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Abstract  

Comparison of method for clustering  

in longitudinal categorical data 

 

The longitudinal data analysis with a categorical dependent variable frequently occurs 

in research, offering insights into individual patterns and facilitating tailored interventions. 

However, compared to longitudinal continuous data, there has been limited exploration of 

methodologies for analyzing longitudinal categorical data. 

The study explores methodologies for identifying similar patterns in categorical 

dependent variables across diverse contexts. Simulations were conducted to generate 

longitudinal binary data, employing models with random intercepts, multivariate binary 

models, and Grouped Generalized Estimating Equation models. Results indicate the group-

based trajectory model consistently outperformed others in accurately estimating cluster 

numbers. However, limitations were identified in representing binary data, particularly in 

trajectories with four clusters. Performance metrics such as the adjusted Rand index were 

used but raised doubts about adequacy, urging the need for more comprehensive evaluation 

metrics. 

                                                                        

Keywords: Longitudinal data, Group GEE, Group-based Trajectory model, Growth 

mixture model, Trajectory clustering 
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1. Introduction 

In various health studies, measured outcomes are typically aggregated and analyzed 

across the entire study population or predefined subgroups. However, in most cases, 

unknown or unexpected subgroups exhibit similar patterns of clinical symptoms, behaviors, 

or healthcare utilization. Therefore, relying solely on mean estimates to simplify the 

complex intra- and inter-individual variability may underestimate the intricacies of the real-

life clinical context. 

Additionally, analyzing longitudinal data with categorical dependent variables is a 

common research practice, providing valuable insights into individual patterns and 

facilitating customized applications. However, compared to continuous data, 

methodologies for analyzing longitudinal categorical data have been relatively limited in 

exploration. 

This paper aims to compare and explore methodologies for analyzing longitudinal 

categorical data by applying growth mixture models, group-based trajectory models, and 

Group GEE models. 
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Grouped Generalized Estimating Equations (GGEE) represent an extension of the 

standard GEE analysis tailored to address potential heterogeneity within longitudinal data. 

This approach adopts a grouping mechanism commonly employed in panel data analysis 

literature (Ito, 2023). Specifically, GGEE models operate under the assumption that 

individuals within longitudinal datasets can be categorized into a finite number of groups. 

Within each group, individuals share identical regression coefficients, implying 

homogeneity in regression coefficients among individuals belonging to the same group. By 

implementing this grouping strategy, GGEE facilitates the exploration of nuanced 

variations within longitudinal data, accounting for potential differences across distinct 

groups while maintaining computational feasibility and interpretability (Ito, 2023). 

Group-based trajectory modeling assumes that the entire population is composed of 

several groups experiencing different changes over time. It estimates the probability density 

function of individuals being assigned to specific trajectory groups at each time point. The 

probability density function is estimated based on the probability of subject 𝑖 belonging 

to a specific group multiplied by the probability density function of the states of members 

within that group. This allows for the derivation of the probability of individual samples 

belonging to a specific group over time. 
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Growth mixture model (GMM) extends GBTM with the inclusion of parametric 

random effects, enabling a better fit to the data under the assumption of within-cluster 

variability (Grimm, 2009). The method is also described as a longitudinal latent-class 

mixed model, a multilevel mixture model, or a finite mixture of mixed models. 

Our study endeavors to compare and contrast the efficacy of three methodologies in 

delineating the number of genuine clusters for a pre-established trajectory in data generated 

through distinct mechanisms: models incorporating random intercepts, multivariate binary 

distribution models integrating conditional expectations, and Grouped Generalized 

Estimating Equation (GEE) models. By scrutinizing the capacity of these methodologies to 

discern the true number of clusters and evaluating their respective performances, we aim 

to ascertain their effectiveness in practical settings. 

The remainder of this paper is organized as follows. In Section 2, we provide an 

overview of the methods used. Section 3 discusses the methods for determining the number 

of groups, while Section 4 describes the methods for evaluating clustering. Section 5 covers 

simulation, Section 6 focuses on application, and Section 7 presents the discussion. 
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2. Method 

2.1 Longitudinal studies 

Let 𝑌𝑖𝑗  denote a response variable for the 𝑖𝑡ℎ  individual (𝑖 = 1,2, … ,𝑁)  at 𝑗𝑡ℎ 

observation (𝑖 = 1,2, … ,  𝑛𝑖), where N indicates the total number of individuals and 𝑛𝑖 

indicates the number of observed responses on the 𝑖𝑡ℎ individual (Fitzmaurice, 2012). The 

model for changes in the mean response over time and for relating the changes to the 

covariates can be expressed as: 

 𝑌𝑖𝑗 = 𝛽1𝑋𝑖𝑗1 + 𝛽2𝑋𝑖𝑗2 +⋯+ 𝛽𝑝𝑋𝑖𝑗𝑝 + 𝜀𝑖𝑗 , 𝑗 = 1,2, … , 𝑛𝑖 

where 𝛽1, 𝛽2, … , 𝛽𝑝 are unknown regression coefficients relating the mean of 𝑌𝑖𝑗 to its 

corresponding covariates. Given we have 𝑛𝑖  repeated measurements of the response 

variable on the same individual 𝐼, 𝑛𝑖  × 1 response vector 𝑌𝑖 is denoted as (Fitzmaurice, 

2012): 

𝑌𝑖 = (

𝑋𝑖𝑗1
𝑋𝑖𝑗2
…
𝑋𝑖𝑗𝑝

) , 𝑖 = 1,2, … ,𝑁; 𝑗 = 1,2, … , 𝑛𝑖 
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Every row of 𝑋𝑖𝑗  corresponds to different covariates, and the covariates could be 

time-dependent or independent. The covariates' vectors could also be grouped into a 𝑛𝑖  ×

𝑝 matrix of covariates (Fitzmaurice, 2012). 

𝑋𝑖𝑗 = (𝑋𝑖𝑗1 ⋯ 𝑋𝑖𝑗𝑝), 𝑖 = 1,2, … ,𝑁; 𝑗 = 1,2, … , 𝑛𝑖 

Every row of 𝑋𝑖𝑗  corresponds to different covariates, and the covariates could be 

time-dependent or independent (Fitzmaurice, 2012). 

𝑋𝑖 = (

𝑋𝑖1
′

𝑋𝑖2
′

…
𝑋𝑖𝑛𝑖
′
)=(

𝑋𝑖11 … 𝑋𝑖1𝑝
⋮ ⋱ ⋮

𝑋𝑖𝑛𝑖1 ⋯ 𝑋𝑖𝑛𝑖𝑝

), 𝑖 = 1,2, … , 𝑁 

These covariates' vectors could also be grouped into a 𝑛𝑖  ×  𝑝 matrix of covariates 

for the 𝑖𝑡ℎ individual at the 𝑗𝑡ℎ observation (Fitzmaurice, 2012). Lastly, 𝑡ℎ𝑒 𝑛𝑖  × 1 

vector of random errors would be: 

𝜀𝑖𝑗 =

(

 

𝜀𝑖1
𝜀𝑖2
⋯
𝜀𝑖𝑛𝑖
)

 , 𝑖 = 1,2, … ,𝑁 
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2.2 Trajectory model 

Trajectory analysis refers to examining changes in variables over time or concerning 

age, and studying how covariates influence these trajectories. This analytical approach 

encompasses not only the trajectory of variables over time but also investigates how 

covariates shape these trajectories. In this paper, we present trajectory analysis as a method 

for studying longitudinal data, emphasizing its utility in uncovering patterns of change and 

understanding the effects of covariates on these patterns. 

Trajectory modeling is currently a subject of considerable importance. It involves 

identifying patterns in variables that impact diseases, such as BMI, cholesterol, 

hypertension, and exercise habits. By discerning these patterns, it becomes possible to 

identify high-risk population groups and tailor interventions accordingly for individuals. 

Furthermore, leveraging these patterns enables effective disease prediction and preventive 

measures to be implemented. 

In this paper, we will explore various methods for trajectory analysis, including group-

based trajectory modeling, growth mixture modeling, and grouped GEE modeling. 

Through these methods, we aim to examine and compare the effectiveness of different 

approaches in capturing and interpreting longitudinal patterns in the data. 
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2.3 Finite mixture model 

2.3.1 Introduction 

Mixture models offer a framework for describing a distribution by positing a 

combination of underlying distributions, operating under the premise that the observed 

distribution is composed of multiple data-generating processes and random variables. 

Within this framework, the sub-models assume a common parametric distribution but with 

varying coefficients (N. G. P. Den Teuling, 2023). 

In the context of longitudinal data analysis, a longitudinal mixture model aims to 

characterize the distribution of longitudinal observations 𝑌𝑖 . In this model, the mixture 

density 𝑓(𝑌𝑖|𝜃), where 𝜃 = (𝜋, 𝜃1 , … , 𝜃𝐺) represents the model parameters, is defined as: 

𝑓(𝑌𝑖|𝜃) = ∑ 𝜋𝑔𝑓(𝑌𝑖|𝜃𝑔)
𝐺
𝑔=1 . 

Here, 𝑓(𝑌𝑖|𝜃𝑔) denotes the conditional density of 𝑌𝑖 given that 𝑖 belongs to cluster g (N. 

G. P. Den Teuling, 2023). 
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The probability of observing 𝑌𝑖 given that 𝑖 belongs to cluster 𝑔 and under model 

parameters 𝜃 is expressed as: 

Pr(𝑌𝑖|𝑖 ∈ 𝐼𝑔 , 𝜃) =
𝜋𝑔𝑓(𝑌𝑖|𝜃𝑔)

∑ 𝜋𝑔′𝑓(𝑌𝑖|𝜃𝑔′)
𝐺
𝑔′=1

 

This formulation reflects the probability of 𝑌𝑖 conditioned on membership in cluster 

𝑔  and the parameters 𝜃,  where 𝜋𝑔  represents the mixing proportion associated with 

cluster 𝑔, and 𝑓(𝑌𝑖|𝜃𝑔) denotes the density function corresponding to cluster 𝑔 (N. G. 

P. Den Teuling, 2023). 
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2.3.2 Model Estimation 

For given membership in group 𝑔, the measurements of outcome 𝑌𝑖𝑗 of subject 𝑖 

at time 𝑗 is, 

𝐿𝑜𝑔𝑖𝑡[𝑃(𝑌𝑖𝑗 = 1|𝐶 = 𝑔)] = 𝛽0𝑔 + 𝛽1𝑔 ∗ 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝛽2𝑔 ∗ 𝑇𝑖𝑚𝑒𝑖𝑗
2
 

The link function varies depending on the form of 𝑌. The probability of observing an 

individual 𝑖′𝑠 longitudinal sequence of behavioral measurements 𝑌𝑖 is 

𝑃(𝑌𝑖) =

∑ 𝜋𝑔𝑃
𝑔(𝑌𝑔)𝑔 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑌𝑖  𝑔𝑖𝑣𝑒𝑛 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑔 𝑖𝑠 𝑃

𝑔(𝑌𝑔) 

and the probability of membership in group 𝑔 is 𝜋𝑔 . 

The probability 𝑃𝑔(𝑌𝑔) can be obtained by multiplying the observed values of 𝑌 

for the subject I at each repeated measurement occasion 𝑗 within each group 𝑔. The 

values at the repeated measurement occasions are all assumed to be independent. 

𝑃𝑔(𝑌𝑔) =∏𝑃𝑔(𝑌𝑖𝑗) = 𝑃
𝑔(𝑌𝑖1) ∗ 𝑃

𝑔(𝑌𝑖2) ∗ …∗ 𝑃
𝑔(𝑌𝑖𝑗)

𝐽

𝑗=1

 

Model estimation proceeds with the following equation, and maximum likelihood 

estimates are obtained using the EM-Quasi Newton method. 

𝐿 =∏𝑃(𝑌𝑖)

𝑁

0

=∏∑𝜋𝑔𝑃
𝑔(𝑌𝑔) =∏∑𝜋𝑔∏𝑃𝑔(𝑌𝑖𝑗)

𝐽

𝑗=1𝑔

𝑁

0𝑔

𝑁

0
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2.3.3 Group-based trajectory model (GBTM) 

Group-based trajectory modeling assumes that the entire population is composed of 

several groups experiencing different changes over time. It estimates the probability density 

function of individuals being assigned to specific trajectory groups at each time point. The 

probability density function is estimated based on the probability of subject 𝑖 belonging 

to a specific group multiplied by the probability density function of the states of members 

within that group. This allows for the derivation of the probability of individual samples 

belonging to a specific group over time. Depending on the characteristics of the dependent 

variable, the probability of being included in each type is estimated differently. 

The dependent variables encompass a range of models including the censored normal 

model, Poisson-based model, and logit-based model. In this paper, our focus lies on 

discussing categorical data, particularly emphasizing the logit-based model. Additionally, 

the group-based trajectory model adheres to the following formula, as outlined in the paper: 

𝐿𝑜𝑔𝑖𝑡[𝑃(𝑌𝑖𝑗 = 1|𝐶 = 𝑔)] = 𝛽0𝑔 + 𝛽1𝑔 ∗ 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝛽2𝑔 ∗ 𝑇𝑖𝑚𝑒𝑖𝑗
2, 𝑖 ∈ 𝐼𝑔 

Here, 𝛽0𝑔, 𝛽1𝑔, and 𝛽2𝑔 denote the cluster-specific regression coefficients. 
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2.3.4 Growth mixture model (GMM) 

The growth mixture model extends the group-based trajectory model by incorporating 

random effects, allowing for within-group variability. It represents cases where distinct 

subgroups are delineated in previous theories. 

Growth mixture model follows the following formula: 

𝐿𝑜𝑔𝑖𝑡[𝑃(𝑌𝑖𝑗 = 1|𝐶 = 𝑔)] = 𝛽0𝑔 + 𝛽1𝑔 ∗ 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝛽2𝑔 ∗ 𝑇𝑖𝑚𝑒𝑖𝑗
2 + 𝑍𝑖𝑗𝑢𝑖𝑔 , 𝑖 ∈ 𝐼𝑔  

𝑢𝑖𝑔 ~𝑀𝑉𝑁(0, Σ𝑔) 

Due to its flexibility, GMM is widely used, allowing researchers to specify random 

effects and their relationships, as well as include covariates (N. G. P. Den Teuling, 2023). 

However, this may lead to difficulties in identifying the most appropriate model. 
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2.4 Grouped Generalized Estimating Equations 

For longitudinal data analysis, let 𝑌𝑖𝑗 denote the response variable of interest and 𝑋𝑖𝑗 

represent a 𝑝-dimensional vector containing covariate information of subject 𝑖 at time 𝑗, 

where 𝑖 = 1,… , 𝑛  and 𝑗 = 1,… ,  𝑛𝑖 . For ease of notation, we set 𝐽𝑖 = 𝐽  for all 𝑖, 

representing a balanced data case, but the extension to an unbalanced case is 

straightforward (Ito, 2023). 

We adopt a generalized linear model for 𝑌𝑖𝑗, which is given by: 

𝑓(𝑌𝑖𝑗|𝑋𝑖𝑗;𝛽,𝜙) = exp [{𝑌𝑖𝑗𝜃𝑖𝑗 − 𝑎(𝜃𝑖𝑗) + 𝑏(𝑌𝑖𝑗)}/𝜙] 

where 𝑎(∙)𝑎𝑛𝑑 𝑏(∙)  are known functions, and 𝜃𝑖𝑗 = 𝑢(𝑋𝑖𝑗
𝑇𝛽𝑖)  for a known monotone 

function 𝑢(∙). By the model, the canonical link function 𝑢(𝑥) = 𝑥 is commonly utilized 

(Ito, 2023). 

Here, 𝛽𝑖  denotes the regression parameter of interest, which may exhibit 

heterogeneity across subjects, while 𝜙 represents a known scale parameter shared among 

all subjects (Ito, 2023). 
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Under this model, the first two moments of 𝑌𝑖𝑗  are expressed as 𝑚(𝑋𝑖𝑗
𝑇𝛽𝑖𝑗) =

 𝑎′(𝜃𝑖𝑗) 𝑎𝑛𝑑 𝜎
2(𝑋𝑖𝑗

𝑇𝛽𝑖𝑗) = 𝑎
′′(𝜃𝑖𝑗)𝜙,  respectively. For instance, in the scenario of 

binary response, the function 𝑎(𝑥) = log{1 + exp(𝑥)} is applied, leading to the logistic 

model formulated as 𝑚(𝑋𝑖𝑗
𝑇𝛽𝑖𝑗) = {1 + exp (−𝑋𝑖𝑗

𝑇𝛽𝑖)}
−1 (Ito, 2023). 

In the standard Generalized Estimating Equations (GEE) analysis, the regression 

parameters are assumed to be homogeneous, meaning 𝛽𝑖 = 𝛽, while allowing for potential 

heterogeneity among subjects. However, estimating 𝛽𝑖 accurately becomes challenging as 

the number of subjects increases, especially when J is not sufficiently large, which is a 

common scenario in longitudinal data analysis (Ito, 2023). 

To address this issue, we propose a grouped structure for the subjects, where the n 

subjects are divided into G groups Subjects within the same group share the same 

regression coefficients. Specifically, we introduce an unknown grouping variable 𝑔𝑖 

belonging to {1, …, G}, which determines the group to which the 𝑖𝑡ℎ subject belongs. We 

define 𝛽𝑖 = 𝛽𝑔𝑖, where the unknown regression parameters are 𝛽1, … , 𝛽𝐺 . Therefore, if G 

is not considerably large compared to n and T, then 𝛽1, … , 𝛽𝐺 can be estimated accurately. 

Additionally, due to the grouped nature, the estimation results of 𝑔𝑖 provide a grouping of 

subjects in terms of regression coefficients, making the results easily interpretable for users. 

We also consider G as an unknown parameter, although we assume G to be known for the 

time being (Ito, 2023). 
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3. Number of groups 

Determining the number of groups when clustering is a crucial issue. In practice, 

clusters are often indistinct, making it challenging to differentiate between subgroups and 

thereby cluster all subjects accurately. 

In this paper, we aim to determine the number of groups using the cross-validation 

averaging method proposed in the group GEE model, as well as the widely used Bayes 

Information Criterion (BIC) in mixture models. 
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3.1 Cross-validation with averaging (CVA) 

The cross-validation averaging method involves dividing the N subjects into three 

subsets. Two training sets of size M and one testing set of size N-2M are then created. 

Through the group GEE method, regression coefficients and working correlation matrices 

are estimated using the two training sets. The estimated regression coefficients and working 

correlation are then utilized to determine the optimal number of groups based on 

performance on the testing set. 

The following formula sets the number of groups as the one that minimizes the 

equation, which involves substituting the regression coefficients and working correlation 

obtained from the training set into the test data. The formal representation of the equation 

is as follows: 

𝑔𝑖̂
(ℎ) = 𝑎𝑟𝑔𝑚𝑖𝑛 {𝑦𝑖 −𝑚(𝑋𝑖  𝛽𝑔̂

(ℎ)
)}
𝑇

{𝑅̂(ℎ)}
−1
{𝑦𝑖 −𝑚(𝑋𝑖  𝛽𝑔̂

(ℎ)
)},  

ℎ = 1,2(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡) 

where 𝛽𝑔̂
(ℎ)

 and 𝑅̂(ℎ) are estimates of regression coefficients and working correlation 

based on ℎ𝑡ℎ training data for ℎ = 1,2. 

𝑆𝑐̂ = ∑ 1{1(𝑔𝑖̂
(1) = 𝑔𝑗̂

(1)) + 1(𝑔𝑖̂
(2) = 𝑔𝑗̂

(2)) = 1}

𝑖,𝑗∈𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎

 

By averaging, we select g as the minimizer of the criterion among some candidates of g. 
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3.2 Bayesian information criterion (BIC) 

In mixture models, the Bayes Information Criterion (BIC) is widely applied, and the 

number of groups is determined by selecting the smallest BIC value. The BIC is defined 

by Nagin as follows 

𝐵𝐼𝐶 = 𝑙𝑜𝑔𝐿(𝜋̂, 𝜃) − 0.5𝑝𝑙𝑜𝑔(𝑛), 

where 𝑝  is the number of parameters of the model, 𝑛 𝑖𝑠  the number of patients, and 

𝐿(𝜋̂, 𝜃) the likelihood of the model, evaluated at the maximum likelihood estimates. In 

model selection, BIC tends to favor models with a greater number of groups, prompting 

the proposal of the bootstrapped likelihood ratio test as an alternative approach. 
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4. Evaluation 

When conducting evaluations, we primarily employ the Adjusted Rand Index for 

scenarios where the actual number of clusters is known, while utilizing methodologies 

relying on distance metrics like the Calinski-Harabasz Index and Davies-Bouldin Index for 

cases where the actual number of clusters is unknown. 

Firstly, we determine the number of groups using the Bayesian Information Criterion 

(BIC) for the Group-Based Trajectory Model and Growth Mixture Model, and through 

cross-validation with averaging for the Grouped Generalized Estimating Equations. 

Subsequently, we evaluate the performance using these three evaluation metrics. The 

higher the values of the Adjusted Rand Index and the Calinski-Harabasz Index, the better 

the performance. Conversely, a lower value of the Davies-Bouldin Index indicates better 

performance. 
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4.1 Adjusted Rand index 

The Adjusted Rand Index (ARI) serves as a widely adopted metric to evaluate the 

resemblance between two clustering outcomes. Given a set of n objects 𝑆 =

{𝑂1, … ,  𝑂𝑛}, 𝑠𝑢𝑝𝑝𝑜𝑠𝑒 𝑈 = {𝑢1,… , 𝑢𝑅 }  and 𝑉 = {𝑣1,… , 𝑣𝐶}  show two distinct 

partitions of the objects in S such that ⋃ 𝑢𝑖
𝑅
𝑖=1 = 𝑆 = ⋃ 𝑣𝑗

𝐶
𝑗=1   and 𝑢𝑖 ∩ 𝑢𝑖′ = ∅= 𝑣𝑗 ∩

𝑣𝑗′ for 1 ≤ 𝑖 ≠ 𝑖′ ≤ 𝑅 and 1 ≤ 𝑖 ≠ 𝑖′ ≤ 𝐶. Assuming U as the external criterion and V 

as a clustering result, let a denote the count of object pairs placed in the same class in U 

and the same cluster in V, b be the count of object pairs in the same class in U but not in 

the same cluster V, c be the count of object pairs in the same cluster in V but not in the same 

class in U, and d be the count of object pairs in different classes and different clusters in 

both partitions. The quantities a and d can be interpreted as agreements, and b and c as 

disagreements. The Rand index is simply 
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
. The Rand index lies between 0 and 1. 

When the two partitions agree perfectly, the Rand index is 1 (Gao, 2023). 

One limitation of the Rand index is that the expected value of the Rand index of two 

random partitions does not remain constant. The adjusted Rand index proposed by (Hubert 

and Arabie, 1985) assumes the generalized hypergeometric distribution as the model of 

randomness, the U and V partitions are randomly such that the number of objects in the 

classes and clusters is fixed (Gao, 2023). 
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Let 𝑛𝑖  𝑎𝑛𝑑 𝑛𝑗  denote the number of objects in class 𝑢𝑖, and cluster 𝑣𝑗 respectively. 

The general form of an index with a constant expected value is  

𝑖𝑛𝑑𝑒𝑥−𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑑𝑒𝑥

 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑑𝑒𝑥−𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑑𝑒𝑥
, which is bounded above by 1, and takes the value 0 

when the index equals its expected values (Gao, 2023). 
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4.2 Calinski-Harabasz index 

The Calinski-Harabasz index consists of a numerator representing between-group 

variation and a denominator representing within-group variation. If clustering is done well, 

each cluster should be as far apart as possible, meaning that between-group variation should 

increase. Additionally, data within each cluster should be as close as possible. Hence, 

within-group variation should be minimized. Therefore, as this index increases, it can be 

considered that clustering has been done well. 

The Calinski-Harabasz index enables comparison of results between clustering 

algorithms, with the algorithm producing the highest value considered the best for 

clustering. Moreover, when the number of clusters is unknown, one can increment the 

number and calculate the index's value, selecting the value of k that maximizes the index 

as the final number of clusters. 

Let K denote the total number of clusters, 𝐶𝑘  represent the centroid vector of a cluster, 

𝑛𝑘 denote the number of data points belonging to a cluster, and 𝑐 = ∑
𝑥𝑖

𝑛

𝑛
𝑖=1  signify the 

centroid vector of all data points. When 𝑥𝑖
𝑘  refers to the data points belonging to the kth 

cluster, and ‖𝑎‖2 denotes the P-dimensional Euclidean distance. 

 𝐶𝐻 = [
∑ 𝑛𝑘‖𝐶𝑘−𝐶‖22
𝐾
𝑘=1

𝐾 − 1
]/[
∑ ∑ ‖𝑥𝑖

𝑘 − 𝐶𝑘‖2
2𝑛𝑘

𝑖=1
𝐾
𝑘=1

𝑛 − 𝐾
] 
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4.3 Davies-Bouldin index 

Let's consider that there are n data points. Here, 𝑥𝑖 ∈ 𝑅
𝑚 , 𝑥𝑖  is an m-dimensional 

vector. Assuming that clusters have been assigned to the data points using a clustering 

algorithm, let the total number of clusters be K, 𝑐𝑘, k=1, ..., K be the centroid vector of a 

cluster, and  𝑛𝑘 denote the number of data points belonging to a cluster. In this context, 

we define the following. 

𝑆𝑘 = (
1

𝑛𝑘
 ∑‖𝑥𝑖

𝑘 − 𝑐𝑘‖𝑝
𝑞

𝑛𝑘

𝑖=1

)1/𝑞 

𝑀𝑘,𝑙 = ‖𝑐𝑘 − 𝑐𝑙‖𝑝 = (∑‖𝑐𝑘,𝑗 − 𝑐𝑙,𝑗‖
𝑝

𝑚

𝑗=1

)

1
𝑝

 

where ‖𝑎‖𝑝 is 𝐿𝑝 −𝑁𝑜𝑟𝑚. In this case, 𝑞 = 1 𝑎𝑛𝑑 𝑝 = 2 𝑎𝑟𝑒 𝑐𝑜𝑚𝑚𝑜𝑛𝑙𝑦 𝑢𝑠𝑒𝑑. 

𝑆𝑘 represents within-cluster variation, hence smaller values indicate higher similarity 

among data points within the cluster. 𝑀𝑘,𝑙  indicate better performance, serving as a 

measure of how well two clusters are separated: 

𝑅𝑘,𝑙 =
𝑆𝑘 + 𝑆𝑙
𝑀𝑘,𝑙

 

 

 



- 22 - 

 

5. Simulation 

5.1 Data generation 

Trajectory data is generated using binary distributions. the trajectory data is as follows: 

𝐿𝑜𝑔𝑖𝑡[𝑃(𝑌𝑖𝑗 = 1)] = 𝛽0𝑔 + 𝛽1𝑔 ∗ 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝛽2𝑔 ∗ 𝑇𝑖𝑚𝑒𝑖𝑗
2
 

To generate trajectory data, the distribution of each trajectory was taken into account, 

and data generation was conducted accordingly for each trajectory. the process is detailed 

as follows. 

The first data-generating method considers a model with random intercepts. Random 

intercepts were assigned to each subject by generating random numbers from a normal 

distribution with a mean of 0 and a standard deviation of 0.5. These values, along with 

those specific to each trajectory, were added to create probabilities, which were then used 

to generate binomial distributions. 

The second data-generating method involves generating covariates, followed by 

creating correlated binary response variables based on a multivariate binary distribution, as 

described (Jung, 2013). This method requires assumptions about the 𝑛𝑖 × 1 mean vector 

𝜋𝑖, 𝑛𝑖 × 𝑛𝑖  covariance matrix 𝑉𝑖, and 𝑛𝑖 × 𝑛𝑖  correlation matrix 𝐶𝑖 .  

First, by applying the parameters in each trajectory, we can obtain the mean vectors 

through a logit model. The covariance matrix is 𝑉𝑖 = 𝐴𝑖𝐶𝑖𝐴𝑖, where 𝐴𝑖 is diag {𝑣𝑖𝑡
1/2

} 
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and 𝑣𝑖𝑡 here is 𝜋𝑖𝑡(1 − 𝜋𝑖𝑡). The correlation matrix 𝐶𝑖 is an exchangeable matrix, with 

a correlation parameter assumed to be 0.5. Given the assumed mean vector, covariance 

matrix, and correlation matrix as described above, the conditional mean 𝑣𝑖𝑡 is defined by 

the following equation, where 𝑍𝑡 = (𝑌1, … ,  𝑌𝑡−1)
⊺ , 𝜇𝑡 = 𝐸(𝑍𝑡) , 𝐺𝑡 = 𝑐𝑜𝑣(𝑍𝑡) , 𝑠𝑡 =

𝑐𝑜𝑣(𝑍𝑡 ,  𝑌𝑡), 𝑏𝑡 = 𝐺𝑡
−1𝑠𝑡. 

𝑣𝑡 = 𝑣𝑡(𝑧𝑡;𝜋, 𝑉) ∶= 𝑃(𝑌𝑖𝑡 = 1|𝑍𝑡 = 𝑧𝑡) = 𝜋𝑡 + 𝑏𝑡
⊺(𝑧𝑡 − 𝜇𝑡)  

= 𝜋𝑡 + ∑𝑏𝑡𝑗(𝑦𝑗 − 𝜋𝑗)

𝑡−1

𝑗=1

 (𝑡 = 2,… , 𝑇). 

The binary response variable Y is generated as follows: 𝑌1  follows a Bernoulli 

distribution with mean 𝜋1 and is generated using random numbers. 𝑌𝑡(t=2, ...,6) follows 

a Bernoulli distribution with conditional mean 𝑣𝑡, and is generated using random numbers. 

In this way, the response variables at the initial time point are generated using a mean vector, 

while the response variables at subsequent time points are generated using conditional 

means, based on a multivariate binomial distribution with a conditional linear property. 

Thus, the generated binary response variables exhibit correlation. 

The third-generation method utilized the grouped Generalized Estimating Equations 

(GEE) approach. Based on the probability 𝜋𝑖𝑡, we generated (𝑌𝑖1, … , 𝑌𝑖𝑡) from a correlated 

binary vector using the R package “bindata” with an exchangeable correlation matrix with 

a 0.5 correlation parameter. 
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5.2 Simulation Setting 

We aim to assess whether each clustering method accurately estimates the true number 

of clusters under various conditions and determine which clustering method is appropriate 

under these conditions. we consider three data generation methods. 

All three generating methods apply to a cohort of 300 subjects per trajectory. 

Covariates include time and its square, generated through random number generation 

following a uniform distribution. six-time points per subject were generated. additionally, 

When the number of trajectories is 2, each has a probability of 0.5. For 3 trajectories, the 

probabilities are 0.34, 0.33, and 0.33 respectively. When there are 4 trajectories, each 

group's entry probability is set at 0.25.  

Furthermore, when there are 2 trajectories, the regression coefficients are specified as 

{𝛽01, 𝛽11, 𝛽21} = {−2,2, −0.2} 𝑎𝑛𝑑 {𝛽02, 𝛽12 , 𝛽22} = {2,−2,0.2}. For 3 trajectories, 

they are set a {𝛽01, 𝛽11, 𝛽21} = {6,−2,0.01} and  {𝛽02, 𝛽12, 𝛽22} = {−6,2,0.01} and 

{𝛽03, 𝛽13, 𝛽23} = {2,−0.01,0.01}. When there are 4 trajectories, they are 

{𝛽01, 𝛽11, 𝛽21} = {6,−2,0.01} and {𝛽02, 𝛽12, 𝛽22} = {−6,2,0.01} and {𝛽03, 𝛽13, 𝛽23} =

{−0.5,0.01,0.01} and {𝛽04, 𝛽14, 𝛽24} = {2,−2,0.2}. 
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Table 1. Parameter settings according to group. 

 

 

 

 

 

 

 

 

Groups N 𝛽 

Group=2 600 

β01 = −2, β11 = 2, β21 = −0.2 

β02 = 2, β12 = −2, β22 = 0.2 

Group=3 900 

β01 = 6, β11 = −2, β21 = 0.01 

β02 = −6, β12 = 2, β22 = 0.01 

β03 = 2, β13 = −0.01, β23 = 0.01 

Group=4 1200 

β01 = 6, β11 = −2, β21 = 0.01 

β02 = −6, β12 = 2, β22 = 0.01 

β03 = −0.5, β13 = 0.01, β23 = 0.01 

β04 = 2, β14 = −2, β24 = 0.2 
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5.3 Simulation Result 

We confirmed trajectories with 2, 3, and 4 instances over time. These can be observed 

in Figure 1. 

We will explain the results of the model considering the first random intercept. In the 

case of two trajectories, it can be observed from Table 2 that the group-based trajectory 

model correctly identifies the true clusters, whereas the growth mixture model and grouped 

generalized estimating equations model are not performing as well. Indeed, when 

examining the evaluation metrics, it is evident that the group-based trajectory model 

demonstrates superior performance. 

In the case of three trajectories, the true number of clusters is accurately estimated in 

the following order: growth mixture model, group-based trajectory model, and grouped 

generalized estimating equations, as evident in Table 4. Furthermore, as seen in Table 5, 

the group-based trajectory model exhibits the best performance, and similar results are 

observed when there are four trajectories. 
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When generating data using a multivariate binary distribution model with conditional 

expectation, it is observed in Table 8 that all models accurately identify the true number of 

clusters when there are two trajectories. Additionally, Table 9 demonstrates that the Group-

based Trajectory Model exhibits the best performance. For the case of three trajectories, 

Table 10 shows that the Group-based Trajectory Model, Growth Mixture Model, and 

Grouped Generalized Estimating Equations model, in that order, accurately represent the 

true number of clusters. Furthermore, Table 11 confirms that the Group-based Trajectory 

Model performs the best across all evaluation metrics 

As indicated in Table 12, when there are four trajectories, it's apparent that none of the 

models successfully identify the true number of clusters. Despite the evaluation metrics 

showing the Growth Mixture Model to perform the best, scrutiny of the Adjusted Rand 

Index demonstrates that none of the models exhibit strong performance. 
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Considering the simulation in the grouped generalized estimating equations paper, data 

was generated using time and its square as variables. When there were two trajectories in 

the trajectory model, both the Calinski Harabasz index and Davies Bouldin index showed 

that grouped generalized estimating equations performed the best, as indicated in Table 15. 

Additionally, as seen in Table 14, both the group-based trajectory model and grouped 

generalized estimating equations accurately estimated the number of clusters. 

When the trajectory consisted of three groups, similarly, grouped generalized 

estimating equations exhibited the best performance. However, as shown in Table 16, the 

number of clusters was most accurately estimated by the group-based trajectory model. 

In the case of four trajectories, all performance metrics suggested that each model 

performed better in different aspects. This discrepancy arises from the limitation of 

describing four trajectories solely using binary classification, as noted in the paper. 
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Figure 2. Trajectory figures according to the number of groups. 

 

 

 

Table 2. The results of group numbers when the group is 2 in the random effect model. 
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Table 3. The performance metrics of Group-based Trajectory Model, Growth Mixture 

Model, and Grouped Generalized Estimating Equations when the group is 2 in the 

random effect model. 

 

 

 

Table 4. The results of several clusters for trajectories of 3 in the random effect model. 
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Table 5. The performance metrics of Group-based Trajectory Model, Growth Mixture 

Model, and Grouped Generalized Estimating Equations when the group is 3 in the 

random effect model. 

 

 

 

Table 6. The results of several clusters for trajectories of 4 in the random effect model. 
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Table 7. The performance metrics of Group-based Trajectory Model, Growth Mixture 

Model, and Grouped Generalized Estimating Equations when the group is 4 in the 

random effect model. 

 

 

Table 8. The results of several clusters for trajectories of 2 in the multivariate binary 

distribution model with conditional expectation. 
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Table 9. The performance metrics of Group-based Trajectory Model, Growth Mixture 

Model, and Grouped Generalized Estimating Equations when the group is 2 in the 

multivariate binary distribution model with conditional expectation. 

 

 

 

Table 10. The results of several clusters for trajectories of 3 in the multivariate binary 

distribution model with conditional expectation. 
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Table 11. The performance metrics of Group-based Trajectory Model, Growth Mixture 

Model, and Grouped Generalized Estimating Equations when the group is 3 in the 

multivariate binary distribution model with conditional expectation. 

 

 

 

Table 12. The results of several clusters for trajectories of 4 in the multivariate binary 

distribution model with conditional expectation. 
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Table 13. The performance metrics of Group-based Trajectory Model, Growth Mixture 

Model, and Grouped Generalized Estimating Equations when the group is 4 in the 

multivariate binary distribution model with conditional expectation. 

 

 

 

Table 14. The results of several clusters for trajectories of 2 in the grouped generalized 

estimating equation model. 
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Table 15. The performance metrics of Group-based Trajectory Model, Growth Mixture 

Model, and Grouped Generalized Estimating Equations when the group is 2 in the 

grouped generalized estimating equation model. 

 

 

 

Table 16. The results of several clusters for trajectories of 3 in the grouped generalized 

estimating equation model. 
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Table 17. The performance metrics of Group-based Trajectory Model, Growth Mixture 

Model, and Grouped Generalized Estimating Equations when the group is 3 in the 

grouped generalized estimating equation model. 

 

 

 

Table 18. The results of several clusters for trajectories of 4 in the grouped generalized 

estimating equation model. 
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Table 19. The performance metrics of Group-based Trajectory Model, Growth Mixture 

Model, and Grouped Generalized Estimating Equations when the group is 4 in the 

grouped generalized estimating equation model. 
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6. Application 

We utilize the proposed technique on the HRS dataset, sourced from research carried 

out by the University of Michigan. This longitudinal panel investigation conducts thorough 

interviews with American adults aged 50 and above once every two years, providing 

insights into their health and financial situations. The primary objective of this study is to 

examine how participants’ health statuses evolve within the HRS study and identify the 

factors linked to these changes. 

We utilized the dataset from the HRS study, available through the R package “LMest”. 

The sample comprises 7074 individuals tracked over approximately 8 equally spaced 

intervals, with no missing responses or dropouts. The response variable is self-reported 

health status, categorized into five levels: “poor”, “fair”, “good”, “very good”, and 

“excellent”, ranked from 5 to 1. 

We classified "good", "very good", and "excellent" as "well" (1) and the remaining 

values as "unwell" (0). Moreover, within the covariates, we incorporated indicator variables 

denoting gender (1 for male, 0 for female), indicators for race (black and other and white), 

indicators for educational attainment (SC: some college, CAA: college and above, Others), 

and age recorded at each time instance. 
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We assume that individuals can be categorized into groups: those who are consistently 

healthy, those who are consistently unhealthy, and those whose health status may change 

over time. Therefore, we aim to compare and evaluate the performance of group-based 

trajectory models, and growth mixture models and grouped generalized estimating 

equations as methods for clustering the variations over time. 

Let 𝑦𝑖𝑗 be the binary response variable, and 𝑥𝑖𝑗 be the vector of five covariates and 

an intercept, for 𝑖 = 1,… , 𝑛(= 7074)  and 𝑡 = 1, … , 𝑇(= 8) . We consider the mean 

structure 𝐸[𝑦𝑖𝑗|𝑥𝑖𝑗] = 𝑚(𝑥𝑖𝑗
⊺ 𝛽𝑔𝑖) with 𝑚(𝑥) =

exp(𝑥)

{1+exp(𝑥)}
 and 𝑔𝑖 ∈ {2,… ,7}.  

Firstly, to determine the number of groups, we considered the Bayesian Information 

Criterion (BIC) in both the Group-based Trajectory Model and the Growth Mixture Model, 

selecting 7 and 4 groups based on the lowest BIC values. In contrast, the Grouped 

Generalized Estimating Equations model utilized the cross-validation with averaging 

method to specify the number of groups as 5. Subsequently, applying each specified 

number of groups, we evaluated and compared the Group-based Trajectory Model, Growth 

Mixture Model, and Grouped Generalized Estimating Equations using the Calinski-

Harabasz Index, and Davies-Bouldin Index.  

In Table 20, we observe that the Growth Mixture Model has the highest value for the 

Calinski-Harabasz Index and the lowest value for the Davies-Bouldin Index. This indicates 

that the Growth Mixture Model exhibits the best performance. Trajectory exhibits distinct 

characteristics. 
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Table 20. The performance results of the Calinski-Harabasz Index and Davies-Bouldin 

Index for different numbers of groups in the Group-based Trajectory Model, Growth 

Mixture Model, and Grouped Generalized Estimating Equations 

 

Figure 2. Trajectory plots in the Growth Mixture Model 
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7. Discussion 

In various health studies, the measured outcomes are typically aggregated and 

analyzed across the entire study population or predefined subgroups. However, in most 

cases, unknown or unexpected subgroups may exhibit similar patterns. Therefore, relying 

solely on mean estimates may underestimate the complexity of real-life clinical contexts. 

Additionally, categorical dependent variables are commonly used in research, and they 

offer the advantage of ease in customization when identifying similar patterns, similar to 

continuous dependent variables. Hence, we have embarked on a study to compare methods 

for identifying similar patterns in categorical dependent variables across various contexts. 

We conducted simulations to generate longitudinal binary data, considering models 

incorporating random intercepts, multivariate binary models using conditional expectations, 

and Grouped Generalized Estimating Equation models. We examined trajectories with 2, 3, 

and 4 clusters. 

In the first model considering random intercepts, regardless of the number of 

trajectories, we found that the group-based trajectory model performed the best and 

accurately estimated the number of clusters. 
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In the second model, the multivariate binary model using conditional expectations, we 

observed that for trajectories 2 and 3, the group-based trajectory model exhibited the best 

performance, accurately estimating the number of groups alongside the growth mixture 

model. However, for trajectory 4, none of the models accurately estimated the number of 

clusters. The Adjusted Rand Index values also indicate a random assignment pattern, 

similar to chance, across all models. The issue arises because when generating trajectories 

with four binary outcomes, there tends to be a significant overlap. 

In the third simulation, following the format of the Grouped Generalized Estimating 

Equations paper and considering the time variable, we observed that grouped generalized 

estimating equations consistently performed the best across trajectories with 2 and 3 

clusters. However, the group-based trajectory model exhibited the most accurate estimation 

of the number of clusters. 

Moreover, for trajectories with 4 clusters, both the estimation of the number of clusters 

and overall performance favored the group-based trajectory model. However, since 

performance metrics indicate different models as superior, it's challenging to determine 

which model is best. The issue seems to stem from limitations in the metrics used to 

evaluate binary data. 
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During this study, the group-based trajectory model consistently demonstrated robust 

performance across various simulation scenarios, effectively estimating the number of 

clusters. However, a limitation was identified regarding the representation of binary data, 

where trajectories were encoded solely as 0s and 1s. Evidence of this limitation is observed 

in cases where trajectories with four clusters, except those generated by the random effect 

model, showed suboptimal performance in terms of both the true number of clusters and 

overall performance. Additionally, performance evaluation was conducted using metrics 

such as the adjusted Rand index, Calinski-Harabasz index, and Davies-Bouldin index. 

While these metrics can be applied to binary data, doubts arose regarding whether the 

performance evaluation was adequate, prompting the need for more detailed and diverse 

performance metrics. 
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국 문 요 약 

 

종단 범주형 데이터의 클러스터링 방법 비교 

 

이 연구는 다양한 맥락에서 범주형 종속 변수의 유사한 패턴을 식별하기 위한 방법론

을 탐구합니다. 시뮬레이션을 통해 종단적인 바이너리 데이터를 생성하며, 무작위 절

편, 다변량 이항 모델 및 그룹화된 일반화 추정 방정식 모델을 사용합니다.  

결과는 그룹 기반 궤적 모델이 클러스터 수를 정확하게 추정하는 데 다른 모델보다 

일관되게 우수한 성능을 보였다는 것을 나타냅니다. 그러나 이진 데이터를 표현하는 

데 한계가 있음을 확인했는데, 특히 네 개 클러스터를 갖는 궤적에서 뚜렷하게 드러

났습니다. 조정된 랜드 지수와 같은 성능 지표를 사용했지만, 이러한 평가가 적절한

지에 대한 의문이 제기되어 더 포괄적인 평가 지표가 필요합니다. 

                                                                            

핵심되는 말: 종단 자료, Group GEE, Mixture model, 궤적 클러스터링 
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