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Abstract  

 

Statistical Methods for  

Comparing of Two Restricted Mean Survival Times  

in the presence of Dependent Censoring 

 

Survival analysis is a common method in clinical trials, often relying on the 

assumption of proportional hazards. When this assumption is violated, an alternative 

approach is the restricted mean survival time (RMST) method. RMST is a significant 

metric in survival analysis, offering an intuitive and interpretable measure of average 

survival time up to a specific point. Traditional survival analysis methods, assuming 

independent censoring, can be biased when this assumption is violated. Typically, the 

failure event and censoring time are positively correlated, necessitating the consideration 

of their joint distribution under dependent censoring. 

The copula function provides a flexible tool for modeling the dependence between 

survival and censoring times. For analyzing survival under dependent censoring, the 

copula-graphic estimator is utilized. This study proposes new estimators that expand on 
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copula-graphic and self-consistency estimators under the dependent censoring assumption. 

The objective is to adapt the copula method for estimating RMST with survival data that 

includes dependent censoring. We evaluate our proposed estimators through a series of 

simulations, examining bias, type I error, and power in RMST estimation under various 

scenarios of dependent censoring. 

Simulation results confirmed that the type I error was generally well-controlled, and 

the proposed model demonstrated performance comparable to the true model in terms of 

power. The aim of this paper is to identify effective methods for estimating the difference 

in RMST between two groups when dependency exists. Previous research has not 

extensively explored copula-graphic estimators and self-consistency in the context of 

RMST, particularly regarding their statistical properties. This study contributes to the 

understanding of RMST estimation in data with dependent censoring and may further 

contribute to future studies. 

                                                                            

Keywords: survival analysis, restricted mean survival time, dependent censoring, copula 

models, copula-graphic estimator, self-consistency estimator
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Chapter 1  

Introduction 

Survival analysis is one of the most common analyses in clinical trials. In general, 

time-to-event analysis relies on the assumption of proportional hazards. However, quite 

frequently, we may find that the proportional hazards assumption is violated, especially in 

many immuno-oncology trials. When the proportional hazards assumption is violated, one 

of the alternative approaches is the restricted mean survival time (RMST) method. The 

RMST generally uses the Kaplan-Meier estimator to calculate and compare the area under 

the curve (AUC) for different treatment groups or different comparative groups.  

Generally, event time and censoring time tend to be positively correlated. However, 

traditional methods of survival analysis critically rely on the independent censoring 

assumption: survival time and censoring time need to be statistically independent. This 

independence assumption is easily violated when patients drop out from the study due to 

the worsening of their health condition or are removed for transplantation (Staplin et al., 

2015; Emura and Chen, 2018). In such cases, survival time is censored depending on their 

health status.  

Consider a study investigating the survival times of patients with a particular disease 

who are treated with different medications. In this scenario, patients may drop out of the 

study or be lost to follow-up at different times. However, the likelihood of being censored 
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may be influenced by factors such as the effectiveness of the treatment, the severity of the 

disease, or the patient's compliance with the medication regimen. For example, suppose a 

new, more effective medication is introduced midway through the study. Patients who are 

not responding well to the initial treatment may be more likely to switch to the new 

medication, leading to a higher probability of being censored at certain time points. 

Conversely, patients experiencing positive outcomes with the initial treatment may be less 

likely to drop out of the study, resulting in a lower probability of censoring. In this situation, 

the censoring times of patients are dependent on factors related to their treatment and 

disease progression. This dependent censoring complicates the analysis of survival data 

and requires careful consideration to ensure accurate estimation of survival probabilities 

and treatment effects. 

However, the Kaplan-Meier estimator cannot consider dependent censoring, and there 

is no proposed method to estimate RMST and test for differences in RMST between two 

groups under dependent censoring. Therefore, it is necessary to consider how to test the 

differences in RMST under dependent censoring. The copula function is a popular model 

for modeling the dependency between survival and censoring times. For dependent 

censoring, the copula-graphic estimator was proposed to estimate the survival curve. 

Additionally, some methods based on self-consistency were proposed for dependent 

censoring. Prior research by Jiang, Hongyu, et al. (2005) has estimated the copula-graphic 

estimator as a self-consistency estimator in dependent censoring. 

In this paper, we propose new estimators that expand upon the copula-graphic 
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estimator and the self-consistency estimator under the assumption of dependent censoring. 

We evaluated our proposed estimators through a series of simulations. The purpose of this 

study is to adapt the copula method to estimate the difference between two RMSTs using 

survival data that includes dependent censoring. In Section 2, we briefly review the 

estimators of the survival function. We review the definition and basic statistical properties 

of RMST and summarize how to estimate it under the independent assumption in Section 

3. In Section 4, we illustrate the issues of dependent censoring arising from medical 

research and provide the mathematical foundations of the copula models for applications 

to survival analysis under dependent censoring. In Section 5, we propose a set of estimators 

under dependent censoring based on the copula model, expanding on the RMST estimators. 

In Section 6, we evaluate the performance of the proposed estimators for censored survival 

data via a simulation study. The proposed estimator is applied to a real dataset, and the 

analysis results are reported in Section 7. The final section provides conclusions and 

discussion.  
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Chapter 2  

Estimators of the Survival function 

2.1 Kaplan-Meier Estimator 

The commonly used survival function estimator, proposed by Kaplan and Meier 

(1958), is referred to as the Product-Limit estimator. The Kaplan-Meier estimator is a non-

parametric statistic used to estimate the survival function from lifetime data. In other words, 

it provides a way to measure the proportion of subjects living for a certain amount of time 

after treatment or under certain conditions. It estimates the probability that a subject will 

survive beyond a certain time 𝑡. This estimator is defined as follows: 

𝑆̂(𝑡) = {

1 if 𝑡 ≤ 𝑡1,

∏ [1 −
𝑑𝑖

𝑛𝑖
]

𝑡𝑖≤𝑡

if 𝑡1 ≤ 𝑡 . 

where 𝑡𝑖 are the distinct times when events occur, 𝑛𝑖 is the number of subjects at risk 

just before time 𝑡𝑖 and 𝑑𝑖 is the number of events at time 𝑡𝑖. 

The Kaplan-Meier method can manage right-censored data, where subjects exit the 

study before an event occurs or the study concludes before the event for some subjects. The 

Kaplan-Meier estimator generates a step function that changes its value only at each 

observed event time. Between these times, the function remains constant. The Product-
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Limit estimator also uses a step function, jumping at each observed event time. The size of 

these jumps is influenced not only by the number of events at each time point 𝑡𝑖, but also 

by the arrangement of censored observations leading up 𝑡𝑖. This estimator is not defined 

beyond the maximum observation time 𝑡. 

The variance of the Kaplan-Meier estimator is estimated using Greenwood’s formula:  

𝑉̂[𝑆̂(𝑡)] = 𝑆̂(𝑡)2 ∑
𝑑𝑖

𝑛𝑖(𝑛𝑖 − 𝑑𝑖)
𝑇𝑖≤𝑡

. 

The standard error of the Kaplan-Meier estimator is written by √𝑉̂[𝑆̂(𝑡)].  
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2.2 Self-consistency Estimator 

A self-consistency estimator is an estimator that satisfies the property that if the 

estimator were known, the data would look as it does. In other words, the estimated 

distribution must be consistent with the observed data. If we had no censored observations, 

the estimator of the survival function at a time 𝑡 can be straightforwardly defined as the 

proportion of observations which are larger than 𝑡 as follows:  

𝑆̂(𝑡) =
1

𝑛
∑ 𝜙(𝑇𝑖)

𝑛

𝑖=1

 

where 𝜙(𝑇𝑖) = 1 if 𝑇𝑖 > 𝑡 and 𝜙(𝑇𝑖) = 0, if 𝑇𝑖 ≤ 𝑡. 

For right-censored data, a survival function estimator can be developed similarly by 

redefining the scoring function 𝜙. Let 𝑇1, 𝑇2, … , 𝑇𝑛 be the observed times in the study. If 

𝑇𝑖 represents the time of death, we can definitively determine whether 𝑇𝑖 is less than or 

greater that 𝑡. If 𝑇𝑖 is a censored time that is greater than or equal to 𝑡, we know that the 

true death time must be larger than 𝑡 because it exceeds 𝑇𝑖  for this individual. For a 

censored observation less than 𝑡, we cannot determine if the corresponding death time is 

greater than 𝑡 because it could occur between 𝑇𝑖  and 𝑡. If we knew 𝑆(𝑡), we could 

estimate the probability of this censored observation being larger than 𝑡 by 𝑆(𝑡)/𝑆(𝑇𝑖). 

Using these redefined scores, we will call an estimator 𝑆̂(𝑡) a self-consistency estimator 

of 𝑆 if  
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𝑆̂(𝑡) =
1

𝑛
[ ∑ 𝜙(𝑇𝑖)

𝑇𝑖>𝑡

+ ∑
𝑆̂(𝑡)

𝑆̂(𝑇𝑖)
𝛿𝑖=0,𝑇𝑖≤𝑡

]. 

Self-consistency estimators are often derived using an iterative algorithm. This 

involves repeatedly updating the estimate based on the current estimate until convergence 

is achieved. The iterative process ensures that the final estimate is self-consistent. The 

Expectation-Maximization (EM) algorithm is a common framework used to find self-

consistency estimators. The EM algorithm iteratively applies the Expectation step (E-step) 

and Maximization step (M-step) to refine the estimates. In the E-step, the expected value 

of the log-likelihood is computed given the current parameter estimates. In the M-step, the 

parameters are updated to maximize this expected log-likelihood. Self-consistency 

estimators typically converge to a stable solution after a sufficient number of iterations. 

The convergence is monitored by checking the change in estimates between successive 

iterations until it falls below a predefined threshold. Many self-consistency estimators, like 

the Turnbull estimator, are non-parametric, meaning they do not assume a specific 

parametric form for the underlying survival distribution. This flexibility makes them 

widely applicable. Self-consistency estimators provide a robust framework for dealing with 

complex data structures, particularly interval-censored data. They rely on iterative methods 

to ensure that the final estimates are consistent with the observed data, often utilizing 

algorithms like EM to achieve convergence. This methodology extends the flexibility and 

applicability of survival analysis beyond traditional right-censored data scenarios.  
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Chapter 3  

Restricted Mean Survival Time 

Restricted Mean Survival Time (RMST) is an important metric used in survival 

analysis. It serves as an alternative approach when dealing with survival time data, aiming 

to average survival times up to a specific time point. RMST is typically used in conjunction 

with traditional survival analysis methods like the Kaplan-Meier survival curve. One of the 

key advantages of RMST is its intuitiveness and interpretability. By directly measuring the 

average survival time up to a specific time, it is easier to interpret compared to other 

statistical methods. Additionally, RMST allows for comparing survival times while 

maintaining a constant observation period, which is useful for comparing outcomes in 

research or clinical trials. However, RMST comes with some limitations. The most 

significant limitation is that it only considers survival times up to a specific time point, 

potentially losing information from the entire survival curve. Additionally, RMST may be 

unstable with small sample sizes and may have limited ability to capture nonlinear effects. 

In summary, RMST is an important metric in survival analysis, offering intuitive and 

interpretable insights, but it has some limitations. While it facilitates comparison and 

interpretation of survival times up to a specific time point, it may lose information from the 

entire survival curve and can be unstable with small sample sizes. 
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3.1 Definition and Properties of RMST 

Let 𝑡 be a nonnegative random variable representing the time until an event occurs 

for a patient from a homogeneous population. Suppose 𝛾 is a specific time point of interest. 

Define 𝑋(𝛾) be the minimum of 𝑡 and 𝛾, i.e., 𝑋(𝛾) = min (𝑡, 𝛾). The Restricted Mean 

Survival Time (RMST), or the mean survival time up to 𝛾 years, is defined as the expected 

value of 𝑋(𝛾): 𝜇(𝛾) = E[𝑋(𝛾)] = E[min(𝑡, 𝛾)]. 

For instance, if the RMST up to 4 years (i.e., 𝛾 = 4 years) is 1 year, it indicates that 

a patient, on average, would survive for 1 year when followed for 4 years. The RMST up 

to 𝛾 represents the area under the survival curve from 0 to 𝛾,  

𝜇(𝛾) = ∫ 𝑆(𝑡)
𝛾

0

𝑑𝑡, 

where 𝑆(𝑡) is the survival function. The variance of the restricted survival time 𝑋(𝛾) is 

Var[𝑋(𝛾)] = 2 ∫ 𝑡𝑆(𝑡)
𝛾

0

𝑑𝑡 − {∫ 𝑆(𝑡)
𝛾

0

𝑑𝑡}

2

 

As mentioned above, the mean value (i.e., RMST) and the variance of the restricted 

survival time 𝑋(𝛾)  up to the specific time point 𝛾  are determined by the survival 

function. The estimation of RMST and its variance can essentially be derived from the 

estimated survival function.  
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3.2 Estimation of RMST 

As discussed by Royston and Parmar (2011), several methods to estimate the RMST 

are available, including direct integration of Kaplan-Meier survival curves, a jackknife 

method, pseudo-value regression method, inverse probability of censoring weighting 

(IPCW) regression, conditional restricted mean survival time (CRMST), and a flexible 

parametric regression modeling. As the nonparametric Kaplan-Meier method is commonly 

used for estimating the survival curve, we outline the method of integrating the survival 

curve obtained by the Kaplan-Meier method. It is assumed that event times and censoring 

times are independent. Let 𝑇1 < 𝑇2 < ⋯ < 𝑇𝐷 denote the distinct event times up to the 

specific time point 𝛾 , where 𝑇0 = 0  and 𝑇𝐷+1 = 𝛾 . For each 𝑗 = 1, … , 𝐷 , let 𝑛𝑗 

represents the size of the risk set just prior to 𝑇𝑗  and let 𝑑𝑗  represents the number of 

events occurring at time 𝑇𝑗. The RMST up to the specific time point 𝛾 is estimated as 

follows:  

𝜇̂(𝛾) = ∫ 𝑆̂(𝑡)
𝛾

0

𝑑𝑡 = ∑(𝑇𝑗+1 − 𝑇𝑗)𝑆̂(𝑇𝑗)

𝐷

𝑗=0

. 

The variance of 𝜇̂(𝛾) is estimated as  

Var[𝜇̂(𝛾)] = ∑ [∑(𝑇𝑖+1 − 𝑇𝑖)𝑆̂(𝑇𝑖)

𝐷

𝑖=𝑗

]

2

𝑑𝑗

𝑛𝑗(𝑛𝑗 − 𝑑𝑗)

𝐷

𝑗=1

, 
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using Greenwood’s formula. A 100(1 − α)%  confidence interval for the mean is 

expressed by 𝜇̂(𝛾) ± 𝑧1−𝛼/2√𝑉̂[𝜇̂𝛾]. 

 

 

Figure 1: Illustrations of restricted mean survival time and its difference. (A) RMST is the 

integration of survival probability across a pre-specified time, which graphically is the area 

under the survival curve. (B) RMST difference represents the group separation of the 

survival analysis. 
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3.3 Comparison of the RMST between Two Groups 

Let 𝜇𝑔(𝛾) be the RMST for group 𝑔, where 𝑔 = 0 represents the control group and 

𝑔 = 1  represents the treatment group. Let 𝜇̂𝑔(𝛾)  be the estimated RMST, and let 

Var[𝜇̂𝑔(𝛾)] be the variance of 𝜇̂𝑔(𝛾). The difference of two RMST is written as: 

RMST(𝛿) = ∫ (𝑆̂1(𝑡) − 𝑆̂0(𝑡))
𝛾

0

𝑑𝑡 = 𝜇̂1(𝛾) − 𝜇̂0(𝛾) 

The 100(1 − 𝛼)%  confidence interval for the difference in RMST between the 

groups is estimated as: 

𝜇̂1(𝛾) − 𝜇̂0(𝛾) ± 𝑧𝛼
2

√Var[𝜇̂1(𝛾)] + Var[𝜇̂0(𝛾)], 

where 𝑧𝛼  is the upper 100(1 − 𝛼)% quantile of the standard normal distribution.  

The null and alternative hypotheses to be tested are  

𝐻0 ∶ 𝜇1(𝛾) − 𝜇0(𝛾) = 0 versus 𝐻1 ∶ 𝜇1(𝛾) − 𝜇0(𝛾) ≠ 0. 

Under the null hypothesis 𝐻0, the test statistic, which is computed as 

Asymptotically, 𝑆𝐷 follows a standard normal distribution. Hence, the two-sided p-

value is calculated as 2{1 − Φ(|𝑆𝐷|)} , where Φ(∙)  is the standard normal cumulative 

distribution function. 
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Chapter 4  

Dependent Censoring 

Dependent censoring occurs when the relationship between censoring and survival 

time cannot be explained by observable covariates, indicating residual dependency that 

covariates do not address. To mitigate concerns about dependent censoring, it is advisable 

to collect a comprehensive set of covariates. For instance, late-stage cancer patients 

typically have shorter survival times and are more likely to drop out due to tumor 

progression, which establishes a positive correlation between survival and dropout times. 

Therefore, including cancer stage as a covariate can help achieve conditional independence 

between survival and dropout times. 

If censoring involves dropout or withdrawal due to worsening symptoms, it can 

introduce bias in statistical analysis. This form of dropout, known as informative dropout, 

is among several reasons for censoring. Broadly speaking, when the time of an event of 

interest is censored due to a mechanism associated with the event itself, this is termed 

dependent censoring. Most standard survival analysis methods yield unbiased results 

assuming independent censoring. Hence, careful consideration is required in survival 

analysis when censoring is not independent. 

In cancer follow-up studies, survival times may be censored due to dropout from tumor 

progression, treatment toxicity, or initiation of new treatments, among other factors. 



14 

 

Consequently, overall survival and censoring times may be positively correlated, as patients 

often pass away shortly after dropout. Informative censoring of this nature can adversely 

impact data analysis. For example, many terminally ill patients drop out of clinical trials to 

receive home care, potentially leading to missed observable deaths. Consequently, Kaplan-

Meier survival curves that treat such patients as censored may exhibit upward bias. 

 

Figure 2: Illustration of dependent censoring in survival analysis. Solid and dashed nodes 

denote observed and hidden variables, respectively.  
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4.1 Copula Models 

In this section, we introduce a mathematical background to bivariate copula models 

and a likelihood-based inference method. Let 𝑇 is survival time and 𝐶 is censoring time. 

In addition, let 𝑆𝑇(𝑡) = 𝑃(𝑇 > 𝑡)  and 𝑆𝐶(𝑐) = 𝑃(𝐶 > 𝑐)  are the marginal survival 

functions. To model the dependence of 𝑇 and 𝐶, we assume a survival copula model 

𝑃(𝑇 > 𝑡, 𝐶 > 𝑐) = 𝐶𝜃(𝑆𝑇(𝑡), 𝑆𝐶(𝑐)), 

where 𝐶𝜃 is a parametric copula with parameter 𝜃 describes the degree of dependency 

between 𝑇 and 𝐶. A bivariate copula is defined as a bivariate distribution whose marginal 

distribution is the uniform distribution on [0,1] . Let a bivariate copula, 𝐶𝜃: [0,1]2 ⟼

[0,1] , is indexed by a parameter 𝜃 . By the definition, any bivariate copula should be 

satisfying the following conditions  

(𝐶1) 𝐶𝜃(𝑢, 0) = 𝐶𝜃(0, 𝑣) = 0,  𝐶𝜃(𝑢, 1) = 𝑢, and  𝐶𝜃(1, 𝑣) = 𝑣  

for 0 ≤ 𝑢 ≤ 1 and 0 ≤ 𝑣 ≤ 1. 

(𝐶2) 𝐶𝜃(𝑢2, 𝑣2) − 𝐶𝜃(𝑢2, 𝑣1) − 𝐶𝜃(𝑢1, 𝑣2) + 𝐶𝜃(𝑢1, 𝑣1) ≥ 0  

for 0 ≤ 𝑢1 ≤ 𝑢2 ≤ 1 and 0 ≤ 𝑣1 ≤ 𝑣2 ≤ 1. 

(𝐶1)  requires the two marginal uniform distributions and (𝐶2)  requires that 𝐶𝜃 

produces a probability mass on the rectangular region [𝑢1, 𝑢2] × [𝑣1, 𝑣2]. 

For a copula 𝐶𝜃 , we can consider a pair of random variables (𝑉, 𝑊)  such that 
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𝑃(𝑉 ≤ 𝑢, 𝑊 ≤ 𝑣) = 𝐶𝜃(𝑢, 𝑣). If one defines a pair of random variables (𝑇, 𝐶) by setting 

𝑇 = 𝑆𝑇
−1(𝑉)  and 𝐶 = 𝑆𝐶

−1(𝑊) , its bivariate survival function satisfies 𝑃(𝑇 > 𝑡, 𝐶 >

𝑐) = 𝐶𝜃{𝑆𝑇(𝑡), 𝑆𝐶(𝑐)}. 

There are some copulas meet conditions (𝐶1) and (𝐶2): 

(a) the independent copula is 

𝐶(𝑢, 𝑣) = 𝑢𝑣. 

(b) the Clayton copula by Clayton (1978) is  

𝐶𝜃(𝑢, 𝑣) = (𝑢−𝜃 + 𝑣−𝜃 − 1)
−

1
𝜃, 𝜃 > 0. 

(c) the Gumbel copula by Gumbel (1960) is 

𝐶𝜃(𝑢, 𝑣) = exp (−((− log 𝑢)𝜃 + (− log 𝑣)𝜃)
1
𝜃) , 𝜃 ≥ 1. 

(d) the Frank copula by Frank (1979) is 

𝐶𝜃(𝑢, 𝑣) = −
1

𝜃
log {1 +

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
} , 𝜃 ≠ 0. 

By Tovar Cuevas et al. (2019), the Clayton copula function models a highly dependent 

asymmetric data structure with the left tail indicating that the cloud is expanding.  
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Figure 3. Scatter plot of data under the Clayton copula with different 𝜃. 

The Gumbel copula is useful for modeling data structures that have a strong 

dependency on the upper tail and a weak dependency on the lower tail, where we expect 

the upper data to be strongly correlated and the lower data to be weakly correlated.  

 

Figure 4. Scatter plot of data under the Gumbel copula with different 𝜃. 

An Archimedean copula is defined as 

𝐶𝜃(𝑢, 𝑣) = 𝜙𝜃
−1{𝜙𝜃(𝑢) + 𝜙𝜃(𝑣)}, 

where 𝜙𝜃: [0,1] ⟼ [0, ∞]  is called a generator of the copula that is continuous and 

strictly decreasing function from 𝜙𝜃(0) > 0 to 𝜙𝜃(1) = 0. If 𝜙𝜃(0) ≡ lim
𝑡→0

𝜙𝜃(𝑡) = ∞, 
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the generator is called a strict generator and has the inverse function 𝜙𝜃
−1: [0, ∞] ⟼ [0,1]. 

The Clayton, Gumbel, and Frank copulas have a strict generator. 

Let (𝑉, 𝑊) be a pair of random variables that satisfy 𝑃(𝑉 ≤ 𝑢, 𝑊 ≤ 𝑣) = 𝐶𝜃(𝑢, 𝑣). 

To measure of dependence between 𝑉 and 𝑊, Kendall’s tau is defined as 

𝜏𝜃 = 𝑃𝑟{(𝑉2 − 𝑉1)(𝑉2 − 𝑉1) > 0} − 𝑃𝑟{(𝑉2 − 𝑉1)(𝑉2 − 𝑉1) < 0}, 

where (𝑉1, 𝑉2)  and (𝑊1, 𝑊2)  also have the same distribution as (𝑉, 𝑊) . It can be 

expressed that 

𝜏𝜃 = 4 ∫ ∫ 𝐶𝜃(𝑢, 𝑣)𝐶𝜃(𝑑𝑢, 𝑑𝑣) − 1 = 4 ∫ ∫ 𝐶𝜃(𝑢, 𝑣)𝐶𝜃
[1,1](𝑢, 𝑣)𝑑𝑢𝑑𝑣 − 1

1

0

1

0

1

0

1

0

, 

where 𝐶𝜃
[1,1]

(𝑢, 𝑣) =
𝜕2

𝜕𝑢𝜕𝑣
𝐶𝜃(𝑢, 𝑣). 

Table 1 summarizes 𝜏𝜃 for copulas and 𝜏𝜃 increases with 𝜏𝜃 → 1 as 𝜃 → ∞. 

    Table 1. Examples of copulas 

Copula Range of 𝜃 Generator: 𝜙𝜃 Kendall’s tau: 𝜏𝜃 

Clayton (0,  ∞) 𝜃−1(𝑡−𝜃 − 1) 𝜃/(𝜃 + 2) 

Gumbel [1, ∞) (− log 𝑡)𝜃 1 − 1/𝜃 

Frank (−∞, ∞) −𝑙𝑜𝑔 (
𝑒−𝜃𝑡 − 1

𝑒−𝜃 − 1
) 1 −

4

𝜃
(1 −

1

𝜃
∫

𝑡

𝑒𝑡 − 1
𝑑𝑡

𝜃

0

) 
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4.2 Copula-Graphic (CG) Estimator 

Zheng and Klein (1995) introduced the concept of using copulas in survival data 

analysis under dependent censoring. They examined a bivariate distribution function for 

survival and censoring times with fully specified copula forms, including parameter values, 

to ensure model identifiability. They used a copula-graphic (CG) estimator to estimate the 

marginal survival function under this copula assumption. The CG estimator's survival 

function closely resembles that of the Kaplan-Meier estimator, effectively reducing to a 

Kaplan-Meier estimator when independence copulas are assumed. In practice, the CG 

estimator is typically calculated using one of the Archimedean copulas. Rivest and Wells 

(2001) simplified the CG estimator's expression for Archimedean copulas. Today, CG 

estimators are crucial tools in survival analysis with dependent censoring (Braekers and 

Veraverbeke 2005; Emura and Chen 2018). 

Under dependent censoring, Kaplan-Meier estimator may introduce biased 

information but a survival curve calculated form CG estimator gives unbiased information 

if copula function between death and censoring time is rightly specified. We introduce the 

CG estimator proposed by Rivest and Wells (2001). Consider random variables defied as 

𝑇 is survival time and 𝐶 is censoring time and an Archimedean copula model  

𝑃(𝑇 > 𝑡, 𝐶 > 𝑐) = 𝜙𝜃
−1[𝜙𝜃{𝑆𝑇(𝑡)} + 𝜙𝜃{𝑆𝐶(𝑡)}], 

where 𝜙𝜃: [0,1] ⟼ [0, ∞]  is generator function, which is strictly decreasing and 

continuous from 𝜙𝜃(0) = ∞  to 𝜙𝜃(1) = 0 ; 𝑆𝑇(𝑡) = 𝑃(𝑇 > 𝑡)  and 𝑆𝐶(𝑐) = 𝑃(𝐶 >
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𝑐) are the marginal survival functions. 

Let (𝑡𝑖, 𝛿𝑖), 𝑖 = 1, … , 𝑛, be survival data without covariates, where 𝑡𝑖 = min {𝑇𝑖, 𝐶𝑖}, 

𝛿𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶𝑖), 𝐼(∙) is the indicator function. All the observed times are assumed to 

distinct (𝑡𝑖 ≠ 𝑡𝑗 whenever 𝑖 ≠ 𝑗). The CG estimator is defined as 

𝑆̂𝑇(𝑡) = 𝜙𝜃
−1 [ ∑ 𝜙𝜃 (

𝑛𝑖 − 1

𝑛
) − 𝜙𝜃 (

𝑛𝑖

𝑛
)

𝑡𝑖≤𝑡,𝛿𝑖=1

] , 0 ≤ 𝑡 ≤ max
𝑖

(𝑡𝑖) 

where 𝑛𝑖 = ∑ 𝐼(𝑡ℓ ≥ 𝑡𝑖)𝑛
ℓ=1  is the number at risk at time 𝑡𝑖 ; 𝑆̂𝑇(𝑡) = 1  if no death 

occurs up to time 𝑡; 𝑆̂𝑇(𝑡) is undefined for 𝑡 > max
𝑖

(𝑡𝑖). 

The derivation of the CG estimator can be obtained as follows. Assume that 𝑆𝑇(𝑡) is 

decreasing step function with jumps at death times. Then, 𝛿𝑖 = 1  implies 𝑆𝑇(𝑡𝑖) ≠

𝑆𝑇(𝑡𝑖 − 𝑑𝑡)  and 𝑆𝐶(𝑡𝑖) = 𝑆𝐶(𝑡𝑖 − 𝑑𝑡) . Let’s set 𝑡 = 𝑐 = 𝑡𝑖  in 𝑃(𝑇 > 𝑡, 𝐶 > 𝑐) =

𝜙𝜃
−1[𝜙𝜃{𝑆𝑇(𝑡)} + 𝜙𝜃{𝑆𝐶(𝑡)}], we have 

𝜙𝜃 𝑃(𝑇 > 𝑡𝑖, 𝐶 > 𝑡𝑖) = 𝜙𝜃{𝑆𝑇(𝑡𝑖)} + 𝜙𝜃{𝑆𝐶(𝑡𝑖)}. 

In the left-side of the preceding equation, estimate 𝑃(𝑇 > 𝑡𝑖, 𝐶 > 𝑡𝑖) by (𝑛𝑖 − 1) 𝑛⁄ , 

where 𝑛𝑖 − 1 = ∑ 𝐼(𝑡ℓ > 𝑡𝑖)𝑛
ℓ=1  is the number of survivors at time 𝑡𝑖. Accordingly, 

𝜙𝜃 (
𝑛𝑖 − 1

𝑛
) = 𝜙𝜃{𝑆𝑇(𝑡𝑖)} + 𝜙𝜃{𝑆𝐶(𝑡𝑖)},   𝛿𝑖 = 1. 

Meanwhile, we set 𝑡 = 𝑐 = 𝑡𝑖 − 𝑑𝑡  in equation 𝑃(𝑇 > 𝑡, 𝐶 > 𝑐) =
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𝜙𝜃
−1[𝜙𝜃{𝑆𝑇(𝑡)} + 𝜙𝜃{𝑆𝐶(𝑡)}] and then estimate 𝑃(𝑇 > 𝑡𝑖 − 𝑑𝑡, 𝐶 > 𝑡𝑖 − 𝑑𝑡) by 𝑛𝑖 𝑛⁄ .  

𝜙𝜃 (
𝑛𝑖

𝑛
) = 𝜙𝜃{𝑆𝑇(𝑡𝑖 − 𝑑𝑡)} + 𝜙𝜃{𝑆𝐶(𝑡𝑖)},   𝛿𝑖 = 1. 

The result in the system of difference equation is 

𝜙𝜃 (
𝑛𝑖 − 1

𝑛
) −𝜙𝜃 (

𝑛𝑖

𝑛
) = 𝜙𝜃{𝑆𝑇(𝑡𝑖)} − 𝜙𝜃{𝑆𝑇(𝑡𝑖 − 𝑑𝑡)},   𝛿𝑖 = 1. 

When 𝑡𝑖 is the smallest, we can impose the constraint that 𝑆𝑇(𝑡𝑖 − 𝑑𝑡) = 1. Then, 

the solution of different equations is 

𝜙𝜃{𝑆𝑇(𝑡)} = ∑ [𝜙𝜃{𝑆𝑇(𝑡𝑖)} − 𝜙𝜃{𝑆𝑇(𝑡𝑖 − 𝑑𝑡)}]

𝑡𝑖≤𝑡,𝛿𝑖=1

  

= ∑ [𝜙𝜃 (
𝑛𝑖 − 1

𝑛
) − 𝜙𝜃 (

𝑛𝑖

𝑛
)]

𝑡𝑖≤𝑡,𝛿𝑖=1

, 

which is equivalent to the 𝐶𝐺 estimator. 

When 𝜙𝜃(𝑡) = − log(𝑡) under independence copula, the CG estimator is same to the 

Kaplan-Meier estimator and given by 𝜙𝜃(𝑡) = (𝑡−𝜃 − 1)/𝜃 for 𝜃 > 0 under Clayton 

copula, the CG estimator is 

𝑆̂𝑇(𝑡) = [1 + ∑ {(
𝑛𝑖 − 1

𝑛
)

−𝜃

− (
𝑛𝑖

𝑛
)

−𝜃

}

𝑡𝑖≤𝑡,𝛿𝑖=1

]

−
1
𝜃

. 
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Chapter 5  

Proposed Method 

We proposed some methods for comparison two RMSTs to deal with dependent 

censoring. To estimate survival function under dependent censoring, we proposed two 

survival function estimation method based on modified CG estimator and self-consistency 

method. There are two situations when comparing two RMSTs under dependent censoring: 

the assumed copula situation and the situation where the copula assumption is violated. 

When the copula assumption is violated, it can be categorized as either a copula type 

misspecified or an association parameter misspecified. For the assumed copula situation, 

we proposed a method to compare two RMSTs based on modified CG estimator. When the 

copula assumption is violated, we proposed methods to compare two RMSTs based on 

modified CG estimator and self-consistency estimator. 
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5.1 Modified Copula-Graphic Estimator 

The CG estimator can be used to estimate RMST under dependent censoring. When 

test the difference between two RMSTs, we need an estimate of the variance of each RMST. 

There is no closed form for the RMST variance estimate for the CG estimator, and the 

RMST variance estimate can be obtained via a bootstrap method. When using the bootstrap 

method for variance estimation, a tied data can be generated with approximately 63.2% ties. 

The book by Chernick and LaBudde (2011, p.199) states the following result about 

bootstrap resamples: If the sample size is large and we generate many bootstrap samples, 

we will find that on average, approximately 36.8% of the original observations will be 

missing from the individual bootstrap samples. Another way to look at this is that for any 

particular observation, approximately 36.8% of the bootstrap samples will not contain it. 

However, the CG estimator can be used for the data without ties. Thus, we have proposed 

a modified CG (MCG) estimator to consider tied data as following formula for summarized 

survival data for distinct time (𝑡𝑖, 𝑑𝑖), 𝑖 = 1, … , 𝐼 

𝑆̂𝑇(𝑡) = 𝜙𝜃
−1 [ ∑ 𝜙𝜃 (

𝑛𝑖 − 𝑑𝑖

𝑛
) − 𝜙𝜃 (

𝑛𝑖

𝑛
)

𝑡𝑖≤𝑡,𝑑𝑖≠0

] , 0 ≤ 𝑡 ≤ max
𝑖

(𝑡𝑖) 

where n is the number of data, 𝑛𝑖 = ∑ 𝐼(𝑡ℓ ≥ 𝑡𝑖)𝐿
ℓ=1  is the number at risk at time 𝑡𝑖, 𝑑𝑖 =

∑ 𝐼(𝑡ℓ = 𝑡𝑖)𝐿
ℓ=1  is the number of events at time 𝑡𝑖, and 𝐿 is the number of distinct times. 

The derivation of the modified CG estimator can be obtained by a similar process to 
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CG estimator. The 𝑑𝑖 > 0 implies that, in the left-side of the equation mentioned above, 

estimate Pr(T > 𝑡𝑖, C > 𝑡𝑖)  by (𝑛𝑖 − 𝑑𝑖) 𝑛⁄ , where 𝑛𝑖 − 𝑑𝑖 = ∑ 𝐼(𝑡ℓ > 𝑡𝑖)𝑛
ℓ=1  is the 

number of survivors at time 𝑡𝑖. Accordingly,  

𝜙𝜃 (
𝑛𝑖 − 𝑑𝑖

𝑛
) = 𝜙𝜃{𝑆𝑇(𝑡𝑖)} + 𝜙𝜃{𝑆𝐶(𝑡𝑖)},   𝛿𝑖 = 1. 

The result in the system of difference equations is 

𝜙𝜃 (
𝑛𝑖 − 𝑑𝑖

𝑛
) −𝜙𝜃 (

𝑛𝑖

𝑛
) = 𝜙𝜃{𝑆𝑇(𝑡𝑖)} − 𝜙𝜃{𝑆𝑇(𝑡𝑖 − 𝑑𝑡)},   𝛿𝑖 = 1. 

When 𝑡𝑖 is the smallest, we can impose the constraint that 𝑆𝑇(𝑡𝑖 − 𝑑𝑡) = 1. Then, 

the solution of different equations is 

𝜙𝜃{𝑆𝑇(𝑡)} = ∑ [𝜙𝜃{𝑆𝑇(𝑡𝑖)} − 𝜙𝜃{𝑆𝑇(𝑡𝑖 − 𝑑𝑡)}]

𝑡𝑖≤𝑡,𝛿𝑖=1

    

= ∑ [𝜙𝜃 (
𝑛𝑖 − 1

𝑛
) − 𝜙𝜃 (

𝑛𝑖

𝑛
)]

𝑡𝑖≤𝑡,𝛿𝑖=1

. 
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5.2 Self-consistency Estimator for Dependent Censoring 

Prior research by Jiang, Hongyu, et al (2005) has estimated copula graphic estimator 

as self-consistency estimator in dependent censoring. For dependent censoring survival 

data, the self-consistency estimator can be defined in non-parametric approaches. Survival 

function for event time 𝑇 and censored time 𝐶 can be written using copula function as 

follows: 

𝑆𝑇(𝑡) =
1

𝑛
[ ∑ 𝜙(𝑇𝑖)

𝑇𝑖>𝑡

+ ∑
𝑃(𝑇 > 𝑡|𝐶 = 𝑇𝑖)

𝑃(𝑇 > 𝑇𝑖|𝐶 = 𝑇𝑖)
𝛿𝑖=0,𝑇𝑖≤𝑡

] 

=
1

𝑛
[ ∑ 𝜙(𝑇𝑖)

𝑇𝑖>𝑡

+ ∑
𝑆𝑇(𝑡|𝐶 = 𝑇𝑖)

𝑆𝑇(𝑇𝑖|𝐶 = 𝑇𝑖)
𝛿𝑖=0,𝑇𝑖≤𝑡

] 

=
1

𝑛
[ ∑ 𝜙(𝑇𝑖)

𝑇𝑖>𝑡

+ ∑
𝐶̇𝜃(𝑣(𝑇𝑖), 𝑢(𝑡))

𝐶𝜃̇(𝑣(𝑇𝑖), 𝑢(𝑇𝑖))
𝛿𝑖=0,𝑇𝑖≤𝑡

] 

and 

𝑆𝐶(𝑐) =
1

𝑛
[ ∑ 𝜙(𝐶𝑖)

𝐶𝑖>𝑐

+ ∑
𝑃(𝐶 > 𝑐|𝑇 = 𝐶𝑖)

𝑃(𝐶 > 𝐶𝑖|𝑇 = 𝐶𝑖)
𝛿𝑖=1,𝐶𝑖≤𝑐

] 

=
1

𝑛
[ ∑ 𝜙(𝐶𝑖)

𝐶𝑖>𝑐

+ ∑
𝑆𝐶(𝑐|𝑇 = 𝐶𝑖)

𝑆𝐶(𝐶𝑖|𝑇 = 𝐶𝑖)
𝛿𝑖=1,𝐶𝑖≤𝑐

] 
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=
1

𝑛
[ ∑ 𝜙(𝐶𝑖)

𝐶𝑖>𝑐

+ ∑
𝐶̇𝜃(𝑢(𝐶𝑖), 𝑣(𝑐))

𝐶𝜃̇(𝑢(𝐶𝑖), 𝑣(𝐶𝑖))
𝛿𝑖=1,𝐶𝑖≤𝑐

] 

where 𝑢, 𝑣 are survival functions for 𝑇, 𝐶, respectively and 𝐶̇𝜃(𝑥, 𝑦) =
𝜕

𝜕𝑥
𝐶𝜃(𝑥, 𝑦). 

For non-parametric self-consistency estimator, the survival functions 𝑆𝑇(𝑡)  and 

𝑆𝐶(𝑐) can be estimated iteratively until they converge by updating the estimates of 𝑆𝑇(𝑡) 

and 𝑆𝐶(𝑐) alternately. The initial values of 𝑆𝑇(𝑡) and 𝑆𝐶(𝑐) can be used as estimated 

survival probabilities under independent censoring assumption. In this study, we only 

consider three copula types (Clayton, Gumbel, Frank) and two marginal distributions 

(exponential, Weibull) for event and censored times. 
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5.3 Marginal Survival Estimation 

Previous studies (Zheng and Klein, 1994, 1995; Huang and Zhang, 2008; Chen, 2010) 

have shown that the proposed model is robust to the functional form of the copula (e.g., 

whether the underlying copula is Clayton, Gumbel, etc.) but sensitive to the assumed level 

of association (e.g., the copula parameter value that directly corresponds to Kendall’s tau).  

The authors noted in their simulation study results that a critical requirement for a 

good estimate of the marginal survival function is a reasonable guess of the strength of 

association between 𝑇 and 𝐶, rather than the functional form of the copula. 

The Kaplan-Meier estimator is biased in estimating the survival curve when there is a 

dependency between survival time and censoring time. Survival probability tends to be 

overestimated. However, the MCG model is not biased significantly even if the copula type 

is misspecified if the association parameter is set to the same as the data generated. 

However, even if the copula type is the same, it tends to be underestimated or overestimated 

if the association parameter is different.  
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Figure 5. Survival curve estimated by modified Copula-Graphic (MCG) estimators 

according to Copula type and association parameter. 
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5.4 Comparison of the RMST for Dependent Censoring 

Previous research on copula graphic estimators and self-consistency in the context of 

RMST has not been conducted, and particularly, studies focusing on their statistical 

properties (Bias, Type I error) have been absent. We proposed methods to compare two 

RMSTs under dependent censoring by considering two situations: assumed copula 

situation and the situation where the copula assumption is violated. 

In assumed copula situation, we can estimate the difference of RMST between group 

1 and group 0 until 𝛾 using the MCG estimator as follows: 

𝐷̂𝑀𝐶𝐺(𝛾) = ∫ [𝑆̂1(∙) − 𝑆̂0(∙)]
𝛾

0

𝑑𝑡 

where 𝑆̂(∙) is the MCG estimator. 

In situation that copula assumption is violated, two problems can happen: a copula 

type misspecified or an association parameter misspecified. It is known to have weak effect 

for the misspecified copula type and strong effect for the misspecified association 

parameter on the bias for RMST estimates. Thus, we proposed ensemble method to estimate 

RMST for pre-specified copula type and association parameters. The weights can be 

calculated by log-likelihood for copula models under dependent censoring. The difference 

of RMST between group 1 and group 0 until 𝛾 as follows: 

Using modified copula graphic estimator under clayton copula, 
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𝑇1 = ∑ 𝑤𝑘 ∫ [𝑆̂1,𝑘(𝑡) − 𝑆̂0,𝑘(𝑡)]
𝛾

0

𝑑𝑡

𝐾

𝑘=1

 

Using self-consistency estimator under clayton copula, 

𝑇2 = ∑ 𝑤𝑘 ∫ [𝑆̃1,𝑘(𝑡) − 𝑆̃0,𝑘(𝑡)]
𝛾

0

𝑑𝑡

𝐾

𝑘=1

 

where 𝑤𝑘 is association parameter weight, 𝑘 is the index for association parameter, and 

𝑆̂(∙) can be estimated using the MCG estimator and SC estimator.  

The estimated difference of RMST 𝐷̂(𝛾)  obtained by proposed methods can be 

approximated by a normal distribution under null hypothesis (𝐷 = 0) as follow: 

𝐷̂(𝛾) ~ 𝑁 (0, 𝑉𝑎𝑟(𝐷̂(𝛾))) 

where 𝑉𝑎𝑟(𝐷̂(𝛾)) is the bootstrap variance and test statistic is defined as 

𝑇 =
𝐷̂(𝛾)

√𝑉𝑎𝑟(𝐷̂(𝛾))

. 
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Chapter 6  

Simulation Study  

6.1 Simulation Setting 

In this section, we conduct various simulation studies to the performance of the 

proposed new estimators evaluate for testing difference between two RMST by varying 

dependency, number of samples, type of copulas, association parameters, survival 

distribution, censoring distribution, and censoring rate. Assuming that the survival 

distributions of the two groups are the same, the difference of RMST between the two 

groups was confirmed by performing simulations. The number of samples per group was 

set to 30, 50, and 100, and both data without dependence censoring and data with 

dependence censoring were examined. The marginal survival distributions were considered 

to be the exponential and Weibull distribution as following probability density function: 

Exponential distribution: 

𝑓(𝑥) = 𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0 

Weibull distribution:  

𝑓(𝑥) =
𝑘

𝜆
(

𝑥

𝜆
)

𝑘−1

𝑒−(𝑥 𝜆⁄ )𝑘
, 𝑥 ≥ 0 
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The parameters of marginal survival distribution are presented in Table 2 under the 

null and alternative hypotheses for the difference in RMST between Group A and Group 

B. 

Table 2. Parameters of marginal survival distribution 

Marginal survival  

distribution 

Null hypothesis Alternative hypothesis 

Group A Group B Group A Group B 

Exponential 𝜆 = 0.2 𝜆 = 0.2 𝜆 = 0.4 

Weibull 𝑘 = 2, 𝜆 = 5 𝑘 = 2, 𝜆 = 5 𝑘 = 2, 𝜆 = 3.5 

 

We considered three types of copula types: Clayton, Gumbel, and Frank, and set the 

tau values of the association parameter Kendall's tau to 0.3, 0.5, and 0.7. In this paper, we 

ensembled three RMST estimators of the Clayton copula with association parameter 

Kendall’s tau of 0.3, 0.5, and 0.7. We only considered Clayton copula because there was 

no significant difference in RMST estimators according to copula types. We assumed the 

censoring distribution is the same for each group. The censoring rates considered were 30, 

50, and 70%. Since it is dependence data, we need to calculate a parameter for censoring 

rate to take this into account. It should be obtained through the expression censoring 

percentage below, and for the convenience of calculation, the value was calculated under 

the empirical distribution with 𝑛 = 100,000.  
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Censoring percentage = P(X > C) = ∫ ∫ 𝑓(𝑥, 𝑐)
∞

𝑐

𝑑𝑥𝑑𝑐
∞

0

= ∫ ∫ 𝑓(𝑥)𝑔(𝑐)𝐶̈(𝑆𝑋(𝑥), 𝑆𝐶(𝑐))
∞

𝑐

𝑑𝑥𝑑𝑐
∞

0

 

Proposed and independent methods were evaluated in terms of type I error, power, 

and bias. 𝛾 is set to 80th percentile of the population’s survival time. All analyses used in 

the simulation were analyzed using R version 4.3.0. Each scenario was repeated 1000 times 

independently. 
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6.2 Results 

The results of type I error under independent censoring assumption are presented in 

Tables 3 and are similar to those in assumed copula. The simulation results for type I error 

under the Clayton copula are presented in Tables 4. The type I error remained constant in 

both the independent and proposed methods, with no significant deviation for simulation 

settings of the number of sample size and association parameter Kendall’s tau. Under the 

Gumbel and Frank copula, the results of type I error showed similar to results of Clayton 

copula (Table 5-6). When the copula type was misspecified, the results of type I error are 

showed similar to assumed copula, with no significant increase in type I errors. 

Tables 7 present the simulation results of power under the Clayton copula according 

to simulation settings of the number of sample size and association parameter Kendall’s 

tau. The proposed methods were showed overall higher power than independent method in 

all simulation settings. The decrease in power was lower than the proposed method when 

the censoring rate increased. Similar trends in power were showed for Gumbel and Frank 

copula type assumption to results of Clayton copula in Tables 8-9. When the copula type 

was misspecified, there was no significant difference in power compared to the results of 

assumed copula.
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Table 3. The results of type I error for independent censoring survival data generated with exponential distribution according to the 

sample size (n) and censoring rate. 

n 
Censoring 

rate 
Independent 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Clayton 

Ensemble I 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

30 

0.3 0.060 0.063 0.064 0.065 0.064 0.050 0.050 

0.5 0.060 0.061 0.061 0.055 0.061 0.040 0.050 

0.7 0.066 0.070 0.074 0.063 0.068 0.040 0.040 

50 

0.3 0.059 0.056 0.060 0.065 0.060 0.020 0.020 

0.5 0.054 0.054 0.059 0.057 0.058 0.020 0.020 

0.7 0.060 0.065 0.068 0.055 0.067 0.030 0.030 

100 

0.3 0.050 0.046 0.049 0.054 0.045 0.020 0.020 

0.5 0.047 0.053 0.050 0.046 0.054 0.040 0.020 

0.7 0.047 0.045 0.049 0.047 0.048 0.060 0.050 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table 3. The results of type I error for independent censoring survival data generated with exponential distribution according 

to the sample size (n) and censoring rate. 

n 
Censoring 

rate 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.060 0.063 0.065 0.061 0.062 0.064 

0.5 0.059 0.058 0.055 0.061 0.054 0.054 

0.7 0.064 0.058 0.050 0.065 0.059 0.051 

50 

0.3 0.056 0.058 0.062 0.055 0.058 0.062 

0.5 0.052 0.055 0.056 0.054 0.054 0.056 

0.7 0.060 0.057 0.051 0.064 0.066 0.049 

100 

0.3 0.046 0.051 0.054 0.050 0.049 0.057 

0.5 0.046 0.050 0.050 0.051 0.052 0.048 

0.7 0.046 0.045 0.048 0.046 0.048 0.046 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table 4. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the 

Clayton copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.066 0.067 0.068 0.067 0.064 0.067 0.063 0.065 0.066 

0.5 0.075 0.072 0.068 0.070 0.067 0.063 0.071 0.068 0.062 

0.7 0.071 0.065 0.066 0.063 0.063 0.061 0.067 0.065 0.064 

50 

0.3 0.066 0.066 0.065 0.057 0.059 0.065 0.061 0.062 0.061 

0.5 0.062 0.065 0.068 0.061 0.067 0.065 0.065 0.069 0.069 

0.7 0.066 0.067 0.068 0.061 0.062 0.068 0.062 0.065 0.065 

100 

0.3 0.064 0.061 0.059 0.059 0.062 0.058 0.060 0.058 0.053 

0.5 0.056 0.058 0.058 0.056 0.058 0.057 0.055 0.059 0.056 

0.7 0.060 0.058 0.058 0.055 0.055 0.052 0.057 0.055 0.055 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table 4. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution 

under the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.060 0.069 0.068 0.070 0.070 0.070 

0.5 0.072 0.069 0.069 0.070 0.060 0.060 

0.7 0.073 0.065 0.064 0.070 0.060 0.060 

50 

0.3 0.064 0.065 0.066 0.070 0.080 0.080 

0.5 0.058 0.066 0.065 0.100 0.110 0.110 

0.7 0.059 0.068 0.068 0.100 0.110 0.100 

100 

0.3 0.056 0.062 0.060 0.080 0.080 0.080 

0.5 0.053 0.056 0.056 0.060 0.060 0.060 

0.7 0.060 0.056 0.058 0.080 0.080 0.060 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table 5. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the 

Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.056 0.056 0.053 0.051 0.050 0.048 0.051 0.048 0.048 

0.5 0.054 0.053 0.054 0.052 0.050 0.048 0.055 0.052 0.049 

0.7 0.055 0.058 0.051 0.056 0.050 0.047 0.055 0.052 0.046 

50 

0.3 0.072 0.066 0.058 0.073 0.072 0.063 0.072 0.064 0.059 

0.5 0.067 0.064 0.066 0.067 0.061 0.062 0.067 0.062 0.061 

0.7 0.061 0.065 0.062 0.062 0.060 0.057 0.062 0.059 0.058 

100 

0.3 0.055 0.056 0.055 0.054 0.052 0.058 0.056 0.054 0.056 

0.5 0.053 0.052 0.059 0.056 0.055 0.062 0.057 0.058 0.062 

0.7 0.050 0.051 0.053 0.052 0.055 0.056 0.049 0.052 0.054 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table 5. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution 

under the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.049 0.057 0.053 0.060 0.050 0.060 

0.5 0.057 0.053 0.053 0.040 0.030 0.030 

0.7 0.057 0.052 0.058 0.040 0.040 0.040 

50 

0.3 0.071 0.071 0.065 0.090 0.070 0.060 

0.5 0.067 0.066 0.065 0.060 0.050 0.060 

0.7 0.068 0.061 0.064 0.060 0.040 0.050 

100 

0.3 0.059 0.054 0.054 0.050 0.040 0.060 

0.5 0.060 0.053 0.052 0.070 0.050 0.060 

0.7 0.052 0.053 0.051 0.040 0.050 0.050 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table 6. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the 

Frank copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.074 0.074 0.064 0.068 0.070 0.065 0.065 0.069 0.062 

0.5 0.072 0.069 0.056 0.069 0.061 0.059 0.068 0.061 0.056 

0.7 0.062 0.061 0.059 0.053 0.055 0.054 0.058 0.058 0.054 

50 

0.3 0.060 0.062 0.053 0.055 0.058 0.053 0.059 0.060 0.054 

0.5 0.067 0.065 0.059 0.063 0.057 0.055 0.063 0.059 0.055 

0.7 0.069 0.072 0.061 0.067 0.069 0.063 0.068 0.064 0.064 

100 

0.3 0.056 0.058 0.058 0.056 0.057 0.056 0.054 0.054 0.058 

0.5 0.047 0.049 0.057 0.047 0.047 0.053 0.047 0.048 0.057 

0.7 0.048 0.050 0.055 0.050 0.047 0.050 0.051 0.048 0.055 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table 6. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution 

under the Frank copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.071 0.072 0.073 0.080 0.080 0.070 

0.5 0.061 0.069 0.069 0.080 0.080 0.080 

0.7 0.064 0.062 0.060 0.080 0.080 0.080 

50 

0.3 0.066 0.059 0.061 0.060 0.050 0.060 

0.5 0.063 0.062 0.062 0.070 0.060 0.070 

0.7 0.063 0.067 0.072 0.080 0.100 0.090 

100 

0.3 0.050 0.061 0.058 0.070 0.080 0.080 

0.5 0.050 0.049 0.049 0.090 0.080 0.090 

0.7 0.049 0.051 0.049 0.100 0.090 0.090 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Figure 6. Survival curve estimated by Kaplan-Meier curve (Independent), modified 

Copula-Graphic (MCG) estimators and Self-consistency (SC) estimators according to 

Copula type and association parameter under the null hypothesis. 
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(continuous) Figure 6. Survival curve estimated by Kaplan-Meier curve (Independent), 

modified Copula-Graphic (MCG) estimators and Self-consistency (SC) estimators 

according to Copula type and association parameter under the null hypothesis. 
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Table 7. The results of power for dependent censoring survival data generated with bivariate exponential distribution under the Clayton 

copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.510 0.556 0.583 0.476 0.522 0.572 0.496 0.536 0.569 

0.5 0.539 0.591 0.619 0.510 0.563 0.605 0.521 0.570 0.607 

0.7 0.543 0.600 0.625 0.517 0.569 0.614 0.531 0.579 0.614 

50 

0.3 0.721 0.791 0.825 0.691 0.763 0.816 0.707 0.776 0.818 

0.5 0.734 0.803 0.836 0.711 0.774 0.829 0.726 0.790 0.831 

0.7 0.754 0.804 0.838 0.726 0.797 0.830 0.742 0.792 0.824 

100 

0.3 0.958 0.981 0.987 0.951 0.975 0.987 0.959 0.977 0.986 

0.5 0.971 0.988 0.991 0.959 0.985 0.991 0.966 0.989 0.991 

0.7 0.974 0.989 0.991 0.965 0.984 0.992 0.969 0.987 0.991 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table 7. The results of power for dependent censoring survival data generated with bivariate exponential distribution under 

the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.407 0.534 0.554 0.530 0.530 0.530 

0.5 0.447 0.587 0.587 0.570 0.580 0.570 

0.7 0.442 0.613 0.591 0.590 0.620 0.580 

50 

0.3 0.596 0.761 0.790 0.660 0.710 0.720 

0.5 0.618 0.803 0.803 0.790 0.780 0.790 

0.7 0.636 0.819 0.802 0.790 0.760 0.730 

100 

0.3 0.879 0.974 0.981 0.940 0.960 0.980 

0.5 0.896 0.988 0.988 0.990 0.990 0.990 

0.7 0.911 0.991 0.989 0.990 0.990 0.990 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table 8. The results of power for dependent censoring survival data generated with bivariate exponential distribution under the Gumbel 

copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.458 0.506 0.530 0.425 0.470 0.521 0.443 0.484 0.513 

0.5 0.425 0.466 0.495 0.408 0.441 0.474 0.418 0.448 0.477 

0.7 0.447 0.494 0.503 0.417 0.464 0.491 0.431 0.475 0.493 

50 

0.3 0.612 0.674 0.715 0.588 0.645 0.698 0.605 0.654 0.703 

0.5 0.591 0.644 0.663 0.567 0.599 0.634 0.586 0.617 0.639 

0.7 0.652 0.707 0.734 0.612 0.663 0.707 0.627 0.685 0.712 

100 

0.3 0.835 0.926 0.999 0.810 0.883 0.966 0.825 0.907 0.987 

0.5 0.858 0.960 1.000 0.816 0.899 0.986 0.846 0.925 1.000 

0.7 0.908 0.949 0.966 0.890 0.932 0.960 0.899 0.938 0.967 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table 8. The results of power for dependent censoring survival data generated with bivariate exponential distribution under 

the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.352 0.479 0.502 0.390 0.400 0.450 

0.5 0.336 0.462 0.461 0.400 0.400 0.400 

0.7 0.347 0.503 0.492 0.470 0.460 0.470 

50 

0.3 0.502 0.641 0.669 0.580 0.600 0.670 

0.5 0.504 0.636 0.636 0.630 0.630 0.620 

0.7 0.564 0.721 0.704 0.710 0.710 0.680 

100 

0.3 0.702 0.879 0.929 0.940 0.940 0.960 

0.5 0.728 0.961 0.961 0.950 0.950 0.950 

0.7 0.804 0.959 0.947 0.970 0.970 0.960 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table 9. The results of power for dependent censoring survival data generated with bivariate exponential distribution under the Frank 

copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.448 0.488 0.507 0.427 0.465 0.497 0.438 0.472 0.500 

0.5 0.452 0.496 0.505 0.432 0.468 0.499 0.446 0.473 0.495 

0.7 0.477 0.519 0.532 0.454 0.488 0.514 0.470 0.499 0.513 

50 

0.3 0.651 0.717 0.749 0.626 0.695 0.733 0.639 0.705 0.741 

0.5 0.651 0.717 0.748 0.624 0.676 0.722 0.636 0.689 0.729 

0.7 0.680 0.735 0.763 0.644 0.696 0.749 0.659 0.709 0.750 

100 

0.3 0.922 0.956 0.970 0.905 0.947 0.966 0.916 0.951 0.969 

0.5 0.938 0.965 0.974 0.918 0.954 0.971 0.928 0.958 0.971 

0.7 0.939 0.972 0.980 0.929 0.963 0.975 0.938 0.967 0.974 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table 9. The results of power for dependent censoring survival data generated with bivariate exponential distribution under 

the Frank copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.365 0.470 0.488 0.400 0.400 0.420 

0.5 0.378 0.493 0.493 0.420 0.410 0.420 

0.7 0.395 0.525 0.514 0.470 0.470 0.450 

50 

0.3 0.518 0.687 0.714 0.600 0.650 0.710 

0.5 0.510 0.716 0.716 0.660 0.660 0.650 

0.7 0.542 0.750 0.729 0.720 0.710 0.700 

100 

0.3 0.819 0.942 0.955 0.920 0.920 0.950 

0.5 0.828 0.965 0.965 0.950 0.950 0.950 

0.7 0.851 0.977 0.971 0.960 0.960 0.950 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Figure 7. Survival curve estimated by Kaplan-Meier curve (Independent), modified 

Copula-Graphic (MCG) estimators and Self-consistency (SC) estimators according to 

Copula type and association parameter under the alternative hypothesis. 
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(continuous) Figure 7. Survival curve estimated by Kaplan-Meier curve (Independent), 

modified Copula-Graphic (MCG) estimators and Self-consistency (SC) estimators 

according to Copula type and association parameter under the alternative hypothesis. 
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Figure 8. The results of bias for dependent censoring survival data generated with bivariate exponential distribution under 

the Clayton copula according to the censoring rate and association parameter Kendall’s tau (τ). 
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Chapter 7  

Real Data Analysis  

7.1 Data on Kidney Transplant Patients 

In this section, we used real data examples to illustrate the performance of the 

proposed method. We applied the proposed estimator to a dataset on the time to death of 

863 kidney transplant patients. All patients underwent their transplants at The Ohio State 

University Transplant Center between 1982 and 1992. The maximum follow-up time was 

9.47 years. Patients were censored if they moved away from Columbus (lost to follow-up) 

or if they were alive on June 30, 1992.  

The age of patients at the time of transplant ranged from 9.5 months to 74.5 years, 

with an average age of 42.8 years. The sample included 524 males and 339 females, with 

712 white patients and 151 black patients. Out of the 863 patients, 140 (16.2%) experienced 

failure events (deaths), while 723 (83.8%) were censored by the end of the study. 

Specifically, 87 males (16.6%), 53 females (15.6%), 112 white patients (15.7%), and 28 

black patients (18.5%) died before the study concluded.  

Figure 9, 10 represents the survival function estimated by the product-limit estimator 

and proposed estimator according to gender and race. We apply the proposed method to 
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directly calculate the difference of RMST and investigate the impact of gender and race on 

RMST among patients with kidney transplant. 

The difference of RMST at 𝜏 = 3, 5 and 7 years were analyzed. Table 10, 11 

summarizes the results. Overall, the covariate effects show similar trends across all models. 

Toward the end of the survival curve, we confirm that the survival probability of the 

proposed models decreases. There was a trend for female to survive longer to a given time 

point γ compared to male, but it was not significant. Similarly, in race, there were no models 

and time points showing significant differences, but when the difference in RMST up to 3 

years was identified, the trend was different according to the model. 
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Figure 9. Estimator of survival function using prevailing method and proposed estimator. 

Product-limit estimator (A), MCG Clayton, tau=0.5 (B), MCG Gumbel, tau=0.5 (C), MCG 

Frank, tau=0.5 (D), MCG Clayton, Ensemble II (E) and Self-consistency Clayton, 

Ensemble II (F) for patients by gender (solid line for female; dashed line for male)
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Table 10. The difference of RMST by gender with 95% confidence intervals (CIs) and p-values at various values of γ (years) 

γ 

Independent MCG Clayton, tau=0.3 MCG Clayton, tau=0.5 MCG Clayton, tau=0.7 MCG Gumbel, tau=0.3 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

3 
15.91 

(-22.91, 54.73) 
0.422 

18.59 

(-22.52, 59.69) 
0.375 

21.91 

(-23.03, 66.85) 
0.339 

26.71  

(-26.70, 80.11) 
0.327 

21.20  

(-20.06, 62.47) 
0.314 

5 
36.70  

(-37.71, 111.12) 
0.334 

42.89  

(-40.05, 125.84) 
0.311 

49.80 

(-46.22, 145.82) 
0.309 

55.01  

(-59.17, 169.18) 
0.345 

44.85  

(-35.44, 125.15) 
0.274 

7 
42.96  

(-72.31, 158.22) 
0.465 

45.52  

(-91.38, 182.42) 
0.515 

51.42  

(-111.63, 214.48) 
0.537 

64.86  

(-107.98, 237.71) 
0.462 

45.95  

(-79.90, 171.79) 
0.474 

γ 

MCG Gumbel, tau=0.5 MCG Gumbel, tau=0.7 MCG Frank, tau=0.3 MCG Frank, tau=0.5 MCG Frank, tau=0.7 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

3 
23.47 

(-20.44, 67.37) 
0.295 

22.16 

(-25.11, 69.43) 
0.358 

20.66 

(-22.27, 63.58) 
0.346 

24.98  

(-23.32, 73.27) 
0.311 

26.22  

(-28.93, 81.37) 
0.351 

5 
45.77 

(-39.63, 131.17) 
0.294 

39.94 

(-49.72, 129.60) 
0.383 

45.57 

(-40.69, 131.82) 
0.300 

50.06  

(-47.68, 147.80) 
0.315 

46.41  

(-57.14, 149.96) 
0.380 

7 
40.63 

(-91.61, 172.88) 
0.547 

33.25 

(-100.52, 167.02) 
0.626 

44.41 

(-92.83, 181.65) 
0.526 

41.81  

(-107.79, 191.41) 
0.584 

40.65 

(-105.18, 186.48) 
0.585 

γ 

MCG Ensemble II SC Clayton, tau=0.3 SC Clayton, tau=0.5 SC Clayton, tau=0.7 SC Ensemble II 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

3 
22.40 

(-23.54, 68.34) 
0.339 

18.59 

(-23.99, 61.16) 
0.392 

21.93 

(-23.48, 67.35) 
0.344 

27.05 

(-24.51, 78.62) 
0.304 

22.52  

(-22.74, 67.79) 
0.329 

5 
49.23 

(-46.77, 145.24) 
0.315 

42.93 

(-39.55, 125.40) 
0.308 

50.02 

(-43.52, 143.57) 
0.295 

55.87  

(-55.47, 167.22) 
0.325 

49.61  

(-45.01, 144.22) 
0.304 

7 
53.94 

(-100.69, 208.56) 
0.494 

44.29 

(-91.10, 179.69) 
0.521 

48.16 

(-111.96, 208.29) 
0.556 

51.14  

(-125.65, 227.93) 
0.571 

47.86  

(-110.73, 206.46) 
0.554 
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Figure 10. Estimator of survival function using prevailing method and proposed estimator. 

Product-limit estimator (A), MCG Clayton, tau=0.5 (B), MCG Gumbel, tau=0.5 (C), MCG 

Frank, tau=0.5 (D), MCG Clayton, Ensemble II (E) and Self-consistency Clayton, 

Ensemble II (F) for patients by race (solid line for black; dashed line for white)
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Table 11. The difference of RMST by race with 95% confidence intervals (CIs) and p-values at various values of γ 

(years) 

γ 

Independent MCG Clayton, tau=0.3 MCG Clayton, tau=0.5 MCG Clayton, tau=0.7 MCG Gumbel, tau=0.3 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

3 
-0.06  

(-50.42, 50.30) 
0.998 

0.54  

(-53.17, 54.26) 
0.984 

2.15  

(-56.78, 61.07) 
0.943 

6.23  

(-63.08, 75.54) 
0.860 

-2.34  

(-55.66, 50.98) 
0.932 

5 
21.57  

(-77.95, 121.08) 
0.671 

40.20  

(-77.25, 157.65) 
0.502 

70.15  

(-68.99, 209.29) 
0.323 

106.37  

(-46.33, 259.07) 
0.172 

32.69  

(-76.86, 142.24) 
0.559 

7 
44.40  

(-112.15, 200.96) 
0.578 

86.63  

(-105.00, 278.26) 
0.376 

131.25  

(-93.24, 355.73) 
0.252 

141.23  

(-84.16, 366.61) 
0.219 

66.95  

(-104.93, 238.83) 
0.445 

γ 

MCG Gumbel, tau=0.5 MCG Gumbel, tau=0.7 MCG Frank, tau=0.3 MCG Frank, tau=0.5 MCG Frank, tau=0.7 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

3 
-1.66  

(-58.33, 55.00) 
0.954 

1.51  

(-59.53, 62.54) 
0.961 

0.32  

(-55.55, 56.20) 
0.991 

1.66  

(-60.89, 64.21) 
0.959 

4.04 

(-66.59, 74.67) 
0.911 

5 
49.30  

(-66.96, 165.55) 
0.406 

71.12  

(-49.05, 191.28) 
0.246 

43.49  

(-75.81, 162.80) 
0.475 

68.07  

(-64.06, 200.20) 
0.313 

86.04  

(-47.83, 219.90) 
0.208 

7 
92.44  

(-86.96, 271.84) 
0.313 

113.65  

(-64.34, 291.65) 
0.211 

84.54  

(-103.76, 272.84) 
0.379 

115.71  

(-84.69, 316.10) 
0.258 

122.09  

(-66.97, 311.14) 
0.206 

γ 

MCG Ensemble II SC Clayton, tau=0.3 SC Clayton, tau=0.5 SC Clayton, tau=0.7 SC Ensemble II 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

3 
2.97  

(-57.01, 62.96) 
0.923 

0.42  

(-52.40, 53.24) 
0.988 

1.56  

(-56.53, 59.65) 
0.958 

3.84  

(-63.14, 70.81) 
0.911 

1.94  

(-55.74, 59.61) 
0.948 

5 
72.24  

(-61.93, 206.41) 
0.291 

39.35  

(-76.07, 154.78) 
0.504 

66.79  

(-69.17, 202.76) 
0.336 

101.06  

(-52.24, 254.35) 
0.196 

69.07  

(-62.06, 200.19) 
0.302 

7 
119.70  

(-90.37, 329.77) 
0.264 

83.75  

(-102.27, 269.78) 
0.378 

122.41  

(-95.68, 340.50) 
0.271 

130.33  

(-101.34, 362.00) 
0.270 

112.17  

(-103.15, 327.48) 
0.307 
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7.2 Data on Tongue Cancer Patients 

The data come from a study examining the effects of ploidy on the prognosis of 

patients with oral cancers (Sickle-Santanello et al., 1988; Klein & Moeschberger, 1997). 

Patients were chosen based on the availability of paraffin-embedded cancerous tissue 

samples collected during surgery. Follow-up survival data was obtained on each patient. 

The tissue samples were analyzed with a flow cytometer to identify if the tumor had an 

aneuploid (abnormal) or diploid (normal) DNA profile, as outlined by Sickle-Santanello et 

al. (1988). 

Our goal is to calculate the difference in RMST. Among the 80 patients, 52 (65.0%) 

had an aneuploid tumor, and 28 (35.0%) had a diploid tumor. Out of the 80 patients, 53 

(66.3%) experienced deaths and 27 (33.7%) were censored by the end of the study. 

Specifically, 31 patients with aneuploid tumors (59.6%) and 22 patients with diploid 

tumors (78.6%) died before the study concluded. The maximum follow-up time was 7.67 

years, with a median follow-up time of 1.4 years. 

Figure 11 shows the survival function estimated by the product-limit estimator and 

the proposed estimator among tongue cancer patients with aneuploid and diploid tumors. 

We applied the proposed method to directly calculate the difference in RMST and examine 

the impact of tumor ploidy on RMST among patients with tongue cancer. 

The difference of RMST at 𝜏 = 50, 100 and 150 weeks were analyzed. Table 12 

summarizes the results. Overall, the covariate effects show similar trends across all models. 
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In the models with MCG Gumbel (tau=0.7) and MCG Frank (tau=0.7), patients with 

aneuploid tumors are significantly associated with longer average survival times at all 

values of γ=50. Patients with aneuploid tumors survived longer up to the specified time 

point γ compared to those with diploid tumors. Specifically, aneuploid tumors are 

associated with an increase in survival time by 8.14 weeks (95% CI: 0.12-16.16) on average 

during the next 50 weeks post-diagnosis, using the MCG Gumbel (tau=0.7) model, and by 

8.16 weeks (95% CI: 0.08-16.24), using the MCG Frank (tau=0.7) model. Other models 

showed similar but non-significant values and trends. 
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Figure 11. Estimator of survival function using prevailing method and proposed estimator. 

Product-limit estimator (A), MCG Clayton, tau=0.7 (B), MCG Gumbel, tau=0.7 (C), MCG 

Frank, tau=0.7 (D), MCG Clayton, Ensemble II (E) and Self-consistency Clayton, 

Ensemble II (F) for patients by tumor type (solid line for aneuploid; dashed line for diploid)
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Table 12. The difference of RMST by tumor type with 95% confidence intervals (CIs) and p-values at various values of γ 

(weeks) 

γ 

Independent MCG Clayton, tau=0.3 MCG Clayton, tau=0.5 MCG Clayton, tau=0.7 MCG Gumbel, tau=0.3 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

50 
7.36 

(-1.05, 15.76) 
0.086 

7.58 

(-0.51, 15.67) 
0.066 

7.79 

(-0.32, 15.90) 
0.060 

8.06 

(-0.06, 16.18) 
0.052 

7.62 

(-0.39, 15.63) 
0.062 

100 
16.02 

(-2.16, 34.19) 
0.084 

16.47 

(-1.16, 34.10) 
0.067 

16.73 

(-0.85, 34.31) 
0.062 

16.84 

(-0.59, 34.27) 
0.058 

16.53 

(-0.88, 33.95) 
0.063 

150 
24.25 

(-1.93, 50.42) 
0.069 

23.63 

(-1.52, 48.79) 
0.066 

22.35 

(-2.21, 46.92) 
0.075 

20.86 

(-2.76, 44.48) 
0.083 

24.17 

(-0.66, 49.00) 
0.056 

γ 

MCG Gumbel, tau=0.5 MCG Gumbel, tau=0.7 MCG Frank, tau=0.3 MCG Frank, tau=0.5 MCG Frank, tau=0.7 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

50 
7.86 

(-0.14, 15.86) 
0.054 

8.14 

(0.12, 16.16) 
0.047 

7.66 

(-0.40, 15.72) 
0.063 

7.90 

(-0.16, 15.97) 
0.055 

8.16 

(0.08, 16.24) 
0.048 

100 
16.87 

(-0.43, 34.18) 
0.056 

17.04 

(-0.16, 34.25) 
0.052 

16.59 

(-0.87, 34.06) 
0.063 

16.88 

(-0.46, 34.23) 
0.056 

16.95 

(-0.26, 34.15) 
0.054 

150 
23.64 

(-0.61, 47.90) 
0.056 

22.31 

(-1.22, 45.85) 
0.063 

23.85 

(-0.79, 48.49) 
0.058 

23.03 

(-0.89, 46.94) 
0.059 

21.56 

(-1.54, 44.66) 
0.067 

γ 

MCG Ensemble II SC Clayton, tau=0.3 SC Clayton, tau=0.5 SC Clayton, tau=0.7 SC Ensemble II 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

RMST 

(95% CI) 
p-value 

50 
7.81 

(-0.29, 15.91) 
0.059 

7.57 

(-0.52, 15.67) 
0.067 

7.78 

(-0.34, 15.90) 
0.060 

8.05 

(-0.09, 16.18) 
0.052 

7.80 

(-0.63, 16.23) 
0.070 

100 
16.68 

(-0.85, 34.20) 
0.062 

16.46 

(-1.17, 34.09) 
0.067 

16.73 

(-0.88, 34.33) 
0.063 

16.85 

(-0.64, 34.34) 
0.059 

16.68 

(-1.60, 34.95) 
0.074 

150 
22.28 

(-2.11, 46.67) 
0.073 

23.68 

(-1.68, 49.04) 
0.067 

22.51 

(-2.33, 47.35) 
0.076 

21.07 

(-2.84, 44.98) 
0.084 

22.42 

(-2.87, 47.71) 
0.082 
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Chapter 8  

Conclusion and Discussion 

The paper aims to develop a method for accurately estimating the difference in 

Restricted Mean Survival Time (RMST) between two groups when there is a dependency. 

The challenge lies in identifying the association parameter in data with dependent censoring. 

To address this, the authors propose providing an appropriate association range. They 

found that using modified Copula-Graphic (MCG) or Self-consistency (SC) models 

reduces bias in the survival curve compared to the Kaplan-Meier model, which assumes 

independence. The study emphasizes the importance of fitting the association parameters 

well over the copula type and proposes a weighted sum form with association parameters. 

Simulations confirmed that the method satisfies the type I error rate and performs similarly 

to the true model. The results indicate that the association parameter significantly impacts 

the model, even when the copula type is misspecified. The paper suggests expanding future 

models to include both the association parameter and copula type and highlights the need 

for theoretical development due to the self-consistency conversion rate problem. 

The study successfully demonstrates that addressing dependent censoring in survival 

analysis by focusing on the accurate estimation of association parameters enhances model 

performance. The proposed method, which uses a weighted sum form with association 

parameters, outperforms traditional methods that assume independence, such as the 
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Kaplan-Meier model. The simulation results validate the robustness and reliability of the 

proposed method, even with copula type misspecification, underscoring the critical 

importance of the association parameter. 

This research has significant implications for survival analysis, particularly in fields 

like medical research where dependent censoring is prevalent. By reducing bias in survival 

curve estimation, the proposed method can lead to more accurate and reliable assessments 

of treatment effects and patient outcomes. Future research should explore integrating both 

association parameters and copula types to further enhance model accuracy. Additionally, 

practical applications using real-world datasets will be essential for further validation and 

refinement of the method. Addressing the balance between model complexity and 

computational efficiency will remain a key consideration, and ongoing advancements in 

statistical methodologies will likely continue to improve the applicability and precision of 

these models. The identified need for theoretical development to address the self-

consistency conversion rate problem also presents an important area for future investigation. 
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Appendix 

Table A1. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the 

Clayton copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 30%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.072 0.071 0.074 0.069 0.065 0.068 0.071 0.066 0.068 

0.5 0.072 0.067 0.064 0.070 0.065 0.067 0.072 0.063 0.067 

0.7 0.072 0.065 0.065 0.066 0.066 0.066 0.069 0.063 0.063 

50 

0.3 0.073 0.070 0.072 0.071 0.066 0.073 0.071 0.070 0.074 

0.5 0.075 0.068 0.068 0.073 0.069 0.070 0.074 0.068 0.072 

0.7 0.075 0.072 0.069 0.074 0.073 0.069 0.077 0.073 0.067 

100 

0.3 0.062 0.062 0.060 0.059 0.056 0.058 0.062 0.057 0.055 

0.5 0.064 0.059 0.064 0.058 0.055 0.059 0.062 0.056 0.060 

0.7 0.063 0.057 0.058 0.060 0.054 0.055 0.061 0.053 0.053 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A1. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution 

under the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 30%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.070 0.072 0.071 0.130 0.130 0.100 

0.5 0.077 0.067 0.067 0.100 0.090 0.090 

0.7 0.071 0.062 0.065 0.070 0.080 0.080 

50 

0.3 0.069 0.071 0.070 0.110 0.110 0.100 

0.5 0.073 0.069 0.069 0.100 0.110 0.110 

0.7 0.072 0.072 0.072 0.090 0.090 0.090 

100 

0.3 0.064 0.062 0.060 0.090 0.090 0.090 

0.5 0.063 0.059 0.059 0.100 0.100 0.100 

0.7 0.060 0.056 0.058 0.100 0.100 0.100 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A2. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the 

Clayton copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 70%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.069 0.073 0.059 0.057 0.054 0.050 0.062 0.062 0.051 

0.5 0.079 0.078 0.069 0.070 0.060 0.052 0.074 0.069 0.056 

0.7 0.066 0.066 0.068 0.060 0.054 0.052 0.069 0.057 0.056 

50 

0.3 0.057 0.062 0.067 0.052 0.054 0.052 0.056 0.055 0.054 

0.5 0.062 0.062 0.067 0.057 0.056 0.058 0.060 0.055 0.056 

0.7 0.060 0.065 0.061 0.051 0.057 0.054 0.057 0.060 0.054 

100 

0.3 0.050 0.053 0.049 0.045 0.046 0.047 0.050 0.049 0.046 

0.5 0.057 0.061 0.051 0.053 0.058 0.051 0.060 0.061 0.049 

0.7 0.044 0.051 0.049 0.040 0.047 0.049 0.045 0.047 0.050 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A2. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution 

under the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 70%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.068 0.071 0.067 0.070 0.070 0.070 

0.5 0.075 0.080 0.077 0.090 0.090 0.090 

0.7 0.062 0.066 0.063 0.060 0.070 0.070 

50 

0.3 0.060 0.060 0.060 0.080 0.080 0.080 

0.5 0.052 0.061 0.061 0.090 0.080 0.080 

0.7 0.052 0.064 0.064 0.070 0.080 0.080 

100 

0.3 0.053 0.053 0.051 0.050 0.040 0.050 

0.5 0.054 0.062 0.061 0.080 0.070 0.080 

0.7 0.044 0.050 0.046 0.090 0.090 0.080 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A3. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the 

Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 30%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.049 0.051 0.055 0.049 0.051 0.051 0.047 0.049 0.051 

0.5 0.051 0.054 0.057 0.052 0.049 0.054 0.051 0.049 0.054 

0.7 0.056 0.055 0.061 0.052 0.053 0.056 0.053 0.054 0.062 

50 

0.3 0.055 0.057 0.054 0.063 0.058 0.054 0.058 0.057 0.055 

0.5 0.058 0.052 0.053 0.059 0.052 0.053 0.058 0.050 0.054 

0.7 0.061 0.055 0.057 0.059 0.058 0.054 0.060 0.059 0.054 

100 

0.3 0.059 0.064 0.061 0.056 0.060 0.059 0.056 0.061 0.061 

0.5 0.062 0.064 0.062 0.061 0.063 0.061 0.062 0.060 0.063 

0.7 0.055 0.060 0.064 0.058 0.058 0.063 0.061 0.060 0.067 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A3. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution 

under the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 30%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.054 0.051 0.051 0.070 0.060 0.070 

0.5 0.055 0.054 0.053 0.060 0.060 0.070 

0.7 0.053 0.061 0.054 0.050 0.040 0.050 

50 

0.3 0.058 0.056 0.057 0.060 0.080 0.070 

0.5 0.062 0.052 0.052 0.050 0.050 0.050 

0.7 0.063 0.053 0.057 0.050 0.050 0.050 

100 

0.3 0.057 0.060 0.063 0.080 0.080 0.090 

0.5 0.065 0.064 0.064 0.060 0.070 0.070 

0.7 0.050 0.062 0.059 0.050 0.050 0.040 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A4. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the 

Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 70%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.057 0.063 0.058 0.058 0.049 0.050 0.061 0.055 0.052 

0.5 0.064 0.062 0.054 0.053 0.052 0.048 0.060 0.054 0.049 

0.7 0.063 0.062 0.054 0.054 0.055 0.047 0.062 0.059 0.050 

50 

0.3 0.072 0.067 0.061 0.069 0.061 0.052 0.069 0.061 0.051 

0.5 0.069 0.060 0.048 0.066 0.061 0.047 0.070 0.060 0.048 

0.7 0.065 0.061 0.054 0.065 0.054 0.052 0.065 0.055 0.047 

100 

0.3 0.063 0.061 0.057 0.060 0.060 0.066 0.063 0.057 0.060 

0.5 0.059 0.062 0.055 0.059 0.063 0.059 0.059 0.060 0.054 

0.7 0.065 0.067 0.060 0.064 0.062 0.054 0.067 0.062 0.050 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A4. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution 

under the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 70%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.051 0.064 0.061 0.070 0.070 0.070 

0.5 0.054 0.060 0.060 0.090 0.080 0.080 

0.7 0.064 0.060 0.059 0.060 0.050 0.060 

50 

0.3 0.072 0.068 0.064 0.070 0.050 0.050 

0.5 0.070 0.061 0.061 0.080 0.070 0.060 

0.7 0.070 0.059 0.059 0.060 0.070 0.070 

100 

0.3 0.061 0.060 0.061 0.060 0.050 0.040 

0.5 0.056 0.059 0.057 0.050 0.050 0.050 

0.7 0.061 0.063 0.066 0.080 0.090 0.090 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A5. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the 

Frank copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 30%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.084 0.078 0.077 0.085 0.074 0.075 0.083 0.074 0.075 

0.5 0.073 0.070 0.066 0.071 0.064 0.066 0.071 0.064 0.066 

0.7 0.063 0.066 0.065 0.063 0.061 0.061 0.064 0.060 0.061 

50 

0.3 0.059 0.064 0.060 0.056 0.060 0.062 0.060 0.065 0.063 

0.5 0.066 0.062 0.062 0.058 0.057 0.057 0.059 0.058 0.058 

0.7 0.056 0.061 0.060 0.056 0.056 0.061 0.057 0.061 0.062 

100 

0.3 0.049 0.053 0.057 0.047 0.056 0.055 0.047 0.052 0.052 

0.5 0.052 0.057 0.057 0.054 0.057 0.055 0.053 0.056 0.054 

0.7 0.053 0.047 0.053 0.049 0.052 0.052 0.054 0.048 0.052 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A5. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution 

under the Frank copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 30%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.079 0.082 0.078 0.090 0.100 0.090 

0.5 0.072 0.071 0.071 0.100 0.100 0.100 

0.7 0.074 0.066 0.065 0.100 0.100 0.100 

50 

0.3 0.062 0.065 0.063 0.070 0.060 0.060 

0.5 0.067 0.063 0.063 0.050 0.060 0.060 

0.7 0.065 0.060 0.062 0.080 0.080 0.070 

100 

0.3 0.050 0.051 0.053 0.080 0.090 0.100 

0.5 0.054 0.057 0.057 0.090 0.090 0.100 

0.7 0.055 0.050 0.050 0.060 0.080 0.080 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A6. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the 

Frank copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 70%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.080 0.088 0.079 0.073 0.065 0.066 0.079 0.072 0.066 

0.5 0.079 0.088 0.078 0.066 0.072 0.064 0.074 0.080 0.067 

0.7 0.076 0.080 0.085 0.069 0.066 0.068 0.077 0.071 0.074 

50 

0.3 0.051 0.060 0.061 0.047 0.051 0.054 0.051 0.055 0.053 

0.5 0.060 0.066 0.067 0.050 0.063 0.060 0.057 0.060 0.061 

0.7 0.048 0.059 0.057 0.040 0.049 0.047 0.049 0.055 0.047 

100 

0.3 0.050 0.054 0.050 0.050 0.048 0.052 0.052 0.048 0.050 

0.5 0.050 0.058 0.057 0.047 0.051 0.054 0.048 0.055 0.051 

0.7 0.050 0.056 0.050 0.047 0.052 0.050 0.050 0.050 0.051 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A6. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution 

under the Frank copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 70%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.058 0.084 0.082 0.120 0.110 0.150 

0.5 0.065 0.084 0.084 0.100 0.120 0.110 

0.7 0.070 0.083 0.078 0.090 0.080 0.090 

50 

0.3 0.055 0.054 0.058 0.050 0.060 0.060 

0.5 0.051 0.065 0.063 0.090 0.090 0.090 

0.7 0.045 0.060 0.060 0.070 0.080 0.070 

100 

0.3 0.054 0.050 0.051 0.060 0.050 0.060 

0.5 0.045 0.057 0.057 0.070 0.080 0.080 

0.7 0.052 0.053 0.053 0.060 0.060 0.050 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A7. The results of type I error for independent censoring survival data generated with weibull distribution according to the sample 

size (n) and censoring rate. 

n 
Censoring 

rate 
Independent 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Clayton 

Ensemble I 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

30 

0.3 0.063 0.061 0.065 0.064 0.061 0.100 0.100 

0.5 0.073 0.077 0.074 0.070 0.077 0.100 0.110 

0.7 0.078 0.075 0.075 0.078 0.075 0.060 0.060 

50 

0.3 0.063 0.063 0.060 0.064 0.061 0.060 0.060 

0.5 0.066 0.066 0.061 0.058 0.063 0.070 0.060 

0.7 0.063 0.063 0.063 0.062 0.068 0.100 0.100 

100 

0.3 0.053 0.049 0.044 0.042 0.046 0.050 0.050 

0.5 0.052 0.052 0.046 0.039 0.049 0.060 0.050 

0.7 0.044 0.039 0.048 0.042 0.043 0.060 0.060 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A7. The results of type I error for independent censoring survival data generated with weibull distribution according 

to the sample size (n) and censoring rate. 

n 
Censoring 

rate 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.063 0.061 0.062 0.060 0.062 0.066 

0.5 0.075 0.068 0.069 0.076 0.073 0.072 

0.7 0.066 0.061 0.060 0.072 0.071 0.067 

50 

0.3 0.061 0.059 0.058 0.060 0.057 0.059 

0.5 0.060 0.053 0.057 0.063 0.057 0.055 

0.7 0.054 0.057 0.056 0.062 0.059 0.058 

100 

0.3 0.048 0.044 0.041 0.049 0.047 0.040 

0.5 0.044 0.047 0.042 0.049 0.047 0.038 

0.7 0.038 0.038 0.039 0.041 0.041 0.042 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A8. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the Clayton 

copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 30%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.077 0.073 0.071 0.078 0.071 0.070 0.076 0.070 0.071 

0.5 0.074 0.073 0.070 0.073 0.075 0.072 0.072 0.073 0.073 

0.7 0.075 0.072 0.067 0.071 0.070 0.068 0.067 0.067 0.068 

50 

0.3 0.079 0.080 0.077 0.080 0.077 0.076 0.082 0.072 0.072 

0.5 0.075 0.075 0.072 0.071 0.077 0.074 0.077 0.077 0.074 

0.7 0.080 0.079 0.076 0.078 0.076 0.076 0.075 0.078 0.072 

100 

0.3 0.058 0.057 0.056 0.057 0.057 0.056 0.060 0.059 0.058 

0.5 0.056 0.057 0.057 0.056 0.055 0.056 0.061 0.058 0.059 

0.7 0.059 0.059 0.055 0.062 0.056 0.054 0.061 0.060 0.054 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A8. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution 

under the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 30%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.076 0.076 0.073 0.073 0.075 0.072 

0.5 0.077 0.072 0.072 0.073 0.071 0.073 

0.7 0.075 0.067 0.072 0.066 0.071 0.069 

50 

0.3 0.078 0.080 0.082 0.110 0.110 0.110 

0.5 0.073 0.075 0.077 0.100 0.100 0.100 

0.7 0.074 0.076 0.080 0.100 0.090 0.080 

100 

0.3 0.058 0.057 0.057 0.090 0.090 0.080 

0.5 0.057 0.057 0.057 0.090 0.090 0.090 

0.7 0.057 0.059 0.059 0.090 0.090 0.090 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A9. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the Clayton 

copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.060 0.066 0.066 0.063 0.060 0.063 0.062 0.059 0.062 

0.5 0.074 0.078 0.076 0.073 0.071 0.068 0.067 0.071 0.069 

0.7 0.069 0.066 0.066 0.064 0.062 0.064 0.067 0.062 0.062 

50 

0.3 0.068 0.065 0.064 0.064 0.064 0.065 0.066 0.061 0.064 

0.5 0.066 0.063 0.071 0.065 0.066 0.075 0.064 0.064 0.071 

0.7 0.074 0.069 0.065 0.070 0.064 0.068 0.065 0.062 0.065 

100 

0.3 0.058 0.059 0.058 0.054 0.057 0.054 0.058 0.056 0.057 

0.5 0.056 0.057 0.057 0.057 0.059 0.057 0.059 0.056 0.056 

0.7 0.063 0.058 0.060 0.061 0.058 0.058 0.061 0.058 0.056 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A9. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution 

under the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.061 0.069 0.067 0.059 0.064 0.064 

0.5 0.069 0.077 0.077 0.077 0.074 0.077 

0.7 0.073 0.065 0.066 0.063 0.063 0.065 

50 

0.3 0.068 0.066 0.064 0.050 0.060 0.070 

0.5 0.062 0.063 0.063 0.100 0.100 0.100 

0.7 0.061 0.068 0.067 0.120 0.120 0.130 

100 

0.3 0.059 0.056 0.058 0.070 0.060 0.070 

0.5 0.062 0.057 0.057 0.070 0.060 0.070 

0.7 0.064 0.061 0.057 0.080 0.070 0.070 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A10. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the 

Clayton copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 70%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.074 0.068 0.063 0.072 0.064 0.058 0.065 0.063 0.058 

0.5 0.072 0.074 0.066 0.072 0.066 0.057 0.064 0.055 0.057 

0.7 0.068 0.070 0.077 0.066 0.063 0.065 0.067 0.064 0.065 

50 

0.3 0.058 0.060 0.066 0.059 0.063 0.065 0.059 0.064 0.061 

0.5 0.056 0.059 0.062 0.053 0.058 0.057 0.055 0.055 0.057 

0.7 0.054 0.063 0.057 0.054 0.059 0.059 0.054 0.060 0.059 

100 

0.3 0.054 0.053 0.048 0.058 0.054 0.045 0.055 0.051 0.047 

0.5 0.064 0.058 0.049 0.062 0.056 0.051 0.059 0.058 0.053 

0.7 0.049 0.050 0.053 0.049 0.052 0.052 0.048 0.054 0.050 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A10. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution 

under the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 70%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.070 0.071 0.068 0.074 0.067 0.070 

0.5 0.070 0.073 0.072 0.072 0.071 0.070 

0.7 0.064 0.073 0.069 0.065 0.065 0.066 

50 

0.3 0.062 0.061 0.063 0.060 0.063 0.062 

0.5 0.056 0.059 0.058 0.080 0.080 0.080 

0.7 0.055 0.062 0.063 0.070 0.090 0.100 

100 

0.3 0.057 0.056 0.054 0.040 0.060 0.060 

0.5 0.061 0.058 0.058 0.070 0.060 0.070 

0.7 0.050 0.054 0.052 0.080 0.090 0.100 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A11. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the 

Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 30%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.054 0.050 0.053 0.057 0.052 0.055 0.055 0.052 0.054 

0.5 0.059 0.059 0.059 0.057 0.052 0.054 0.057 0.056 0.053 

0.7 0.051 0.055 0.059 0.049 0.053 0.056 0.050 0.056 0.057 

50 

0.3 0.059 0.062 0.061 0.059 0.063 0.063 0.060 0.064 0.062 

0.5 0.060 0.064 0.068 0.062 0.065 0.061 0.057 0.067 0.067 

0.7 0.055 0.061 0.065 0.053 0.061 0.064 0.055 0.063 0.066 

100 

0.3 0.067 0.068 0.067 0.064 0.066 0.068 0.070 0.066 0.070 

0.5 0.068 0.066 0.065 0.068 0.070 0.063 0.067 0.069 0.064 

0.7 0.055 0.065 0.070 0.063 0.065 0.064 0.061 0.067 0.065 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A11. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution 

under the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 30%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.048 0.056 0.050 0.080 0.080 0.090 

0.5 0.062 0.059 0.059 0.060 0.055 0.055 

0.7 0.058 0.061 0.055 0.070 0.050 0.050 

50 

0.3 0.058 0.062 0.062 0.060 0.060 0.060 

0.5 0.062 0.065 0.065 0.100 0.090 0.090 

0.7 0.060 0.066 0.060 0.060 0.060 0.070 

100 

0.3 0.059 0.067 0.069 0.080 0.090 0.090 

0.5 0.067 0.067 0.067 0.070 0.060 0.070 

0.7 0.052 0.070 0.065 0.070 0.070 0.070 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A12. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the 

Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.047 0.051 0.059 0.042 0.047 0.052 0.045 0.053 0.052 

0.5 0.055 0.057 0.052 0.052 0.053 0.050 0.053 0.055 0.050 

0.7 0.057 0.056 0.051 0.050 0.055 0.049 0.051 0.055 0.053 

50 

0.3 0.073 0.068 0.064 0.071 0.068 0.066 0.074 0.065 0.065 

0.5 0.073 0.077 0.070 0.074 0.075 0.065 0.076 0.078 0.070 

0.7 0.073 0.067 0.066 0.067 0.064 0.067 0.066 0.067 0.064 

100 

0.3 0.062 0.064 0.058 0.058 0.059 0.067 0.063 0.061 0.058 

0.5 0.062 0.055 0.058 0.058 0.061 0.058 0.061 0.054 0.058 

0.7 0.055 0.056 0.058 0.056 0.056 0.061 0.057 0.056 0.058 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A12. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution 

under the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.052 0.047 0.053 0.050 0.050 0.050 

0.5 0.060 0.057 0.057 0.054 0.054 0.053 

0.7 0.061 0.057 0.055 0.050 0.050 0.040 

50 

0.3 0.074 0.070 0.068 0.080 0.080 0.070 

0.5 0.074 0.076 0.075 0.090 0.080 0.070 

0.7 0.066 0.068 0.068 0.050 0.070 0.070 

100 

0.3 0.063 0.063 0.061 0.080 0.060 0.060 

0.5 0.061 0.055 0.055 0.060 0.050 0.050 

0.7 0.055 0.058 0.055 0.040 0.050 0.050 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A13. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the 

Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 70%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.060 0.064 0.061 0.054 0.050 0.047 0.059 0.058 0.053 

0.5 0.050 0.051 0.056 0.043 0.043 0.038 0.048 0.049 0.044 

0.7 0.065 0.066 0.063 0.057 0.056 0.050 0.063 0.058 0.050 

50 

0.3 0.069 0.067 0.062 0.068 0.066 0.058 0.066 0.068 0.059 

0.5 0.064 0.065 0.055 0.067 0.067 0.056 0.067 0.063 0.052 

0.7 0.066 0.063 0.057 0.068 0.060 0.059 0.066 0.061 0.059 

100 

0.3 0.064 0.064 0.059 0.061 0.055 0.064 0.064 0.061 0.061 

0.5 0.064 0.059 0.052 0.060 0.061 0.052 0.067 0.059 0.056 

0.7 0.062 0.061 0.056 0.063 0.060 0.060 0.063 0.059 0.057 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A13. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution 

under the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 70%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.050 0.060 0.062 0.060 0.070 0.070 

0.5 0.045 0.049 0.049 0.053 0.047 0.049 

0.7 0.059 0.064 0.061 0.090 0.070 0.070 

50 

0.3 0.072 0.064 0.066 0.080 0.080 0.090 

0.5 0.063 0.063 0.064 0.080 0.050 0.060 

0.7 0.066 0.060 0.061 0.040 0.050 0.070 

100 

0.3 0.067 0.062 0.064 0.080 0.070 0.070 

0.5 0.058 0.059 0.059 0.060 0.060 0.050 

0.7 0.056 0.062 0.059 0.080 0.080 0.080 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A14. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the Frank 

copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 30%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.080 0.079 0.075 0.082 0.075 0.074 0.079 0.075 0.072 

0.5 0.079 0.076 0.075 0.076 0.071 0.076 0.072 0.073 0.075 

0.7 0.068 0.067 0.069 0.062 0.063 0.069 0.063 0.066 0.068 

50 

0.3 0.060 0.062 0.066 0.061 0.063 0.067 0.065 0.066 0.067 

0.5 0.071 0.072 0.069 0.064 0.065 0.066 0.068 0.069 0.069 

0.7 0.050 0.060 0.062 0.057 0.062 0.065 0.053 0.062 0.061 

100 

0.3 0.054 0.060 0.062 0.054 0.058 0.056 0.054 0.060 0.057 

0.5 0.060 0.058 0.057 0.059 0.058 0.059 0.059 0.059 0.061 

0.7 0.055 0.051 0.057 0.055 0.052 0.053 0.056 0.054 0.060 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A14. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution 

under the Frank copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 30%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.077 0.079 0.077 0.090 0.090 0.090 

0.5 0.073 0.077 0.077 0.090 0.080 0.070 

0.7 0.074 0.068 0.066 0.080 0.090 0.090 

50 

0.3 0.059 0.060 0.063 0.110 0.080 0.080 

0.5 0.063 0.071 0.071 0.090 0.100 0.100 

0.7 0.059 0.061 0.060 0.090 0.080 0.090 

100 

0.3 0.050 0.057 0.060 0.080 0.090 0.110 

0.5 0.058 0.059 0.059 0.090 0.090 0.090 

0.7 0.050 0.055 0.053 0.070 0.070 0.070 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A15. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the Frank 

copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.069 0.072 0.066 0.060 0.067 0.063 0.067 0.068 0.064 

0.5 0.068 0.067 0.064 0.060 0.063 0.058 0.065 0.065 0.061 

0.7 0.059 0.063 0.064 0.051 0.056 0.057 0.057 0.059 0.059 

50 

0.3 0.068 0.063 0.065 0.065 0.061 0.062 0.066 0.061 0.068 

0.5 0.056 0.061 0.053 0.058 0.060 0.061 0.059 0.061 0.054 

0.7 0.068 0.066 0.066 0.067 0.064 0.066 0.068 0.062 0.064 

100 

0.3 0.055 0.059 0.062 0.059 0.063 0.061 0.058 0.060 0.061 

0.5 0.054 0.056 0.058 0.052 0.055 0.059 0.053 0.053 0.062 

0.7 0.046 0.050 0.055 0.048 0.050 0.049 0.049 0.050 0.055 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A15. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution 

under the Frank copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 50%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.070 0.070 0.071 0.060 0.060 0.060 

0.5 0.058 0.067 0.067 0.060 0.060 0.060 

0.7 0.065 0.064 0.062 0.080 0.080 0.080 

50 

0.3 0.068 0.064 0.064 0.070 0.080 0.060 

0.5 0.060 0.061 0.061 0.100 0.090 0.100 

0.7 0.067 0.065 0.067 0.090 0.090 0.090 

100 

0.3 0.050 0.057 0.061 0.070 0.080 0.090 

0.5 0.053 0.056 0.056 0.100 0.090 0.090 

0.7 0.044 0.055 0.051 0.090 0.100 0.080 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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Table A16. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the Frank 

copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 70%. 

n Tau 

MCG 

Clayton 

(τ = 0.3) 

MCG 

Clayton 

(τ = 0.5) 

MCG 

Clayton 

(τ = 0.7) 

MCG 

Gumbel 

(τ = 0.3) 

MCG 

Gumbel 

(τ = 0.5) 

MCG 

Gumbel 

(τ = 0.7) 

MCG 

Frank 

(τ = 0.3) 

MCG 

Frank 

(τ = 0.5) 

MCG 

Frank 

(τ = 0.7) 

30 

0.3 0.068 0.075 0.069 0.061 0.054 0.062 0.068 0.065 0.062 

0.5 0.072 0.080 0.068 0.061 0.069 0.063 0.066 0.073 0.064 

0.7 0.076 0.080 0.076 0.069 0.063 0.060 0.076 0.067 0.066 

50 

0.3 0.057 0.057 0.054 0.051 0.056 0.058 0.055 0.057 0.050 

0.5 0.055 0.066 0.064 0.055 0.063 0.063 0.059 0.061 0.059 

0.7 0.059 0.058 0.054 0.048 0.051 0.055 0.054 0.056 0.054 

100 

0.3 0.053 0.054 0.057 0.045 0.057 0.057 0.050 0.056 0.057 

0.5 0.054 0.056 0.056 0.043 0.049 0.056 0.050 0.051 0.050 

0.7 0.045 0.050 0.053 0.045 0.047 0.053 0.048 0.047 0.053 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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(continuous) Table A16. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution 

under the Frank copula according to the sample size (n) and association parameter Kendall’s tau (𝜏) when censoring rate is 70%. 

n Tau Independent 

MCG 

Clayton 

Ensemble I 

MCG 

Clayton 

Ensemble II 

SC 

Clayton 

(𝜏=True) 

SC 

Clayton 

Ensemble I 

SC 

Clayton 

Ensemble II 

30 

0.3 0.055 0.074 0.072 0.100 0.120 0.110 

0.5 0.066 0.076 0.074 0.110 0.110 0.110 

0.7 0.073 0.077 0.073 0.070 0.080 0.090 

50 

0.3 0.052 0.059 0.057 0.070 0.070 0.050 

0.5 0.052 0.066 0.067 0.090 0.100 0.070 

0.7 0.049 0.056 0.059 0.060 0.070 0.060 

100 

0.3 0.053 0.052 0.051 0.060 0.050 0.050 

0.5 0.046 0.055 0.054 0.070 0.070 0.070 

0.7 0.046 0.052 0.051 0.070 0.070 0.070 

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; τ: association parameter Kendall’s tau; 
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국문요약 

 

의존적 중도절단이 존재하는 경우  

두 그룹의 제한된 평균 생존 시간 비교를 위한 통계적 방법 

 

생존 분석은 임상 시험에서 흔히 사용되는 방법으로, 대부분의 생존 분석 방법은 비례 위험 

가정을 전제로 한다. 그러나 이 가정이 위배될 경우, 제한된 평균 생존 시간 방법이 대안이 될 수 

있다. 제한된 평균 생존 시간은 특정 시점까지의 평균 생존 시간을 측정하는 직관적이고 해석하

기 쉬운 중요한 지표이다. 독립적 중도절단 가정이 위배되면 전통적인 생존 분석 방법은 편향될 

수 있으며, 일반적으로 사건과 중도절단 시간은 양의 상관관계를 보인다. 따라서 의존적 중도절

단 하에서 생존 시간과 중도절단 시간의 결합 분포를 고려할 필요가 있다. 

코퓰라 함수는 생존 시간과 중도절단 시간 간의 의존성을 모델링하는 유연하고 유망한 도구

이다. 의존적 중도절단 하에서의 생존 분석을 위해 우리는 코퓰라-그래픽 추정량을 사용하였다. 

본 연구에서는 의존적 중도절단 가정 하에서 코퓰라-그래픽 및 자기 일관성 추정량을 확장한 새

로운 추정량을 제안하였다. 본 연구의 목적은 의존적 중도절단을 포함한 생존 데이터를 사용하여 
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제한된 평균 생존 시간을 추정하기 위해 코퓰라 방법을 적용하는 것이다. 우리는 다양한 시나리

오를 가정한 시뮬레이션 연구를 통해 제안된 추정량의 편향, 제1종 오류 및 검정력을 평가하였다. 

시뮬레이션 결과, 전체적인 시뮬레이션 설정 하에서 제1종 오류가 잘 충족되었고, 검정력을 

확인한 결과 제안된 모델이 실제 모델과 유사한 성능을 보이는 것으로 확인되었다. 본 논문의 목

적은 의존성 중도절단 자료가 있을 때 두 그룹 간 제한된 평균 생존 시간 차이를 잘 추정하는 방

법을 찾는 것이다. 이전 연구에서는 제한된 평균 생존 시간의 맥락에서 코퓰라-그래픽 추정량과 

자기 일관성 추정량에 대한 연구가 거의 이루어지지 않았으며, 특히 이들의 통계적 특성에 중점

을 둔 연구는 부족했다. 따라서, 본 연구는 의존성 중도절단이 있는 데이터에서 제한된 평균 생존 

시간을 추정하는 방법에 기여할 것이며, 향후 관련 연구에도 기여할 것이다.  

                                                              

핵심되는 말: 생존 분석, 제한된 평균 생존 시간, 의존성 중도절단, 코퓰라 모델, 코퓰라-그래픽

추정량, 자기 일관성 추정량. 
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