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Abstract

Statistical Methods for
Comparing of Two Restricted Mean Survival Times

in the presence of Dependent Censoring

Survival analysis is a common method in clinical trials, often relying on the
assumption of proportional hazards. When this assumption is violated, an alternative
approach is the restricted mean survival time (RMST) method. RMST is a significant
metric in survival analysis, offering an intuitive and interpretable measure of average
survival time up to a specific point. Traditional survival analysis methods, assuming
independent censoring, can be biased when this assumption is violated. Typically, the
failure event and censoring time are positively correlated, necessitating the consideration

of their joint distribution under dependent censoring.

The copula function provides a flexible tool for modeling the dependence between
survival and censoring times. For analyzing survival under dependent censoring, the

copula-graphic estimator is utilized. This study proposes new estimators that expand on



copula-graphic and self-consistency estimators under the dependent censoring assumption.
The objective is to adapt the copula method for estimating RMST with survival data that
includes dependent censoring. We evaluate our proposed estimators through a series of
simulations, examining bias, type I error, and power in RMST estimation under various

scenarios of dependent censoring.

Simulation results confirmed that the type I error was generally well-controlled, and
the proposed model demonstrated performance comparable to the true model in terms of
power. The aim of this paper is to identify effective methods for estimating the difference
in RMST between two groups when dependency exists. Previous research has not
extensively explored copula-graphic estimators and self-consistency in the context of
RMST, particularly regarding their statistical properties. This study contributes to the
understanding of RMST estimation in data with dependent censoring and may further

contribute to future studies.

Keywords: survival analysis, restricted mean survival time, dependent censoring, copula

models, copula-graphic estimator, self-consistency estimator
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Chapter 1

Introduction

Survival analysis is one of the most common analyses in clinical trials. In general,
time-to-event analysis relies on the assumption of proportional hazards. However, quite
frequently, we may find that the proportional hazards assumption is violated, especially in
many immuno-oncology trials. When the proportional hazards assumption is violated, one
of the alternative approaches is the restricted mean survival time (RMST) method. The
RMST generally uses the Kaplan-Meier estimator to calculate and compare the area under

the curve (AUC) for different treatment groups or different comparative groups.

Generally, event time and censoring time tend to be positively correlated. However,
traditional methods of survival analysis critically rely on the independent censoring
assumption: survival time and censoring time need to be statistically independent. This
independence assumption is easily violated when patients drop out from the study due to
the worsening of their health condition or are removed for transplantation (Staplin et al.,
2015; Emura and Chen, 2018). In such cases, survival time is censored depending on their

health status.

Consider a study investigating the survival times of patients with a particular disease
who are treated with different medications. In this scenario, patients may drop out of the

study or be lost to follow-up at different times. However, the likelihood of being censored



may be influenced by factors such as the effectiveness of the treatment, the severity of the
disease, or the patient's compliance with the medication regimen. For example, suppose a
new, more effective medication is introduced midway through the study. Patients who are
not responding well to the initial treatment may be more likely to switch to the new
medication, leading to a higher probability of being censored at certain time points.
Conversely, patients experiencing positive outcomes with the initial treatment may be less
likely to drop out of the study, resulting in a lower probability of censoring. In this situation,
the censoring times of patients are dependent on factors related to their treatment and
disease progression. This dependent censoring complicates the analysis of survival data
and requires careful consideration to ensure accurate estimation of survival probabilities

and treatment effects.

However, the Kaplan-Meier estimator cannot consider dependent censoring, and there
is no proposed method to estimate RMST and test for differences in RMST between two
groups under dependent censoring. Therefore, it is necessary to consider how to test the
differences in RMST under dependent censoring. The copula function is a popular model
for modeling the dependency between survival and censoring times. For dependent
censoring, the copula-graphic estimator was proposed to estimate the survival curve.
Additionally, some methods based on self-consistency were proposed for dependent
censoring. Prior research by Jiang, Hongyu, et al. (2005) has estimated the copula-graphic

estimator as a self-consistency estimator in dependent censoring.

In this paper, we propose new estimators that expand upon the copula-graphic



estimator and the self-consistency estimator under the assumption of dependent censoring.
We evaluated our proposed estimators through a series of simulations. The purpose of this
study is to adapt the copula method to estimate the difference between two RMSTs using
survival data that includes dependent censoring. In Section 2, we briefly review the
estimators of the survival function. We review the definition and basic statistical properties
of RMST and summarize how to estimate it under the independent assumption in Section
3. In Section 4, we illustrate the issues of dependent censoring arising from medical
research and provide the mathematical foundations of the copula models for applications
to survival analysis under dependent censoring. In Section 5, we propose a set of estimators
under dependent censoring based on the copula model, expanding on the RMST estimators.
In Section 6, we evaluate the performance of the proposed estimators for censored survival
data via a simulation study. The proposed estimator is applied to a real dataset, and the
analysis results are reported in Section 7. The final section provides conclusions and

discussion.



Chapter 2

Estimators of the Survival function

2.1 Kaplan-Meier Estimator

The commonly used survival function estimator, proposed by Kaplan and Meier
(1958), is referred to as the Product-Limit estimator. The Kaplan-Meier estimator is a non-
parametric statistic used to estimate the survival function from lifetime data. In other words,
it provides a way to measure the proportion of subjects living for a certain amount of time
after treatment or under certain conditions. It estimates the probability that a subject will

survive beyond a certain time t. This estimator is defined as follows:

1 ift<t,

$(®) = 1_”1—%] if t, <t

tist

where t; are the distinct times when events occur, n; is the number of subjects at risk

just before time t; and d; is the number of events at time t;.

The Kaplan-Meier method can manage right-censored data, where subjects exit the
study before an event occurs or the study concludes before the event for some subjects. The
Kaplan-Meier estimator generates a step function that changes its value only at each

observed event time. Between these times, the function remains constant. The Product-



Limit estimator also uses a step function, jumping at each observed event time. The size of
these jumps is influenced not only by the number of events at each time point t;, but also
by the arrangement of censored observations leading up t;. This estimator is not defined

beyond the maximum observation time t.
The variance of the Kaplan-Meier estimator is estimated using Greenwood’s formula:

d;

I7[§(t)] = S‘(t)Z Z m

Ti<t

The standard error of the Kaplan-Meier estimator is written by ’I?[ﬁ(t)].



2.2 Self-consistency Estimator

A self-consistency estimator is an estimator that satisfies the property that if the
estimator were known, the data would look as it does. In other words, the estimated
distribution must be consistent with the observed data. If we had no censored observations,
the estimator of the survival function at a time t can be straightforwardly defined as the

proportion of observations which are larger than ¢ as follows:

) 1w
S@) = ;; o (Ty)
where ¢(T;) =1 if T; >t and ¢(T;) =0,if T; <t.

For right-censored data, a survival function estimator can be developed similarly by
redefining the scoring function ¢. Let Ty, Ty, ..., T, be the observed times in the study. If
T; represents the time of death, we can definitively determine whether T; is less than or
greater that t. If T; isa censored time that is greater than or equal to t, we know that the
true death time must be larger than t because it exceeds T; for this individual. For a
censored observation less than t, we cannot determine if the corresponding death time is
greater than t because it could occur between T; and t. If we knew S(t), we could
estimate the probability of this censored observation being larger than t by S(t)/S(T;).
Using these redefined scores, we will call an estimator S(t) a self-consistency estimator

of S if



S(t)
S|

sO=-1Y o+

Ti>t 6;=0,T;<t

Self-consistency estimators are often derived using an iterative algorithm. This
involves repeatedly updating the estimate based on the current estimate until convergence
is achieved. The iterative process ensures that the final estimate is self-consistent. The
Expectation-Maximization (EM) algorithm is a common framework used to find self-
consistency estimators. The EM algorithm iteratively applies the Expectation step (E-step)
and Maximization step (M-step) to refine the estimates. In the E-step, the expected value
of the log-likelihood is computed given the current parameter estimates. In the M-step, the
parameters are updated to maximize this expected log-likelihood. Self-consistency
estimators typically converge to a stable solution after a sufficient number of iterations.
The convergence is monitored by checking the change in estimates between successive
iterations until it falls below a predefined threshold. Many self-consistency estimators, like
the Turnbull estimator, are non-parametric, meaning they do not assume a specific
parametric form for the underlying survival distribution. This flexibility makes them
widely applicable. Self-consistency estimators provide a robust framework for dealing with
complex data structures, particularly interval-censored data. They rely on iterative methods
to ensure that the final estimates are consistent with the observed data, often utilizing
algorithms like EM to achieve convergence. This methodology extends the flexibility and

applicability of survival analysis beyond traditional right-censored data scenarios.



Chapter 3

Restricted Mean Survival Time

Restricted Mean Survival Time (RMST) is an important metric used in survival
analysis. It serves as an alternative approach when dealing with survival time data, aiming
to average survival times up to a specific time point. RMST is typically used in conjunction
with traditional survival analysis methods like the Kaplan-Meier survival curve. One of the
key advantages of RMST is its intuitiveness and interpretability. By directly measuring the
average survival time up to a specific time, it is easier to interpret compared to other
statistical methods. Additionally, RMST allows for comparing survival times while
maintaining a constant observation period, which is useful for comparing outcomes in
research or clinical trials. However, RMST comes with some limitations. The most
significant limitation is that it only considers survival times up to a specific time point,
potentially losing information from the entire survival curve. Additionally, RMST may be
unstable with small sample sizes and may have limited ability to capture nonlinear effects.
In summary, RMST is an important metric in survival analysis, offering intuitive and
interpretable insights, but it has some limitations. While it facilitates comparison and
interpretation of survival times up to a specific time point, it may lose information from the

entire survival curve and can be unstable with small sample sizes.



3.1 Definition and Properties of RMST

Let t be a nonnegative random variable representing the time until an event occurs
for a patient from a homogeneous population. Suppose y is a specific time point of interest.
Define X(y) be the minimum of t and y, i.e., X(y) = min(t,y). The Restricted Mean

Survival Time (RMST), or the mean survival time up to y years, is defined as the expected

value of X(y): u(y) = E[X(y)] = E[min(z, y)].

For instance, if the RMST up to 4 years (i.e., ¥ = 4 years) is 1 year, it indicates that
a patient, on average, would survive for 1 year when followed for 4 years. The RMST up

to y represents the area under the survival curve from 0 to y,

Y
u@y) = j S d,
0

where S(t) is the survival function. The variance of the restricted survival time X(y) is

14 Y 2
Var[X(y)] = zf tS(t) dt — {f S(t) dt}
0 0

As mentioned above, the mean value (i.e., RMST) and the variance of the restricted
survival time X(y) up to the specific time point y are determined by the survival
function. The estimation of RMST and its variance can essentially be derived from the

estimated survival function.



3.2 Estimation of RMST

As discussed by Royston and Parmar (2011), several methods to estimate the RMST
are available, including direct integration of Kaplan-Meier survival curves, a jackknife
method, pseudo-value regression method, inverse probability of censoring weighting
(IPCW) regression, conditional restricted mean survival time (CRMST), and a flexible
parametric regression modeling. As the nonparametric Kaplan-Meier method is commonly
used for estimating the survival curve, we outline the method of integrating the survival
curve obtained by the Kaplan-Meier method. It is assumed that event times and censoring
times are independent. Let T, < T, < --- < Tp denote the distinct event times up to the
specific time point y, where T, =0 and Tp,q =y. For each j=1,..,D, let n;
represents the size of the risk set just prior to T; and let d; represents the number of
events occurring at time T;. The RMST up to the specific time point y is estimated as

follows:
Y D
A = fo S0y dt = Z(T, —THS(T).

The variance of fi(y) is estimated as

D [D 2
. d;
Var[i(y)] = Z lZ(THl —T)S5(Ty) T]—d)'
=1 =

](1 ]
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using Greenwood’s formula. A 100(1 — a)%

expressed by [(y) + z1_q/2 /V’[ﬁy].

confidence interval for the mean is

1001 B 100

75 75

50

Survival, %

50 Difference

Survival, %

RMST

25 25

0
0 5 10 15 20 5
Time, years

10 15 20
Time, years

Figure 1: [llustrations of restricted mean survival time and its difference. (A) RMST is the
integration of survival probability across a pre-specified time, which graphically is the area

under the survival curve. (B) RMST difference represents the group separation of the

survival analysis.
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3.3 Comparison of the RMST between Two Groups

Let pug(y) bethe RMST for group g, where g = 0 represents the control group and
g =1 represents the treatment group. Let fi,(y) be the estimated RMST, and let

Var[ﬁg (¥)] be the variance of fg(y). The difference of two RMST is written as:

Y
RMST(5) = fo (810 = So(®) dt = i (&) — o)

The 100(1 — @)% confidence interval for the difference in RMST between the

groups is estimated as:

() = fo(y) + Z%\/ Var[a, ()] + Var[a, ()],

where z, isthe upper 100(1 — @)% quantile of the standard normal distribution.
The null and alternative hypotheses to be tested are
Ho s iy (¥) — 1o (y) = 0 versus Hy : py (y) — po(y) # 0.
Under the null hypothesis H,, the test statistic, which is computed as

Asymptotically, Sp follows a standard normal distribution. Hence, the two-sided p-
value is calculated as 2{1 — ®(|Sp|)}, where ®(-) is the standard normal cumulative

distribution function.

12



Chapter 4

Dependent Censoring

Dependent censoring occurs when the relationship between censoring and survival
time cannot be explained by observable covariates, indicating residual dependency that
covariates do not address. To mitigate concerns about dependent censoring, it is advisable
to collect a comprehensive set of covariates. For instance, late-stage cancer patients
typically have shorter survival times and are more likely to drop out due to tumor
progression, which establishes a positive correlation between survival and dropout times.
Therefore, including cancer stage as a covariate can help achieve conditional independence

between survival and dropout times.

If censoring involves dropout or withdrawal due to worsening symptoms, it can
introduce bias in statistical analysis. This form of dropout, known as informative dropout,
is among several reasons for censoring. Broadly speaking, when the time of an event of
interest is censored due to a mechanism associated with the event itself, this is termed
dependent censoring. Most standard survival analysis methods yield unbiased results
assuming independent censoring. Hence, careful consideration is required in survival

analysis when censoring is not independent.

In cancer follow-up studies, survival times may be censored due to dropout from tumor

progression, treatment toxicity, or initiation of new treatments, among other factors.

13



Consequently, overall survival and censoring times may be positively correlated, as patients
often pass away shortly after dropout. Informative censoring of this nature can adversely
impact data analysis. For example, many terminally ill patients drop out of clinical trials to
receive home care, potentially leading to missed observable deaths. Consequently, Kaplan-

Meier survival curves that treat such patients as censored may exhibit upward bias.

e T - T T T -
s -

N A \
.; ) )
\?ovarla’_[_el/ x(i:onfoundefr/

- - —

57

~ Survival™___ /Censoring™
NJime /N Time

Figure 2: Illustration of dependent censoring in survival analysis. Solid and dashed nodes

denote observed and hidden variables, respectively.
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4.1 Copula Models

In this section, we introduce a mathematical background to bivariate copula models
and a likelihood-based inference method. Let T is survival time and C is censoring time.
In addition, let S;(t) = P(T >t) and Sc(c) = P(C > c¢) are the marginal survival

functions. To model the dependence of T and C, we assume a survival copula model
P(T > t,C > c) = Co(Sr(t), Sc(c)),

where Cy is a parametric copula with parameter 8 describes the degree of dependency
between T and C. A bivariate copula is defined as a bivariate distribution whose marginal
distribution is the uniform distribution on [0,1]. Let a bivariate copula, Cy:[0,1]? —
[0,1], is indexed by a parameter 6. By the definition, any bivariate copula should be

satisfying the following conditions
(C1) Co(u,0) =Cy(0,v) =0, Co(u,1) =u, and Co(1l,v) =v
for O<u<1land 0<v<1.
(€2) Co(uy,vy) — Coug,v1) — Co(uy, vy) + Co(ug,v1) = 0
for0<uy;<u; £land 0<v; <v, <1

(C1) requires the two marginal uniform distributions and (C2) requires that Cy

produces a probability mass on the rectangular region [uq,u;] X [v1, V3]

For a copula Cy, we can consider a pair of random variables (V,W) such that

15



P(V <u,W < v) = Cy(u,v). If one defines a pair of random variables (T,C) by setting
T =S71(V) and C = SzY(W), its bivariate survival function satisfies P(T >t,C >

¢) = Co{Sr(t), Sc(0)}-
There are some copulas meet conditions (C1) and (C2):
(@) the independent copula is

C(u,v) = uv.

(b) the Clayton copula by Clayton (1978) is

1

Co(u,v) = (u‘e + v — 1) 6 6 > 0.

(c) the Gumbel copula by Gumbel (1960) is

Co(u,v) = exp (—((—logu)" + (- logv)e)%>, 6> 1.

(d) the Frank copula by Frank (1979) is

1 —9u_1 —917_1
Cg(u,v)=—5log{1+(e )(e )}, 6 #0.

e -1
By Tovar Cuevas et al. (2019), the Clayton copula function models a highly dependent

asymmetric data structure with the left tail indicating that the cloud is expanding.
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Figure 3. Scatter plot of data under the Clayton copula with different 6.

The Gumbel copula is useful for modeling data structures that have a strong
dependency on the upper tail and a weak dependency on the lower tail, where we expect

the upper data to be strongly correlated and the lower data to be weakly correlated.
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Figure 4. Scatter plot of data under the Gumbel copula with different 8.

An Archimedean copula is defined as

Co(u,v) = g {po (W) + Po ()},
where ¢g:[0,1] — [0,00] is called a generator of the copula that is continuous and

strictly decreasing function from ¢(0) > 0 to ¢g(1) = 0.1f ¢4(0)

li t) =
lim g (t) = o,
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the generator is called a strict generator and has the inverse function ¢*: [0, 0] — [0,1].

The Clayton, Gumbel, and Frank copulas have a strict generator.

Let (V,W) be a pair of random variables that satisfy P(V < u,W < v) = Co(u, v).

To measure of dependence between V' and W, Kendall’s tau is defined as

79 = Pr{(V, = V) (V; = V1) > 0} = Pr{(V, — V) (V, — V) < 0},
where (V4,V,) and (W;,W,) also have the same distribution as (V,W). It can be

expressed that

11 11
Tg =4 f f Co(u, v)Co(du,dv) — 1 = 4 f f Co(u, V)CH (u, v)dudv — 1,
00 00

62
oudv

where C(gm] (u,v) = Co(u,v).

Table 1 summarizes 74 for copulas and 7y increases with 79 = 1 as 8 — oo.

Table 1. Examples of copulas

Copula Range of 8 Generator: ¢y Kendall’s tau: 7y
Clayton (0, ) 01t % -1) 6/(6 +2)
Gumbel [1,0) (—logt)? 1-1/6
-6t 0
e 't -1 4 1 t
Frank —00, —1 —_— 1——=(1-= dt
o (=00, ) Og<e-9—1> 9( ej; el —1 >
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4.2 Copula-Graphic (CG) Estimator

Zheng and Klein (1995) introduced the concept of using copulas in survival data
analysis under dependent censoring. They examined a bivariate distribution function for
survival and censoring times with fully specified copula forms, including parameter values,
to ensure model identifiability. They used a copula-graphic (CG) estimator to estimate the
marginal survival function under this copula assumption. The CG estimator's survival
function closely resembles that of the Kaplan-Meier estimator, effectively reducing to a
Kaplan-Meier estimator when independence copulas are assumed. In practice, the CG
estimator is typically calculated using one of the Archimedean copulas. Rivest and Wells
(2001) simplified the CG estimator's expression for Archimedean copulas. Today, CG
estimators are crucial tools in survival analysis with dependent censoring (Braekers and

Veraverbeke 2005; Emura and Chen 2018).

Under dependent censoring, Kaplan-Meier estimator may introduce biased
information but a survival curve calculated form CG estimator gives unbiased information
if copula function between death and censoring time is rightly specified. We introduce the
CG estimator proposed by Rivest and Wells (2001). Consider random variables defied as

T issurvival time and C is censoring time and an Archimedean copula model

P(T >t,C>c) =¢g" [pa{Sr (D)} + po{Sc(D}],
where ¢g:[0,1] — [0,00] is generator function, which is strictly decreasing and

continuous from ¢g(0) = o to ¢g(1) =0; Sp(t) =P(T >t) and Sc(c) =P(C >
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c¢) are the marginal survival functions.

Let (t;,6;),i =1,...,n, be survival data without covariates, where t; = min{T;, C;},
6; = I(T; < Cp), I(-) is the indicator function. All the observed times are assumed to

distinct (t; # t; whenever i # j). The CG estimator is defined as

S5O=07"| Y do(")-s0(2)]  0<t<mae

n
ti<t,§;=1

where n; = Y9_,I(t, = t;) is the number at risk at time t;; Sy(t) =1 if no death

occurs up to time t; Sy(t) is undefined for ¢t > max(t;).
l

The derivation of the CG estimator can be obtained as follows. Assume that S;(t) is
decreasing step function with jumps at death times. Then, §; =1 implies Sr(t;) #
ST(ti — dt) and SC(ti) = SC(ti - dt) . Let’s set t=c=1t¢; in P(T >t C > C) =

P35 [be{Sr(D)} + po{Sc(D)}], we have
¢ P(T > t;,C > t;) = po{Sr(t)} + Ppo{Sc(t)}-

In the left-side of the preceding equation, estimate P(T > t;,C > t;) by (n; —1)/n,

where n; —1 = Y7_;I(t, > t;) isthe number of survivors at time t;. Accordingly,

i—1
b0 (Co—) = polSr()} + BolSc@)), 8 =1.

Meanwhile, we set t=c=t;—dt in equation P(T>tC>c)=
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g [Po{ST ()} + Po{Sc(£)}] and then estimate P(T > t; — dt,C > t; — dt) by n;/n.
b0 () = dolSr(ti — O} + $olSc(t)), & =1,

The result in the system of difference equation is

bo (ni . 1) —%o (%) = poiSr(t)} — PolSr(t; —dt)}, 6 = 1.

n

When ¢; is the smallest, we can impose the constraint that S;(t; —dt) = 1. Then,

the solution of different equations is

bolsr©} = ) [$elSr(t)} — do{Sr(ti — dD))]

ti<t,§;=1

= 2 [oo(*) -0 )

tist,5;=1

which is equivalent to the CG estimator.

When ¢4 (t) = —log(t) under independence copula, the CG estimator is same to the
Kaplan-Meier estimator and given by ¢g(t) = (t=¢ —1)/8 for 6 > 0 under Clayton

copula, the CG estimator is
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Chapter 5

Proposed Method

We proposed some methods for comparison two RMSTs to deal with dependent
censoring. To estimate survival function under dependent censoring, we proposed two
survival function estimation method based on modified CG estimator and self-consistency
method. There are two situations when comparing two RMSTSs under dependent censoring:
the assumed copula situation and the situation where the copula assumption is violated.
When the copula assumption is violated, it can be categorized as either a copula type
misspecified or an association parameter misspecified. For the assumed copula situation,
we proposed a method to compare two RMSTs based on modified CG estimator. When the
copula assumption is violated, we proposed methods to compare two RMSTs based on

modified CG estimator and self-consistency estimator.
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5.1 Modified Copula-Graphic Estimator

The CG estimator can be used to estimate RMST under dependent censoring. When
test the difference between two RMSTSs, we need an estimate of the variance of each RMST.
There is no closed form for the RMST variance estimate for the CG estimator, and the
RMST variance estimate can be obtained via a bootstrap method. When using the bootstrap
method for variance estimation, a tied data can be generated with approximately 63.2% ties.
The book by Chernick and LaBudde (2011, p.199) states the following result about
bootstrap resamples: If the sample size is large and we generate many bootstrap samples,
we will find that on average, approximately 36.8% of the original observations will be
missing from the individual bootstrap samples. Another way to look at this is that for any
particular observation, approximately 36.8% of the bootstrap samples will not contain it.
However, the CG estimator can be used for the data without ties. Thus, we have proposed
a modified CG (MCG) estimator to consider tied data as following formula for summarized

survival data for distinct time (¢;,d;), i =1,...,1

S50=03"| Y do(" ) -0 ()] .05t < max(e)

n
ti<t,d;#0

where n is the number of data, n; = Y'5_, I(t, = t;) is the number at risk at time t;, d; =

Y5_11(ty = t;) is the number of events at time t;, and L is the number of distinct times.

The derivation of the modified CG estimator can be obtained by a similar process to
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CG estimator. The d; > 0 implies that, in the left-side of the equation mentioned above,
estimate Pr(T >t;,C>t;) by (n; —d;)/n, where n; —d; =Y73_,I(t, > t;) is the

number of survivors at time t;. Accordingly,

i —d;
Po (n n ) = ¢po{Sr(t)} + Po{Sc(t)}, 6 =1.

The result in the system of difference equations is

b0 (B 2) g (35) = @alSre0) — golSr(ei—do), 6= 1

n

When ¢; is the smallest, we can impose the constraint that S;(t; —dt) = 1. Then,

the solution of different equations is

bolSr©} = ) [$elSr(t)} — do(Sr(ti — d))]

ti<t,§;=1

= 2 [n ()-GOl

tist,§;=1
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5.2 Self-consistency Estimator for Dependent Censoring

Prior research by Jiang, Hongyu, et al (2005) has estimated copula graphic estimator
as self-consistency estimator in dependent censoring. For dependent censoring survival
data, the self-consistency estimator can be defined in non-parametric approaches. Survival

function for event time T and censored time C can be written using copula function as

follows:
S(t)_l Z T+ P(T >t|C =T)
rO =514 et P(T > T;|C = T;)
Ti>t §;=0,T;<t
1 2 ST(t|C = Ti)
= (T + —
= 5i=0,TistST(Ti|C =Ty
1 Co(v(Ty), u(t)
Ti>t 8;=0,T;st 6 L t
and

_1' P(C > ¢|T = C))
Sc(e) == Z Pl + 6‘;“13(6 > GIT = C)

| Ci>C

Se(elT = ¢)
PRI >

Ci>c §;=1,Cisc

Sk
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1 | Co(u(C), v(c))
== Z d(C) + Ce(u(Ci),U(Ci))

Ci>c 6;=1,Ci<c
where u, v are survival functions for T, C, respectively and Cy(x,y) = %CQ(.’X, y).

For non-parametric self-consistency estimator, the survival functions S;(t) and
Sc(c) can be estimated iteratively until they converge by updating the estimates of S;(t)
and Sc-(c) alternately. The initial values of S;(t) and S-(c) can be used as estimated
survival probabilities under independent censoring assumption. In this study, we only
consider three copula types (Clayton, Gumbel, Frank) and two marginal distributions

(exponential, Weibull) for event and censored times.
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5.3 Marginal Survival Estimation

Previous studies (Zheng and Klein, 1994, 1995; Huang and Zhang, 2008; Chen, 2010)
have shown that the proposed model is robust to the functional form of the copula (e.g.,
whether the underlying copula is Clayton, Gumbel, etc.) but sensitive to the assumed level

of association (e.g., the copula parameter value that directly corresponds to Kendall’s tau).

The authors noted in their simulation study results that a critical requirement for a
good estimate of the marginal survival function is a reasonable guess of the strength of

association between T and C, rather than the functional form of the copula.

The Kaplan-Meier estimator is biased in estimating the survival curve when there is a
dependency between survival time and censoring time. Survival probability tends to be
overestimated. However, the MCG model is not biased significantly even if the copula type
is misspecified if the association parameter is set to the same as the data generated.
However, even if the copula type is the same, it tends to be underestimated or overestimated

if the association parameter is different.
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Figure 5. Survival curve estimated by modified Copula-Graphic (MCG) estimators
according to Copula type and association parameter.

28



5.4 Comparison of the RMST for Dependent Censoring

Previous research on copula graphic estimators and self-consistency in the context of
RMST has not been conducted, and particularly, studies focusing on their statistical
properties (Bias, Type I error) have been absent. We proposed methods to compare two
RMSTs under dependent censoring by considering two situations: assumed copula

situation and the situation where the copula assumption is violated.

In assumed copula situation, we can estimate the difference of RMST between group

1 and group O until y using the MCG estimator as follows:

— y A A
Dyce(v) = -fo [51(‘) - 50(')] dt

where S(+) is the MCG estimator.

In situation that copula assumption is violated, two problems can happen: a copula
type misspecified or an association parameter misspecified. It is known to have weak effect
for the misspecified copula type and strong effect for the misspecified association
parameter on the bias for RMST estimates. Thus, we proposed ensemble method to estimate
RMST for pre-specified copula type and association parameters. The weights can be
calculated by log-likelihood for copula models under dependent censoring. The difference
of RMST between group 1 and group 0 until y as follows:

Using modified copula graphic estimator under clayton copula,
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K

Y
T1= Z Wi fo [ () — S0, (O] dt

k=1

Using self-consistency estimator under clayton copula,

K
Y
T2= ) wi | [Spe(® —Sor(®)]de
kZ_lk.’; 1,k 0,k

where wy, is association parameter weight, k is the index for association parameter, and
S(-) can be estimated using the MCG estimator and SC estimator.
The estimated difference of RMST D(y) obtained by proposed methods can be
approximated by a normal distribution under null hypothesis (D = 0) as follow:
D) ~ N(0,Var(D()))
where Var (5 (y)) is the bootstrap variance and test statistic is defined as

D(y)

/Var(ﬁ (y))l

T =
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Chapter 6

Simulation Study

6.1 Simulation Setting

In this section, we conduct various simulation studies to the performance of the
proposed new estimators evaluate for testing difference between two RMST by varying
dependency, number of samples, type of copulas, association parameters, survival
distribution, censoring distribution, and censoring rate. Assuming that the survival
distributions of the two groups are the same, the difference of RMST between the two
groups was confirmed by performing simulations. The number of samples per group was
set to 30, 50, and 100, and both data without dependence censoring and data with
dependence censoring were examined. The marginal survival distributions were considered

to be the exponential and Weibull distribution as following probability density function:
Exponential distribution:

f(x) = 2e=%, x>0

Weibull distribution:

k
) ==(3) e x>0
A\1
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The parameters of marginal survival distribution are presented in Table 2 under the
null and alternative hypotheses for the difference in RMST between Group A and Group

B.

Table 2. Parameters of marginal survival distribution

Marginal survival Null hypothesis Alternative hypothesis
distribution Group A Group B Group A Group B
Exponential A=0.2 A=0.2 A=04
Weibull k=2,1=5 k=21=5 k=2,1=35

We considered three types of copula types: Clayton, Gumbel, and Frank, and set the
tau values of the association parameter Kendall's tau to 0.3, 0.5, and 0.7. In this paper, we
ensembled three RMST estimators of the Clayton copula with association parameter
Kendall’s tau of 0.3, 0.5, and 0.7. We only considered Clayton copula because there was
no significant difference in RMST estimators according to copula types. We assumed the
censoring distribution is the same for each group. The censoring rates considered were 30,
50, and 70%. Since it is dependence data, we need to calculate a parameter for censoring
rate to take this into account. It should be obtained through the expression censoring
percentage below, and for the convenience of calculation, the value was calculated under

the empirical distribution with n = 100,000.
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Censoring percentage = P(X > C) = f f f(x,c)dxdc
0 c

= [ [ reg@cesie, o) dxde
0 c

Proposed and independent methods were evaluated in terms of type | error, power,
and bias. y is set to 80th percentile of the population’s survival time. All analyses used in
the simulation were analyzed using R version 4.3.0. Each scenario was repeated 1000 times

independently.
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6.2 Results

The results of type | error under independent censoring assumption are presented in
Tables 3 and are similar to those in assumed copula. The simulation results for type | error
under the Clayton copula are presented in Tables 4. The type | error remained constant in
both the independent and proposed methods, with no significant deviation for simulation
settings of the number of sample size and association parameter Kendall’s tau. Under the
Gumbel and Frank copula, the results of type I error showed similar to results of Clayton
copula (Table 5-6). When the copula type was misspecified, the results of type | error are

showed similar to assumed copula, with no significant increase in type I errors.

Tables 7 present the simulation results of power under the Clayton copula according
to simulation settings of the number of sample size and association parameter Kendall’s
tau. The proposed methods were showed overall higher power than independent method in
all simulation settings. The decrease in power was lower than the proposed method when
the censoring rate increased. Similar trends in power were showed for Gumbel and Frank
copula type assumption to results of Clayton copula in Tables 8-9. When the copula type
was misspecified, there was no significant difference in power compared to the results of

assumed copula.
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Table 3. The results of type I error for independent censoring survival data generated with exponential distribution according to the
sample size (n) and censoring rate.

Censoring MCG MCG MCG MCG sSC SC
n mate Independent Clayton Clayton Clayton Clayton Clayton Clayton
(t=0.3) (t=0.5) (t=10.7) Ensemble | (t=True) Ensemble |
0.3 0.060 0.063 0.064 0.065 0.064 0.050 0.050
30 0.5 0.060 0.061 0.061 0.055 0.061 0.040 0.050
0.7 0.066 0.070 0.074 0.063 0.068 0.040 0.040
0.3 0.059 0.056 0.060 0.065 0.060 0.020 0.020
50 0.5 0.054 0.054 0.059 0.057 0.058 0.020 0.020
0.7 0.060 0.065 0.068 0.055 0.067 0.030 0.030
0.3 0.050 0.046 0.049 0.054 0.045 0.020 0.020
100 0.5 0.047 0.053 0.050 0.046 0.054 0.040 0.020
0.7 0.047 0.045 0.049 0.047 0.048 0.060 0.050

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table 3. The results of type I error for independent censoring survival data generated with exponential distribution according
to the sample size (n) and censoring rate.

Censoring MCG MCG MCG MCG MCG MCG
n rate Gumbel Gumbel Gumbel Frank Frank Frank
(t=0.3) (t=10.5) (t=0.7) (1=10.3) (t=0.5) (t=0.7)

0.3 0.060 0.063 0.065 0.061 0.062 0.064

30 0.5 0.059 0.058 0.055 0.061 0.054 0.054
0.7 0.064 0.058 0.050 0.065 0.059 0.051

0.3 0.056 0.058 0.062 0.055 0.058 0.062

50 0.5 0.052 0.055 0.056 0.054 0.054 0.056
0.7 0.060 0.057 0.051 0.064 0.066 0.049

0.3 0.046 0.051 0.054 0.050 0.049 0.057

100 0.5 0.046 0.050 0.050 0.051 0.052 0.048
0.7 0.046 0.045 0.048 0.046 0.048 0.046

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table 4. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the
Clayton copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.066 0.067 0.068 0.067 0.064 0.067 0.063 0.065 0.066
30 0.5 0.075 0.072 0.068 0.070 0.067 0.063 0.071 0.068 0.062
0.7 0.071 0.065 0.066 0.063 0.063 0.061 0.067 0.065 0.064
0.3 0.066 0.066 0.065 0.057 0.059 0.065 0.061 0.062 0.061
50 0.5 0.062 0.065 0.068 0.061 0.067 0.065 0.065 0.069 0.069
0.7 0.066 0.067 0.068 0.061 0.062 0.068 0.062 0.065 0.065
0.3 0.064 0.061 0.059 0.059 0.062 0.058 0.060 0.058 0.053
100 0.5 0.056 0.058 0.058 0.056 0.058 0.057 0.055 0.059 0.056
0.7 0.060 0.058 0.058 0.055 0.055 0.052 0.057 0.055 0.055

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table 4. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution
under the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (t) when censoring rate is 50%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.060 0.069 0.068 0.070 0.070 0.070
30 0.5 0.072 0.069 0.069 0.070 0.060 0.060
0.7 0.073 0.065 0.064 0.070 0.060 0.060
0.3 0.064 0.065 0.066 0.070 0.080 0.080
50 0.5 0.058 0.066 0.065 0.100 0.110 0.110
0.7 0.059 0.068 0.068 0.100 0.110 0.100
0.3 0.056 0.062 0.060 0.080 0.080 0.080
100 0.5 0.053 0.056 0.056 0.060 0.060 0.060
0.7 0.060 0.056 0.058 0.080 0.080 0.060

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table 5. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the
Gumbel copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.056 0.056 0.053 0.051 0.050 0.048 0.051 0.048 0.048
30 0.5 0.054 0.053 0.054 0.052 0.050 0.048 0.055 0.052 0.049
0.7 0.055 0.058 0.051 0.056 0.050 0.047 0.055 0.052 0.046
0.3 0.072 0.066 0.058 0.073 0.072 0.063 0.072 0.064 0.059
50 0.5 0.067 0.064 0.066 0.067 0.061 0.062 0.067 0.062 0.061
0.7 0.061 0.065 0.062 0.062 0.060 0.057 0.062 0.059 0.058
0.3 0.055 0.056 0.055 0.054 0.052 0.058 0.056 0.054 0.056
100 0.5 0.053 0.052 0.059 0.056 0.055 0.062 0.057 0.058 0.062
0.7 0.050 0.051 0.053 0.052 0.055 0.056 0.049 0.052 0.054

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table 5. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution
under the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.049 0.057 0.053 0.060 0.050 0.060
30 0.5 0.057 0.053 0.053 0.040 0.030 0.030
0.7 0.057 0.052 0.058 0.040 0.040 0.040
0.3 0.071 0.071 0.065 0.090 0.070 0.060
50 0.5 0.067 0.066 0.065 0.060 0.050 0.060
0.7 0.068 0.061 0.064 0.060 0.040 0.050
0.3 0.059 0.054 0.054 0.050 0.040 0.060
100 0.5 0.060 0.053 0.052 0.070 0.050 0.060
0.7 0.052 0.053 0.051 0.040 0.050 0.050

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table 6. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the
Frank copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.074 0.074 0.064 0.068 0.070 0.065 0.065 0.069 0.062
30 0.5 0.072 0.069 0.056 0.069 0.061 0.059 0.068 0.061 0.056
0.7 0.062 0.061 0.059 0.053 0.055 0.054 0.058 0.058 0.054
0.3 0.060 0.062 0.053 0.055 0.058 0.053 0.059 0.060 0.054
50 0.5 0.067 0.065 0.059 0.063 0.057 0.055 0.063 0.059 0.055
0.7 0.069 0.072 0.061 0.067 0.069 0.063 0.068 0.064 0.064
0.3 0.056 0.058 0.058 0.056 0.057 0.056 0.054 0.054 0.058
100 0.5 0.047 0.049 0.057 0.047 0.047 0.053 0.047 0.048 0.057
0.7 0.048 0.050 0.055 0.050 0.047 0.050 0.051 0.048 0.055

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table 6. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution
under the Frank copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.071 0.072 0.073 0.080 0.080 0.070
30 0.5 0.061 0.069 0.069 0.080 0.080 0.080
0.7 0.064 0.062 0.060 0.080 0.080 0.080
0.3 0.066 0.059 0.061 0.060 0.050 0.060
50 0.5 0.063 0.062 0.062 0.070 0.060 0.070
0.7 0.063 0.067 0.072 0.080 0.100 0.090
0.3 0.050 0.061 0.058 0.070 0.080 0.080
100 0.5 0.050 0.049 0.049 0.090 0.080 0.090
0.7 0.049 0.051 0.049 0.100 0.090 0.090

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table 7. The results of power for dependent censoring survival data generated with bivariate exponential distribution under the Clayton
copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.510 0.556 0.583 0.476 0.522 0.572 0.496 0.536 0.569
30 0.5 0.539 0.591 0.619 0.510 0.563 0.605 0.521 0.570 0.607
0.7 0.543 0.600 0.625 0.517 0.569 0.614 0.531 0.579 0.614
0.3 0.721 0.791 0.825 0.691 0.763 0.816 0.707 0.776 0.818
50 0.5 0.734 0.803 0.836 0.711 0.774 0.829 0.726 0.790 0.831
0.7 0.754 0.804 0.838 0.726 0.797 0.830 0.742 0.792 0.824
0.3 0.958 0.981 0.987 0.951 0.975 0.987 0.959 0.977 0.986
100 0.5 0.971 0.988 0.991 0.959 0.985 0.991 0.966 0.989 0.991
0.7 0.974 0.989 0.991 0.965 0.984 0.992 0.969 0.987 0.991

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table 7. The results of power for dependent censoring survival data generated with bivariate exponential distribution under
the Clayton copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.407 0.534 0.554 0.530 0.530 0.530
30 0.5 0.447 0.587 0.587 0.570 0.580 0.570
0.7 0.442 0.613 0.591 0.590 0.620 0.580
0.3 0.596 0.761 0.790 0.660 0.710 0.720
50 0.5 0.618 0.803 0.803 0.790 0.780 0.790
0.7 0.636 0.819 0.802 0.790 0.760 0.730
0.3 0.879 0.974 0.981 0.940 0.960 0.980
100 0.5 0.896 0.988 0.988 0.990 0.990 0.990
0.7 0911 0.991 0.989 0.990 0.990 0.990

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table 8. The results of power for dependent censoring survival data generated with bivariate exponential distribution under the Gumbel
copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (t=07) (t=03) (t=05) (1=07) (t=03) (rt=05) (t=0.7)

0.3 0.458 0.506 0.530 0.425 0.470 0.521 0.443 0.484 0.513
30 0.5 0.425 0.466 0.495 0.408 0.441 0.474 0.418 0.448 0.477
0.7 0.447 0.494 0.503 0.417 0.464 0.491 0.431 0.475 0.493
0.3 0.612 0.674 0.715 0.588 0.645 0.698 0.605 0.654 0.703
50 0.5 0.591 0.644 0.663 0.567 0.599 0.634 0.586 0.617 0.639
0.7 0.652 0.707 0.734 0.612 0.663 0.707 0.627 0.685 0.712
0.3 0.835 0.926 0.999 0.810 0.883 0.966 0.825 0.907 0.987
100 0.5 0.858 0.960 1.000 0.816 0.899 0.986 0.846 0.925 1.000
0.7 0.908 0.949 0.966 0.890 0.932 0.960 0.899 0.938 0.967

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table 8. The results of power for dependent censoring survival data generated with bivariate exponential distribution under
the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau (t) when censoring rate is 50%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.352 0.479 0.502 0.390 0.400 0.450
30 0.5 0.336 0.462 0.461 0.400 0.400 0.400
0.7 0.347 0.503 0.492 0.470 0.460 0.470
0.3 0.502 0.641 0.669 0.580 0.600 0.670
50 0.5 0.504 0.636 0.636 0.630 0.630 0.620
0.7 0.564 0.721 0.704 0.710 0.710 0.680
0.3 0.702 0.879 0.929 0.940 0.940 0.960
100 0.5 0.728 0.961 0.961 0.950 0.950 0.950
0.7 0.804 0.959 0.947 0.970 0.970 0.960

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table 9. The results of power for dependent censoring survival data generated with bivariate exponential distribution under the Frank
copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (t=07) (t=03) (t=05) (1=07) (t=03) (rt=05) (t=0.7)

0.3 0.448 0.488 0.507 0.427 0.465 0.497 0.438 0.472 0.500
30 0.5 0.452 0.496 0.505 0.432 0.468 0.499 0.446 0.473 0.495
0.7 0.477 0.519 0.532 0.454 0.488 0.514 0.470 0.499 0.513
0.3 0.651 0.717 0.749 0.626 0.695 0.733 0.639 0.705 0.741
50 0.5 0.651 0.717 0.748 0.624 0.676 0.722 0.636 0.689 0.729
0.7 0.680 0.735 0.763 0.644 0.696 0.749 0.659 0.709 0.750
0.3 0.922 0.956 0.970 0.905 0.947 0.966 0.916 0.951 0.969
100 0.5 0.938 0.965 0.974 0.918 0.954 0.971 0.928 0.958 0.971
0.7 0.939 0.972 0.980 0.929 0.963 0.975 0.938 0.967 0.974

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table 9. The results of power for dependent censoring survival data generated with bivariate exponential distribution under
the Frank copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.365 0.470 0.488 0.400 0.400 0.420
30 0.5 0.378 0.493 0.493 0.420 0.410 0.420
0.7 0.395 0.525 0.514 0.470 0.470 0.450
0.3 0.518 0.687 0.714 0.600 0.650 0.710
50 0.5 0.510 0.716 0.716 0.660 0.660 0.650
0.7 0.542 0.750 0.729 0.720 0.710 0.700
0.3 0.819 0.942 0.955 0.920 0.920 0.950
100 0.5 0.828 0.965 0.965 0.950 0.950 0.950
0.7 0.851 0.977 0.971 0.960 0.960 0.950

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Figure 7. Survival curve estimated by Kaplan-Meier curve (Independent), modified
Copula-Graphic (MCG) estimators and Self-consistency (SC) estimators according to
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Chapter 7

Real Data Analysis

7.1 Data on Kidney Transplant Patients

In this section, we used real data examples to illustrate the performance of the
proposed method. We applied the proposed estimator to a dataset on the time to death of
863 kidney transplant patients. All patients underwent their transplants at The Ohio State
University Transplant Center between 1982 and 1992. The maximum follow-up time was
9.47 years. Patients were censored if they moved away from Columbus (lost to follow-up)

or if they were alive on June 30, 1992.

The age of patients at the time of transplant ranged from 9.5 months to 74.5 years,
with an average age of 42.8 years. The sample included 524 males and 339 females, with
712 white patients and 151 black patients. Out of the 863 patients, 140 (16.2%) experienced
failure events (deaths), while 723 (83.8%) were censored by the end of the study.
Specifically, 87 males (16.6%), 53 females (15.6%), 112 white patients (15.7%), and 28

black patients (18.5%) died before the study concluded.

Figure 9, 10 represents the survival function estimated by the product-limit estimator

and proposed estimator according to gender and race. We apply the proposed method to
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directly calculate the difference of RMST and investigate the impact of gender and race on

RMST among patients with kidney transplant.

The difference of RMST at 7 = 3, 5 and 7 years were analyzed. Table 10, 11
summarizes the results. Overall, the covariate effects show similar trends across all models.
Toward the end of the survival curve, we confirm that the survival probability of the
proposed models decreases. There was a trend for female to survive longer to a given time
point y compared to male, but it was not significant. Similarly, in race, there were no models
and time points showing significant differences, but when the difference in RMST up to 3

years was identified, the trend was different according to the model.
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Table 10. The difference of RMST by gender with 95% confidence intervals (CIs) and p-values at various values of y (years)

Independent MCG Clayton, tau=0.3 MCG Clayton, tau=0.5 MCG Clayton, tau=0.7 MCG Gumbel, tau=0.3
Y RMST RMST RMST RMST RMST
(95% Cl) p-value (95% Cl) p-value (95% Cl) p-value (95% Cl) p-value (95% Cl) p-value
1501 18.59 2191 2671 2120
3 (o15473) 92 (0525969 0.375 (23.03,66.85) 3% (-26.70, 80.11) 0.327 (2006, 6247y 0314
36.70 42,89 49.80 55.01 44.85
St 93 (oos 12s8e O3 (e a5 030 (97 160.08) 03P (3544, 12505 074
42.96 4552 5142 64.86 45.95
T (23115822 049 (or3g1s042) O iiesoiaasy 003 (o798 23771y 02 (9000, 17179) 0474
MCG Gumbel, tau=0.5 MCG Gumbel, tau=0.7 MCG Frank, tau=0.3 MCG Frank, tau=0.5 MCG Frank, tau=0.7
Y RMST RMST RMST RMST RMST
(95% CI) p-value (95% CI) p-value (95% CI) p-value (95% CI) p-value (95% CI) p-value
347 216 20,66 2498 2622
3 (2044.6737) 9P (511, 6943 0.358 (-2227,63.58) 0346 (-23.32, 73.27) 0311 r303 8137 031
4577 39.94 4557 50.06 46.41
S (3963, 13117 0P (972120600 0 (406913182 9390 (4768147800 O3 (5714, 14906) 0380
40.63 33.25 4441 41381 40.65
T o161,17288) Y (10052, 167.02) %920 (o283 18165  °20  (L10779,19141) 0% (10518, 186.48) 0%
MCG Ensemble II SC Clayton, tau=0.3 SC Clayton, tau=0.5 SC Clayton, tau=0.7 SC Ensemble II
Y RMST RMST RMST RMST RMST
(95% CT) p-value (95% CT) p-value (95% CI) p-value (95% CT) p-value (95% CT) p-value
2240 18.59 2193 27.05 252
3 (23546834 00 (2399 61.16) 0.392 (-2348,6735) 034 (-24.51,78.62) 0.304  2574,6779) 037
4923 42.93 50.02 55.87 49,61
S (4677,14524) O3 (3055 125400 03 (sspiazsyy 92 (ssarier22) 03 (ason 14y 0394
7 53.94 0.494 44.29 0.521 48.16 0.556 SL14 0.571 47.86 0.554

(-100.69, 208.56)

(-91.10, 179.69)

(-111.96, 208.29)

(-125.65,227.93)

(-110.73, 206.46)
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Table 11. The difference of RMST by race with 95% confidence intervals (Cls) and p-values at various values of y

(years)
Independent MCG Clayton, tau=0.3 MCG Clayton, tau=0.5 MCG Clayton, tau=0.7 MCG Gumbel, tau=0.3
Y RMST RMST RMST RMST RMST
(95% Cl) p-value (95% Cl) p-value (95% Cl) p-value (95% Cl) p-value (95% Cl) p-value
20.06 0.54 215 623 234
3 (5042,5030) 0% (15317, 54.26) 0.984 (-56.78,61.07) 0% (-63.08, 75.54) 0860 s566,5008) 0932
2157 4020 70,15 10637 32,69
S (779512108 OOTh (7725 15765) 007 (68.99,20029) 93P (463325007 U172 (686, 14224) O
44.40 86.63 13125 14123 66.95
T (11215,20006 %7 ((105.00,27826) 0370 (030435573 022 (saie36661) 210 (104.93,23883) 04
MCG Gumbel, tau=0.5 MCG Gumbel, tau=0.7 MCG Frank, tau=0.3 MCG Frank, tau=0.5 MCG Frank, tau=0.7
Y RMST -value RMST -value RMST -value RMST -value RMST -value
(95% CI) p (95% CI) p (95% CI) p (95% CI) p (95% CI) p
166 151 0.32 1.66 4.04
3 (5833,55.00) 0Pt (15053, 62.54) 0.961 (-55.55,5620) 091 (-60.89, 64.21) 0959 (6659, 7467) O
4930 7112 43.49 68.07 86.04
S (6696,16555 0400 (4905 19128) 020 (7581162800 *4° (L64.06,200200 313 (478321900 0208
92.44 113.65 84.54 115.71 122.09
T (8696,271.84) 313 (easano1es) 02 037627284y 0370 (8469316000 0P® (66.97,311.14) 0206
MCG Ensemble 11 SC Clayton, tau=0.3 SC Clayton, tau=0.5 SC Clayton, tau=0.7 SC Ensemble IT
Y RMST -value RMST -value RMST -value RMST -value RMST -value
(95% CI) p (95% CI) p (95% CI) p (95% CI) p (95% CI) p
2.97 0.42 156 3.84 1.94
3 (s101,6296) 092 (15240, 53.24) 0.988 (-56.53,59.65) 0938 (-63.14, 70.81) 0911 5574, 5061) 0948
7224 3935 66.79 101.06 69.07
S 619320641 OV (7607, 15478) 0% (6017,20276) 0330 (s22425435) 0190 (6206, 200190 0302
; 119.70 0264 83.75 0378 122.41 021 13033 0270 12.17 0307

(-90.37, 329.77)

(-102.27, 269.78)

(-95.68, 340.50)

(-101.34, 362.00)

(-103.15, 327.48)
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7.2 Data on Tongue Cancer Patients

The data come from a study examining the effects of ploidy on the prognosis of
patients with oral cancers (Sickle-Santanello et al., 1988; Klein & Moeschberger, 1997).
Patients were chosen based on the availability of paraffin-embedded cancerous tissue
samples collected during surgery. Follow-up survival data was obtained on each patient.
The tissue samples were analyzed with a flow cytometer to identify if the tumor had an
aneuploid (abnormal) or diploid (normal) DNA profile, as outlined by Sickle-Santanello et

al. (1988).

Our goal is to calculate the difference in RMST. Among the 80 patients, 52 (65.0%)
had an aneuploid tumor, and 28 (35.0%) had a diploid tumor. Out of the 80 patients, 53
(66.3%) experienced deaths and 27 (33.7%) were censored by the end of the study.
Specifically, 31 patients with aneuploid tumors (59.6%) and 22 patients with diploid
tumors (78.6%) died before the study concluded. The maximum follow-up time was 7.67

years, with a median follow-up time of 1.4 years.

Figure 11 shows the survival function estimated by the product-limit estimator and
the proposed estimator among tongue cancer patients with aneuploid and diploid tumors.
We applied the proposed method to directly calculate the difference in RMST and examine

the impact of tumor ploidy on RMST among patients with tongue cancer.

The difference of RMST at 7 = 50, 100 and 150 weeks were analyzed. Table 12

summarizes the results. Overall, the covariate effects show similar trends across all models.
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In the models with MCG Gumbel (tau=0.7) and MCG Frank (tau=0.7), patients with
aneuploid tumors are significantly associated with longer average survival times at all
values of y=50. Patients with aneuploid tumors survived longer up to the specified time
point y compared to those with diploid tumors. Specifically, aneuploid tumors are
associated with an increase in survival time by 8.14 weeks (95% Cl: 0.12-16.16) on average
during the next 50 weeks post-diagnosis, using the MCG Gumbel (tau=0.7) model, and by
8.16 weeks (95% CI: 0.08-16.24), using the MCG Frank (tau=0.7) model. Other models

showed similar but non-significant values and trends.
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Figure 11. Estimator of survival function using prevailing method and proposed estimator.
Product-limit estimator (A), MCG Clayton, tau=0.7 (B), MCG Gumbel, tau=0.7 (C), MCG
Frank, tau=0.7 (D), MCG Clayton, Ensemble II (E) and Self-consistency Clayton,
Ensemble II (F) for patients by tumor type (solid line for aneuploid; dashed line for diploid)
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Table 12. The difference of RMST by tumor type with 95% confidence intervals (Cls) and p-values at various values of y

(weeks)
Independent MCG Clayton, tau=0.3 MCG Clayton, tau=0.5 MCG Clayton, tau=0.7 MCG Gumbel, tau=0.3
Y RMST -value RMST -value RMST -value RMST -value RMST -value
@wchy P @wchy P @wchy P @wch P @wcr P
7.36 7.58 7.79 8.06 7.62
0 Cos 1576) %086 (osiisery 090 (03215000 90 (006, 1618) %02 (039.1563) 0062
16.02 16.47 16.73 16.84 16.53
100 5163419 %08 (1634100 %07 (Logs 3431y 002 (0s50.3427) 008 (g8 3305 0063
2425 23.63 22.35 20.86 24.17
30 193 75042) 0009 (155 4879) 0006 5014600y 0075 (76 4448) 0083 (066, 49.00) 0096
MCG Gumbel, tau=0.5 MCG Gumbel, tau=0.7 MCQG Frank, tau=0.3 MCG Frank, tau=0.5 MCQG Frank, tau=0.7
Y RMST RMST RMST RMST RMST
(95% CI) p-value (95% CI) p-value (95% CI) p-value (95% CI) p-value (95% CI) p-value
7.86 8.14 7.66 7.90 8.16
0 oas1586) 09 02 1616) O (o401572) 093 (oae1s97y 095 (008 1624) 0048
16.87 17.04 16.59 16.88 16.95
100 04334180 9056 (0163425 902 (08734060 009 (0463423 006 (0263415 00
23.64 22.31 23.85 23.03 21.56
30 o61,4700) %090 (1224585 0003 (570.4849) O0® (089 4604y 000 (154 4466 0007
MCG Ensemble II SC Clayton, tau=0.3 SC Clayton, tau=0.5 SC Clayton, tau=0.7 SC Ensemble II
v RMST -value RMST -value RMST -value RMST -value RMST -value
©s%cn P ©s%cy P ©s%cy P ©s5%cr P ©s5%cr P
7.81 7.57 7.78 8.05 7.80
0 0291501 99 oszisery %07 (03415000 090 (009 1618) 007 (0631623 0070
16.68 16.46 16.73 16.85 16.68
100 0gs,34200 9002 (11734000 %07 (0883433 0099 (0643434 000 (1603405 0074
22.28 23.68 22.51 21.07 2242
O onaeery %9 (es 4004y %07 (0334735 0076 (g asogy 008 (g7 47y 0082
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Chapter 8

Conclusion and Discussion

The paper aims to develop a method for accurately estimating the difference in
Restricted Mean Survival Time (RMST) between two groups when there is a dependency.
The challenge lies in identifying the association parameter in data with dependent censoring.
To address this, the authors propose providing an appropriate association range. They
found that using modified Copula-Graphic (MCG) or Self-consistency (SC) models
reduces bias in the survival curve compared to the Kaplan-Meier model, which assumes
independence. The study emphasizes the importance of fitting the association parameters
well over the copula type and proposes a weighted sum form with association parameters.
Simulations confirmed that the method satisfies the type | error rate and performs similarly
to the true model. The results indicate that the association parameter significantly impacts
the model, even when the copula type is misspecified. The paper suggests expanding future
models to include both the association parameter and copula type and highlights the need

for theoretical development due to the self-consistency conversion rate problem.

The study successfully demonstrates that addressing dependent censoring in survival
analysis by focusing on the accurate estimation of association parameters enhances model
performance. The proposed method, which uses a weighted sum form with association

parameters, outperforms traditional methods that assume independence, such as the

64



Kaplan-Meier model. The simulation results validate the robustness and reliability of the
proposed method, even with copula type misspecification, underscoring the critical

importance of the association parameter.

This research has significant implications for survival analysis, particularly in fields
like medical research where dependent censoring is prevalent. By reducing bias in survival
curve estimation, the proposed method can lead to more accurate and reliable assessments
of treatment effects and patient outcomes. Future research should explore integrating both
association parameters and copula types to further enhance model accuracy. Additionally,
practical applications using real-world datasets will be essential for further validation and
refinement of the method. Addressing the balance between model complexity and
computational efficiency will remain a key consideration, and ongoing advancements in
statistical methodologies will likely continue to improve the applicability and precision of
these models. The identified need for theoretical development to address the self-

consistency conversion rate problem also presents an important area for future investigation.
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Appendix

Table Al. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the
Clayton copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 30%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (r=05) (t=07) (t=03) (t=05 (=07) (t=03) (t=05) (t=0.7)

0.3 0.072 0.071 0.074 0.069 0.065 0.068 0.071 0.066 0.068
30 0.5 0.072 0.067 0.064 0.070 0.065 0.067 0.072 0.063 0.067
0.7 0.072 0.065 0.065 0.066 0.066 0.066 0.069 0.063 0.063
0.3 0.073 0.070 0.072 0.071 0.066 0.073 0.071 0.070 0.074
50 0.5 0.075 0.068 0.068 0.073 0.069 0.070 0.074 0.068 0.072
0.7 0.075 0.072 0.069 0.074 0.073 0.069 0.077 0.073 0.067
0.3 0.062 0.062 0.060 0.059 0.056 0.058 0.062 0.057 0.055
100 0.5 0.064 0.059 0.064 0.058 0.055 0.059 0.062 0.056 0.060
0.7 0.063 0.057 0.058 0.060 0.054 0.055 0.061 0.053 0.053

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A1. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution
under the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (t) when censoring rate is 30%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.070 0.072 0.071 0.130 0.130 0.100
30 0.5 0.077 0.067 0.067 0.100 0.090 0.090
0.7 0.071 0.062 0.065 0.070 0.080 0.080
0.3 0.069 0.071 0.070 0.110 0.110 0.100
50 0.5 0.073 0.069 0.069 0.100 0.110 0.110
0.7 0.072 0.072 0.072 0.090 0.090 0.090
0.3 0.064 0.062 0.060 0.090 0.090 0.090
100 0.5 0.063 0.059 0.059 0.100 0.100 0.100
0.7 0.060 0.056 0.058 0.100 0.100 0.100

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A2. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the
Clayton copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 70%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.069 0.073 0.059 0.057 0.054 0.050 0.062 0.062 0.051
30 0.5 0.079 0.078 0.069 0.070 0.060 0.052 0.074 0.069 0.056
0.7 0.066 0.066 0.068 0.060 0.054 0.052 0.069 0.057 0.056
0.3 0.057 0.062 0.067 0.052 0.054 0.052 0.056 0.055 0.054
50 0.5 0.062 0.062 0.067 0.057 0.056 0.058 0.060 0.055 0.056
0.7 0.060 0.065 0.061 0.051 0.057 0.054 0.057 0.060 0.054
0.3 0.050 0.053 0.049 0.045 0.046 0.047 0.050 0.049 0.046
100 0.5 0.057 0.061 0.051 0.053 0.058 0.051 0.060 0.061 0.049
0.7 0.044 0.051 0.049 0.040 0.047 0.049 0.045 0.047 0.050

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A2. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution
under the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (t) when censoring rate is 70%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.068 0.071 0.067 0.070 0.070 0.070
30 0.5 0.075 0.080 0.077 0.090 0.090 0.090
0.7 0.062 0.066 0.063 0.060 0.070 0.070
0.3 0.060 0.060 0.060 0.080 0.080 0.080
50 0.5 0.052 0.061 0.061 0.090 0.080 0.080
0.7 0.052 0.064 0.064 0.070 0.080 0.080
0.3 0.053 0.053 0.051 0.050 0.040 0.050
100 0.5 0.054 0.062 0.061 0.080 0.070 0.080
0.7 0.044 0.050 0.046 0.090 0.090 0.080

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A3. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the
Gumbel copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 30%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.049 0.051 0.055 0.049 0.051 0.051 0.047 0.049 0.051
30 0.5 0.051 0.054 0.057 0.052 0.049 0.054 0.051 0.049 0.054
0.7 0.056 0.055 0.061 0.052 0.053 0.056 0.053 0.054 0.062
0.3 0.055 0.057 0.054 0.063 0.058 0.054 0.058 0.057 0.055
50 0.5 0.058 0.052 0.053 0.059 0.052 0.053 0.058 0.050 0.054
0.7 0.061 0.055 0.057 0.059 0.058 0.054 0.060 0.059 0.054
0.3 0.059 0.064 0.061 0.056 0.060 0.059 0.056 0.061 0.061
100 0.5 0.062 0.064 0.062 0.061 0.063 0.061 0.062 0.060 0.063
0.7 0.055 0.060 0.064 0.058 0.058 0.063 0.061 0.060 0.067

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A3. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution
under the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 30%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.054 0.051 0.051 0.070 0.060 0.070
30 0.5 0.055 0.054 0.053 0.060 0.060 0.070
0.7 0.053 0.061 0.054 0.050 0.040 0.050
0.3 0.058 0.056 0.057 0.060 0.080 0.070
50 0.5 0.062 0.052 0.052 0.050 0.050 0.050
0.7 0.063 0.053 0.057 0.050 0.050 0.050
0.3 0.057 0.060 0.063 0.080 0.080 0.090
100 0.5 0.065 0.064 0.064 0.060 0.070 0.070
0.7 0.050 0.062 0.059 0.050 0.050 0.040

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A4. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the
Gumbel copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 70%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.057 0.063 0.058 0.058 0.049 0.050 0.061 0.055 0.052
30 0.5 0.064 0.062 0.054 0.053 0.052 0.048 0.060 0.054 0.049
0.7 0.063 0.062 0.054 0.054 0.055 0.047 0.062 0.059 0.050
0.3 0.072 0.067 0.061 0.069 0.061 0.052 0.069 0.061 0.051
50 0.5 0.069 0.060 0.048 0.066 0.061 0.047 0.070 0.060 0.048
0.7 0.065 0.061 0.054 0.065 0.054 0.052 0.065 0.055 0.047
0.3 0.063 0.061 0.057 0.060 0.060 0.066 0.063 0.057 0.060
100 0.5 0.059 0.062 0.055 0.059 0.063 0.059 0.059 0.060 0.054
0.7 0.065 0.067 0.060 0.064 0.062 0.054 0.067 0.062 0.050

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;

75



(continuous) Table A4. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution
under the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 70%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.051 0.064 0.061 0.070 0.070 0.070
30 0.5 0.054 0.060 0.060 0.090 0.080 0.080
0.7 0.064 0.060 0.059 0.060 0.050 0.060
0.3 0.072 0.068 0.064 0.070 0.050 0.050
50 0.5 0.070 0.061 0.061 0.080 0.070 0.060
0.7 0.070 0.059 0.059 0.060 0.070 0.070
0.3 0.061 0.060 0.061 0.060 0.050 0.040
100 0.5 0.056 0.059 0.057 0.050 0.050 0.050
0.7 0.061 0.063 0.066 0.080 0.090 0.090

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table AS. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the
Frank copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 30%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.084 0.078 0.077 0.085 0.074 0.075 0.083 0.074 0.075
30 0.5 0.073 0.070 0.066 0.071 0.064 0.066 0.071 0.064 0.066
0.7 0.063 0.066 0.065 0.063 0.061 0.061 0.064 0.060 0.061
0.3 0.059 0.064 0.060 0.056 0.060 0.062 0.060 0.065 0.063
50 0.5 0.066 0.062 0.062 0.058 0.057 0.057 0.059 0.058 0.058
0.7 0.056 0.061 0.060 0.056 0.056 0.061 0.057 0.061 0.062
0.3 0.049 0.053 0.057 0.047 0.056 0.055 0.047 0.052 0.052
100 0.5 0.052 0.057 0.057 0.054 0.057 0.055 0.053 0.056 0.054
0.7 0.053 0.047 0.053 0.049 0.052 0.052 0.054 0.048 0.052

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table AS. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution
under the Frank copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 30%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.079 0.082 0.078 0.090 0.100 0.090
30 0.5 0.072 0.071 0.071 0.100 0.100 0.100
0.7 0.074 0.066 0.065 0.100 0.100 0.100
0.3 0.062 0.065 0.063 0.070 0.060 0.060
50 0.5 0.067 0.063 0.063 0.050 0.060 0.060
0.7 0.065 0.060 0.062 0.080 0.080 0.070
0.3 0.050 0.051 0.053 0.080 0.090 0.100
100 0.5 0.054 0.057 0.057 0.090 0.090 0.100
0.7 0.055 0.050 0.050 0.060 0.080 0.080

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A6. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution under the
Frank copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 70%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.080 0.088 0.079 0.073 0.065 0.066 0.079 0.072 0.066
30 0.5 0.079 0.088 0.078 0.066 0.072 0.064 0.074 0.080 0.067
0.7 0.076 0.080 0.085 0.069 0.066 0.068 0.077 0.071 0.074
0.3 0.051 0.060 0.061 0.047 0.051 0.054 0.051 0.055 0.053
50 0.5 0.060 0.066 0.067 0.050 0.063 0.060 0.057 0.060 0.061
0.7 0.048 0.059 0.057 0.040 0.049 0.047 0.049 0.055 0.047
0.3 0.050 0.054 0.050 0.050 0.048 0.052 0.052 0.048 0.050
100 0.5 0.050 0.058 0.057 0.047 0.051 0.054 0.048 0.055 0.051
0.7 0.050 0.056 0.050 0.047 0.052 0.050 0.050 0.050 0.051

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A6. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution
under the Frank copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 70%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.058 0.084 0.082 0.120 0.110 0.150
30 0.5 0.065 0.084 0.084 0.100 0.120 0.110
0.7 0.070 0.083 0.078 0.090 0.080 0.090
0.3 0.055 0.054 0.058 0.050 0.060 0.060
50 0.5 0.051 0.065 0.063 0.090 0.090 0.090
0.7 0.045 0.060 0.060 0.070 0.080 0.070
0.3 0.054 0.050 0.051 0.060 0.050 0.060
100 0.5 0.045 0.057 0.057 0.070 0.080 0.080
0.7 0.052 0.053 0.053 0.060 0.060 0.050

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A7. The results of type I error for independent censoring survival data generated with weibull distribution according to the sample
size (n) and censoring rate.

Censoring MCG MCG MCG MCG sSC SC
n mate Independent Clayton Clayton Clayton Clayton Clayton Clayton
(t=0.3) (t=0.5) (t=10.7) Ensemble | (t=True) Ensemble |
0.3 0.063 0.061 0.065 0.064 0.061 0.100 0.100
30 0.5 0.073 0.077 0.074 0.070 0.077 0.100 0.110
0.7 0.078 0.075 0.075 0.078 0.075 0.060 0.060
0.3 0.063 0.063 0.060 0.064 0.061 0.060 0.060
50 0.5 0.066 0.066 0.061 0.058 0.063 0.070 0.060
0.7 0.063 0.063 0.063 0.062 0.068 0.100 0.100
0.3 0.053 0.049 0.044 0.042 0.046 0.050 0.050
100 0.5 0.052 0.052 0.046 0.039 0.049 0.060 0.050
0.7 0.044 0.039 0.048 0.042 0.043 0.060 0.060

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A7. The results of type I error for independent censoring survival data generated with weibull distribution according
to the sample size (n) and censoring rate.

Censoring MCG MCG MCG MCG MCG MCG
n rate Gumbel Gumbel Gumbel Frank Frank Frank
(t=0.3) (t=10.5) (t=0.7) (1=10.3) (t=0.5) (t=0.7)

0.3 0.063 0.061 0.062 0.060 0.062 0.066

30 0.5 0.075 0.068 0.069 0.076 0.073 0.072
0.7 0.066 0.061 0.060 0.072 0.071 0.067

0.3 0.061 0.059 0.058 0.060 0.057 0.059

50 0.5 0.060 0.053 0.057 0.063 0.057 0.055
0.7 0.054 0.057 0.056 0.062 0.059 0.058

0.3 0.048 0.044 0.041 0.049 0.047 0.040

100 0.5 0.044 0.047 0.042 0.049 0.047 0.038
0.7 0.038 0.038 0.039 0.041 0.041 0.042

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A8. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the Clayton
copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 30%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.077 0.073 0.071 0.078 0.071 0.070 0.076 0.070 0.071
30 0.5 0.074 0.073 0.070 0.073 0.075 0.072 0.072 0.073 0.073
0.7 0.075 0.072 0.067 0.071 0.070 0.068 0.067 0.067 0.068
0.3 0.079 0.080 0.077 0.080 0.077 0.076 0.082 0.072 0.072
50 0.5 0.075 0.075 0.072 0.071 0.077 0.074 0.077 0.077 0.074
0.7 0.080 0.079 0.076 0.078 0.076 0.076 0.075 0.078 0.072
0.3 0.058 0.057 0.056 0.057 0.057 0.056 0.060 0.059 0.058
100 0.5 0.056 0.057 0.057 0.056 0.055 0.056 0.061 0.058 0.059
0.7 0.059 0.059 0.055 0.062 0.056 0.054 0.061 0.060 0.054

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A8. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution
under the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (t) when censoring rate is 30%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.076 0.076 0.073 0.073 0.075 0.072
30 0.5 0.077 0.072 0.072 0.073 0.071 0.073
0.7 0.075 0.067 0.072 0.066 0.071 0.069
0.3 0.078 0.080 0.082 0.110 0.110 0.110
50 0.5 0.073 0.075 0.077 0.100 0.100 0.100
0.7 0.074 0.076 0.080 0.100 0.090 0.080
0.3 0.058 0.057 0.057 0.090 0.090 0.080
100 0.5 0.057 0.057 0.057 0.090 0.090 0.090
0.7 0.057 0.059 0.059 0.090 0.090 0.090

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A9. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the Clayton
copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.060 0.066 0.066 0.063 0.060 0.063 0.062 0.059 0.062
30 0.5 0.074 0.078 0.076 0.073 0.071 0.068 0.067 0.071 0.069
0.7 0.069 0.066 0.066 0.064 0.062 0.064 0.067 0.062 0.062
0.3 0.068 0.065 0.064 0.064 0.064 0.065 0.066 0.061 0.064
50 0.5 0.066 0.063 0.071 0.065 0.066 0.075 0.064 0.064 0.071
0.7 0.074 0.069 0.065 0.070 0.064 0.068 0.065 0.062 0.065
0.3 0.058 0.059 0.058 0.054 0.057 0.054 0.058 0.056 0.057
100 0.5 0.056 0.057 0.057 0.057 0.059 0.057 0.059 0.056 0.056
0.7 0.063 0.058 0.060 0.061 0.058 0.058 0.061 0.058 0.056

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A9. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution
under the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (t) when censoring rate is 50%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.061 0.069 0.067 0.059 0.064 0.064
30 0.5 0.069 0.077 0.077 0.077 0.074 0.077
0.7 0.073 0.065 0.066 0.063 0.063 0.065
0.3 0.068 0.066 0.064 0.050 0.060 0.070
50 0.5 0.062 0.063 0.063 0.100 0.100 0.100
0.7 0.061 0.068 0.067 0.120 0.120 0.130
0.3 0.059 0.056 0.058 0.070 0.060 0.070
100 0.5 0.062 0.057 0.057 0.070 0.060 0.070
0.7 0.064 0.061 0.057 0.080 0.070 0.070

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A10. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the
Clayton copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 70%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.074 0.068 0.063 0.072 0.064 0.058 0.065 0.063 0.058
30 0.5 0.072 0.074 0.066 0.072 0.066 0.057 0.064 0.055 0.057
0.7 0.068 0.070 0.077 0.066 0.063 0.065 0.067 0.064 0.065
0.3 0.058 0.060 0.066 0.059 0.063 0.065 0.059 0.064 0.061
50 0.5 0.056 0.059 0.062 0.053 0.058 0.057 0.055 0.055 0.057
0.7 0.054 0.063 0.057 0.054 0.059 0.059 0.054 0.060 0.059
0.3 0.054 0.053 0.048 0.058 0.054 0.045 0.055 0.051 0.047
100 0.5 0.064 0.058 0.049 0.062 0.056 0.051 0.059 0.058 0.053
0.7 0.049 0.050 0.053 0.049 0.052 0.052 0.048 0.054 0.050

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A10. The results of type I error for dependent censoring survival data generated with bivariate exponential distribution
under the Clayton copula according to the sample size (n) and association parameter Kendall’s tau (t) when censoring rate is 70%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.070 0.071 0.068 0.074 0.067 0.070
30 0.5 0.070 0.073 0.072 0.072 0.071 0.070
0.7 0.064 0.073 0.069 0.065 0.065 0.066
0.3 0.062 0.061 0.063 0.060 0.063 0.062
50 0.5 0.056 0.059 0.058 0.080 0.080 0.080
0.7 0.055 0.062 0.063 0.070 0.090 0.100
0.3 0.057 0.056 0.054 0.040 0.060 0.060
100 0.5 0.061 0.058 0.058 0.070 0.060 0.070
0.7 0.050 0.054 0.052 0.080 0.090 0.100

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table All. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the
Gumbel copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 30%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.054 0.050 0.053 0.057 0.052 0.055 0.055 0.052 0.054
30 0.5 0.059 0.059 0.059 0.057 0.052 0.054 0.057 0.056 0.053
0.7 0.051 0.055 0.059 0.049 0.053 0.056 0.050 0.056 0.057
0.3 0.059 0.062 0.061 0.059 0.063 0.063 0.060 0.064 0.062
50 0.5 0.060 0.064 0.068 0.062 0.065 0.061 0.057 0.067 0.067
0.7 0.055 0.061 0.065 0.053 0.061 0.064 0.055 0.063 0.066
0.3 0.067 0.068 0.067 0.064 0.066 0.068 0.070 0.066 0.070
100 0.5 0.068 0.066 0.065 0.068 0.070 0.063 0.067 0.069 0.064
0.7 0.055 0.065 0.070 0.063 0.065 0.064 0.061 0.067 0.065

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A11. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution
under the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 30%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.048 0.056 0.050 0.080 0.080 0.090
30 0.5 0.062 0.059 0.059 0.060 0.055 0.055
0.7 0.058 0.061 0.055 0.070 0.050 0.050
0.3 0.058 0.062 0.062 0.060 0.060 0.060
50 0.5 0.062 0.065 0.065 0.100 0.090 0.090
0.7 0.060 0.066 0.060 0.060 0.060 0.070
0.3 0.059 0.067 0.069 0.080 0.090 0.090
100 0.5 0.067 0.067 0.067 0.070 0.060 0.070
0.7 0.052 0.070 0.065 0.070 0.070 0.070

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A12. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the
Gumbel copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.047 0.051 0.059 0.042 0.047 0.052 0.045 0.053 0.052
30 0.5 0.055 0.057 0.052 0.052 0.053 0.050 0.053 0.055 0.050
0.7 0.057 0.056 0.051 0.050 0.055 0.049 0.051 0.055 0.053
0.3 0.073 0.068 0.064 0.071 0.068 0.066 0.074 0.065 0.065
50 0.5 0.073 0.077 0.070 0.074 0.075 0.065 0.076 0.078 0.070
0.7 0.073 0.067 0.066 0.067 0.064 0.067 0.066 0.067 0.064
0.3 0.062 0.064 0.058 0.058 0.059 0.067 0.063 0.061 0.058
100 0.5 0.062 0.055 0.058 0.058 0.061 0.058 0.061 0.054 0.058
0.7 0.055 0.056 0.058 0.056 0.056 0.061 0.057 0.056 0.058

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A12. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution
under the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.052 0.047 0.053 0.050 0.050 0.050
30 0.5 0.060 0.057 0.057 0.054 0.054 0.053
0.7 0.061 0.057 0.055 0.050 0.050 0.040
0.3 0.074 0.070 0.068 0.080 0.080 0.070
50 0.5 0.074 0.076 0.075 0.090 0.080 0.070
0.7 0.066 0.068 0.068 0.050 0.070 0.070
0.3 0.063 0.063 0.061 0.080 0.060 0.060
100 0.5 0.061 0.055 0.055 0.060 0.050 0.050
0.7 0.055 0.058 0.055 0.040 0.050 0.050

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A13. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the
Gumbel copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 70%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.060 0.064 0.061 0.054 0.050 0.047 0.059 0.058 0.053
30 0.5 0.050 0.051 0.056 0.043 0.043 0.038 0.048 0.049 0.044
0.7 0.065 0.066 0.063 0.057 0.056 0.050 0.063 0.058 0.050
0.3 0.069 0.067 0.062 0.068 0.066 0.058 0.066 0.068 0.059
50 0.5 0.064 0.065 0.055 0.067 0.067 0.056 0.067 0.063 0.052
0.7 0.066 0.063 0.057 0.068 0.060 0.059 0.066 0.061 0.059
0.3 0.064 0.064 0.059 0.061 0.055 0.064 0.064 0.061 0.061
100 0.5 0.064 0.059 0.052 0.060 0.061 0.052 0.067 0.059 0.056
0.7 0.062 0.061 0.056 0.063 0.060 0.060 0.063 0.059 0.057

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A13. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution
under the Gumbel copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 70%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.050 0.060 0.062 0.060 0.070 0.070
30 0.5 0.045 0.049 0.049 0.053 0.047 0.049
0.7 0.059 0.064 0.061 0.090 0.070 0.070
0.3 0.072 0.064 0.066 0.080 0.080 0.090
50 0.5 0.063 0.063 0.064 0.080 0.050 0.060
0.7 0.066 0.060 0.061 0.040 0.050 0.070
0.3 0.067 0.062 0.064 0.080 0.070 0.070
100 0.5 0.058 0.059 0.059 0.060 0.060 0.050
0.7 0.056 0.062 0.059 0.080 0.080 0.080

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A14. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the Frank
copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 30%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.080 0.079 0.075 0.082 0.075 0.074 0.079 0.075 0.072
30 0.5 0.079 0.076 0.075 0.076 0.071 0.076 0.072 0.073 0.075
0.7 0.068 0.067 0.069 0.062 0.063 0.069 0.063 0.066 0.068
0.3 0.060 0.062 0.066 0.061 0.063 0.067 0.065 0.066 0.067
50 0.5 0.071 0.072 0.069 0.064 0.065 0.066 0.068 0.069 0.069
0.7 0.050 0.060 0.062 0.057 0.062 0.065 0.053 0.062 0.061
0.3 0.054 0.060 0.062 0.054 0.058 0.056 0.054 0.060 0.057
100 0.5 0.060 0.058 0.057 0.059 0.058 0.059 0.059 0.059 0.061
0.7 0.055 0.051 0.057 0.055 0.052 0.053 0.056 0.054 0.060

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A14. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution
under the Frank copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 30%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.077 0.079 0.077 0.090 0.090 0.090
30 0.5 0.073 0.077 0.077 0.090 0.080 0.070
0.7 0.074 0.068 0.066 0.080 0.090 0.090
0.3 0.059 0.060 0.063 0.110 0.080 0.080
50 0.5 0.063 0.071 0.071 0.090 0.100 0.100
0.7 0.059 0.061 0.060 0.090 0.080 0.090
0.3 0.050 0.057 0.060 0.080 0.090 0.110
100 0.5 0.058 0.059 0.059 0.090 0.090 0.090
0.7 0.050 0.055 0.053 0.070 0.070 0.070

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A15. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the Frank
copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.069 0.072 0.066 0.060 0.067 0.063 0.067 0.068 0.064
30 0.5 0.068 0.067 0.064 0.060 0.063 0.058 0.065 0.065 0.061
0.7 0.059 0.063 0.064 0.051 0.056 0.057 0.057 0.059 0.059
0.3 0.068 0.063 0.065 0.065 0.061 0.062 0.066 0.061 0.068
50 0.5 0.056 0.061 0.053 0.058 0.060 0.061 0.059 0.061 0.054
0.7 0.068 0.066 0.066 0.067 0.064 0.066 0.068 0.062 0.064
0.3 0.055 0.059 0.062 0.059 0.063 0.061 0.058 0.060 0.061
100 0.5 0.054 0.056 0.058 0.052 0.055 0.059 0.053 0.053 0.062
0.7 0.046 0.050 0.055 0.048 0.050 0.049 0.049 0.050 0.055

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A15. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution
under the Frank copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 50%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.070 0.070 0.071 0.060 0.060 0.060
30 0.5 0.058 0.067 0.067 0.060 0.060 0.060
0.7 0.065 0.064 0.062 0.080 0.080 0.080
0.3 0.068 0.064 0.064 0.070 0.080 0.060
50 0.5 0.060 0.061 0.061 0.100 0.090 0.100
0.7 0.067 0.065 0.067 0.090 0.090 0.090
0.3 0.050 0.057 0.061 0.070 0.080 0.090
100 0.5 0.053 0.056 0.056 0.100 0.090 0.090
0.7 0.044 0.055 0.051 0.090 0.100 0.080

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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Table A16. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution under the Frank
copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 70%.

MCG MCG MCG MCG MCG MCG MCG MCG MCG
n Tau Clayton  Clayton  Clayton = Gumbel  Gumbel  Gumbel Frank Frank Frank
(t=03) (t=05) (=07 (t=03) (t=05) (t=07) (t=03) (=05 (t=07)

0.3 0.068 0.075 0.069 0.061 0.054 0.062 0.068 0.065 0.062
30 0.5 0.072 0.080 0.068 0.061 0.069 0.063 0.066 0.073 0.064
0.7 0.076 0.080 0.076 0.069 0.063 0.060 0.076 0.067 0.066
0.3 0.057 0.057 0.054 0.051 0.056 0.058 0.055 0.057 0.050
50 0.5 0.055 0.066 0.064 0.055 0.063 0.063 0.059 0.061 0.059
0.7 0.059 0.058 0.054 0.048 0.051 0.055 0.054 0.056 0.054
0.3 0.053 0.054 0.057 0.045 0.057 0.057 0.050 0.056 0.057
100 0.5 0.054 0.056 0.056 0.043 0.049 0.056 0.050 0.051 0.050
0.7 0.045 0.050 0.053 0.045 0.047 0.053 0.048 0.047 0.053

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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(continuous) Table A16. The results of type I error for dependent censoring survival data generated with bivariate weibull distribution
under the Frank copula according to the sample size (n) and association parameter Kendall’s tau () when censoring rate is 70%.

MCG MCG SC SC SC
n Tau Independent Clayton Clayton Clayton Clayton Clayton
Ensemble | Ensemble Il (t=True) Ensemble | Ensemble 11
0.3 0.055 0.074 0.072 0.100 0.120 0.110
30 0.5 0.066 0.076 0.074 0.110 0.110 0.110
0.7 0.073 0.077 0.073 0.070 0.080 0.090
0.3 0.052 0.059 0.057 0.070 0.070 0.050
50 0.5 0.052 0.066 0.067 0.090 0.100 0.070
0.7 0.049 0.056 0.059 0.060 0.070 0.060
0.3 0.053 0.052 0.051 0.060 0.050 0.050
100 0.5 0.046 0.055 0.054 0.070 0.070 0.070
0.7 0.046 0.052 0.051 0.070 0.070 0.070

MCG: modified Copula-Graphic estimator; SC: self-consistency estimator; t: association parameter Kendall’s tau;
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