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Abstract  

Variable selection methods with FDR control  

for class imbalanced data via data splitting 

 
Identifying pertinent variables associated with the response variable in high-dimensional 

data is crucial across diverse domains. Nonetheless, many of the selected variables might 

lack actual association with the response variable. Particularly in severely class-imbalanced 

data, simple Lasso regression often leads to a significant increase in the false discovery rate 

(FDR). Even with methods implemented to control FDR, the true positive rate (TPR) can 

be very low. This study proposes two approaches aimed at enhancing TPR when selecting 

variables while controlling FDR for class-imbalanced data through data splitting strategies: 

1) an extension of penalized regression, and 2) adjustment of class imbalance ratio. For 

comparison, the Benjamini-Hochberg procedure and the Knockoff framework were 

included. A simulation study showed imbalance ratio adjustment methods improved 

performance compared to conventional approaches. 

                                                                          

Key words: False Discovery Rate (FDR); imbalance ratio; Penalized regression;  

Knockoff framework 
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1. Introduction  

Identifying pertinent variables associated with the response variable in high-

dimensional data is crucial across diverse domains. Methods for performing variable 

selection include stepwise regression (Efroymson, 1960), Lasso regression (Tibshirani, 

1996), and bayesian variable selection methods (O’hara et al., 2009), among others. 

Additionally, recent research has introduced the application of stable variable selection 

based on Lasso in low-dimensional data for the purpose of detecting drug-adverse event 

signals in the field of pharmacovigilance (Ahmed et al., 2018). 

However, a significant issue with variable selection is the potential inclusion of 

numerous variables that are not actually related to the response variable. For example, in 

the context of pharmacovigilance, clinical analysis is conducted on potential adverse-drug 

reactions (ADRs) identified through detection techniques such as variable selection 

(Ahmed et al., 2018). Misidentifying insignificant drugs as signals in the preliminary 

analysis can lead to subsequent confusion in the analysis process. Therefore, a crucial 

attribute expected from variable selection is minimizing the potential for false discovery 

rate (FDR) and controlling it. Efforts to quantify the uncertainty and quality of variable 

selection results under the specified error level have been ongoing (Dai et al., 2023). In 

regression-based models, methods for controlling the FDR include the Benjamini-

Hochberg procedure (Benjamini and Hochberg, 1995) and Knockoff framework ideas 

(Candes et al., 2018). Recently, a FDR control method utilizing data splitting (Dai et al., 

2023) has been introduced. This method comprises single data splitting (DS) and multiple 
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data splitting (MDS). DS evaluates variables by applying independent statistical methods 

to two partitioned datasets and obtaining mirror statistics. It offers an advantage over BHq 

or Knockoff framework as it does not require independent p-values or the joint distribution 

of variables. Additionally, the MDS method, which independently and iteratively integrates 

DS results, ensures the stability of variable selection (Dai et al., 2023). 

Class imbalanced data refers to one class of the binary response variable having a 

much higher proportion than the other class. This characteristic is also observed in drug 

surveillance data. Instances of adverse events occurring are much rarer than non-

occurrences, with the imbalance ratio typically being less than 1:1000. In cases of severe 

class imbalance, bias towards the majority class can render traditional variable selection 

methods ineffective (Kamalov et al., 2023). Also, since the minority class becomes the 

primary focus in most analyses, it is crucial to account for this characteristic.  

This study proposes two approaches aimed at enhancing true positive rate (TPR) when 

selecting variables while controlling FDR for class imbalanced data through data splitting: 

1) an extension of penalized regression, and 2) adjustment of class imbalance ratio. In terms 

of penalties, the Lasso penalty typically used for screening was replaced with the elastic 

net. While the Lasso selection assumes independence among variables, the elastic net 

effectively reflects correlations between variables by combining ridge and Lasso penalties. 

We adopted the stratified splitting method instead of conventional random splitting ⌊𝑛/2⌋ 

to maintain the imbalance ratio of the raw data in the divided dataset. For adjusting the 

imbalance ratio, the 1:4 downsampling method, which reduces the sample size of the 
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majority class, was considered. The ratio was selected based on the claim that 

improvements in power were minimal for ratios greater than 1:4 in the case-control study 

(Ahmed et al., 2018). Another method for adjusting class imbalance ratio involves applying 

the LHO-LOO technique. This method randomly excludes one sample from the minority 

class and half of the samples from the majority class. This approach can offer broad 

variations in dataset while preserving the maximum number of samples in the minority 

class (Fu et al., 2017).  

Our paper is structured as follows: Section 2.1 introduces the basic concept of multiple 

testing in terms of sparse regression. Section 2.2, 2.3, and 2.4 describe methods for 

controlling the FDR. These include BHq, the Knockoff framework, and data splitting, 

respectively. Section 3 discusses the concepts applied in the main methodology, which is 

data splitting. Details on the penalty for sparse selection are provided in section 3.1, and 

the adjustment methods for the imbalance ratio are placed in section 3.2. In section 4, we 

evaluate the proposed method’s performance in various settings. The results are compared 

to the existing methods introduced in sections 2. The performance evaluation metrics used 

are FDR and TPR. In section 5, the proposed methods are applied to simulated data 

obtained from the French national pharmacovigilance database to detect potential signals. 

Conclusion and discussion are placed in section 6. 
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2. Background  

2.1 Multiple testing  

 Let’s consider 𝑚 (𝑚 > 1) hypotheses are tested simultaneously. As 𝑚 increases, 

the probability of making at least one incorrect decision, 1 − (1 − 𝛼)!, grows remarkably 

under a significant level of 𝛼 (Streiner and Norman, 2011). We define 𝑚" is the number 

of truly significant hypotheses, and 𝑅 is the number of rejected hypotheses. Controlling 

the false discovery rate (FDR) allows for maintaining the overall error rate. Referring to 

Table 1, the FDR and True Positive Rate (TPR) are defined as follows:  

𝐹𝐷𝑅 = 𝐸(𝐹𝐷𝑃), 𝐹𝐷𝑃 =
𝑉
𝑅
	 

𝑇𝑃𝑅 =
𝑆

𝑚 −𝑚"
 

 

where FDP is the proportion of falsely rejected hypotheses among the rejected null 

hypotheses. Here, if 𝑅 = 	0, then FDP = 	0 is defined.  

 

Table 1. The result of multiple testing hypotheses.  

 Accept Null hypothesis Reject Null hypothesis Total 

Null hypothesis is true 𝑈 𝑉 𝑚! 

Null hypothesis is false 𝑇 𝑆 𝑚−𝑚! 

Total 𝑚−𝑅 𝑅 𝑚 
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Translating this into the concept of variable selection. Let denote 𝑋 be the 𝑛 × 𝑝 

design matrix that are not determine as linear combinations of other variables. The response 

variable 𝑦 be the 𝑛 × 1 vector. The logistic regression model is formulated as follows: 

 

log
P(𝑦 = 1|𝑋)
P(𝑦 = 0|𝑋)

	= 𝛽" + 𝑋𝜷 

 

where 𝛽"  is an intercept term and 𝜷 = L𝛽#, … , 𝛽$N is the 𝑝 × 1 vector of regression 

coefficients. Under 𝑦 is represented by a GLM, it is known that if 𝑦 is independent of 

𝑋% given the other variables 𝑋&% 	= {𝑋#, 𝑋', … , 𝑋(}\𝑋%, then 𝑋% is considered irrelevant 

variable (Candas et al., 2018).  

 

𝑦 ⊥ 𝑋% 	|𝑋&%				if	and	only	if				𝛽% = 0	. 

 

Hence, the hypothesis in variable selection becomes equivalent to the multiple testing 

problem that follows: 

𝐻"% ∶ 	 𝛽% = 0		𝑣𝑠		𝐻#% ∶ 𝛽% ≠ 0.	 

The FDR can be shown as  

𝐹𝐷𝑅 = 𝐸(𝐹𝐷𝑃), 𝐹𝐷𝑃 =
#	_	𝑗 ∶ 𝑗	 ∈ 𝑆", 𝑗 ∈ 𝑆b	c

#	_	𝑗 ∈ 𝑆b	c 	⋁ 1	
		 

where 𝑆" represents the index set of null features (unrelated), and 𝑆b denotes the index set 

of variables selected through sparse variable methods.  
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2.2 Benjamini-Hochberg procedure 

 The Benjamini-Hochberg procedure (BHq) is the first introduced method for 

controlling FDR. Initially, it was limited by the assumption of independence among 

variables. Methods for adjusting significance probabilities in scenarios involving 

dependence were subsequently proposed by Benjamini and Yekutieli (2001). Let’s suppose 

there are 𝑚 hypotheses 𝐻#, … , 𝐻! to be tested, with p-values 𝑝#, … , 𝑝!. BHq utilizes 

the order statistics of p-value 𝑝(+),  𝑖 = 1, 2, … ,𝑚.  We can represent hypotheses 

corresponding to these order statistics as 𝐻(+). BHq’s FDR control rule is as follows: 

 

Process 1. Benjamini-Hochberg Procedure  
 

i. Order the p-value: 𝑝(#) ≤ 𝑝(') ≤ ⋯ ≤ 𝑝(+) ≤ ⋯ ≤ 𝑝(!). 

ii. Given the control level 𝑞 ∈ (0,1),	define 𝑖!-. = max k𝑖 ∶ 𝑝(+) ≤
+
!
𝑞l. 

iii. Reject all 𝐻(+)	, 𝑖 = 1, 2, … , 𝑖!-.. 
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2.3 Knockoff framework 

 The aim of traditional statistical analysis for 𝑦  and 𝑋 = L𝑋#, 𝑋', … , 𝑋$N  is to 

estimate the conditional distribution of 	𝐹/|1  (Liu and Rigollet, 2019). However, this 

requires various assumptions. Also, it may be challenging to apply in sparse data. As a 

solution, “model-X” has been introduced to model the independent variable 𝑋 under the 

knockoff framework. This method generates fake Knockoff variables, 𝑋m =

L𝑋m#, 𝑋m', … , 𝑋m$N , enabling variable selection. Random variable 𝑋m  is composed of the 

following properties (Candes et al., 2018).  

(1)  Pairwise exchangeability: for any random subset 𝑆 ⊂ {1,… , 𝑝}, the distribution 

of L𝑋, 𝑋mN23-$(4) and L𝑋, 𝑋mN are the same. 

(2)  Negative control: if 𝑦 is present, 𝑋m ⊥ 𝑦|𝑋. 𝑋m is generated without considering 

response 𝑦. 

 

Given that 𝑋~𝑁(𝟎, 𝚺), a joint distribution, which relies on the property (1), becomes 

 

L𝑋, 𝑋mN	~	𝒩(𝟎, 𝑮), where		𝑮 = y
𝚺 𝚺 − diag(s)

𝚺 − diag(s) 𝚺 {. 

 

Constructing Knockoff variables from observed 𝑋 is represented as  

 

𝑋m|𝑋 =5 𝒩L𝑋 − 𝑋𝚺&#diag(𝑠), 2	diag(𝑠) − diag(𝑠)𝚺&#diag(𝑠)N. 
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The index set of relevant variables and irrelevant variables are denoted by 𝑆#	and 𝑆", 

respectively. Each 𝑋% is distinguished by 𝑊% to indicate whether it is related to 𝑦.	 We 

can define 𝑊% = 𝑓%L𝑍% , 𝑍m%N, where 𝑍% 	and	𝑍m% are model-dependent importance scores of 

𝑋+  and 𝑋m+ . 𝑓 is an antisymmetric function. A large positive value of 𝑊%  provides the 

strong reason for the relevance to the 𝑦. While irrelevant variable’s 𝑊% are symmetric 

around 0. The selection criterion with the symmetric property is defined as  

 

#_	𝑗:	𝑊% ≤ −𝑡	c ≥ #_	𝑗 ∈ 𝑆" ∶ 𝑊% ≤ −𝑡	c =5 #	_	𝑗 ∈ 𝑆": 	𝑊% ≥ 𝑡	c, ∀	𝑡 > 0.	 

 

The FDP and its estimate 𝐹𝐷𝑃�(𝑡) are represented by  

 

𝐹𝐷𝑃(𝑡) =
#{	𝑗 ∈ 𝑆" ∶ 𝑊% ≥ 𝑡	}
#{	𝑗: 	𝑊% ≥ 𝑡	}

	 , 𝐹𝐷𝑃�(𝑡) =
#{	𝑗: 	𝑊% ≤ −𝑡	}
#{	𝑗: 	𝑊% ≥ 𝑡	}

	,	 

 

Here, an appropriate cutoff point 𝜏6 	to control the FDR at the desired level is defined as  

 

𝜏6 = min �𝑡 > 0:	
1 + #{	𝑗:		𝑊% ≤ −𝑡	}
#{	𝑗: 	𝑊% ≥ 𝑡	}

≤ 𝑞� 

 

where 𝑆b is the subset of selected features by Knockoff filter, which		𝑆b = _	𝑗: 	𝑊% ≥ 𝜏6 	c. 

We can control 𝔼 �|{	%	∈	4
9∩4"}|

|49|∨#
� ≤ 𝑞.  
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2.4 Data splitting 

Data splitting method comprises single data splitting (DS) and multiple data splitting 

(MDS). It offers an advantage over BHq or Knockoff filter as it does not require 

independent p-values or the joint distribution of variables. Let denote 𝑋 be the 𝑛 × 𝑝 

design matrix, the response variable 𝑦 be the 𝑛 × 1 vector, and	 𝜷 = L𝛽#, … , 𝛽$N is the 

𝑝 × 1 vector of regression coefficients. 

 

2.4.1 Single data splitting 

 DS divides the data into two parts and applies potentially different statistical models 

to each. We use a sparse selection method like Lasso regression on the first split data 

L𝑦(#), 𝑋(#)N to proactively choose variables. Subsequently, only the selected variables are 

included in the second split data L𝑦('), 𝑋(')N, and the basic regression method is performed. 

At each step, we can obtain independent measurements for a single variable	𝑋%, denoted as 

𝛽%
(#) and 𝛽%

('), respectively. The regression coefficients 𝛽%
(') for the variables that were 

not selected in the first step are zero. Ultimately, computing the “Mirror statistic” 𝑀% by 

𝛽%
(#) and 𝛽%

(') constitutes the primary idea of data splitting (Dai et al., 2023).  

 

𝑀% = 𝑠𝑖𝑔𝑛 �𝛽b%
(#)𝛽b%

(')� 𝑓 ��𝛽b%
(#)� , �𝛽b%

(')��	 
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The key properties that 𝑀% should have in the DS method are as follows: 

(1) A feature with a larger mirror statistic is more likely to be a relevant feature.  

(2) The sampling distribution of 𝑀% of any null feature is symmetric about 0.  

 

Three practical options of 𝑓(𝑢, 𝑣) are proposed as 

 

𝑓(𝑢, 𝑣) = 2min(𝑢, 𝑣) , 𝑓(𝑢, 𝑣) = 	𝑢𝑣, 𝑓(𝑢, 𝑣) = 	𝑢 + 𝑣. 

 

Property (1) comes from the characteristics of the function 𝑓(𝑢, 𝑣), which includes non-

negativity, symmetry around 𝑢 and 𝑣, and monotonic increase in both 𝑢 and 𝑣. Hence, 

we can assess the relative importance of each variable using 𝑀%, and variables exceeding 

the threshold are chosen. Moreover, based on the symmetry described in property (2), we 

have the capability to establish an upper limit for false positives. 

 

#_	𝑗 ∈ 𝑆" ∶ 𝑀% > 𝑡	c ≈ #_	𝑗	 ∈ 𝑆" ∶ 𝑀% <	−𝑡	c ≤ #_	𝑗:𝑀% < −𝑡	c, ∀	𝑡 > 0.	 

 

We define 𝑆b as the set of selected variables, then 𝑆b= = _	𝑗 ∶ 𝑀% > 𝑡	c. The FDP and its 

estimate 𝐹𝐷𝑃�(𝑡) are represented as  

 

𝐹𝐷𝑃(𝑡) =
#_	𝑗: 	𝑀% > 𝑡, 𝑗 ∈ 𝑆"	c
#_	𝑗: 	𝑀% > 𝑡	c ∨ 1

	, 𝐹𝐷𝑃�(𝑡) =
#_	𝑗: 	𝑀% < −𝑡	c
#_	𝑗: 	𝑀% > 𝑡	c ∨ 1

	.	 
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The cutoff 𝜏6  for the control level 𝑞 ∈ (0, 1)  can be driven as 𝜏6 = min_	𝑡 > 0 ∶

	𝐹𝐷𝑃�(𝑡) ≤ 	𝑞	c , and the final selection set under control of 𝑞  changes as 𝑆b># =

_	𝑗: 	𝑀% > 𝜏6 	c.  

 

Process 2. FDR control through a single data split  
 

i. Divide the data into two halves L𝒚(#), 𝑿(#)N and L𝒚('), 𝑿(')N . 

ii. Estimate the coefficients 𝜷�(#) and 𝜷�(') from each part of the data, 

applying the sparse variable selection method and basic regression, 

respectively.  

iii. Computing the 𝑀% for a single variable 𝑋% by  

𝑀% = 𝑠𝑖𝑔𝑛 �𝛽b%
(#)𝛽b%

(')� 𝑓 ��𝛽b%
(#)� , �𝛽b%

(')��. 

iv. Under the predefined FDR level 𝑞, determine the cutoff 𝜏6 as   

𝜏6 = min_	𝑡 > 0 ∶ 	𝐹𝐷𝑃�(𝑡) ≤ 	𝑞	c. 

v. Determine the final selected variable set by 𝑆b># = _	𝑗 ∶ 𝑀% > 𝜏6 	c. 
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2.4.2 Multiple data splitting  

Estimating regression coefficient from divided data can lead to increased variance, 

potentially resulting in lower power compared to using the entire dataset. Additionally, the 

set of selected variables may be highly heterogeneous over split samples. To overcome 

these drawbacks, MDS aggregate the independent selection outcomes of DS. Through 

stability selection at least 50 times iteration, MDS demonstrates significantly enhanced 

TPR (Dai et al., 2023). MDS, like DS, does not rely on p-values or information about the 

joint distribution of features. 

 We maintain the notation of DS. It repeats the single data split method 𝑏 times on 

(𝑦, 𝑋). For each trial, we can derive independent selection results 𝑆b(?), 𝛾 = 1,2… , 𝑏. The 

inclusion rate 𝐼% and its estimate 𝐼b% associated with 𝑆b(?), can be defined as follows  

 

𝐼% = 𝔼 �	
𝕝L𝑗 ∈ 𝑆bN
�𝑆b� ∨ 1

	|	𝑋, 𝑦	� , 𝐼b% =
1
𝑏
�

𝕝L𝑗 ∈ 𝑆b(?)N
�𝑆b(?)� ∨ 1

@

?A#

	 

 

and the order statistics of 𝐼b%  show as 0 ≤ 𝐼b(#) ≤ 𝐼b(') ≤ ⋯ ≤	 𝐼b($) . When 𝐼b%  exceeds a 

certain cutoff, we define it as a relevant feature. The suitable cutoff for MDS is the average 

FDP does not exceed 𝑞. MDS achieves a lower FDR than the desired level 𝑞, while still 

maintaining strong performance. 
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Process 3. False discovery rate control for multiple data splits 
 

i. Order the estimated incorporation rates as 0 ≤ 𝐼b(#) ≤ 𝐼b(') ≤ ⋯ ≤	 𝐼b($). 

ii. Determine the cutoff 𝑙 ∈ {1, …𝑝}, 

𝐼b(#) + 𝐼b(') +⋯+	𝐼b(B) ≤ 𝑞. 

iii. Define the relevant variable set 𝑆b = {	𝑗 ∶ 	 𝐼b(B) <	 𝐼b% 	} 

 

 The concept of stabilizing selection results through repetition is already introduced by 

Meinshausen and Buhlmann (2010). However, while the stability selection method aims to 

optimize the regularization parameters in high-dimensional regression, MDS is used to 

compensate for power loss due to sample splitting. Stability method obtains selection sets 

using subsamples with replacement for different regularization parameters. Meanwhile, 

MDS replicates DS with independent and varied sample splits using the entire dataset. 
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3. Proposed methods 

3.1 Penalized logistic regression  

 Logistic regression is primarily utilized for binary classification problems where the 

response variable takes values of 0 and 1. To select the optimal subset of explanatory 

variables associated with the response variable, a penalty term 𝑃C(𝜷) is incorporated into 

the log-likelihood function. In logistic regression modeling, various penalty methods have 

been explored. Shevade and Keerthi (2003) proposed sparse logistic regression using the 

Lasso penalty, Cawley and Talbot (2007) examined sparse logistic regression with a 

Bayesian penalty, and Liang et al. (2013) introduced the utilization of the ℓ$
%
 penalty.  

The logistic regression model and the probability with Where 𝒙+ = (𝑥+#, … , 𝑥+')  are 

formulated as follows: 

 

log
P(𝑦 = 1|𝑋)
P(𝑦 = 0|𝑋)

	= 𝛽" + 𝑋𝜷, 𝜋(𝒙+) = P(𝑦+ = 1|𝑋 = 𝒙+) 

 

Then the log-likelihood and penalized logistic regression (PLR) are defined as  

 

ℓ(𝛽", 𝜷, 𝑦+) = 	�{𝑦+ log 𝜋(𝒙+) + (1 − 𝑦+)log	(1 − 𝜋(𝒙+))}
D

+A#	

 

PLR = 	�{𝑦+ log 𝜋(𝒙+) + (1 − 𝑦+)log	(1 − 𝜋(𝒙+))}
D

+A#	

+ 𝜆𝑃(𝜷) 
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where 𝜆 is a non-negative tuning parameter. It controls the strength of shrinkage in the 

explanatory variables. If the 𝜆 takes larger value, more weight will be given to the penalty 

term.  
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3.1.1  Lasso  

Tibshirani (1996) suggested the Least Absolute Shrinkage and Selection Operator 

(Lasso) as a penalty for variable selection. Lasso utilizes the 𝐿#  norm on the logistic 

regression coefficients. The form of the penalty term is as follows  

 

𝜆𝑃(𝜷) = 𝜆�|𝛽%|
$

%A#

 

 

The PLR with Lasso is  

 

PLR = �{𝑦+ log 𝜋(𝒙+) + (1 − 𝑦+)log	(1 − 𝜋(𝒙+))}
D

+A#	

+ 𝜆�|𝛽%|
$

%A#

 

 

So,  

𝜷�EFGGH = 𝑎𝑟𝑔	𝑚𝑖𝑛𝜷 	ªℓ(𝛽", 𝜷, 𝑦+) + 𝜆�|𝛽%|
$

%A#

« 

 

Through the Lasso penalty, some regression coefficients can be precisely set to 0, enabling 

variable selection. However, this method has drawbacks when there is high correlation 

among variables (Algamal and Lee, 2015). Additionally, it selects a maximum of 𝑛	(𝑛 <

𝑝) variables, but in reality, there could be more than 𝑛 variables with non-zero regression 

coefficients in the final model (Hou et al., 2023).  
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3.1.2  Elastic net  

 Elastic net method is a sparse variable selection method that shrink regression 

coefficients to zero while considering correlations (Hou et al., 2023). The elastic net penalty 

defines as  

 

𝜆𝑃(𝜷) = 	𝜆 ¬𝛼��𝛽%�
$

%A#

+
1 − 𝛼
2

�𝛽%'
$

%A#

 

 

where 𝛼	(0 ≤ 𝛼 ≤ 1) is a hyperparameter that determines the balance between Lasso and 

ridge. Increasing the 𝛼 value places emphasis on the Lasso penalty. When 𝛼 = 0, elastic 

net is entirely ridge, and when 𝛼 = 1, it becomes Lasso penalty. Also, we can represent 

this penalty and PLR by 

𝜆𝑃(𝜷) = 	𝜆#��𝛽%�
$

%A#

+ 𝜆'�𝛽%'
$

%A#

	, 

PLR = 	�_𝑦+ log 𝜋(𝒙+) + (1 − 𝑦+) logL1 − 𝜋(𝒙𝒊)Nc
D

+A#	

+ 𝜆#�|𝛽%|
$

%A#

+ 𝜆'�𝛽%'
$

%A#

 

 

where 𝜆# and 𝜆' are punishment parameters of Lasso and ridge method, respectively. 

The PLR solution for elastic net can be shown as 

𝜷�KLMNOPQ = 𝑎𝑟𝑔	𝑚𝑖𝑛𝜷 	ªℓ(𝛽", 𝜷, 𝑦+) + 𝜆#�|𝛽%|
$

%A#

+ 𝜆'�𝛽%'
$

%A#

«. 
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3.2 Adjustment of imbalance ratio  

Let 𝑈 and 𝑛 denote the entire dataset and the number of observations, respectively. 

The dataset divided into two halves of equal size using stratified splitting is referred to as 

𝑈# and 𝑈'. Each set maintains the original class imbalance ratio. The imbalance ratio 

adjustment method is applied only to the dataset 𝑈#, where sparse variable selection is 

employed. 

3.2.1  Downsampling  

 Downsampling is a method of randomly sub-sampling observations from the 

majority class to reduce its size. This allows adjusting the imbalance ratio to the desired 

level. After applying the downsampling method, the updated set 𝑈#∗ is defined as follows: 

 

𝑈#∗ 	= {	𝐶"#∗ ∪	𝐶##	} 

 

where the majority class set in 𝑈# as 𝐶"# with 𝑛"# observations, and the minority class 

set as 𝐶## with 𝑛## observations. And samples were randomly selected from 𝐶"#, with 

size 𝑛"#∗  =𝑘 ∙ 𝑛##, which is the set 𝐶"#∗ . In this paper, the value of k is set to 4 that align 

the ratio between minority and majority classes to 1:4. This decision was made in the 

argument that there is minimal improvement in power for ratios greater than 1:4 in an 

epidemiological case-control study. 
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3.2.2  LHO-LOO  

 The regularization parameter values of 𝐿# or 𝐿' norm penalties directly influence 

the outcomes of sparse variable selection methods. In other words, the selected variables 

were heavily influenced by individual observations. However, using inclusion frequency 

based on sub-sampling can mitigate the importance if regularization parameters (Fu et al., 

2017). The use of conventional sub-sampling in imbalanced binary data can exacerbate the 

imbalance between two classes.  

 The LHO-LOO (Leaving Half of majority observations Out and Leaving One 

minority observation Out) strategy involves randomly excluding one observation from the 

minority class and half of the observations from the majority class, and then combining the 

remaining samples (Fu et al., 2017). It also applied only to the dataset 𝑈#, where sparse 

variable selection is conducted. Thus, the updated 𝑈#∗ is defined as:  

 

𝑈#∗ = {	𝐶"#∗ 	∪ 𝐶##∗ } 

 

where 𝐶"#∗  is the set of 𝑛"#∗ = ³D"$
'
´ samples which were randomly selected from 𝐶"# 

and 𝐶##∗  is the set of 𝑛##∗ = 𝑛## − 1	samples from the minority class 𝐶##. This approach 

can introduce broad variations in dataset splitting while preserving the maximum number 

of samples in the minority class. 
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4. Simulation study 

In this section, we explored the extension from Lasso to elastic net penalty mentioned 

in section 3.1.1 and 3.1.2. Additionally, we discussed the application of methods for 

adjusting class imbalance ratio mentioned in 3.2.1 and 3.2.2. The information of methods 

is summarized in the Table 2.  

The regularization parameter 𝜆  for penalized regression was estimated through 

cross-validation. The 𝛼 values, which is the weight provided for ridge and Lasso, are fixed 

at 1 and 0.5 for Lasso and elastic net, respectively. In elastic net 𝛼 was determined based 

on the observation that TPR mostly reached its maximum at 𝛼 = 0.5  under various 

imbalance ratios. Refer to the supplementary materials for detailed information.   

The proposed methods were compared with existing methods such as BHq, Knockoff 

filter, the original DS, and MDS. Performance measurements were based on FDR and TPR. 
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Table 2. Summary of standard and proposed data splitting methods.  

Single splitting refers to the DS method, and multiple splitting means the MDS method.  

 Splitting 
repetition 

Splitting 
method penalty Adjustment 

method 

Proposed 
data splitting 

Single 
Random Elastic 

net - 
Multiple 

Single 

Stratified 

Lasso 
Downsampling 

LHO-LOO 

Elastic 
net 

Downsampling 

LHO-LOO 

Multiple 

Lasso 
Down sampling 

LHO-LOO 

Elastic 
net 

Downsampling 

LHO-LOO 

Standard 
method 

Original 
data 

splitting 

Single 
Random Lasso - 

Multiple 

other 
Knockoff framework 

BHq 
 

 

 

 

 

 



 25 

4.1 Simulation setting 

Suppose the response variable 𝑦 be the 𝑛 × 1 vector and 𝑋 be the 𝑛 × 𝑝 matrix 

which follows a multivariate normal distribution 𝑁(𝟎, Σ).	The covariance matrix is Σ =

𝜌|S&T|	, ℎ, 𝑔 = 1,2, … , 𝑝. We consider the number of sample size 𝑛 = 1,000, and the 

number of features 𝑝 = 500. Response variable 𝑦 follows a binomial distribution.  

 

𝑦|𝑋	~	𝐵𝑖𝑛𝑜𝑚¹
exp(𝑋𝜷 + 𝜂)

1 + exp(𝑋𝜷 + 𝜂)
»	 

 

Here, 𝜷 = L𝛽#, … , 𝛽$N , each 𝛽%  randomly has 0  or 𝜔	(𝜔 > 0)  that represent the 

amplitude of signal. 𝜂 is a parameter of imbalance strength.  

The information about the settings used in the simulation follow:  

• The correlation coefficient 𝜌 ∈ {0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8}. 

• The number of true relevant features 𝑧 ∈ {10, 20, 30, 40, 50}. 

• The parameter of imbalance strength 𝜂 ∈ {0,−3,−3.5, −4,−4.5, −5}.  

• The parameter of amplitude of true relevant features 𝜔 = 0.5. 

• Total sample size 𝑛 = 1,000;	The number of variables 𝑝 = 500. 

• Control level 𝑞 = 0.2; 500 iterations for simulation. 

• 50 repetitions for MDS.  

• Hyperparameters for Lasso and elastic net 𝛼 = 1; 𝛼 = 0.5, respectively.  

• Function 𝑓 for calculating 𝑀% in data splitting 𝑓(𝑢, 𝑣) = 	𝑢 + 𝑣.  
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Table 3. Results of the average number of cases over imbalance strength.  

The number of true features 𝑧 ∈ {10, 	20, 	30, 	40, 	50};  Imbalance parameter 𝜂 ∈

{−5, 	 − 4.5, 	 − 4, 	 − 3.5, 	 − 3, 	0} ; Correlation coefficient 𝜌 = 0.5; 	𝑛 = 1,000; 	𝑝 =

500; 	𝜔 = 0.5	; The number of iterations = 500. 

𝒛 𝜼 = −𝟓 𝜼 = −𝟒. 𝟓 𝜼 = −𝟒 𝜼 = −𝟑. 𝟓 𝜼 = −𝟑 𝜼 = 𝟎 

10 20.78 32.39 48.74 72.29 103.91 500.52 

20 45.27 63.02 86.48 115.96 151.95 499.9 

30 71.39 93.34 119.81 151.88 188.24 500.64 

40 96.62 120.27 149.1 181.53 218.08 499.45 

50 121.05 145.88 174.37 205.87 240.67 500.37 
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4.2 Simulation results  

Figures 4 and 5 show the results for class imbalance ratios of 1:1 and 1:11, respectively. 

As correlation increases, the TPR typically decreases, with performance degradation 

exacerbated under imbalanced data. Excluding cases with strong correlation, (MDS, Elastic 

net) method exhibit high TPR under imbalance. At 𝜌 = 0.8, (MDS, Lasso) demonstrate a 

higher TPR than (MDS, Elastic net), but it suffers from inflated false discoveries, leading 

to a failure in FDR control.  

Figures 6 and 7 demonstrate performance changes according to imbalance situation 

with 𝜌 = 0  and 	𝜌 = 0.5 , respectively. We consider  𝜂 ∈ {−3,−3.5, −4,−4.5, −5} , 

each representing imbalance ratio of {1: 6, 1: 8, 1: 11, 1: 15, 1: 22}. Even as the imbalance 

ratio increases, elastic net methods consistently maintain stable FDR control and exhibit a 

more gradual decrease in TPR compared to Lasso methods. Thus, it can be concluded that 

the elastic net type methods consider correlation and have better performance in 

imbalanced setting compared to Lasso based methods. 

Due to the violation of the independence assumption of p-values, BHq has low TPR 

and unstable FDR as correlation increases. This phenomenon occurs regardless of the 

presence of imbalance. Also, as known in the knockoff framework, performance 

degradation occurs because of the reconstruction issues when strong linear dependencies 

among variables exists (Liu and Rigollet, 2019; Gimenez and Zou, 2019).  
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Figure 4. Empirical FDRs and TPRs over correlation in balanced data (𝜂 = 	0). The considered 

correlation 𝜌	are {0, 0.2, 0.4, 0.6, 0.8} and designated FDR control level is 𝑞	 = 	0.2. 

 

 

Figure 5. Empirical FDRs and TPRs over correlation in imbalanced data (𝜂 = 	−4). The considered 

correlation 𝜌	are {0, 0.2, 0.4, 0.6, 0.8} and designated FDR control level is 𝑞	 = 	0.2.  
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Figure 6. Empirical FDRs and TPRs over the imbalance strength with independent assumption. The 

considered 𝜂	 are {−3,−3.5, −4,−4.5, −5} , indicating ratio of {1: 6, 1: 8, 1: 11, 1: 15, 1: 22} . 

Designated FDR control level is 𝑞 = 	0.2.  

 

 

Figure 7. Empirical FDRs and TPRs over the imbalance strength with correlation (𝜌 = 0.5). The 

considered 𝜂	 are {−3,−3.5, −4,−4.5, −5} , indicating ratio of {1: 6, 1: 8, 1: 11, 1: 15, 1: 22} . 

Designated FDR control level is 𝑞 = 	0.2.  
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Combinations of Lasso and elastic net type data splitting applied with downsampling 

and LHO-LOO are shown in Figure 8. The imbalance ratio is assumed to be approximately 

1:11 (𝜂 = −4). The MDS approaches demonstrate superior performance compared to DS. 

Methods, which are (DS, Lasso, Downsampling), (MDS, Lasso, Downsampling), (DS, 

Lasso, LHO-LOO), and (MDS, Lasso, LHO-LOO), exhibit a slightly higher TPR compared 

to the unadjusted methods (DS, Lasso) and (MDS, Lasso). These methods show a higher 

TPR at 𝜌 = 0.8, but they do not completely control the FDR. However, the elastic net type 

adjusted methods conduct detection while controlling FDR all the correlation settings.  

When the ratio exceeds 1:10, the TPR of Lasso type methods sharply decline. In all 

imbalance ratio scenarios {1:6, 1:8, 1:11, 1:15, 1:22}, the TPRs of the imbalance adjusted 

elastic net type are higher than that of Lasso type in figure 10 and 11. Especially in the 1:11 

scenario, TPRs of (MDS, Elastic net, Downsampling) and (MDS, Elastic net, LHO-LOO) 

are approximately 0.2 greater than (MDS, Lasso, Downsampling) and (MDS, Lasso, LHO-

LOO) in figure 10. Between (MDS, Elastic net, Downsampling) and (MDS, Elastic net, 

LHO-LOO), the method employing the LHO-LOO technique represents slightly higher 

TPR.  

Under the assumption of variable independence in class imbalanced data, the TPR of 

the Knockoff framework is similar with (MDS, Elastic net, LHO-LOO). However, at a 

correlation of 0.5, the TPR of the Knockoff framework is lower than that of (MDS, Elastic 

net, LHO-LOO) by about 0.2. In the case of BHq, this difference increases to over 0.4, 

while FDR control very unstable. We can see the TPR of basic methods placed ranging 
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from 0.1 to 0.3 even at a low imbalance ratio with 𝜌 = 0. However, the adjusted methods 

of the elastic net type maintain the TPR above 0.5 in same situation. Also, as the number 

of true variables raises, the data splitting based methods consistently exhibit enhanced TPR 

and stable FDR in figure 13.  

 

The conclusions from simulation study can be summarized as follows:  

In class imbalanced data environments,  

1) about the data splitting, MDS exhibited higher TPR and lower FDR than DS. 

2) add the correlation settings 𝜌 ≤ 0.6, (MDS, Elastic net) represents superior TPR than  

traditional selection methods such as (DS, Lasso), (MDS, Lasso), Knockoff 

framework, and BHq.  

3) adjusting for class imbalance yields better TPR under FDR control, particularly in 

combination with elastic net based data splitting than Lasso. 

4) among the considered class imbalance ratios, the LHO-LOO adjustment slightly 

outperforms both (MDS, Elastic net, Downsampling) and (MDS, Elastic net, LHO-

LOO) at 𝜌 = 0 and 𝜌 = 0.5. 
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Figure 8. Empirical FDRs and TPRs over correlation in imbalanced data (𝜂 = 	−4) for proposed 

data splitting methods. The considered correlation 𝜌	are {0, 0.2, 0.4, 0.6, 0.8} and designated FDR 

control level is 𝑞	 = 	0.2.  

 

Figure 9. Empirical FDRs and TPRs over correlation in imbalanced data (𝜂 = 	−4) for proposed 

MDS and standard methods. The considered correlation 𝜌	are {0, 0.2, 0.4, 0.6, 0.8} and designated 

FDR control level is 𝑞	 = 	0.2.  



 33 

 

Figure 10. Empirical FDRs and TPRs over imbalance strength with independent assumption for 

proposed data splitting methods. The considered 𝜂	are {−3,−3.5, −4,−4.5, −5} and designated 

FDR control level is 𝑞	 = 	0.2. 

 

 

Figure 11. Empirical FDRs and TPRs over the imbalance strength with correlation (𝜌 = 0.5) for 

proposed data splitting methods. The considered 𝜂	are {−3,−3.5, −4,−4.5, −5}, indicating ratio 

of {1: 6, 1: 8, 1: 11, 1: 15, 1: 22}. Designated FDR control level is 𝑞 = 	0.2. 
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Figure 12. Empirical FDRs and TPRs over imbalance strength with correlation (𝜌 = 0.5) for 

proposed MDS and standard methods. The considered 𝜂	are {−3,−3.5, −4,−4.5, −5}.  

 

 

Figure 13. Empirical FDRs and TPRs over number of true variables in correlation and imbalanced 

data (𝜌 = 0, 𝜂 = −4)	for proposed MDS and standard methods. The considered number of true 

variables 𝑧 	are {10, 20, 30,40,50}.  
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5. Application 

The performance of the proposed methods was validated through empirical analysis 

using simulated data derived from the French pharmacovigilance database. In France, 

healthcare professionals are required to spontaneously report adverse drug reactions (ADRs) 

(Thiessard et al., 2005).  

The data we used is included in the “adapt4pv” package in R. The 𝑋 matrix is a large 

sparse and binary matrix consisting of 117,160 rows and 300 columns. The rows and 

columns represent individual reports and drugs, respectively. 𝑦  is a vector of length 

117,160. It composes of binary values, where 𝑦+ = 1 if an adverse event occurred in the 

ith report, and 𝑦+ 	= 0 otherwise. The dataset includes only 300 drugs out of the larger 

number of drugs in the actual database. It contains 30 true signals based on the positive 

control group identified by the Comite ́ Technique de Pharmacovigilance. Primary event 

is an adverse event occurrence. Approximately 3% of the total reports (3,557 out of 117,160) 

represents an adverse event. This indicates that the imbalance ratio in the simulated data is 

highly skewed at approximately 1:32. 
The FDR control level is set at 0.2. In the table 4, FD and TD represent the number 

of false discoveries and true discoveries, respectively. The BHq successfully detected all 

30 true signals; however, the FDR was notably high at approximately 0.5. Among the 

proposed DS methods, the elastic net based LHO-LOO demonstrated the best performance, 

effectively controlling the FDR below 0.2. This is consistent with the simulation results, 

where the proposed (MDS, Elastic net, LHO-LOO) demonstrated the best performance. 
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Figure 14. Number of discovered drug signals using simulated data derived from the French 

pharmacovigilance database. Methods are Lasso type and proposed elastic net type DS and the 

standard methods as knockoff and BHq. The designated FDR control level is 𝑞 = 0.2. 
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Table 4. Performance based on simulated data derived from the French pharmacovigilance 

database. FD and TD represent the number of false discoveries and true discoveries, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Method FDR TPR # Selection FD TD 

Proposed 

(DS, Lasso, Downsampling) 0.038 0.833 26 1 25 

(DS, Lasso, LHO-LOO) 0.083 0.733 24 2 22 

(DS, Elastic net, Downsampling) 0.161 0.867 31 5 26 

(DS, Elastic net, LHO-LOO) 0.152 0.933 33 5 28 

Standard 
Knockoff 0.074 0.833 27 2 25 

BHq 0.492 1 59 29 30 
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6. Conclusion and discussion 

In imbalanced data, variable selection method such as Lasso logistic regression tends 

to inflate the FDR. Even with the implementation of methods such as the BHq, Knockoff 

framework, or Lasso type data splitting to control the FDR, the TPR remains notably low. 

So, we proposed methods to increase the TPR in variable selection under FDR control via 

data splitting in class imbalanced data and conducted simulation study. Our approach 

includes: 1) extending the penalty of penalized regression from Lasso to elastic net, and 2) 

applying imbalance adjustment techniques such as 1:4 downsampling and LHO-LOO. 

Based on the results of simulation study, we conclude the following:  

 

Regardless of the degree of data class imbalance, MDS consistently outperforms DS 

significantly. In case where correlation exists within imbalanced data, the performance 

degradation is more pronounced. We assume imbalance ratio of 1:11. With increasing 

correlation, existing methods such as BHq and Knockoff framework control the FDR but 

exhibit a significant decrease in TPR. Lasso type original data splitting show an increase 

in TPR but also surpass the controlled level of FDR. This holds true with imbalance 

adjusted lasso type methods. This suggests a failure to consider correlation after addressing 

the imbalance ratio. However, in the same 1:11, proposed elastic net type methods 

consistently uphold FDR levels below the threshold across all correlation settings. 

Furthermore, they demonstrate TPRs close to 0.5 in all correlations of 0.6 or less. This 

signifies enhanced performance compared to adjusted lasso type methods, which yield 
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TPRs under 0.3. Between the two imbalance adjustment methods of elastic net type MDS, 

which are (MDS, Elastic net, Downsampling) and (MDS, Elastic net, LHO-LOO), there is 

a marginal difference in TPR. The LHO-LOO method tends to slightly outperform across 

most correlation and imbalance ratio combinations. Consequently, the proposed imbalance 

adjustment methods based on elastic net show effective FDR control in imbalance 

situations, especially in the presence of correlation, and demonstrate superior performance 

compared to existing methods.  

This study is significant as it explores FDR control and TPR performance in 

regression based variable selection for class imbalanced data. Additionally, it discusses a 

novel combination approach to data splitting and provides a comprehensive comparison 

existing methods.  
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In binary data prediction and classification, regularization parameter 𝜆 is selected 

via cross-validation which minimize classification error. Ahmed4 applied stability selection 

to alleviate the burden of parameters in sparse selection methods. Among our methods, 

MDS involves repeating at least 50 times to integrate the results, ensuring the stability of 

the selection process. Therefore, we conducted parameter tuning via cross validation for 𝜆 

of Lasso and elastic net. In addition, we found that setting the 𝛼 of the elastic net to 0.5 

resulted in its most robust performance for moderately correlated imbalance dataset. 

However, when correlation is high, the TPR increase continuously and faster than the FDR. 

Therefore, when applying the elastic net type methods, it is crucial to select an appropriate 

𝛼 based on the correlation of the data. 

Additionally, we only considered 1:4 downsampling and LHO-LOO as imbalance 

adjustment methods. Other widely recognized methods that include Synthetic Minority 

Oversampling Technique (SMOTE) and random oversampling, which increase the sample 

size of the minority class to address class imbalance. In the future, performance comparison 

studies, which applied different imbalance adjustment methods, could be conducted. 
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7. Supplementary 

Tuning the parameters of Lasso and elastic net penalties is a crucial aspect. It is 

common practice to select parameters that minimize the cross-validation error. For binary 

response data, the measurement is represented as a misclassification rate. However, 

parameters considered from a prediction and classification perspective may not necessarily 

yield the same performance in variable selection. Ahmed4 also mentioned this concern 

occurring in their Lasso logistic model-based signal detection. They alleviated the burden 

of parameter estimation by repeating their selection procedure and integrating the results 

obtained through sub-sampling, while using the 𝜆 from the k-fold cross-validation. The 

MDS in section 2.4.2, also repeats DS more than 50 times and averages them to calculate 

the inclusion rate for each variable. Therefore, in this paper, we performed 10-fold cross 

validation to estimate the penalty parameters. 
The elastic net penalty is defined as  

 

𝜆𝑃(𝜷) = 	𝜆 ¬𝛼��𝛽%�
$

%A#

+
1 − 𝛼
2

�𝛽%'
$

%A#

 

 

where 𝛼	(0 ≤ 𝛼 ≤ 1) is a hyperparameter that determines the balance between Lasso and 

ridge. When 𝛼 =1, it represents the Lasso penalty. Tunning for elastic net was conducted 

by the “cva.glmnet” function from the “glmnetUtils” package in R. This function enables 

the estimation of both 𝛼 and 𝜆. For each specified 𝛼, it computes the performance across 
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different 𝜆 values and selects the (𝛼, 𝜆) combination with the lowest cross-validation 

error as the parameter estimation values. 

We conducted simulations related to the 𝛼  value of elastic net. Using the data 

generated in section 4, we compared the performance across 𝛼  values under each 

imbalance ratios. The considered imbalance parameter 𝜂 ∈ {0,−3,−3.5, −4,−4.5, −5,

−5.5, −5.7}, indicating the ratios as {1: 1, 1: 6, 1: 8, 1: 11,1: 15, 1: 22, 1: 31, 1: 36}, 𝛼 

values are {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and 𝜌 ∈ {0.3, 0.5, 0.8}.  

In weakly imbalanced data, the TPR increases with larger 𝛼 values and then stabilizes. 

However, as the imbalance ratio increases, the TPR peaks around 𝛼 = 0.5. The results of 

changing 𝜌 under the same imbalance conditions are shown in Figure 23 and Figure 24. 

𝛼 appears to be more sensitive to the degree of imbalance than to the correlation coefficient. 

In strong correlations at 𝛼 = 0.8, TPR continues to rise, but FDR also inflated significantly. 

FDR should be recognized as being in control when 𝛼  is below 0.6. Based on these 

findings, we set 𝛼 to 0.5 for elastic net type, and then estimated the appropriate 𝜆 for 

each case through cross-validation. 
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Figure 15. FDRs, TPRs, and number of selections for elastic net type data splitting methods under 

different 𝛼 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} values on balanced data with correlation 𝜌 = 0.5. 

 

 

Figure 16. FDRs, and TPRs for elastic net type proposed data splitting methods under different 

𝛼	values on imbalanced data (𝜂 = −3)	with correlation (𝜌 = 0.5). 
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Figure 17. FDRs, and TPRs for elastic net type proposed data splitting methods under different 

𝛼	values on imbalanced data (𝜂 = −3.5)	with correlation (𝜌 = 0.5). 

 

 

Figure 18. FDRs, and TPRs for elastic net type proposed data splitting methods under different 

𝛼	values on imbalanced data (𝜂 = −4)	with correlation (𝜌 = 0.5). 
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Figure 19. FDRs, and TPRs for elastic net type proposed data splitting methods under different 

𝛼	values on imbalanced data (𝜂 = −4.5)	with correlation (𝜌 = 0.5). 

 

 

Figure 20. FDRs, and TPRs for elastic net type proposed data splitting methods under different 

𝛼	values on imbalanced data (𝜂 = −5)	with correlation (𝜌 = 0.5). 
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Figure 21. FDRs, and TPRs for elastic net type proposed data splitting methods under different 

𝛼	values on imbalanced data (𝜂 = −5.5, 𝑛 = 2,000)	with correlation (𝜌 = 0.5). 

 

 
Figure 22. FDRs, and TPRs for elastic net type proposed data splitting methods under different 

𝛼	values on imbalanced data (𝜂 = −5.7, 𝑛 = 2,000)	with correlation (𝜌 = 0.5). 
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Figure 23. FDRs, and TPRs for elastic net type proposed data splitting methods under different 

𝛼	values on imbalanced data (𝜂 = −4)	with correlation (𝜌 = 0.3). 

 

 

Figure 24. FDRs, and TPRs for elastic net type proposed data splitting methods under different 

𝛼	values on imbalanced data (𝜂 = −4)	with correlation (𝜌 = 0.8). 
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국 문 요 약 

클래스 불균형 자료에서 데이터 분할을 통한 
  

FDR 통제하의 변수 선택 방법 
 
 

 고차원 자료에서 반응변수와 유의미한 연관성을 갖는 독립변수를 선택하는 

것은 다양한 분야에 적용되고 있다. 그러나 선택된 변수 중에서 실제로 응답 

변수와 관련이 없는 변수가 다수 포함될 수 있는 문제점이 있다. 특히 심각한 

클래스 불균형 자료에서 단순 Lasso regression의 변수 선택은 잘못된 발견 비

율 (False Discovery Rate, FDR)을 증가시킨다. FDR 통제 방법을 구현하더라도 실

제 양성 비율 (True Positive Rate, TPR)이 매우 낮을 수 있다. 본 논문에서는 클

래스 불균형 자료에서 FDR 통제 하에 데이터 분할을 통한 변수 선택 시 TPR

을 향상시키기 위한 두 가지 접근 방법을 제안한다.1) 패널티화 회귀의 확장, 2) 

불균형 비율 조정 방법의 적용. 비교에는 Benjamini-Hochberg procedure과 

Knockoff framework를 사용한다. 시뮬레이션 연구를 통해 기존 방법보다 제안

된 조정 방법에서 높은 성능임을 확인하였다. 

                                                                             

핵심되는 말: 잘못된 발견 비율 (False Discovery Rate, FDR); 불균형 비율; 벌점
화 회귀; 녹오프 프레임워크  
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