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Abstract

Comparison of method for clustering

in longitudinal categorical data

The longitudinal data analysis with a categorical dependent variable frequently occurs
in research, offering insights into individual patterns and facilitating tailored interventions.
However, compared to longitudinal continuous data, there has been limited exploration of
methodologies for analyzing longitudinal categorical data.

The study explores methodologies for identifying similar patterns in categorical
dependent variables across diverse contexts. Simulations were conducted to generate
longitudinal binary data, employing models with random intercepts, multivariate binary
models, and Grouped Generalized Estimating Equation models. Results indicate the group-
based trajectory model consistently outperformed others in accurately estimating cluster
numbers. However, limitations were identified in representing binary data, particularly in
trajectories with four clusters. Performance metrics such as the adjusted Rand index were
used but raised doubts about adequacy, urging the need for more comprehensive evaluation

metrics.

Keywords: Longitudinal data, Group GEE, Group-based Trajectory model, Growth
mixture model, Trajectory clustering
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1. Introduction

In various health studies, measured outcomes are typically aggregated and analyzed
across the entire study population or predefined subgroups. However, in most cases,
unknown or unexpected subgroups exhibit similar patterns of clinical symptoms, behaviors,
or healthcare utilization. Therefore, relying solely on mean estimates to simplify the
complex intra- and inter-individual variability may underestimate the intricacies of the real-

life clinical context.

Additionally, analyzing longitudinal data with categorical dependent variables is a
common research practice, providing valuable insights into individual patterns and
facilitating customized applications. However, compared to continuous data,
methodologies for analyzing longitudinal categorical data have been relatively limited in

exploration.

This paper aims to compare and explore methodologies for analyzing longitudinal
categorical data by applying growth mixture models, group-based trajectory models, and

Group GEE models.



Grouped Generalized Estimating Equations (GGEE) represent an extension of the
standard GEE analysis tailored to address potential heterogeneity within longitudinal data.
This approach adopts a grouping mechanism commonly employed in panel data analysis
literature (Ito, 2023). Specifically, GGEE models operate under the assumption that
individuals within longitudinal datasets can be categorized into a finite number of groups.
Within each group, individuals share identical regression coefficients, implying
homogeneity in regression coefficients among individuals belonging to the same group. By
implementing this grouping strategy, GGEE facilitates the exploration of nuanced
variations within longitudinal data, accounting for potential differences across distinct

groups while maintaining computational feasibility and interpretability (Ito, 2023).

Group-based trajectory modeling assumes that the entire population is composed of
several groups experiencing different changes over time. It estimates the probability density
function of individuals being assigned to specific trajectory groups at each time point. The
probability density function is estimated based on the probability of subject i belonging
to a specific group multiplied by the probability density function of the states of members
within that group. This allows for the derivation of the probability of individual samples

belonging to a specific group over time.



Growth mixture model (GMM) extends GBTM with the inclusion of parametric
random effects, enabling a better fit to the data under the assumption of within-cluster
variability (Grimm, 2009). The method is also described as a longitudinal latent-class

mixed model, a multilevel mixture model, or a finite mixture of mixed models.

Our study endeavors to compare and contrast the efficacy of three methodologies in
delineating the number of genuine clusters for a pre-established trajectory in data generated
through distinct mechanisms: models incorporating random intercepts, multivariate binary
distribution models integrating conditional expectations, and Grouped Generalized
Estimating Equation (GEE) models. By scrutinizing the capacity of these methodologies to
discern the true number of clusters and evaluating their respective performances, we aim

to ascertain their effectiveness in practical settings.

The remainder of this paper is organized as follows. In Section 2, we provide an
overview of the methods used. Section 3 discusses the methods for determining the number
of groups, while Section 4 describes the methods for evaluating clustering. Section 5 covers

simulation, Section 6 focuses on application, and Section 7 presents the discussion.



2. Method

2.1 Longitudinal studies

Let Y;; denote a response variable for the it" individual (i = 1,2,...,N) at jt*
observation (i = 1,2, ..., m;), where N indicates the total number of individuals and n;
indicates the number of observed responses on the it individual (Fitzmaurice, 2012). The
model for changes in the mean response over time and for relating the changes to the

covariates can be expressed as:
Yij = BiXij1 + BoXijo + - + BpXijp + & ,J = 12,...,m

where f, B3, ..., Bp are unknown regression coefficients relating the mean of Y;; to its
corresponding covariates. Given we have n; repeated measurements of the response
variable on the same individual I, n; X 1 response vector Y; is denoted as (Fitzmaurice,
2012):

Xij1

Xijo

Y, = i=12.,N;j =12, ..,m

Xijp



Every row of X;; corresponds to different covariates, and the covariates could be
time-dependent or independent. The covariates' vectors could also be grouped intoa n; X

p matrix of covariates (Fitzmaurice, 2012).
Xij = Xiji - Xijp), i=12,..,N;j=1.2,..,n;

Every row of X;; corresponds to different covariates, and the covariates could be

time-dependent or independent (Fitzmaurice, 2012).

Xh X, X,
5 11 e ilp

Xi=|"Z2FH ¢+ =~ ¢ |i=12.,N
Xi,ni Xinil Xinip

These covariates' vectors could also be grouped intoa n; X p matrix of covariates

for the it individual at the j*" observation (Fitzmaurice, 2012). Lastly, the n; x 1

vector of random errors would be:



2.2 Trajectory model

Trajectory analysis refers to examining changes in variables over time or concerning
age, and studying how covariates influence these trajectories. This analytical approach
encompasses not only the trajectory of variables over time but also investigates how
covariates shape these trajectories. In this paper, we present trajectory analysis as a method
for studying longitudinal data, emphasizing its utility in uncovering patterns of change and

understanding the effects of covariates on these patterns.

Trajectory modeling is currently a subject of considerable importance. It involves
identifying patterns in variables that impact diseases, such as BMI, cholesterol,
hypertension, and exercise habits. By discerning these patterns, it becomes possible to
identify high-risk population groups and tailor interventions accordingly for individuals.
Furthermore, leveraging these patterns enables effective disease prediction and preventive

measures to be implemented.

In this paper, we will explore various methods for trajectory analysis, including group-
based trajectory modeling, growth mixture modeling, and grouped GEE modeling.
Through these methods, we aim to examine and compare the effectiveness of different

approaches in capturing and interpreting longitudinal patterns in the data.



2.3 Finite mixture model

2.3.1 Introduction

Mixture models offer a framework for describing a distribution by positing a
combination of underlying distributions, operating under the premise that the observed
distribution is composed of multiple data-generating processes and random variables.
Within this framework, the sub-models assume a common parametric distribution but with

varying coefficients (N. G. P. Den Teuling, 2023).

In the context of longitudinal data analysis, a longitudinal mixture model aims to
characterize the distribution of longitudinal observations Y;. In this model, the mixture

density f(Y;|6), where 8 = (m, 64, ..., 0;) represents the model parameters, is defined as:
f(Xi10) = Xgoy 7o f (Yi16p).

Here, f(Y;|64) denotes the conditional density of Y; giventhat i belongs to cluster g (N.

G. P. Den Teuling, 2023).



The probability of observing Y; given that i belongs to cluster g and under model

parameters 6 is expressed as:

g f (Yi16g)
Ji ’9 — g g
g ) 23':1 ng’f(yilgg’)

Pr(v;|i €

This formulation reflects the probability of Y; conditioned on membership in cluster
g and the parameters 6, where 7, represents the mixing proportion associated with
cluster g, and f(Y;|6;) denotes the density function corresponding to cluster g (N. G.

P. Den Teuling, 2023).



2.3.2 Model Estimation

For given membership in group g, the measurements of outcome Y;; of subject i
attime j is,
Logit[P(Y;; = 1|C = g)] = Bog + B1g * Time;j + fog * Timel-j2

The link function varies depending on the form of Y. The probability of observing an

individual i's longitudinal sequence of behavioral measurements Y; is

P(Y) =
g nng(Yg)the probability of Y; given membership in group g is Pg(lfg)

and the probability of membership in group g is 7.

The probability P9 (Yg) can be obtained by multiplying the observed values of Y
for the subject I at each repeated measurement occasion j within each group g. The

values at the repeated measurement occasions are all assumed to be independent.

]
Po(v,) = | [ Po(vy) = POCHL) * PI(Yi) = .k PO ()
j=1

Model estimation proceeds with the following equation, and maximum likelihood

estimates are obtained using the EM-Quasi Newton method.

N N N J
v=[Troo =D mro) =] [Dom [ [P
0 0 g 0 g j=1

-9-



2.3.3 Group-based trajectory model (GBTM)

Group-based trajectory modeling assumes that the entire population is composed of
several groups experiencing different changes over time. It estimates the probability density
function of individuals being assigned to specific trajectory groups at each time point. The
probability density function is estimated based on the probability of subject i belonging
to a specific group multiplied by the probability density function of the states of members
within that group. This allows for the derivation of the probability of individual samples
belonging to a specific group over time. Depending on the characteristics of the dependent

variable, the probability of being included in each type is estimated differently.

The dependent variables encompass a range of models including the censored normal
model, Poisson-based model, and logit-based model. In this paper, our focus lies on
discussing categorical data, particularly emphasizing the logit-based model. Additionally,

the group-based trajectory model adheres to the following formula, as outlined in the paper:
Logit[P(Y;; = 1|C = g)] = Bog + Pug * Time;; + fog x Time;;°, i€,

Here, Bog, B1g,and B4 denote the cluster-specific regression coefficients.

-10 -



2.3.4 Growth mixture model (GMM)

The growth mixture model extends the group-based trajectory model by incorporating
random effects, allowing for within-group variability. It represents cases where distinct

subgroups are delineated in previous theories.

Growth mixture model follows the following formula:
Logit[P(Y;; = 1|C = g)] = Pog + B1g * Time;j + fog * Timeij2 + Zijuig, 1 €
u;g ~MVN(0,%,)

Due to its flexibility, GMM is widely used, allowing researchers to specify random
effects and their relationships, as well as include covariates (N. G. P. Den Teuling, 2023).

However, this may lead to difficulties in identifying the most appropriate model.

-11 -



2.4 Grouped Generalized Estimating Equations

For longitudinal data analysis, let Y;; denote the response variable of interest and X;;
represent a p-dimensional vector containing covariate information of subject i attime j,
where i =1,..,n andj =1,..., n;. For ease of notation, we set J; =] for all i,
representing a balanced data case, but the extension to an unbalanced case is

straightforward (Ito, 2023).

We adopt a generalized linear model for Y;;, which is given by:

j»
f(Yi|Xij.p.9) = exp[{Y:;0;; — a(6;) + b(Y:))}/$]

where a(-)and b(:) are known functions, and 6;; = u(XL-Tj,BL-) for a known monotone

function u(+). By the model, the canonical link function u(x) = x is commonly utilized

(Ito, 2023).

Here, f; denotes the regression parameter of interest, which may exhibit
heterogeneity across subjects, while ¢ represents a known scale parameter shared among

all subjects (Ito, 2023).

-12 -



Under this model, the first two moments of Y;; are expressed as m(XiTjﬁl-j) =
a’(@ij) and az(XiTjﬁij) = a”(@ij)(p, respectively. For instance, in the scenario of
binary response, the function a(x) = log{1 + exp(x)} is applied, leading to the logistic

model formulated as m(XiTjﬁij) ={1+ exp(—Xl-Tjﬁl-)}_1 (Ito, 2023).

In the standard Generalized Estimating Equations (GEE) analysis, the regression
parameters are assumed to be homogeneous, meaning ; = 8, while allowing for potential
heterogeneity among subjects. However, estimating f; accurately becomes challenging as
the number of subjects increases, especially when J is not sufficiently large, which is a

common scenario in longitudinal data analysis (Ito, 2023).

To address this issue, we propose a grouped structure for the subjects, where the n
subjects are divided into G groups Subjects within the same group share the same
regression coefficients. Specifically, we introduce an unknown grouping variable g;
belonging to {1, ..., G}, which determines the group to which the i** subject belongs. We
define B; = B, where the unknown regression parameters are fy, ..., fg. Therefore, if G
is not considerably large compared to n and T, then S, ..., Bz can be estimated accurately.
Additionally, due to the grouped nature, the estimation results of g; provide a grouping of
subjects in terms of regression coefficients, making the results easily interpretable for users.
We also consider G as an unknown parameter, although we assume G to be known for the

time being (Ito, 2023).

-13 -



3. Number of groups

Determining the number of groups when clustering is a crucial issue. In practice,
clusters are often indistinct, making it challenging to differentiate between subgroups and

thereby cluster all subjects accurately.

In this paper, we aim to determine the number of groups using the cross-validation
averaging method proposed in the group GEE model, as well as the widely used Bayes

Information Criterion (BIC) in mixture models.

14 -



3.1 Cross-validation with averaging (CVA)

The cross-validation averaging method involves dividing the N subjects into three
subsets. Two training sets of size M and one testing set of size N-2M are then created.
Through the group GEE method, regression coefficients and working correlation matrices
are estimated using the two training sets. The estimated regression coefficients and working
correlation are then utilized to determine the optimal number of groups based on

performance on the testing set.

The following formula sets the number of groups as the one that minimizes the
equation, which involves substituting the regression coefficients and working correlation
obtained from the training set into the test data. The formal representation of the equation

1s as follows:

3. = argmin{y;—m (%, ")} RO fyi—m (% 5",

h = 1,2(training set)

5~ 5 . . . . .
where B, = and R™ are estimates of regression coefficients and working correlation

based on h*" training data for h = 1,2.

<t = Z 1{1(@(1) :gAju))Jrl(@(z) :gAjm) _ 1}

i,jEtest data

By averaging, we select g as the minimizer of the criterion among some candidates of g.

- 15 -



3.2 Bayesian information criterion (BIC)

In mixture models, the Bayes Information Criterion (BIC) is widely applied, and the
number of groups is determined by selecting the smallest BIC value. The BIC is defined

by Nagin as follows
BIC = logL(#,0) — 0.5plog(n),

where p is the number of parameters of the model, n is the number of patients, and
L(ﬁ, 9) the likelihood of the model, evaluated at the maximum likelihood estimates. In
model selection, BIC tends to favor models with a greater number of groups, prompting

the proposal of the bootstrapped likelihood ratio test as an alternative approach.

-16 -



4. Evaluation

When conducting evaluations, we primarily employ the Adjusted Rand Index for
scenarios where the actual number of clusters is known, while utilizing methodologies
relying on distance metrics like the Calinski-Harabasz Index and Davies-Bouldin Index for

cases where the actual number of clusters is unknown.

Firstly, we determine the number of groups using the Bayesian Information Criterion
(BIC) for the Group-Based Trajectory Model and Growth Mixture Model, and through
cross-validation with averaging for the Grouped Generalized Estimating Equations.
Subsequently, we evaluate the performance using these three evaluation metrics. The
higher the values of the Adjusted Rand Index and the Calinski-Harabasz Index, the better
the performance. Conversely, a lower value of the Davies-Bouldin Index indicates better

performance.

17 -



4.1 Adjusted Rand index

The Adjusted Rand Index (ARI) serves as a widely adopted metric to evaluate the
resemblance between two clustering outcomes. Given a set of n objects S =
{04, ..., O}, suppose U ={uy ..,ugp } and V ={vy,..,vc} show two distinct
partitions of the objects in S such that UR ju; =5 = UJC~=1 vj and w; N Uy _ g v; N
vy for 1<i#i"<R and 1<i=%i <C.Assuming U as the external criterion and V

as a clustering result, let a denote the count of object pairs placed in the same class in U
and the same cluster in V, b be the count of object pairs in the same class in U but not in
the same cluster V, ¢ be the count of object pairs in the same cluster in V but not in the same
class in U, and d be the count of object pairs in different classes and different clusters in

both partitions. The quantities a and d can be interpreted as agreements, and b and ¢ as

a+d

disagreements. The Rand index is simply hioid The Rand index lies between 0 and 1.

When the two partitions agree perfectly, the Rand index is 1 (Gao, 2023).

One limitation of the Rand index is that the expected value of the Rand index of two
random partitions does not remain constant. The adjusted Rand index proposed by (Hubert
and Arabie, 1985) assumes the generalized hypergeometric distribution as the model of
randomness, the U and V partitions are randomly such that the number of objects in the

classes and clusters is fixed (Gao, 2023).

-18 -



Let n; and n; denote the number of objects in class u;, and cluster v; respectively.

The general form of an index with a constant expected value is

index—expected index

, which is bounded above by 1, and takes the value 0

maximum index—expected index

when the index equals its expected values (Gao, 2023).

-19 -



4.2 Calinski-Harabasz index

The Calinski-Harabasz index consists of a numerator representing between-group
variation and a denominator representing within-group variation. If clustering is done well,
each cluster should be as far apart as possible, meaning that between-group variation should
increase. Additionally, data within each cluster should be as close as possible. Hence,
within-group variation should be minimized. Therefore, as this index increases, it can be

considered that clustering has been done well.

The Calinski-Harabasz index enables comparison of results between clustering
algorithms, with the algorithm producing the highest value considered the best for
clustering. Moreover, when the number of clusters is unknown, one can increment the
number and calculate the index's value, selecting the value of k that maximizes the index

as the final number of clusters.

Let K denote the total number of clusters, C; represent the centroid vector of a cluster,

n, denote the number of data points belonging to a cluster, and ¢ = ?=1% signify the

centroid vector of all data points. When x¥ refers to the data points belonging to the kth

cluster, and ||al|, denotes the P-dimensional Euclidean distance.

2
Zﬁﬂwqwﬂ Eﬁﬁﬁﬁﬁ—@m

CH =
[ K—1 n—K

- 20 -



4.3 Davies-Bouldin index

Let's consider that there are n data points. Here, x; € R™ , x; is an m-dimensional
vector. Assuming that clusters have been assigned to the data points using a clustering
algorithm, let the total number of clusters be K, ¢, k=1, ..., K be the centroid vector of a
cluster, and n; denote the number of data points belonging to a cluster. In this context,

we define the following.

Ny
_ 1 k q\1/
=Gy DIt =y

1
m P
My, = llck —cll, = leck,j —
=1

where |lall, is L, — Norm. Inthis case, ¢ =1 and p =2 are commonly used.

S, represents within-cluster variation, hence smaller values indicate higher similarity
among data points within the cluster. M ; indicate better performance, serving as a

measure of how well two clusters are separated:

Sk +5;
kKl =
My,

- 21 -



5. Simulation

5.1 Data generation

Trajectory data is generated using binary distributions. the trajectory data is as follows:
Logit[P(Y;; = 1)] = Bog + Pug * Time;j + fog * Time;;*

To generate trajectory data, the distribution of each trajectory was taken into account,
and data generation was conducted accordingly for each trajectory. the process is detailed

as follows.

The first data-generating method considers a model with random intercepts. Random
intercepts were assigned to each subject by generating random numbers from a normal
distribution with a mean of 0 and a standard deviation of 0.5. These values, along with
those specific to each trajectory, were added to create probabilities, which were then used

to generate binomial distributions.

The second data-generating method involves generating covariates, followed by
creating correlated binary response variables based on a multivariate binary distribution, as
described (Jung, 2013). This method requires assumptions about the n; X 1 mean vector

m;, n; X n; covariance matrix V;, and n; X n; correlation matrix C;.

First, by applying the parameters in each trajectory, we can obtain the mean vectors
through a logit model. The covariance matrix is V; = A;C;A;, where A; is diag {vilt/ 2}

- 22 -



and v;; hereis m;(1 — ;). The correlation matrix C; is an exchangeable matrix, with
a correlation parameter assumed to be 0.5. Given the assumed mean vector, covariance
matrix, and correlation matrix as described above, the conditional mean v;; is defined by
the following equation, where Z; = (Y, ..., Yi_1)', ue = E(Zy), G: = cov(Zy), sy =

COU(Zt, Yt)7 bt = Gt_lst.

Ve = Ut(Zt;T[, V) = P(Ylt = 1|Zt = Zt) =Tt + b;(zt —#t)

t—1
=mn; + z btj(yj - TCJ) (t =2, ,T)
j=1

The binary response variable Y is generated as follows: Y; follows a Bernoulli
distribution with mean m; and is generated using random numbers. Y;(t=2, ...,6) follows
a Bernoulli distribution with conditional mean v, and is generated using random numbers.
In this way, the response variables at the initial time point are generated using a mean vector,
while the response variables at subsequent time points are generated using conditional
means, based on a multivariate binomial distribution with a conditional linear property.

Thus, the generated binary response variables exhibit correlation.

The third-generation method utilized the grouped Generalized Estimating Equations
(GEE) approach. Based on the probability m;;, we generated (Y;q, ..., Y;;) from a correlated
binary vector using the R package “bindata” with an exchangeable correlation matrix with

a 0.5 correlation parameter.

- 23 -



5.2 Simulation Setting

We aim to assess whether each clustering method accurately estimates the true number
of clusters under various conditions and determine which clustering method is appropriate

under these conditions. we consider three data generation methods.

All three generating methods apply to a cohort of 300 subjects per trajectory.
Covariates include time and its square, generated through random number generation
following a uniform distribution. six-time points per subject were generated. additionally,
When the number of trajectories is 2, each has a probability of 0.5. For 3 trajectories, the
probabilities are 0.34, 0.33, and 0.33 respectively. When there are 4 trajectories, each

group's entry probability is set at 0.25.

Furthermore, when there are 2 trajectories, the regression coefficients are specified as
{Bo1, 11, B21} = {=2,2,—0.2} and {Bo2, P12, B22} = {2,—2,0.2}. For 3 trajectories,
they are set a {Bo1, B11, P21} = {6,—2,0.01} and  {Bo2, B12, P22} = {—6,2,0.01} and
{Bo3, B13, P23} = {2,—0.01,0.01}. When there are 4 trajectories, they are
{Bo1, P11, P21} = {6,—2,0.01} and {Boz, B12, B2z} = {—6,2,0.01} and {Bo3, B3, B23} =

{_05I001I001} and {B041 ﬂlél-i 324} = {2' _2'02}
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Table 1. Parameter settings according to group.

Groups N B
BOl = _2: [311 = 2; [321 = —-0.2
Group=2 600
BOZ = 2‘ [312 = _2; [322 =0.2
BOl = 65 [311 = _2,821 =0.01
Group=3 900 BOZ =—6,B1, = 2,B,, = 0.01
Bos = 2,B13 = —0.01,B,3 = 0.01
BOl = 6! 611 = _2, 821 =0.01
BOZ = —6,B,, = 2,B,, =0.01
Group=4 1200

Bos = —0.5,B43 = 0.01,B,5 = 0.01

804- = 2! 614 = _2; 824 =0.2
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5.3 Simulation Result

We confirmed trajectories with 2, 3, and 4 instances over time. These can be observed

in Figure 1.

We will explain the results of the model considering the first random intercept. In the
case of two trajectories, it can be observed from Table 2 that the group-based trajectory
model correctly identifies the true clusters, whereas the growth mixture model and grouped
generalized estimating equations model are not performing as well. Indeed, when
examining the evaluation metrics, it is evident that the group-based trajectory model

demonstrates superior performance.

In the case of three trajectories, the true number of clusters is accurately estimated in
the following order: growth mixture model, group-based trajectory model, and grouped
generalized estimating equations, as evident in Table 4. Furthermore, as seen in Table 5,
the group-based trajectory model exhibits the best performance, and similar results are

observed when there are four trajectories.
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When generating data using a multivariate binary distribution model with conditional
expectation, it is observed in Table 8 that all models accurately identify the true number of
clusters when there are two trajectories. Additionally, Table 9 demonstrates that the Group-
based Trajectory Model exhibits the best performance. For the case of three trajectories,
Table 10 shows that the Group-based Trajectory Model, Growth Mixture Model, and
Grouped Generalized Estimating Equations model, in that order, accurately represent the
true number of clusters. Furthermore, Table 11 confirms that the Group-based Trajectory

Model performs the best across all evaluation metrics

As indicated in Table 12, when there are four trajectories, it's apparent that none of the
models successfully identify the true number of clusters. Despite the evaluation metrics
showing the Growth Mixture Model to perform the best, scrutiny of the Adjusted Rand

Index demonstrates that none of the models exhibit strong performance.
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Considering the simulation in the grouped generalized estimating equations paper, data
was generated using time and its square as variables. When there were two trajectories in
the trajectory model, both the Calinski Harabasz index and Davies Bouldin index showed
that grouped generalized estimating equations performed the best, as indicated in Table 15.
Additionally, as seen in Table 14, both the group-based trajectory model and grouped

generalized estimating equations accurately estimated the number of clusters.

When the trajectory consisted of three groups, similarly, grouped generalized
estimating equations exhibited the best performance. However, as shown in Table 16, the

number of clusters was most accurately estimated by the group-based trajectory model.

In the case of four trajectories, all performance metrics suggested that each model
performed better in different aspects. This discrepancy arises from the limitation of

describing four trajectories solely using binary classification, as noted in the paper.
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Figure 2. Trajectory figures according to the number of groups.

0759

probability

0254

1.004

0.754

probability

0.004

probability

0.004

1.004

0754

0.0 25 50
time:

Table 2. The results of group numbers when the group is 2 in the random effect model.

10.0 0.0 25 50
time:

75 100

Number of groups Group based trectry Growth mixture model Grqupgd general!zed
model estimating equations
number of groups = 2 9% 0 0
number of groups = 3 6 0 0
number of groups = 4 0 100 100
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Table 3. The performance metrics of Group-based Trajectory Model, Growth Mixture

Model, and Grouped Generalized Estimating Equations when the group is 2 in the

random effect model.

Faluaton Group based trajectory Grouth mivture model Grgupgd generah»zed
model estimating equations
Adjusted rand index 0944 0512 0241
Calinski-Harabasz index 10907 5673 5366
Davies-Bouldin index 27.863 38673 57511

Table 4. The results of several clusters for trajectories of 3 in the random effect model.

Number of groups Group based trjectory Growth mixture model Grgupgd generah}zed
model estimating equations
number of groups = 2 0 0 57
number of groups =3 9% 100 4
number of groups = 4 5 0 39
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Table 5. The performance metrics of Group-based Trajectory Model, Growth Mixture

Model, and Grouped Generalized Estimating Equations when the group is 3 in the

random effect model.

Evaluation Group based tajectory Growth mixture model Grc?upeld general!zed
model estimating equations
Adjusted rand index 0846 0.824 0447
Calinski-Harabasz index 8819 6.65 4321
Davies-Bouldin index 59222 68518 67.076

Table 6. The results of several clusters for trajectories of 4 in the random effect model.

Number of groups Group based trctory Growth mixture model Grclnupeld general}zed
model estimating equations
number of groups = 3 0 0 92
number of groups = 4 9% 9 3
number of groups = 5 2 1 5
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Table 7. The performance metrics of Group-based Trajectory Model, Growth Mixture

Model, and Grouped Generalized Estimating Equations when the group is 4 in the

random effect model.

Evaluation Group based trajectory Growth mixture model Grc?upeld general!zed
model estimating equations
Adjusted rand index 0.695 0.567 0.243
Calinski-Harabasz index 6.185 4237 565
Davies-Bouldin index 88,052 112122 84.112

Table 8. The results of several clusters for trajectories of 2 in the multivariate binary

distribution model with conditional expectation.

Number of groups Group based trajectory Growth mixture model Grgupeld general!zed
model estimating equations
number of groups = 2 9 100 100
number of groups =3 5 0 0
number of groups = 4 0 0 0
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Table 9. The performance metrics of Group-based Trajectory Model, Growth Mixture
Model, and Grouped Generalized Estimating Equations when the group is 2 in the

multivariate binary distribution model with conditional expectation.

Evaluation Group based tectory Growth mixture model Grqupefi general!zed
model estimating equations
Adjusted rand index 0458 0392 0.267
Calinski-Harabasz index 1926.069 1554047 17170
Davies-Bouldin index 1457 1519 12314

Table 10. The results of several clusters for trajectories of 3 in the multivariate binary

distribution model with conditional expectation.

Number of groups Group based traectry Growth mixture model Grqupgd general!zed
model estimating equations
number of groups = 2 1 0 mn
number of groups =3 9 97 2
number of groups = 4 0 2 1
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Table 11. The performance metrics of Group-based Trajectory Model, Growth Mixture
Model, and Grouped Generalized Estimating Equations when the group is 3 in the

multivariate binary distribution model with conditional expectation.

Faluation Group based trajectory Cronth micture model GrgupeFi general!zed
model estimating equations
Adjusted rand index 0438 0420 0.134
Calinski-Harabasz index 1071.829 813.067 19447
Davies-Bouldin index 2685 2787 17788

Table 12. The results of several clusters for trajectories of 4 in the multivariate binary

distribution model with conditional expectation.

Number of groups Group based traectry Growth mixture model Grqupgd general!zed
model estimating equations
number of groups =3 100 100 84
number of groups = 4 0 0 0
number of groups = 5 0 0 16
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Table 13. The performance metrics of Group-based Trajectory Model, Growth Mixture
Model, and Grouped Generalized Estimating Equations when the group is 4 in the

multivariate binary distribution model with conditional expectation.

Faluation Group based trajectory Cronth micture model GrgupeFi general!zed
model estimating equations
Adjusted rand index 0130 0.162 0032
Calinski-Harabasz index 456,066 382314 16441
Davies-Bouldin index 12938 6964 48415

Table 14. The results of several clusters for trajectories of 2 in the grouped generalized

estimating equation model.

Number of groups Group based tgectory Growth mixture model Grqupeld general!zed
model estimating equations
number of groups = 2 9% 3 100
number of groups = 3 4 4 0
number of groups = 4 0 9 0
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Table 15. The performance metrics of Group-based Trajectory Model, Growth Mixture

Model, and Grouped Generalized Estimating Equations when the group is 2 in the

grouped generalized estimating equation model.

Evaluation Group based trectry Growth mixture model Grcl:upeld general}zed
model estimating equations
Adjusted rand index 0974 0441 0.980
Calinski-Harabasz index 76590 344270 438771
Davies-Bouldin inclex 6.961 1029 3457

Table 16. The results of several clusters for trajectories of 3 in the grouped generalized

estimating equation model.

Number of groups Group based trectory Growth mixture model Grqupeq general!zed
model estimating equations
number of groups =2 0 0 4
number of groups = 3 84 56 66
number of groups = 4 16 4 0
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Table 17. The performance metrics of Group-based Trajectory Model, Growth Mixture

Model, and Grouped Generalized Estimating Equations when the group is 3 in the

grouped generalized estimating equation model.

Evaluation Group based tectory Growth mixture model Grqupeﬂ general!zed
model estimating equations
Adjusted rand index 0679 0543 0803
Calinski-Harabasz index 110.264 460170 1759573
Davies-Bouldin index 17170 409 0869

Table 18. The results of several clusters for trajectories of 4 in the grouped generalized

estimating equation model.

Number of groups Group based trectory Growth mixture model Grqupeq general!zed
model estimating equations
number of groups =3 6 0 9
number of groups = 4 68 4 0
number of groups = 5 26 9 2
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Table 19. The performance metrics of Group-based Trajectory Model, Growth Mixture
Model, and Grouped Generalized Estimating Equations when the group is 4 in the

grouped generalized estimating equation model.

Evaluation Group based tractry Growth mixture model Grqupelci general!zed
model estimating equations
Adjusted rand index 0.794 0679 0317
Calinski-Harabasz index 30.960 36.607 16601
Davies-Bouldin index 38311 28690 21149
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6. Application

We utilize the proposed technique on the HRS dataset, sourced from research carried
out by the University of Michigan. This longitudinal panel investigation conducts thorough
interviews with American adults aged 50 and above once every two years, providing
insights into their health and financial situations. The primary objective of this study is to
examine how participants’ health statuses evolve within the HRS study and identify the

factors linked to these changes.

We utilized the dataset from the HRS study, available through the R package “LMest”.
The sample comprises 7074 individuals tracked over approximately 8 equally spaced
intervals, with no missing responses or dropouts. The response variable is self-reported

health status, categorized into five levels: “poor”, “fair”, “good”, “very good”, and

“excellent”, ranked from 5 to 1.

We classified "good", "very good", and "excellent" as "well" (1) and the remaining
values as "unwell" (0). Moreover, within the covariates, we incorporated indicator variables
denoting gender (1 for male, O for female), indicators for race (black and other and white),
indicators for educational attainment (SC: some college, CAA: college and above, Others),

and age recorded at each time instance.
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We assume that individuals can be categorized into groups: those who are consistently
healthy, those who are consistently unhealthy, and those whose health status may change
over time. Therefore, we aim to compare and evaluate the performance of group-based
trajectory models, and growth mixture models and grouped generalized estimating

equations as methods for clustering the variations over time.

Let y;; be the binary response variable, and x;; be the vector of five covariates and

an intercept, for i =1,...,n(=7074) and t =1,..,T(=8). We consider the mean

exp(x)

Trepoy 20d gi € {2,..,7}.

structure E[yij|xij] = m(xgjﬁgi) with m(x) =

Firstly, to determine the number of groups, we considered the Bayesian Information
Criterion (BIC) in both the Group-based Trajectory Model and the Growth Mixture Model,
selecting 7 and 4 groups based on the lowest BIC values. In contrast, the Grouped
Generalized Estimating Equations model utilized the cross-validation with averaging
method to specify the number of groups as 5. Subsequently, applying each specified
number of groups, we evaluated and compared the Group-based Trajectory Model, Growth
Mixture Model, and Grouped Generalized Estimating Equations using the Calinski-

Harabasz Index, and Davies-Bouldin Index.

In Table 20, we observe that the Growth Mixture Model has the highest value for the

Calinski-Harabasz Index and the lowest value for the Davies-Bouldin Index. This indicates

that the Growth Mixture Model exhibits the best performance. Trajectory exhibits distinct

characteristics.
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Table 20. The performance results of the Calinski-Harabasz Index and Davies-Bouldin

Index for different numbers of groups in the Group-based Trajectory Model, Growth

Mixture Model, and Grouped Generalized Estimating Equations

Group based trajectory model Growth mixture model Grcl)upeld general!zed
estimating equations

Number of groups 7 4 5
Calinski-Harabasz index 2944 8346 54.55
Davies-Bouldin index 219.683 126.72 149.791

Figure 2. Trajectory plots in the Growth Mixture Model

0.80 1

0.75 1

0.701

probability

0.60 -

time
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7. Discussion

In various health studies, the measured outcomes are typically aggregated and
analyzed across the entire study population or predefined subgroups. However, in most
cases, unknown or unexpected subgroups may exhibit similar patterns. Therefore, relying
solely on mean estimates may underestimate the complexity of real-life clinical contexts.
Additionally, categorical dependent variables are commonly used in research, and they
offer the advantage of ease in customization when identifying similar patterns, similar to
continuous dependent variables. Hence, we have embarked on a study to compare methods

for identifying similar patterns in categorical dependent variables across various contexts.

We conducted simulations to generate longitudinal binary data, considering models
incorporating random intercepts, multivariate binary models using conditional expectations,
and Grouped Generalized Estimating Equation models. We examined trajectories with 2, 3,

and 4 clusters.

In the first model considering random intercepts, regardless of the number of
trajectories, we found that the group-based trajectory model performed the best and

accurately estimated the number of clusters.
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In the second model, the multivariate binary model using conditional expectations, we
observed that for trajectories 2 and 3, the group-based trajectory model exhibited the best
performance, accurately estimating the number of groups alongside the growth mixture
model. However, for trajectory 4, none of the models accurately estimated the number of
clusters. The Adjusted Rand Index values also indicate a random assignment pattern,
similar to chance, across all models. The issue arises because when generating trajectories

with four binary outcomes, there tends to be a significant overlap.

In the third simulation, following the format of the Grouped Generalized Estimating
Equations paper and considering the time variable, we observed that grouped generalized
estimating equations consistently performed the best across trajectories with 2 and 3
clusters. However, the group-based trajectory model exhibited the most accurate estimation

of the number of clusters.

Moreover, for trajectories with 4 clusters, both the estimation of the number of clusters
and overall performance favored the group-based trajectory model. However, since
performance metrics indicate different models as superior, it's challenging to determine
which model is best. The issue seems to stem from limitations in the metrics used to

evaluate binary data.
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During this study, the group-based trajectory model consistently demonstrated robust
performance across various simulation scenarios, effectively estimating the number of
clusters. However, a limitation was identified regarding the representation of binary data,
where trajectories were encoded solely as Os and 1s. Evidence of this limitation is observed
in cases where trajectories with four clusters, except those generated by the random effect
model, showed suboptimal performance in terms of both the true number of clusters and
overall performance. Additionally, performance evaluation was conducted using metrics
such as the adjusted Rand index, Calinski-Harabasz index, and Davies-Bouldin index.
While these metrics can be applied to binary data, doubts arose regarding whether the
performance evaluation was adequate, prompting the need for more detailed and diverse

performance metrics.
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