enhancing the 

trustworthiness and interpretability of the automated system for clinical practitioners. By providing 

uncertainty measurements in different forms, such as a single numerical value, probability interval, 

or visual map (Uncertainty-CAM22), we aimed to empower clinicians with a clearer understanding 

of the model's confidence in its predictions, facilitating better-informed clinical decisions, and 

potentially improving patient outcomes. 
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2. Materials and methods 

 

2.1. Data description and preparation 

 

The patient cohort for this study was identified using a hospital information system integrated 

with a picture archiving and communication system and an electronic medical record targeting 

individuals who had undergone abdominopelvic CT scans from January to June 2017. The inclusion 

criteria were primarily based on a pathologically or clinically confirmed diagnosis of bone 

metastasis. 

 

Table 1. Demographic information of the patient datasets 

  Training/validation Test 

Per patient   

Patients/images 104/10,356 12/1,112 

Age, mean (SD) 59.72 (12.48) 59.33 (12.18) 

Age, range 24-86 39-85 

Male, total (%) 37.50 41.67 

Per image   
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  Normal Disc Mets Normal Disc Mets 

Images, n (%) 7,826 

(75.56) 

1,907 

(18.41) 

623 

(6.02) 

728 

(65.47) 

254 

(22.84) 

130 

(11.69) 

Mets: metastasis. 

 

A total of 116 patients with metastatic manifestations within the thoracic or lumbar spine were 

included. CT scans of these patients were reconstructed axially to form a comprehensive CT series 

database, which yielded 11,468 slices.  

Patient histories included lung cancer (adenocarcinoma) (21), breast cancer (26), rectal cancer 

(17), colon cancer (22), stomach cancer (8), tongue cancer (3), malignant gastrointestinal stromal 

tumor (2), pancreatic cancer (2), appendiceal mucinous cystadenocarcinoma with pseudomyxoma 

peritonei (1), thymic carcinoma (1), adrenal cortical carcinoma (1), renal cell carcinoma (1), 

Klatskin's tumor (1), neuroendocrine carcinoma of tail of pancreas (1), ampulla of Vater cancer (1), 

anaplastic hemangiopericytoma, malignancy (1), esophagus cancer (1), anal cancer (1), 

nasopharyngeal cancer (1), malignant melanoma (1), hepatocellular carcinoma (1), undifferentiated 

sarcoma (1), and primary unknown (1). This retrospective study was approved by our institutional 

review board. 

In terms of data preparation, out of the total 11,468 slices, 8,554 were labeled as "normal," 2,161 

as "disc," and 753 as "mets." These labels were determined using radiologists’ annotations based on 

the scan content. Subsequently, to train the spine region detection model, a radiologist manually 

annotated the bounding box around each sliced vertebra. To standardize the image depth, we down-

sampled the images from 16-bit to 8-bit and resized them to 512 × 512 pixels to align them with the 

input requirements of the YOLOv5m model. After spinal region detection, the region of interests 

(ROIs) was resized to 150 × 150 pixels to comply with the input specifications of the DenseNet201 

model. We also performed image normalization to ensure a consistent range of pixel intensities 
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across the dataset. The datasets were randomly divided in a 7:2:1 ratio for training, validation, and 

testing. Table 1 presents the demographic information of the patient datasets. 

 

Table 2. Demographic information of the healthy normal-control dataset  
Healthy normal-control test 

Per patient  

Patients/images 11/957 

Age, mean (SD) 52.73 (17.05) 

Age, range 24-66 

Male, total (%) 45.45 

 Per image    

 Normal Disc Mets 

Images, n (%) 798  

(83.39) 

159  

(16.61) 

0  

(0) 

 

The healthy normal-control dataset comprised 957 slices from 11 individuals falling within the 

age range of 24–66 years. These control images were processed in the same manner as the patient 

images to maintain consistency across datasets. This dataset comprised data collected from January 

to February 2023. Table 2 presents the demographic information of the healthy normal-control 

dataset. 

 



6 

 

2.2. Proposed model framework 

 

Figure 1. Overview of the proposed method. 
 

The proposed bone metastasis prediction model comprised three main steps. First, we detected 

the spinal region on an abdominal CT scan and cropped the ROI. Second, we used the proposed 

EMCD method to classify the cropped CT image as normal, disc, or metastasis, and calculate the 

uncertainty based on the model’s prediction probability. Finally, the calculated uncertainty was 

reported to medical experts in various ways. 

a. Spine detection and cropping 

In the first step of the proposed framework, we used the YOLOv5m23,24 model pre-trained on 

ImageNet25. The YOLOv5m model is a state-of-the-art DL architecture for detecting objects in 

images. When applied to abdominal CT images, the model automatically identified spinal regions 

and isolated important ROIs for further analysis. The YOLOv5m model uses a CT image of size 512 

× 512 as input and provides the width, height, and center position of the predicted bounding box 

with confidence. 

 

Normal
Disc
Mets
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b. Multi-class classification and uncertainty quantification 

(1) EMCD  

Next, we proposed an EMCD model to classify the extracted ROI into three classes. As the 

underlying model for the classification task, we used the DenseNet20126 architecture, which is often 

used for image classification tasks. To quantify the MCDO uncertainty, we added a dropout27 layer 

to the DenseNet201 network just before the final classification layer. We then developed 𝐾𝐾 unique 

MCDO models to ensure the reliability and generalization of the model by utilizing a stratified K-

fold cross-validation, where each MCDO model performed 𝑇𝑇  probabilistic forward passes, 

resulting in predictive distributions. This method introduced variations into the activation pathways 

of the neural network, thereby generating different output spectra for a given input. The diversity of 

outputs over multiple passes reflects the prediction uncertainty of the model. A wider range in the 

output distribution indicates higher uncertainty, whereas a narrower range indicates higher 

confidence. 

 

(2) Weighted voting ensemble 

The core of the EMCD model is a weighted voting ensemble28 technique that uses uncertainty 

estimation. The weighted voting ensemble technique assumes that some models in the ensemble 

perform better than others and gives them more weight in their predictions. Weighted voting 

ensembles are an evolution of regular voting ensembles, which assume that all models are equally 

capable and contribute proportionally to the ensemble prediction. Each model was assigned a 

specific weight multiplied by its predictions, and these weights were used to calculate the sum or 

average of the predictions. The difficulty associated with using such ensembles is finding an 

ensemble with equal model weights and a model weight that outperforms all the contributing models. 

The weighted voting ensemble using the uncertainty estimation presented in this study first trains 

the MCDO models using a stratified K-fold cross-validation dataset. Once trained, the MCDO 

models performed 𝑇𝑇 iterations of predictions on the test set to infer 𝐾𝐾 ∗ 𝑇𝑇 prediction probabilities. 

From the 𝐾𝐾 generated prediction probability distributions, the standard deviation or uncertainty 

was estimated and used as a weight to emphasize the reliability of the predictions of each model. 
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Finally, we computed the mean prediction probability 𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 for each model 𝑖𝑖, which was the 

average of the predictions across all 𝑇𝑇 stochastic forward passes: Modell’s 

 

 

(1) 

 

where 𝑌𝑌�𝑖𝑖,𝑡𝑡 denotes the prediction probability of model 𝑖𝑖 at forward pass 𝑡𝑡. Subsequently, we 

calculated the standard deviation, 𝜎𝜎𝑖𝑖 for the prediction probabilities of model 𝑖𝑖, to quantify the 

model’s uncertainty: 

 

 

(2) 

 

The voting-weight 𝑤𝑤𝑖𝑖 for model 𝑖𝑖 is then determined by the reciprocal of its standard deviation, 

to inversely correlate with the uncertainty: 

 

 
(3) 

 

Here, 𝜖𝜖 is a small positive constant introduced to prevent division by zero. 

𝜇𝜇pred,𝑖𝑖 =
1
𝑇𝑇
�𝑌𝑌�𝑖𝑖,𝑡𝑡

𝑇𝑇

𝑡𝑡=1

 

σ𝑖𝑖 = �
1

𝑇𝑇 − 1
��𝑌𝑌�𝑖𝑖,𝑡𝑡 − μpred,𝑖𝑖�

2
𝑇𝑇

𝑡𝑡=1

 

𝑤𝑤𝑖𝑖 =
1

σ𝑖𝑖 + ϵ
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The weights were normalized to sum to one across all models, forming the normalized weights 

𝑤𝑤𝑖𝑖′: 

 

 
(4) 

 

Finally, we computed the final prediction 𝑌𝑌�final as the weighted sum of the mean predictions 

from all 𝐾𝐾 models: 

 

 

(5) 

 

This weighted voting ensemble allows a final prediction that is not only a consensus across 

multiple models but also adjusts for the confidence level of each model’s prediction. 

 

c. Uncertainty quantification 

In our model, the uncertainty related to the predictions was quantified using two statistical 

measurements: the average entropy29 (ET) of the prediction probabilities and the average standard 

deviation20 (STD). These measures provide a dual perspective on the confidence of the model’s 

classifications, with entropy capturing the average uncertainty inherent in predictions, and the 

standard deviation reflecting the variability of prediction probabilities. Entropy is a statistical 

measure of randomness commonly used to characterize the uncertainty associated with a set of 

probabilities. In the context of our model, this is analogous to the concept of entropy in the 

𝑤𝑤𝑖𝑖
′ =

𝑤𝑤𝑖𝑖

∑ 𝑤𝑤𝑗𝑗𝐾𝐾
𝑗𝑗=1

 

𝑌𝑌�final = �𝑤𝑤𝑖𝑖
′

𝐾𝐾

𝑖𝑖=1

⋅ μpred,𝑖𝑖 
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information theory, which quantifies the amount of information and uncertainty. The ET across all 

classes and predictions was calculated using the following equation: 

 

 

(6) 

 

where 𝑝𝑝𝑖𝑖,𝑡𝑡(𝑐𝑐) represents the probability of class 𝑐𝑐 being predicted by the 𝑖𝑖𝑡𝑡ℎ model at the 𝑡𝑡𝑡𝑡ℎ 

forward pass, and 𝐶𝐶 is the total number of classes. A higher ET value indicated greater uncertainty 

and lower confidence in the predictions. The standard deviation provides insight into the dispersion 

of the prediction probabilities around their mean values. This is an important indicator of prediction 

reliability, because predictions with a high standard deviation are less reliable. The STD is calculated 

as follows: 

 

 

(7) 

 

where 𝜇𝜇𝑐𝑐 is the mean prediction probability of class 𝑐𝑐 across all models and forward passes. 

By incorporating these two metrics, the predictive uncertainty of the model can be comprehensively 

assessed. This assessment is not only crucial for the reliability of the medical diagnostic process but 

also provides valuable insights that can be used to guide decision-making under uncertainty. 

 

d. Uncertainty reporting 

ET = −
1
𝐾𝐾𝑇𝑇

���𝑝𝑝𝑖𝑖,𝑡𝑡(𝑐𝑐)
𝐶𝐶

𝑐𝑐=1

log �𝑝𝑝𝑖𝑖,𝑡𝑡(𝑐𝑐)�
𝑇𝑇

𝑡𝑡=1

𝐾𝐾

𝑖𝑖=1

 

STD = �
1

𝐾𝐾𝐾𝐾𝐾𝐾 − 1
����𝑝𝑝𝑖𝑖,𝑡𝑡(𝑐𝑐) − 𝜇𝜇𝑐𝑐�

2
𝐶𝐶

𝑐𝑐=1

𝑇𝑇

𝑡𝑡=1

𝐾𝐾

𝑖𝑖=1
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To effectively communicate the predictive uncertainty of our model to medical professionals, we 

developed a multimodal reporting system that conveys uncertainty in several comprehensible 

formats: 

 

(1) Single number representation 

For a quick and straightforward interpretation, the uncertainty was first represented as a single 

numerical value. This was achieved using previously calculated ET and STD measures. These 

measures provide an immediate sense of confidence associated with the model’s predictions. 

 

(2) Predictive probability interval 

The second reporting format is a predictive probability interval, that visualizes the range within 

which a model’s predictions fall with a 95% level of confidence. This interval offers a visual 

representation of prediction certainty, providing practitioners with an intuitive grasp of the possible 

variability in diagnosis. 

 

(3) Uncertainty-CAM 

The Uncertainty-CAM utilizes Grad-CAM30 visualizations from multiple forward passes by 

applying a weighted fusion based on the uncertainty of each pass. Specifically, forward passes that 

yield a higher entropy, indicating less certainty in the predictions, have a reduced impact on the final 

visualization. This process aims to create a composite heat map that delineates the areas in which 

the model confidently identifies the features of interest. This is a visualization tool that provides an 

aggregate picture of a model’s focus across various prediction iterations. 

 

2.3. Experimental design 
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The experimental design of this study was strategically organized to comprehensively evaluate 

various aspects of the automatic classification of vertebral bone metastases using abdominal CT 

scans. We focused on the efficiency of spine detection, performance of bone metastasis classification, 

accuracy of uncertainty quantification, and robustness of the model to healthy normal-control data 

and out-of-distribution data.  

Spine detection efficiency is critical for the accurate extraction of the ROI, which is essential for 

subsequent classification tasks. To validate this, we applied a methodology widely adopted in 

previous research to evaluate the performance of our spine detection model, focusing on its accuracy 

and detection power.  

One of the key objectives of this study was to outperform current state-of-the-art methods in 

classifying bone metastases in ROIs. We established a benchmark by evaluating the performance of 

our model against a baseline model. In particular, to compare the effectiveness of the EMCD 

technique proposed in this study, we also compared its performance with other uncertainty 

quantification methodologies, such as the MCDO and DE approaches. We used a retained data 

validation approach to validate the accuracy of our model’s uncertainty estimation19. We sought to 

understand the correlation between uncertainty and classification accuracy by systematically 

evaluating the classification performance of a subset of data ranked by uncertainty. This approach 

not only tests the reliability of uncertainty quantification, but also explores its practical utility in 

improving classification performance.  

Evaluating the performance of the classification model on a healthy normal-control dataset 

allowed us to assess its specificity and robustness. This step ensured that the model maintained high 

accuracy and low false positives when analyzing data from individuals without bone metastases. 

The ability of the model to recognize and accurately classify out-of-distribution data indicates its 

reliability and generalizability. We conducted experiments to evaluate how well the model with 

uncertainty quantification identifies data that deviate significantly from the training distribution31. 

This evaluation was critical for understanding the potential of the model in real-world clinical 

applications, where unseen variables are common. To further validate the EMCD model's robustness, 

we evaluated its performance on both the healthy normal-control and patient test datasets. For this 
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evaluation, if a CT slice from a healthy normal dataset was incorrectly predicted as metastasis, it 

was considered a misclassification for that patient. Conversely, if all slices of a patient with 

metastasis were incorrectly predicted as normal or disc, the patient was classified as normal.  

Through this comprehensive experimental design, we aimed to not only improve state-of-the-art 

spinal bone metastasis classification but also provide meaningful insights into the effectiveness of 

uncertainty quantification in medical image analysis. 
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3. Results 

 

3.1. Experimental setup 

 

For single-class object detection, the YOLOv5m model was trained over 100 epochs with a 

learning rate of 0.01 and a batch size of 32, employing the SGD optimizer. The initial weights were 

sourced from a pretrained ImageNet dataset. 

For the multiclass classification task, we utilized the Adam optimizer with a learning rate of 1e-

5 to minimize categorical cross-entropy loss over 100 epochs and a batch size of 256. Similar to the 

detection model, the initial weights were adopted from a pretrained ImageNet dataset. 

For the uncertainty quantification comparison, we incorporated an ensemble of K = 5 MCDO 

models, with each model subjected to T = 200 stochastic forward passes to gather predictive 

outcomes and uncertainty measures31. In parallel, the MCDO configuration was calibrated to reflect 

the EMCD setup, in which 1000 stochastic forward passes were executed. This number was 

deliberately chosen to ensure that the aggregate number of predictions matched that of the EMCD, 

thereby providing a balanced data foundation for our comparative analysis. To compare these 

approaches, we implement a DE technique with K = 5 models, creating a direct comparison with the 

architecture and evaluation metrics of the EMCD model. 

 

3.2. Experimental results 
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3.2.1 Spine detection 

In the first stage of the study, the YOLOv5m model exhibited robust performance for vertebral 

region detection, reflected by a high mean average precision score of 0.995 at an intersection over 

the union threshold of 0.5, on the test dataset.  

 

 
Figure 2. Spine detection results using the YOLOv5m model: representative examples of predicted 
bounding boxes along with the prediction probabilities. GT, ground truth; Predicted, predicted 
result. 
 

Figure 2 illustrates the comparative results of the spinal region detection using abdominal CT 

scans. The left column shows the actual spinal areas outlined by red boxes representing the ground 

truth. The column on the right shows the predicted results. The consistent overlap between the 
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ground truth and predicted boxes demonstrates the high precision of the model in localizing spinal 

regions. 

 

3.2.2 Multi-class classification 

For the multiclass classification task, the accuracy, precision, recall, F1-score, AUC, and 

expected calibration error (ECE) were calculated to evaluate the performance of the model. 

 

3.2.2.1 Baseline performance 

To evaluate the classification performance of bone metastasis, four models were investigated: 

a baseline DL model (DenseNet201) without UQ, MCDO with T = 1000, a DE model with K = 5, 

and the proposed EMCD model with T = 200 and K = 5.  

 

Table 3. Performance comparison of different models for classifying test datasets 

Model Accuracy Precision Recall F1-score AUC ECE 

DenseNet201 without UQ 0.82 0.80 0.73 0.76 0.90 0.66 

MCDO 0.82 0.84 0.72 0.77 0.91 0.30 

DE 0.83 0.82 0.75 0.78 0.91 0.75 

EMCD 0.86 0.87 0.77 0.82 0.93 0.09 

AUC, macro-average area under the curve, ECE: expected calibration error, UQ: uncertainty 

quantification, MCDO: Monte Carlo dropout; DE: deep ensemble, EMCD: ensemble Monte Carlo 

dropout. 
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Figure 3. Receiver operating characteristic (ROC) curves obtained for the four considered deep 
learning models for the test datasets. UQ, uncertainty quantification; MCDO, Monte Carlo 
dropout; DE, deep ensemble; EMCD, ensemble Monte Carlo dropout; Mets, metastasis. 

 

EMCDDE

DenseNet201 without UQ MCDO
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Figure 4. Confusion matrices obtained for the four considered deep learning models for the test 
datasets. 

The obtained statistics, ROC curves, and the confusion matrices for the four competing DL 

models are presented in Table 3, Figure 3, and Figure 4, respectively.  

Our proposed EMCD model, with T = 200 forward passes and K = 5, outperformed all the other 

models, demonstrating the highest accuracy, precision, recall, F1-score, AUC, and lowest ECE. 

Notably, the EMCD model attained an AUC of 0.93, which underscores its superior discriminative 

ability in bone metastasis classification. The enhanced AUC is a clear indicator that the EMCD 

model is particularly effective in distinguishing between the positive and negative classes, which is 

crucial for clinical decision-making. The precision of EMCD in managing the uncertainties inherent 

in medical imaging results in a significant gain in performance, particularly when compared to 

traditional DL models without UQ and even against other UQ methods such as MCDO and DE. In 

addition to these performance metrics, the EMCD model exhibited a low ECE of 0.09, indicating 
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that the predicted probabilities were well-calibrated and reflective of the true likelihood of correct 

classifications. These results underline the advantage of incorporating uncertainty quantification 

through the EMCD, as evidenced by the improved performance metrics across the board. 

 

3.2.2.2 Healthy normal-control dataset evaluation 

The effectiveness of the EMCD model was also validated using a healthy normal-control 

dataset, which was critical for assessing the specificity and ensuring the precision of the model in 

correctly classifying the absence of a disease.  

 

Figure 5. Confusion matrix or the proposed ensemble Monte Carlo dropout model for the healthy 
normal-control dataset. 

 

Table 4. Performance of the proposed ensemble Monte Carlo dropout model on healthy normal-
control dataset 

Model Accuracy Precision Recall F1-score 
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EMCD 0.90 0.91 0.90 0.89 

 

As shown in Table 4, our EMCD model demonstrated a strong performance accuracy (90%) in 

classifying the healthy normal-control dataset. These metrics underscore the robustness of the model 

and confirm its enhanced capability to classify healthy individuals accurately and minimize the risk 

of false diagnoses. Figure 5 illustrates the confusion matrix for the EMCD model, which graphically 

represents the classification results. The matrix contains a substantial number of true negatives, with 

few cases in which "normal" was incorrectly identified. This low misclassification rate, particularly 

for "normal" to "disc" or "metastasis," highlights the model's precision in avoiding false alarms, 

which is a critical aspect in clinical settings. 

 

 

Figure 6. Representative cases incorrectly predicted by the ensemble Monte Carlo dropout model 
in the healthy normal-control dataset: (a) normal case predicted as metastasis, (b) normal case 
predicted as metastasis, (c) normal case predicted as metastasis with venous plexus, (d) normal 
case predicted as metastasis with Schmorl's nodes. 
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Figure 6 showcases four representative CT image examples from the healthy normal-control 

test dataset that were incorrectly predicted by the EMCD model, that is, normal slices were 

misclassified as pathological conditions. Notably, despite the images shown in cases (c) and (d) 

being non-pathological, they possess features that appear lesion-like. These characteristics were 

identified by radiologists as either a venous plexus32 or Schmorl's nodes33. This suggests that even 

in instances of incorrect predictions, the EMCD model is capable of recognizing abnormal patterns 

that are similar to specific lesions.  

To further validate the EMCD model's robustness, particularly in clinical settings, we expanded 

our evaluation to include patient-level experimental results in addition to the slice-level analysis. 

The results, summarized in Table 5, indicate that the EMCD model achieved a recall of 100% and 

an accuracy of 91% on the patient test dataset, confirming its efficacy in distinguishing between 

normal and bone metastasis patients at the patient level. The high recall value demonstrates the 

model's ability to correctly identify all positive cases of metastasis, while the overall accuracy 

underscores its reliability and robustness in clinical settings. 

 

Table 5. Performance of the proposed ensemble Monte Carlo dropout model on healthy normal-
control and patient test datasets 

Model TP FN TN FP Accuracy Precision Recall F1-score 

EMCD 12 0 9 2 0.91 0.86 1.00 0.92 

TP, true-positive; FN, false-negative; TN, true-negative; FP, false-positive. 

 

3.2.3 Uncertainty quantification 

3.2.3.1 Retained data evaluation 

In evaluating the quality of uncertainty quantification, one measure is the model's ability to 

maintain high performance because less certain predictions are systematically excluded or referred 
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to based on uncertainty estimates. This approach reflects a model's ability to identify and prioritize 

its most confident predictions. 

 

Figure 7. Visualizes the model accuracy in relation to the fraction of data retained, defined by 
uncertainty thresholds ranging from 0.5 to 1.0. 

 

Table 6. Comparison of the performance of the proposed ensemble Monte Carlo dropout model 
with two uncertainty quantification models as a fraction of retained data 

Model 50% data retained 70% data retained 90% data retained 

 AUC Accuracy AUC Accuracy AUC Accuracy 

MCDO 0.94 0.89 0.93 0.88 0.91 0.84 

DE 0.88 0.77 0.90 0.81 0.91 0.84 

EMCD 0.96 0.96 0.95 0.92 0.93 0.87 

 

The MCDO model, while not surpassing the EMCD model in terms of overall performance, 

exhibited improved accuracy when data with higher uncertainty were removed, as indicated by the 

slope in Figure 7. This behavior suggests that MCDO provides reliable uncertainty estimates that 
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effectively identify less certain predictions. In contrast, the DE model, despite starting with a better 

performance than MCDO, showed a decline in accuracy as more uncertain data were excluded, 

hinting at less reliable uncertainty estimates. In particular, the EMCD model exhibits a steep slope, 

which indicates a more effective uncertainty estimation. Models that achieve steeper slopes in such 

evaluations are considered to produce better uncertainty estimates, because they can systematically 

exclude less reliable predictions. The EMCD model consistently outperformed the other models at 

all data retention levels. Notably, at 50% data retention, the EMCD model achieved an AUC of 0.96 

and an impressive accuracy of 96%, confirming the robustness of the model and the efficacy of the 

EMCD technique in prioritizing the most reliable predictions. Even with 90% data retention, the 

EMCD model maintained a high level of accuracy, affirming its capability to provide dependable 

diagnostic predictions across varying levels of uncertainty. 

 

3.2.3.2 Detection of out-of-distribution data 

 

Figure 8. MedMNIST (https://medmnist.com) sample images and corresponding labels fed to deep 
learning models as out-of-distribution dataset. CXR, chest X-ray; Hand, hand X-ray; BreastMRI, 
breast magnetic resonance imaging. 

 

This evaluation aimed to investigate the model's proficiency in quantifying uncertainty when 

presented with out-of-distribution data. To this end, the MedMNIST34 dataset (Figure 8) containing 

image categories not observed during training was utilized as a benchmark for out-of-distribution 

(OOD) data. One hundred images from each class (CXR, Hand, and BreastMRI) were selected 
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randomly. Model performance was examined by measuring the STD and ET, which are metrics 

indicative of uncertainty in the model's predictions. The results for the MedMNIST34 dataset are 

listed in Table 6. 

 

Table 7. Comparison of proposed ensemble Monte Carlo dropout model results with two 
uncertainty quantification models for detecting out-of-distribution data in MedMNIST dataset 

Method Class 

 CXR Hand BreastMRI In-distribution 

 STD↑ ET↑ STD↑ ET↑ STD↑ ET↑ STD↓ ET↓ 

MCDO 0.153 4.077 0.287  5.906  0.234  5.770  0.056  0.363  

DE 0.166  0.929  0.141  1.302  0.147  1.427  0.080  1.496  

EMCD 0.360  5.587  0.315  5.969  0.258  5.896  0.136  1.463  

CXR, chest X-ray; Hand, hand X-ray, BreastMRI: breast magnetic resonance imaging; STD, 

standard deviation; ET, entropy. 

The data indicate that the EMCD model consistently registered higher STD and ET values 

across OOD labels than the in-distribution test data. This enhanced uncertainty signaling by the 

EMCD suggests its potential for greater reliability in real-world applications, where distinguishing 

between familiar and unfamiliar inputs is crucial. The MCDO model also reflected an increase in 

uncertainty for the OOD data, albeit to a lesser degree than the EMCD, whereas the DE model 

demonstrated the lowest effectiveness in uncertainty estimation among the evaluated models. In 

contrast, all models reported a lower uncertainty for the in-distribution (abdominal CT) test data, as 

expected. Besides the above results, we also classified the OOD data concerning the In-distribution 

data based on the uncertainty metrics of the EMCD model, i.e., standard deviation and entropy.  

Table 8. Accuracy of classifying out-of-distribution data using uncertainty measurements with the 
ensemble Monte Carlo dropout model 

Uncertainty measurements Class 
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 CXR Hand BreastMRI Total 

STD 0.93 0.88 0.56 0.79 

ET 1.00 1.00 1.00 1.00 

CXR, chest X-ray; Hand, hand X-ray, BreastMRI: breast magnetic resonance imaging; STD, 

standard deviation; ET, entropy. 

We classified the OOD data from the in-distribution data based on the STD and ET, which are 

the uncertainty metrics of the EMCD model. Using the maximum STD of 0.25 from the in-

distribution data as a threshold, the result is 79%. When the maximum value of ET measured from 

the in-distribution data, 2.18, is used as a threshold, the result is 100%. 

 

3.2.3.3 Uncertainty reporting 

In this section, we introduce the results of the four types of uncertainty reporting (single number, 

probability interval, and Uncertainty-CAM) that will be presented to medical professionals. 

 

(a) correct and certain prediction

(b) correct and uncertain prediction
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STD: 0.06
ET: 2.6

True: mets
Prediction: mets (50%)

STD: 0.29
ET: 4.6
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Figure 9. Examples of uncertainty reporting by the ensemble Monte Carlo dropout model: (a) 
correct and certain prediction, (b) correct and uncertain prediction, (c) incorrect and certain 
prediction, (d) incorrect and uncertain prediction, where the bar chart's green color represents the 
actual truth label. STD, standard deviation; ET, entropy. 

 

Figure 9 showcases examples of uncertainty reporting obtained from CT slice images using the 

EMCD method. The uncertainty and Uncertainty-CAM, obtained through 1,000 predictions, are 

displayed along with the final prediction value. In the case depicted in (a), the prediction outcome 

is normal, and the model is confident in its correct decision (evidenced by a low uncertainty estimate 

[STD = 0.06, ET = 2.6]). Additionally, through the probability interval bar chart, the low uncertainty 

is easily identified by the short vertical length of the bar. In contrast, the case shown in (b) 

demonstrates that while the model predicts normalcy, it indicates high uncertainty (evidenced by a 

high uncertainty estimate [STD = 0.29, ET = 4.6]). The tall vertical length of the probability interval 

bar chart signifies low confidence in this prediction, akin to the model stating "I do not know." Case 

(c) in Figure 9 illustrates an incorrect prediction by the model. The uncertainty indicator and the 

vertical length of the bar chart convey that the model is confident in its decision, which clearly 

(c) incorrect and certain prediction

(d) incorrect and uncertain prediction
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indicates a mistake. In case (d), although the model makes an incorrect prediction, it shows that the 

model is uncertain about its decision. Because the model lacks confidence in its prediction, it 

suggests that medical professionals might seek a second opinion on the image35. 
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4. Discussion 

 

In this study, we introduce the EMCD model, which represents a significant advancement in 

medical imaging for the detection and classification of spinal bone metastases. Our findings 

demonstrate that EMCD not only enhances the accuracy of detecting bone metastases but also 

substantially improves the quantification of predictive uncertainty compared to existing 

methodologies such as the MCDO20 and DE21 approaches. This dual achievement is critical in the 

context of clinical diagnostics, where the precision of detection and confidence in diagnostic 

predictions can significantly influence patient management and treatment outcomes. The superior 

performance of the EMCD model, as evidenced by rigorous testing on both the MedMNIST34 dataset 

for OOD data and a healthy normal-control dataset, highlights its potential in a clinical setting. 

Notably, the ability of the model to accurately estimate uncertainty offers a clearer understanding of 

its predictions, thereby facilitating more informed clinical decisions. This advancement addresses 

the significant challenge in deploying AI in healthcare by bridging the gap between AI prediction 

and clinical interpretability. A unified review by Lambert et al. discussed the challenges of the low 

acceptance of DL models in clinical practice, owing to the lack of transparency in decision-making 

processes. They emphasized that uncertainty quantification can significantly improve the 

interpretability and acceptability of DL predictions in medical image analysis, thereby fostering trust 

among end-users36. Xue et al. introduced a Bayesian convolutional neural network framework that 

quantified the uncertainty in DL predictions, providing surrogate estimates of the true error from the 

network model and measurement itself. This approach is crucial to ensure the reliability of medical 

diagnoses derived from imaging data37.  
A particularly compelling aspect of our findings was observed during the retained data evaluation 

experiment, underscoring the effectiveness of the EMCD model in handling uncertain predictions. 

By systematically excluding uncertain predictions based on predefined thresholds, the EMCD model 

demonstrated its potential to prioritize high-confidence predictions that are instrumental in clinical 
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scenarios requiring high diagnostic accuracy. This approach to managing and quantifying 

uncertainty could revolutionize how clinicians interpret and trust AI-generated diagnoses, 

particularly in ambiguous or borderline cases. Our study also incorporated ECE to assess the 

calibration of the EMCD model predictions. A low ECE value indicates that our model's predicted 

probabilities are well-calibrated, meaning that they accurately reflect the likelihood of correct 

classifications. This is a crucial aspect for clinical applicability as it ensures that the model's 

predictions can be trusted by clinicians. Although we have not yet conducted experiments on a per-

patient basis, our findings suggest that the EMCD model is robust and reliable for slice-based 

analyses, with the potential for future expansion to patient-level evaluations.  

This study represents a pioneering exploration of the uncertainty in bone metastasis predictions 

provided by DL models. The manner in which uncertainty is reported to radiologists through a single 

number, uncertainty intervals, and Uncertainty-CAM represents a significant advancement in 

clinical diagnostics. This multifaceted approach enables radiologists to interpret AI-generated 

predictions with a nuanced understanding of their reliability. Prior to this study, two recent studies 

used DL to detect bone metastases using CT images16,17. In contrast to previous research that largely 

focused on the accuracy of DL models in detecting spinal bone metastases, our study emphasized 

the importance of uncertainty quantification. The novel approach of the EMCD model for 

uncertainty estimation provides an essential tool for clinicians, offering insight into the model's 

confidence level for each prediction. This aspect is particularly beneficial for managing cases in 

which the model identifies potential metastases with high uncertainty, highlighting the need for 

further clinical evaluation. The categorization of CT slices into three distinct classes, normal, disc, 

and metastasis, was based on our observation of disc levels on axial-plane CT images resembling 

osteolytic lesion shapes. This insight illuminates the intricacies involved in accurately classifying 

spinal structures and pathologies, necessitating a refined annotation approach capable of 

distinguishing these crucial differences. This discernment further accentuates the advanced 

capabilities of our proposed model in navigating the complex landscape of spinal imaging. 

However, our study had some limitations. The slice-wise labeling approach adopted in this study 

may not perfectly capture the complexity of certain cases, particularly those in which both the disc 

and the vertebral body are present in a single slice. This limitation highlights the need for more 
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nuanced labeling and analysis methods that can accurately reflect the multifaceted nature of spinal 

anatomy and pathology. Moreover, as this was a retrospective study, the real-world clinical 

applicability of our model requires further validation. Future research should include prospective 

multicenter studies to evaluate the performance of the model across diverse clinical settings and 

patient populations. Furthermore, although our proposed method for uncertainty quantification 

provides a mathematical measure of prediction confidence, it may not always fully align with the 

clinical interpretations of the uncertainty faced by radiologists. This misalignment highlights an area 

for future refinement: enhancing uncertainty quantification techniques to more closely mirror the 

complexities and realities of clinical decision-making.  

In addition to enhancing our model for volumetric analysis, integrating patient-level research is 

essential. Our model analyzes CT slices individually, which may not provide a holistic view of the 

patient's condition. Future research should develop methods that consider all patient cases and 

encompass all relevant imaging and clinical data to provide a more comprehensive assessment. This 

approach allows for a better understanding of disease progression and variability across patients, 

further aligning the use of the model with clinical workflows.  

Future directions for this research include addressing the limitations by exploring alternative 

labeling strategies, conducting prospective studies to validate the model's applicability in real-world 

settings, and refining the uncertainty quantification method to align better with clinical expectations. 

Further efforts will focus on developing and testing explainable AI features that meet the specific 

requirements of clinical practice. 
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5. Conclusion 

 

The proposed EMCD model represents a significant advancement in the fully automated 

detection of spinal bone metastases using abdominal CT, achieving an AUC of 0.93. This 

improvement not only enhances diagnostic accuracy but also introduces an innovative approach for 

quantifying uncertainty. By providing clinicians with predictions and associated uncertainty 

assessments, the EMCD model offers insights that were not previously available in existing models, 

thereby facilitating more informed clinical decision-making. This development holds promise for 

aiding radiologists in the diagnosis of spinal bone metastases using CT scans, potentially improving 

patient care and quality of life. 
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Abstract in Korean 

 

앙상블 몬테 카를로 드롭아웃을 활용한 복부 CT를 통한 척추골 

전이 자동 분류의 불확실성 정량화 

 

 

복부 CT 스캔을 이용해 척추의 골 전이를 자동으로 탐지하고 분류하는 것을 

개선하는 것을 목표로 한다. 특히, 정량화된 불확실성을 도입함으로써 진단의 

민감도와 효율성에 대한 문제를 해결하고자 한다. 

이 후향적 연구에서는 척추 골 전이 진단을 받은 116 명의 환자로부터 얻은 

11,468 개의 복부 CT 이미지를 분석했으며, 11 명의 건강한 대조군으로부터 얻은 

957 개의 이미지를 데이터셋에 포함시켰다. 이미지는 '정상', '디스크', '전이'으로 

분류되어 주석 처리되었다. 불확실성 추정을 위해 DenseNet201 구조에 dropout 

층을 추가하였고, 정밀한 척추 영역 탐지를 위해 YOLOv5m 을 사용하며, 불확실성 

가중치 투표 앙상블을 통해 새롭고 효과적인 ensemble Monte Carlo dropout (EMCD) 

모델을 도입하였다. 계산된 불확실성은 수치 값, 예측 확률 간격, 그리고 

Uncertainty-CAM 를 통해 표현되었다. 성능 평가는 척추 탐지의 효율성, 전이 

분류의 정확도, 그리고 건강한 대조군 및 분포 외 데이터에 대한 모델의 견고성에 

중점을 두었다. 

YOLOv5m 모델은 척추 탐지에서 mean average precision 0.995 를 달성했다. 

EMCD 모델은 다중 클래스 분류에서 area under the receiver operating 

characteristic curve (AUC) 0.93 으로 우수한 성능을 보여, 기존 및 기타 불확실성 

정량화 모델들을 능가했다. 50%의 데이터를 유지할 때, EMCD 모델은 AUC 0.96 과 

96%의 정확도를 달성했다. 건강한 대조군 데이터셋에서는 EMCD 모델이 90%의 

높은 정확도를 유지했다. 
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EMCD 모델은 척추 골 전이의 자동 탐지 및 분류에서 현저한 향상을 제공하며, 

우수한 정확도와 더불어 예측과 함께 불확실성 측정을 동시에 제공하는 새로운 

접근법을 도입함으로써, 임상의가 기존 딥러닝 모델에서는 볼 수 없었던 새로운 

정보에 기반한 의사 결정을 내릴 수 있을 것으로 보인다. 이는 정보에 기반한 보다 

정확한 임상 의사결정을 가능하게 하여, 환자의 삶의 질에 긍정적인 영향을 미칠 수 

있다. 

 

_______________________________________________________________________________ 

핵심되는 말 : 척추; 컴퓨터 단층 촬영; 전이; 딥러닝; 불확실성 
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