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ABSTRACT

Deep Learning Approaches for Arrhythmia Screening

in Adhesive Patch-Type Wearable Electrocardiographs

Due to their convenience and extended measurement duration, adhesive patch-type
wearable electrocardiographs are increasingly utilized for arrhythmia screening. The
growing adoption of these devices in clinical settings promises enhanced capabilities for
early and accurate detection and treatment of heart diseases. However, the effectiveness of
current arrhythmia screening techniques when applied to patch-type wearable
electrocardiographs remains uncertain, primarily due to their single-lead structure and
susceptibility to noise. This study aims to develop robust methods to improve the

classification performance of arrhythmias using these devices.

Firstly, SeqAFNet, a deep learning model, utilized RR interval frames specifically devised
for beat-wise atrial fibrillation classification. This model was designed to classify each
ECG beat sequentially, based on a recurrent neural network structure. To evaluate its
performance not only on the training database but also more broadly, we compared it across
three different databases. SeqAFNet demonstrates robust performance in AF classification,
aligning with the 2020 European Society of Cardiology guidelines and the IEC 60601-2-

47 standard in clinical practice.



To address the problems caused by noise artifacts in wearable electrocardiographs, the
SE-ResNet-ViT hybrid model was developed. The SE-ResNet encoder in this model can
effectively extract features from ECG data, while the transformer component focuses
attention on the noise sections within the 10 second data window. Thanks to this hybrid
structure, the proposed model is capable of classifying signals with not only noise alone

but also those with various arrhythmias measured alongside the noise.

The methods proposed in this study hold significant promise for advancing the field of
arrhythmia detection and management using wearable technologies. These robust and
effective deep learning-based techniques could simplify the workload for medical
professionals. Furthermore, they contribute to more accurate arrhythmia diagnoses and the

early treatment of heart diseases in clinical settings.

Key words: Deep learning, Arrythmia, Atrial fibrillation, Wearable device, Patch-

type electrocardiograph, RNN, ViT
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1. Introduction

1.1 Motivation

Arrhythmia refers to an abnormal heart rhythm where the heart beats too slowly, too
rapidly, or irregularly [1, 2]. This feature occurs due to the abnormal generation or
transmission of electrical signals in the heart. Arrhythmia can range from mild symptoms
to life-threatening conditions. Sometimes, they can lead to major complications such as
heart failure, stroke, or cardiac arrest [3]. Therefore, the accurate diagnosis and monitoring
of arrhythmias are essential for maintaining patients' cardiac health and administering

appropriate treatment.

The 12-lead electrocardiogram (ECG) is the golden standard for arrhythmia diagnosis [4].
Each lead records the electrical activity from a specific area of the heart, allowing for a
comprehensive assessment of various regions of the heart. The patient typically undergoes
this test while lying down, and it is conducted over a short period of time. If arrhythmia is
not detected on the 12-lead ECG, however there is a high clinical suspicion, additional
work-up may be required [5]. A Holter monitor can be utilized for the early diagnosis of
arrhythmia [6]. This device first launched on the market in 1962. To date, it continues to
be used for the diagnosis of arrhythmia. However, traditional Holter monitors have a
limitation in recording duration. They capture data only for 24-48 hours. Therefore, the

short recording duration presents a diagnostic challenge [6]. This limitation is important



when detecting such as paroxysmal AF, where abnormal episodes may not occur within the

short monitoring period.

To address the limited recording time and inconvenient design of traditional Holter
monitors, various adhesive patch-type wearable electrocardiographs have been recently
introduced to the market. These adhesive patch-type electrocardiographs can measure ECG
up to 14 days with the advancement of hardware technology [7, 8]. Furthermore, these
devices are compact and lightweight. Therefore, these devices are more convenient for
daily use by patients. Currently, these wearable devices are becoming increasingly standard
in the diagnosis of arrhythmias, complementing traditional methods [9]. However, despite
these advantages, analyzing data collected from these wearable devices remains
challenging due to the extended measurement time, resulting in a substantial increase in the
amount of ECG data that must be analyzed. In addition, because of their single-lead
structure, these wearable devices can be more vulnerable in terms of signal quality and
noise than traditional Holter monitors [10]. Therefore, there is a need for a method capable
of effectively analyzing the large volume of data and complex signals measured by these

devices.

Deep learning methodologies have revolutionized the accurate classification and
diagnosis of arrhythmias [11, 12]. These methods exhibit exceptional performance in
learning and predicting complex data patterns, offering higher accuracy and efficiency
compared to traditional approaches. Recent advances have led to the development of

numerous deep learning-based models for arrhythmia classification [13]. However, many



of these studies have focused on ECG data derived from 12-lead ECGs or Holter monitors
[14-16]. As a result, the compatibility and performance of these models for analyzing
arrhythmias in ECG signals recorded by adhesive patch-type wearable electrocardiographs
remain insufficiently investigated. Furthermore, the suitability of these deep learning
models for arrhythmia screening in clinical practice, or their potential for real-time

arrhythmia monitoring, has not been adequately considered.

The objective of this study is to develop and comprehensively evaluate deep learning
models for their effective application in adhesive patch-type wearable electrocardiographs.
It concentrates on the development and evaluation of these models for early arrhythmia

screening in clinical settings.



1.2 Contributions of this Dissertation

In this dissertation, a deep learning-based atrial fibrillation (AF) classification method,
which is robust for inter-device and inter-patient variability, and a noise classification

method, which is conducted in real-world clinical settings, are proposed.

Obtaining a large dataset and labeling the data requires significant time and cost. If a new
device is used instead of the previously used one, the performance of the deep learning
model on data measured by the new device cannot be guaranteed. This is because the data
from the new device may differ from the data used previously. Recently, various types of
Long-term continuous cardiac monitoring (LTCM) devices have been introduced to the
market. It is important to note the potential differences between the data measured by newly
released LTCM devices and those obtained from Holter or 12-lead electrocardiograms.
Such differences among devices may necessitate additional effort and cost in preparing

data for training a new deep learning model.

Noise signals can hinder the accurate classification of arrhythmias in electrocardiogram
signals, particularly in single-lead wearable electrocardiographs, which may be more
vulnerable to noise. However, there is a lack of prior research utilizing real-world data due
to the difficulty in obtaining data where noise signals are labeled along with

electrocardiogram signals measured from patients with arrhythmias.



The contribution of this dissertation is outlined as follows. First, a deep learning model
utilizing RR intervals, which can effectively reflect the irregular characteristics of AF, is
proposed. This model aligns with the current standards of multi-level deep learning
architectures for time series data, where local features are extracted and long-term
dependencies across the entire series are captured. Seconds, the model evaluation was
conducted using cross-validation across different databases and devices, specifically
focusing on inter-database and devices, and intra-database variations to assess the
robustness of the electrocardiogram model. Finally, a deep learning model was developed
utilizing electrocardiogram signals, including arrhythmias signals, using patch-type

electrocardiographs in real-world clinical settings.



1.3 Overview

The overview provides a brief introduction to the various chapters of this study.

Chapter 2 introduces the medical significance of adhesive patch-type
electrocardiographs and deep learning techniques utilized in this study. It presents
architectures and concepts of Residual Network (ResNet) and Recurrent Neural Network
(RNN).

Chapter 3 analyzes deep learning-based methods for classifying atrial fibrillation (AF)
using data from adhesive patch-type wearable electrocardiographs. The chapter highlights
the innovative SeqAFNet, a beat-wise sequential neural network architecture designed for
precise AF classification. This model is particularly adept at processing the continuous and
irregular rhythms characteristic of AF, leveraging its sequential input and output processing
capabilities. The chapter also addresses the challenges of interpreting ECG data collected
from single-lead, adhesive patch-type wearables, which often involve extended
measurement periods. It demonstrates how SegAFNet effectively classifies atrial
fibrillation, thus enhancing the practical utility of these wearable devices in clinical settings.

Chapter 4 focuses on classifying noise signals caused by patient movements while using
adhesive patch-type wearable electrocardiographs. Such noise signals can lead to the
misclassification of arrhythmia signals. To address this issue, the chapter introduces the
SE-ResNet-ViT hybrid model, which is specifically tailored to differentiate between noise

and arrhythmia signals.



2. Background Ambulatory cardiac monitors

Advancements in wearable technology have significantly enhanced the feasibility and
effectiveness of ambulatory cardiac monitors (ACM). These technologies enable long-term,
non-invasive, real-time tracking of heart rhythms and other relevant cardiac parameters,
improving patient compliance and comfort. Moreover, the integration of algorithms and
artificial intelligence in these systems has improved the precision of data analysis, allowing
for the detection of subtle and transient cardiac events that might otherwise go unnoticed

in traditional episodic monitoring settings.

One of the ACMs, adhesive patch-type electrocardiographs are among the most actively
used devices in the market, their unique blend of convenience, efficacy, and healthcare cost
benefits. These lightweight, wearable devices adhere directly to the skin, allowing for

continuous monitoring without the need for bulky equipment or frequent medical visits.

Since their introduction to the market, adhesive patch-type electrocardiographs have not
been evaluated for variations in monitoring strategy, clinical outcomes, and healthcare

utilization in patients undergoing ambulatory monitoring.

Recently, the "Cardiac Ambulatory Monitor Evaluation of Outcomes and Time to Events
(CAMELOT) study," a retrospective cohort study utilizing the full (100%) Medicare Fee-
For-Service sample, including inpatient and outpatient medical claims, was conducted to

evaluate the clinical effectiveness of adhesive patch-type electrocardiographs [17]. In this



study, when comparing the new diagnosis of specified arrhythmia between adhesive patch-
type electrocardiographs and Holter monitors, the Odds Ratio was 0.5, indicating a higher
arrhythmia detection rate with adhesive patch-type electrocardiographs. Furthermore, with
an Odds Ratio of 1.35 for retesting any ACM within 180 days, it suggests that costs
associated with retesting can be reduced. However, during the cohort period, differences in
the Odds Ratio for new diagnosis of specified arrhythmia and ACM retest were observed
among the five groups of adhesive patch-type electrocardiographs billed to Medicare. This
suggests that even when using adhesive patch-type electrocardiographs, considerations
should be given to the algorithms or deep learning technologies used for diagnosing
arrhythmias, as they can influence the clinical utility of adhesive patch-type

electrocardiographs in a real-world setting.

In this dissertation, the MEMO Patch, a single-lead adhesive patch-type ambulatory
electrocardiograph shown in Figure 2.1, used to record ECGs from patients participating in
the clinical trial. This device is approved by the Ministry of Food and Drug Safety (MFDS)
in the Republic of Korea. This device is capable of operating for up to 14 days, recording

ECG at a sampling rate of 250 Hz and with a 12-bit resolution.



Figure 2.1. Patch-type ambulatory electrocardiograph, MEMO Patch, HUINNO Co., Ltd.



2.2 Residual Network (ResNet)

A residual network (ResNet) is one of the neural network architectures that has
significantly advanced the field of computer vision and deep learning. It was introduced by
Kaiming He et al. in their 2015 paper. Deep learning models encounter the issue of
vanishing gradients as the number of layers increases, a challenge that becomes more
noticeable in deeper networks. The fundamental idea of this architecture is to facilitate

learning while making the network deeper.

The most significant innovation of ResNet is the residual block. This block directly adds
the input to the output of a layer, also known as a skip connection. Through this, the
network learns only the residual, or the modifications needed between the input and output.
ResNet utilizes convolutional layers to extract features from input. These layers learn
important information from data through a spatial hierarchical structure. In addition, batch
normalization stabilizes and accelerates the learning process by normalizing the input
across layers. Typically, the ReLU (Rectified Linear Unit) activation function is employed.

ReLU introduces non-linearity, enabling the network to learn more complex patterns.

10



2.3 Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) is a neural network specifically designed for
processing sequential and time-series data. It is widely used in fields such as natural
language processing, speech recognition, and time-series forecasting. The key feature of an
RNN is its internal memory, which retains previous information and combines it with
current input to generate output. This allows the model to learn patterns and relationships
in data over time. RNNs have a recurrent structure, allowing them to reflect information
from previous time steps. This assists the network in considering past data when
determining current output. Basic RNNs face the problem of long-term dependencies,
meaning the network encounters difficulties in retaining and utilizing older information.
To solve this issue, advanced RNN models such as LSTM (Long Short-Term Memory) and
GRU (Gated Recurrent Units) have been developed. These models can more effectively

handle long-term dependencies through their complex gating mechanisms.

RNN has various types of input and output sequences leading to different architectures
like many-to-many, many-to-one, and one-to-many. Each of these architectures leverages
the ability of RNNs to process sequential data, making them suitable for a wide range of

applications in natural language processing, computer vision, and beyond.

11



3. SegAFNet: A Beat-Wise Sequential Neural Network for
Atrial Fibrillation Classification in Adhesive Patch-Type
Wearable Electrocardiographs

3.1 Motivation

Atrial fibrillation (AF) characterized by rapid and irregular contractions in the atria is
known as the most common type of arrhythmia [18]. When the atria contract irregularly, it
can disrupt the blood flow to the ventricles, subsequently increasing the risk of heart failure
[19]. These irregular contractions may also lead to the formation of a thrombus, which can
cause a stroke, a major complication associated with arrhythmia [3]. AF may initially occur
with mild symptoms or remain asymptomatic but over time, these symptoms can gradually
become worse [20]. For diagnosing AF, the 12-lead ECG is gold standard [4]. The 12-lead
ECG is capable of identifying an irregular rhythm, detecting the absence of observable P
waves, and the presence of F waves [5]. If AF is not identified through this procedure, yet
there is a strong clinical suspicion of AF, further investigation may be required [5]. In such

cases, a Holter monitor is employed for the detection of arrhythmias, including AF [6].

The European Society of Cardiology (ESC) categorizes AF into various types based on
its duration and presentation, first diagnosed, paroxysmal, persistent, long-standing
persistent, and permanent. These classification schemes are very useful in guiding

appropriate treatment [5]. The diagnosis and classification of AF are essential for patient

12



management. These classifications can guide the choice of treatment methods. While
Holter monitors are helpful in diagnosing AF, their limited recording duration, typically
capturing data for only 24-48 hours, encounters a diagnostic challenge [6]. This
shortcoming is particularly significant in detecting paroxysmal AF where episodes may not
occur during the monitoring period [6]. To overcome these recording duration constraints
and improve patient convenience in daily life, various adhesive patch-type wearable
electrocardiographs have been developed and introduced to the market. These wearable
devices are now widely used for diagnosing AF [7-9]. Despite their various benefits,
wearable electrocardiographs encounter several challenges. The extended measurement
duration significantly amplifies the amount of ECG data needing analysis. Furthermore,
their single-lead structure makes these devices potentially more susceptible to signal
quality problems and noise, in contrast to the more robust Holter monitors [10].
Consequently, developing a more robust and effective method tailored for wearable devices
to process and analyze the substantial volume and complexity of these signals is essential.
However, it is remarkable that numerous previous studies focusing on classifying AF using
ECG signals have primarily used data from 12-lead or Holter monitors [14, 15, 21].
Therefore, the effectiveness of these traditional methods in analyzing ECG signals captured

by wearable electrocardiographs remains unverified.

Analysis on a fine-grained, sample-wise, or beat-wise basis may enhance the
classification of ECG signals, compared to a window-based approach [14, 16, 22].

Particularly for rhythm-type arrhythmias like atrial flutter, supraventricular

13



tachyarrhythmia, and AF, analyzing ECG signals on a beat- or sample-wise basis offers a
more comprehensive examination at the change in rhythm [23, 24]. After the 4th China
Physiological Signal Challenge in 2021 (CPSC2021), several studies have conducted
detailed sample- or beat-wise analyses of AF [16, 22]. However, they encounter limitations
in objectively comparing their performance [25]. The underlying reason for this is that the
testing dataset from the challenge has not been released to the public, and the scoring
method was tailored specifically for ranking participants in the challenge. Additionally,
another complication arises from the fact that many studies have not employed diverse
datasets for both their training and testing phases [14, 26]. In other words, many studies
have relied on a single dataset for both training and evaluating their models. Previous
research has predominantly utilized the MIT-BIH Atrial Fibrillation Database (AFDB), and
some studies have also made use of the Long-Term AF Database (LTAFDB) or CPSC2021
training datasets [16, 22]. In a recent study conducted by Yating Hu et al., it was observed
that their model, which was trained on one dataset and evaluated on another, experienced
a reduction in classification performance [22]. While the model achieved a high F1-score
of 0.985 on the CPSC2021 training dataset, this score significantly decreased when the
model was tested on different datasets. Specifically, the F1-score dropped to 0.9 on the
AFDB and further declined to 0.74 on the LTAFDB after the process of label merging.
Another issue arises from the fact that some studies did not specify whether the patients (or
recordings) used in the training dataset were excluded from the testing dataset. The absence

of clear separation between patients (or recordings) in the training and testing datasets can

14



lead to overfitting [27, 28]. Because of these limitations, there is an increased risk of models
inaccurately classifying unseen ECG signals, especially when these signals are compared

to recordings obtained from wearable electrocardiographs[27-29].

To overcome the limitations, this study focused on developing a many-to-many recurrent
neural network (RNN)-based model for the sequential classification of AF, utilizing the R-
peak intervals of ECG signals. This sequential approach allows the model to analyze each
ECG beat at individual time steps. Thanks to its many-to-many configuration, the model is
particularly adept at accurately classifying irregular AF patterns. Moreover, to take
advantage of the many-to-many structure, the input to the model is successively strided by
one beat, and the ensuing inferences are ensembled to produce a merged output. The ECG
data, including AF were collected from patients who had either been previously diagnosed
with arrhythmia or exhibited symptoms of suspected arrhythmia, using the MEMO Patch.
The proposed model, trained using the AFDB and LTAFDB, was subjected to a
performance evaluation [30, 31]. This evaluation involved comparing data from adhesive
patch-type wearable electrocardiographs against those from public databases. Furthermore,
to prevent overfitting, a strict separation of recordings was maintained between the training

and testing datasets.

15



3.2 MethodsDatabases

The model was trained with data from the AFDB and LTAFDB public databases [30, 31].
In order to evaluate the model's performance on data obtained from wearable
electrocardiographs, we used ECG signals from a clinical trial that utilized the MEMO
Patch, depicted in Figure 3.1, an adhesive patch-type wearable electrocardiograph
manufactured by HUINNO Co., Ltd [32]. Table 3.1 presents detailed statistical

information for both the public databases and the patch database.

HUINNO

)

L

‘ By HUTNNG

* A8 3 TRIS e of ZoiA HRUSHHL. « RIS HEE MR AL FAlL.
* When your patch is not in use, keep it on this pad. * Keep this pad & patch clean.

Figure 3.1. MEMO Patch, an adhesive patch-type wearable electrocardiograph,

manufactured by HUINNO Co., Ltd.
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Table 3.1. Statistics for each database.

AFDB LTAFDB Patch
Number of participants - - 17
Age (years) - - 58.9 (42-69)
Male sex, n (%) - - 13 (76.5)
Number of records (chunks) 23 822 57
Duration of records (chunks) 9.25-10.23 h 6.13-26.35h 0.5-24h
Mean (o) duration of records (chunks) 10.19 (0.2) h 23.32(2.75) h 12.08 (7.59) h

Beats in records (hunks)

34,837-61,915

31,190-184,809

2322-137321

Episodes with paroxysmal AF 291 7,355 593
AF episodes that tare <30 s 65 4,703 150
Paroxysmal AF duration 1.7-36001.8 s 0.3-88378.8 s 2.7-518775s

Mean (o) paroxysmal AF duration

1132.8 (4292.3) s

489.5 (4550) s

811.3 (3799.4) s

@ Record 64, 113 was excluded.
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AFDB includes 23 long-term ECG recordings from human subjects with AF (mostly
paroxysmal) [30]. The duration of each recording is 10 h, and the individual recordings
contained two ECG signals sampled at 250 Hz with 12-bit resolution over a range of £10
mV. To evaluate the intra-database performance of the model, 23 records were divided into
5 folds. To prevent patient overlap within a fold, training and testing data were split based
on the record name. The patients comprised in the testing data for each fold are presented

in Table 3.2.

Table 3.2. Composition of 5-fold for AFDB.

Fold number Record names Number of
records

Fold 1 '04015','04043','04048', '04126' 4
Fold 2 '04746','04908','04936', '05091' 4
Fold 3 '05121','05261','06426','06453", '06995' 5
Fold 4 '07162','07859','07879','07910', '08215' 5
Fold 5 '08219','08378','08405','08434', '08455' 5

Total 23

18



LTAFDB includes 84 long-term ECG recordings from human subjects with sustained
paroxysmal AF [31]. Each record included two simultaneously recorded ECG signals
digitized at 128 Hz with 12-bit resolution over a 20-mV range. Although the record
durations varied, they typically lasted between 24-25h. The record named 64 was excluded
due to missing annotation and, the record named 113 was excluded because the ECG signal
occasionally vanished. To evaluate the intra-database performance of the model, 82 records

were divided into 5 folds. The patients comprised in the testing data for each fold are

presented in Table 3.3.

Table 3.3. Composition of 5-fold for LTAFDB.

Fold number Record names Number of
records

'00','01','03','05', '06', '07', '08'", '10",
Fold 1 16
llll, |12” |13|, VISV, |16|’l17l"18" |19l

20',21', 22, '23', 24!, 25', 26/, 28!,
Fold 2 16
301,132, 33, 34,35, 37, 38/, 39"

42,43, '44', 45, '47','48', 49, 'S 1.,
Fold 3 16
'53','54','55', '56', '58', '60', '62", '65

'68','69', 170", '71', 72", 74", 75", '100),
Fold 4 17
"101,'102', '103', '104', '105', '110', '111", '112", '114'

'115','116','117', '118', '119', '120', '121", '122",
Fold 5 17
'200', 201", '202', '203', 204", '205', '206', 207", '208'

Total 82
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The patch dataset was collected in a multi-center clinical trial conducted at Seoul National
University Bundang Hospital and Korea University Hospital (IRB numbers: B-2105/686-
002 and 2021AN0247, respectively). In total, 149 participants were included in the clinical
trial. Among them, 17 presented with AF. The patients visited the hospital to get the device
attached to their chests and returned after 14 days to hand it back. Within 14 days, lead-off
in the ECG signal could occur if the patients detach the device from their body during
showering or due to the inadequate contact of electrodes. To exclude the lead-off, we only
extracted the well-recorded ECG signals between the lead-off sections, and these sections
were referred to as chunk. Based on the data of 17 participants with AF, we created 57
chunks that may contain either AF, non-AF, or both types of signals. Procedure for making
the chunk from the patch dataset depicted in Figure 3.2. All recordings were sampled at

250 Hz with 12-bit resolution using MEMO Patch.

20



Measure ECG for 14 days

Day1 Day2 Day3 e @ o Day14
| I I I I ]
| I I I I |
v
Slice the ECG data by day
and select the dates with AF
Day1 Day2 Day3 Day14
I | | | ... | |
| % i B I %
AF occurrences AF occurrences
v
Use the remaining as chunks.
Day1
chunk lead-off chunk
| | . '
I I I |
Day14
chunk lead-off chunk
“ I ]
I |
The other days are not used.

Figure 3.2. Procedure for making the chunk from the patch dataset.
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3.2.2 Preprocessing

The RR interval (RRI) of the ECG signal served as the input for our model. Previous
research has employed the RRI as a characteristic to effectively depict the irregular or rapid
rhythm of AF [14, 16, 21, 28, 30]. RRIs were calculated using beat annotations from AFDB
and LTAFDB. For the patch dataset, beats were identified using the MEMO Care software
provided by HUINNO Co., Ltd. Subsequently, the RRIs were computed based on the
number of samples between a current R peak and its preceding R peak. The LTAFDB,
having a different sampling rate of 128 Hz compared to other datasets, had its RRIs up-
sampled to 250 Hz. Each R peak was labeled as either non-AF or AF.

According to the 2020 ESC Guidelines for AF diagnosis, a standard 12-lead ECG
recording or a single-lead ECG tracing lasting longer than 30 s that shows cardiac rhythm
without discernible repeating P waves and exhibits irregular RR intervals (provided there
is no atrioventricular conduction impairment) is considered diagnostic of clinical AF [5].
Consequently, AF durations of less than 30 s were relabeled as non-AF. Table 3.4 displays

the statistics after applying preprocessing for AF in each database.
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Table 3.4. AF in each database applying preprocessing.

AFDB LTAFDB Patch
With Paroxysmal AF 226 26,51 443
Paroxysmal AF duration 30.8-36001.8 s 30-88378.8 s 30-51877.5s
Mean (o) paroxysmal AF duration 1454.7 (4822.7) s 1342.6 (7503.4) s 1079.8 (4363.3) s
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3.2.3 Sequential input

A frame consisting of 20 RRIs was generated for embedding into the input layer of our
model, starting with the initial 20 RRIs in the first frame. To make a sequential input
structure, the subsequent frame was shifted by one ECG beat. Thus, the second frame
contains the 2nd to the 21st RRIs. Each frame received a label depending on the quantity
of AF beats present. If this number was equal to or exceeds a certain threshold, the frame
was labeled AF. If not, it was labeled as non-AF. This threshold was determined to be 11,
more than half of the 20 RRIs per frame, and the label was placed at the central ECG beat

of the frame. Figure 3.3 illustrates the process for creating sequential input from the ECG

signal.
Output 1 = Output 2 = Output 3 =
AF,n({AF € Frame 1}) > TH | | AF, n({AF € Frame 2}) > TH AF, n({AF € Frame 3}) > TH
non — AF, otherwise non — AF, otherwise non — AF, otherwise

N

1
Frame 1 = {RRIy, RRI,, ..., RRI,0} | 5
i

i
’ Frame 2 = {RRI,,RRIs, ..., RRI,,} |: PR
1

’ Frame 3 = {RRI3,RRI,, ..., RRI,,} ’

Figure 3.3. Method of generating sequential input from the ECG signal.
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3.2.4 SegAFNet

The proposed SeqAFNet employs a two-stage bidirectional RNN featuring a many-to-
many structure, specifically designed for handling sequential data like time series and
sequence data [33]. A distinct attribute of RNNs is their capacity to integrate information
from past data with the current input, offering significant advantages for predicting time-
series challenges [33, 34]. However, as the sequence length increases, RNNs may
encounter vanishing or exploding gradient problems [35]. To address these challenges, both
the long short-term memory (LSTM) and its simplified version, the gated recurrent unit
(GRU), have been developed [36]. This model incorporates bidirectional GRU cells in its
initial and subsequent stages, named a local-wise RNN layer and a sequence-wise RNN
layer, respectively. Figure 3.4 illustrates overall architecture of SeqAFNet.

Local-wise RNN layer: The local-wise RNN layer comprises 30 GRU cells, each cell
configured to handle a singular frame consisting of 20 time steps. Each individual time step
in the GRU cell is designed to process a one RRI. This layer is aims to identify short
regional arrhythmias utilizing only the local RRI frames. The output from each GRU cell
has 20 time steps, including both the forward and backward hidden states.

Flatten layer: Positioned after the local-wise RNN layer, the flatten layer converts its
multi-dimensional output into a one-dimensional vector. This reshaping facilitates efficient
data transmission to the following fully connected layer, thus enhancing the model’s ability

for high level representations from the sequential data.
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Fully connected layer: In this model, two fully connected layers are integrated, each
reducing the input and output sizes by a factor of four. This process of feature abstraction
reduces the size of the model and ensures that it retains only the most important features,
which can potentially enhance generalization capability.

Multi-head attention: Prior to its integration into the sequence-wise RNN layer, the multi-
head attention layer was utilized, offering several advantages. The multi-head attention
mechanism enables the model to simultaneously concentrate on different segments of the
input sequence, effectively identifying different relationships and dependencies. This
attention enhances the model’s ability to recognize patterns and handle long-range
dependencies, which can be especially beneficial for processing complex sequences.

Sequence-wise RNN layer: Features extracted by the preceding local-wise layer were
input to the sequence-wise RNN layer. By utilizing local RRI patterns from each period,
this layer enhances the effective prediction of arrhythmia, particularly in AF where
irregular rhythms occur sequentially and continuously.

Fully connected layer: To maintain the intrinsic sequential output features of the many-
to-many structure, independent processing is required. The fully connected layer is
comprised of two distinct stages, and each sequence-wise layer operates independently,
without interconnection. The preceding stage reduces the output shape to half of the input
size, and the subsequent stage adjusts the output to a size of two. This configuration enables
the binary categorization of each time step into either AF or non-AF, employing a sigmoid

function.

26



g
# b,
‘;."I'I-

d
S

")
*

2x FC Layer |

Sequence-wise RNN layer

2x FC Layer

Local-wise RNN layer

[ omen J[ omm |
FC Layer | | FC Layer | FC Layer

I Add & Norm | | Add & Norm | o
¥ =
| Multi head attention
______ e e e e T
| FC Layer | | FC Layer |
¥ T
| Flatten | | Flatten |

I —
| RRI # 1 ~ 20 | | RRI # 2 ~ 21 RRI # N+1 ~ N+20
[Frame 1] [Frame 2] [Frame 30]

Figure 3.4. lllustration of SeqAFNet.
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3.2.5 Ensemble decision and post-processing

To take advantage of SegAFNet's many-to-many structure, an ensemble decision strategy,
depicted in Figure 3.5, was employed. Initial inference of SeqAFNet returns 30 outputs,
denoted as {Y;}, each corresponding to the R peak of the ECG at time t(n). In next
inferences, the input frames are shifted by one beat to progress to the subsequent temporal
sequence. This progression prompts the model to predict the next series of 30 outputs,
designated as{Y;,}. At the specific moment of t(n), corresponding to the single R peak
in the ECG, there exist 30 outputs denoted as Y;[t(n)] from different temporal sequences.
Every distinct output Y[t(n)] within the assembled set {Y;} represents a prediction of
AF. At the position t(n), the classification is determined as AF if the count of AF
predictions is equal to or exceeds the predefined threshold. The threshold is designated at
16. When the predictions do not reach this threshold, the classification is settled on non-

AF. Following the ensemble decision approach, AF predictions with durations less than 30

s are relabeled as non-AF.

28



{c) Mapping the output
to each R peak of ECG.

[Cveoor ][ e | [ v [ vecar [ v
(b) Ensemble decision T i
of each output on the || LY :TH ‘ ‘ IY=TH | | IV 2TH | | IYETH ‘ ‘ TV eTH ‘
beat. R R (. SR
| Yilt(m)] | | ¥i[t(n+ 1)] ‘ ‘ Yile(n + 23] ‘
(a) The model continuously
pe‘rforms inference with a
stride of one beat. — shift 1 beat ‘ Y[e(2)] | | ¥y [£(3)] | | FALEY] ‘
ENEEEEE N BN

B
e [evamw | [ erem i
_____________ T_________l____'
‘Y!If(nJrZSJ\ ‘ ‘Y,\t(u+29)| |
‘ ¥a[e(30)) ‘ ‘ ¥lz(31)] ‘
‘ ¥ 6(30)] ‘

Figure 3.5. lllustration of ensemble decision process.
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3.2.6 Metrics

The model's performance was assessed using two distinct metrics. The first metric focused

on the beat-by-beat classification performance of AF, employing measures such as

accuracy, precision, sensitivity, specificity, and F-1 score. The second metric, aligned with

Subclause 201.12.1.101.1.5.3 of the IEC 60601-2-47 standard, aimed at evaluating the

sensitivity and positive predictive value specific to AF duration [37].

4 _ TP +TN
CouraY = TP Y TN+ FP + FN
precision — 17
recision = TP+ FP
S itivity = i
ensitivity = TPTFN
Specificity = TN
pecificity = TN T FP
2 X Precision X Recall
F1 score =

Precision + Recall

Duration of overlap

AF duration Se =
uration -e Duration of reference — Annoted AF

Duration of overlap

AF duration + P =
Duration of algorithm — Annoted AF
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(3.1

(3.2)
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3.3 Results

3.3.1 Experiment setups

All experiments were conducted using the RTX3090 GPU within the PyTorch framework.
We employed the Adam optimizer, beginning with an initial learning rate of 1e~3 and a
weight decay of 1e~>. In the optimization process, a binary cross-entropy loss function
was utilized. The model training continued for up to 15 epochs with a batch size of 256,
and the optimal epoch was selected based on the performance in the validation dataset.
Table 3.5 shows the detailed parameters of the model. The notation ‘30 %’ in front of the

layers was used to indicate that there are 30 layers in parallel.
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Table 3.5. Detailed parameters of the proposed model.

Layer Input shape Output shape Parameter
Input (30,20, 1) 30 x (20, 1)
30 x GRU 30 x (20) 30 x (20, 128) Hidden size: 64

30 x Flatten

30 x (20, 128)

30 x (1, 2560)

30 x FC layer 30 x (1, 2560) 30 x (1, 640) Activation: ReLU
Dropout - - Rate: 0.1

30 x FC layer 30 x (1, 640) 30 x (1, 160) Activation: ReLU

Multi-head
. (30, 160) (30, 160) Num head: 4
attention
Add & Layer Norm - -
GRU (30, 160) (30, 128) Hidden size: 64

30 x FC layer (30, 128) 30 x (1, 64) Activation: ReLU
Dropout - - Rate: 0.1

30 x FC layer 30 x (1, 64) 30x(1,2) Activation: sigmoid
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3.3.2 Comparison of performance based on the number of RRIs per

frame

To determine the optimal number of RRIs for each frame, we evaluated the performance
using frames containing 10, 15, 20, 25, and 30 RRIs, respectively. We set the threshold for
determining the frame's label at a level exceeding half the number of RRIs. Table 3.6 shows
performance of model at the number of RRIs per frame. We set the threshold for
determining the ensemble decision at 16. The highest performance on the Patch database
was when the frame contained 20 RRIs. However, there were no significant differences

with other values.

Table 3.6. Performance of model at the number of RRIs per frame.

# RRIs

per L;l:l Train Test Accuracy  Precision  Sensitivity  Specificity ~ F1 score
frame

30 >16 LTAFDB Patch 0.983 0.975 0.976 0.988 0.975

25 > 13 LTAFDB Patch 0.981 0.977 0.969 0.992 0.973

20 >1] LTAFDB Patch 0.986 0.981 0.979 0.992 0.98

15 >3 LTAFDB Patch 0.969 0.951 0.961 0.976 0.959

10 >6 LTAFDB Patch 0.983 0.969 0.983 0.983 0.976
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3.3.3 Comparison of performance based on the threshold for the label

of frame

To determine the optimal number of thresholds for the label of frame, we evaluated the
performance using threshold 1, 6, 11, 16, 20. If the number of AF beats within a frame
exceeded the threshold, the frame was labeled as AF; otherwise, it was labeled as non-AF.
The number of RRIs per frame was fixed at 20, which demonstrated the best performance
in previous experiments. Table 3.7 shows performance of model at the threshold for label
of frame. We set the threshold for the ensemble decision at 16. The highest performance

on the Patch database was when the threshold at 11.

Table 3.7. Performance of model at the threshold for label of frame.

L,?II?I Train Test Accuracy Precision Sensitivity Specificity scFolre
>20 LTAFDB Patch 0.981 0.975 0.971 0.989 0.973
>16 LTAFDB  Patch 0.981 0.968 0.979 0.983 0.973
>11 LTAFDB  Patch 0.986 0.981 0.979 0.992 0.98
>6 LTAFDB  Patch 0.984 0.97 0.984 0.983 0.977
>1 LTAFDB  Patch 0.965 0.934 0.975 0.957 0.952
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3.3.4 Comparison of performance based on the threshold for

determining the ensemble decision

To determine the optimal number of thresholds for the ensemble decision, we evaluated
the performance using threshold 6, 11, 16, 21, 26. We set the number of RRIs per frame at
20 and, threshold for label at 11, which demonstrated the best performance in previous
experiments. Table 3.8 shows performance of model at the threshold for ensemble decision.
We observed that the performance at thresholds of 11 and 16 was nearly identical for the
Patch database. Due to the negligible difference between the two values, we opted to use

16.

Table 3.8. Performance of model at the threshold for ensemble decision.

EnsTegble Train Test Accuracy Precision Sensitivity Specificity sclj)lre
>26 LTAFDB Patch 0.979 0.983 0.957 0.997 0.969
>21 LTAFDB Patch 0.985 0.984 0.973 0.995 0.978
>16 LTAFDB Patch 0.986 0.981 0.979 0.992 0.98
>11 LTAFDB Patch 0.986 0.977 0.983 0.988 0.98
>6 LTAFDB Patch 0.982 0.967 0.983 0.982 0.975
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3.3.5 Intra-database performance of the AF classification

To assess the model’s performance within each AFDB and LTAFDB, we implemented
an inter-patient 5-fold cross validation. Generally, k-fold cross validation was sufficient for
assessing the model’s generalization ability on unseen data. However, ECG data from a
single patient exhibit almost similar morphology and patterns that repeat. Therefore, if ECG
data from a single patient are mixed across the training and testing sets within each fold,
the model may learn to recognize the specific patterns of that patient rather than generalized
patterns of ECG. To prevent this overfitting problem, we utilized record names to separate
the training and testing sets within each fold. The patients comprised in the testing sets for
each fold are presented in Table 3.2 and Table 3.3. Table 3.9 shows the results of cross

validation of AFDB and Table 3.10 shows the results of cross validation of LTAFDB.
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3.3.6 Inter-database performance of the AF classification

To assess the model’s performance with the unseen data that was measured from different
devices, we implemented inter-database cross validation. The model was trained separately
on the AFDB and LTAFDB databases, and then tested on the LTAFDB and AFDB,
respectively. Additionally, Patch dataset is used to evaluate its performance. Table 3.11
shows the results of inter-databases performance of AF classification. To enhance
performance on the Patch dataset, all parameters in this paper have been optimized
specifically for the Patch dataset. Finally, we trained the model using the entirety of both
the AFDB and LTAFDB databases and then evaluated its performance on the Patch dataset.
However, we obtained lower performance when using both AFDB and LTAFDB for

training, compared to using only LTAFDB.
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3.3.7 Comparison of performance before and after applying ensemble

decision

For the ensemble decision, ECG was shifted by 1 beat at a time for inference. In the
performance experiment without applying the ensemble decision, ECG was shifted by 30
beats at a time without overlap. Table 3.12 shows performance of model before and after
applying ensemble decision. When the batch size is 256, it takes approximately 5.76 ms for
the model to perform one inference (CPU: Intel i9-12900K, GPU: RTX3090). This means
that 30 ECG beats take 22.5 us and a single ECG beat takes 0.75us. Since the ensemble

decision uses the results of 30 inferences for a single ECG beat, it takes 22.5 us.
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Table 3.12. Performance of model before and after applying ensemble decision.

Ense.n}ble Train Test Accuracy Precision Sensitivity Specificity Fl

Decision score
X AFDB  LTAFDB 0.956 0.955 0.956 0.955 0.955
(0] AFDB  LTAFDB 0.961 0.96 0.96 0.954 0.96
X AFDB Patch 0.97 0.969 0.945 0.991 0.956
(0] AFDB Patch 0.974 0.973 0.953 0.992 0.963
X LTAFDB  AFDB 0.967 0.966 0.967 0.964 0.966
(0] LTAFDB  AFDB 0.975 0.974 0.975 0.97 0.975
X LTAFDB Patch 0.98 0.974 0.97 0.989 0.972
(0] LTAFDB Patch 0.986 0.981 0.979 0.992 0.98
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3.4 Discussion

In this work, we have developed SegAFNet, an RNN-based architecture with a many-to-
many approach, specifically designed for sequentially classifying AF utilizing the RRIs of
ECG signals. The novel configuration of input frames in a sequential shift, illustrated in
Figure 3.3, allows the model to consider surrounding rhythm variations for more accurate
AF classification. Moreover, SeqAFNet's beat-wise output structure, as shown in Figure
3.5, not only contributes to the effective classification of each ECG beat, enhancing overall
results, but also supports continuous output inference. This approach leads to an ensemble
of these outputs, enabling more accurate decision-making by accumulating predictions
from various time points. In the context of diagnosing AF using 12-lead or single-lead ECG
recordings, the ESC guidelines propose that clinical AF should be identified when AF
symptoms lasting for longer than 30 s [5]. However, applying these guidelines is
challenging for many existing automated AF screening due to their specific output
structures [21, 38, 39]. Many previous AF screening methods rely on their own criteria for
AF screening, which are not always acceptable in clinical practice [21]. In contrast,
SeqAFNet, with its beat-wise output structure, can effectively determine the duration of
predicted AF exceeds 30 s, thereby aligning more closely with established clinical
guidelines. Furthermore, the proficiency of our method in AF screening was evaluated
based on its performance in determining AF duration, adhering to the IEC 60601-2-47

standards titled 'Particular Requirements for the Basic Safety and Essential Performance of
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Ambulatory Electrocardiographic Systems.' The results, detailed in Table 3.6, highlight the
effectiveness of our approach, especially when applied to adhesive patch-type wearable
electrocardiographs.

Previous research has demonstrated the ability of their methods to accurately classify AF
in a specific dataset. However, as shown in Table 3.13, these methods often exhibit
decreased performance when applied to unseen data. In contrast, our proposed method,
SeqAFNet, maintains consistent and reliable performance across different datasets,
including AFDB, LTAFDB, and the patch dataset, as detailed in Table 3.13. Therefore, we
believe that our approach, which has been effective in screening for AF using data
measured by adhesive patch-type wearable electrocardiographs in this study, will also be

effective in screening for AF in a variety of unseen data.
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Deep learning-based research for atrial fibrillation (AF) classification often overlooks
practical challenges encountered in real-world clinical settings. Specifically, clinical
technicians are required to review and correct misclassified results generated by automatic
screening systems, making this a labor-intensive step in ensuring accurate diagnosis [43,
44]. In a recent study by Hao Wen et al., a beat-wise AF classification model based on
LSTM was developed [16]. They utilized the recording ‘00’ from the LTAFDB to assess
its performance over time. The model achieved macro-averaged scores of 0.938 for
sensitivity, 0.938 for specificity, 0.982 for precision, and 0.974 for accuracy, respectively.
Initially, these results might indicate the model can classify AF effectively. However, an
output displayed over time on a graph, as illustrated in Figure 3.6(a), reveals a significant
number of misclassifications. Consequently, clinical technicians expend a significant
amount of effort and time correcting such segmentalized misclassifications during ECG
signal analysis. On the same recording '00', our proposed model, which was trained on the
LTAFDB fold 1 trainset, achieved score of 0.988 for accuracy, 0.988 for precision, 0.989
for sensitivity, 0.981 for specificity, and 0.988 for F1 score. The output of our model was
also plotted over time, as illustrated in Figure 3.6. Employing the proposed ensemble
decision method enhances the robustness of the analysis, particularly in diminishing
segmentalized misclassifications during beat-wise analysis, demonstrated in Figure 3.6(b).
In Figure 3.6(b), the labels indicating non-AF correspond to instances of ventricular
tachycardia (\VT), characterized by the occurrence of three or four premature ventricular

complexes in succession during episodes of AF. Figure 3.6(c), presenting a magnified view
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of the section from 40,000 to 50,000 beats, demonstrates our model's capability to
accurately classify transitions into and termination of AF. Consequently, our proposed
method substantially lightens the workload of clinical technicians by minimizing the
necessity for reviewing and correcting misclassifications. As a result of its efficiency, it

holds significant potential as a valuable tool in clinical practice.
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Figure 3.6. Comparison of beat-wise evaluation results on recording 00 from LTAFDB:
Study by Hao Wen et al. and our Study. (a) Study by Hao Wen et al. [16] (b) Results of our

proposed method. (¢) Magnified view of section from 40,000 to 50,000 beats.
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Despite its significant results, the current study is not without limitations. The primary
limitation lies in the model's reliance on RRIs of ECG waveforms for input. While this
approach enables our model to effectively capture irregular cardiac rhythms, which is a
characteristic of AF, it overlooks the detailed morphological features associated with AF.
These include the lack of distinct, repeating P waves or the presence of F waves, which are
crucial for a comprehensive AF analysis. Incorporating morphological features along with
the irregular intervals currently utilized in AF classification could potentially elevate the
model's accuracy in diagnosing AF. As a secondary limitation, our proposed methods are
vulnerable to VT events during AF episodes. In the LTAFDB, the occurrence of three or
four consecutive premature ventricular complexes, indicative of VT, can coincide with AF
episodes. These ventricular arrhythmias may obscure the exact start and end points of AF
episodes, thereby complicating the classification process. Considering the morphological
features of the ECG during such episodes could provide crucial context, potentially
enhancing the accuracy of classification. For future work, it is essential to investigate
methodologies that combine RR intervals and detailed ECG waveform features as
sequential inputs within a frame-based model. This advancement could notably enhance

the performance and accuracy of AF classification systems.
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3.5 Summary

This study presented the use of SegAFNet, a many-to-many RNN-based model designed
for the beat-wise sequential classification of AF. This model is suitable for wearable
electrocardiographs. By employing an ensemble decision strategy, our approach refines the
model’s many-to-many output, thereby effectively correcting mispredicted beats. The
performance of SeqAFNet was comprehensively tested by training it on two separate
databases (AFDB and LTAFDB). Further, its capabilities were evaluated using data from
MEMO Patch, a type of adhesive patch-type wearable electrocardiograph. SegAFNet had
a consistently high efficacy, indicating a robust performance with not only the MEMO
Patch dataset but also the tested datasets from public databases. Furthermore, our model
was evaluated based on the Subclause 201.12.1.101.1.5.3 of the IEC 60601-2-47 standard,
which involves the basic safety and essential performance of ambulatory
electrocardiographic systems, with a specific focus on AF duration assessment. In
conclusion, our proposed method improves the screening of clinical AF using adhesive
patch-type wearable electrocardiographs that can be used for up to 14 days, which is in

accordance with the 2020 ESC Guidelines for AF diagnosis in clinical practice.
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4. SE-ResNet-ViT Hybrid Model for Noise Classification
in Adhesive Patch-Type Wearable Electrocardiographs

4.1 Motivation

Arrhythmia is a heart rhythm abnormality where the heart beats too slowly, too rapidly,
or irregularly [1, 2]. Certain arrhythmias pose risks of serious complications, including
stroke, heart failure, and cardiac arrest. Detecting these arrhythmias, which can occur
intermittently, is challenging when patients undergo electrocardiogram (ECG)
measurements during hospital visits [45]. Hence, to diagnose arrhythmia, ECG signals are
commonly recorded using a Holter monitor over a period of 24 or 48 hours. However,
previous studies indicate that 24- or 48-hour Holter monitoring is often ineffective in
diagnosing certain clinically significant asymptomatic arrhythmias, including episodes of
atrial fibrillation and transient bradyarrhythmia [46, 47]. Furthermore, these Holter
monitors, also known as memory recorders, can be cumbersome for patients due to their
bulky size or complex design.

Recently, to minimize patient inconvenience, patch-type single-lead electrocardiographs
have been launched in market, such as the Zio Patch (iRhythm in the United States), Ezypro
(SIGKNOW in Taiwan), and MEMO Patch (HUINNO in Korea). These patch-type
electrocardiographs improve patient convenience in daily life, thanks to their lightweight

and compact design. The patch-type electrocardiograph, designed for low-power
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consumption, can record ECG signals for up to 14 days. Previous studies have shown that
recording ECG for approximately 14 days is effective in detecting most symptomatic
arrhythmias [7]. Therefore, using this long-term patch-type electrocardiograph can enable
more accurate diagnosis of arrhythmia and prevention of serious complications like stroke,
heart failure, and cardiac arrest, compared to the 24- or 48-hour monitoring using a Holter
monitor. Analyzing signals from patch-type electrocardiographs is more labor-intensive
compared to those from Holter monitors, as the longer recording time leads to an increase
in the absolute amount of noise within the signal. Furthermore, the fact that the
morphologies of some noise signals are similar to some of arrhythmia signals complicates
the task for machine learning models or algorithms in distinguishing between noise and
arrhythmia signals. Therefore, patch-type long-term electrocardiographs require more
robust software support for automated ECG analysis and arrhythmia classification
compared to Holter monitors. Previous studies have proposed deep learning models to
classify noise and ECG signals. However, these methods used only ECG data from ICU or
Holter monitors for training and evaluating their models [48, 49]. Therefore, the efficacy
of these models in classifying ECG signals from wearable electrocardiographs has yet to
be evaluated. Additionally, some studies face the issue of not including arrhythmia signals
in their data, consequently making these models less effective for arrhythmia diagnosis [50].

In this study, we introduce a SE-ResNet-ViT hybrid model designed to classify noise
signals from arrhythmic ECG signals in patch-type wearable electrocardiographs. ECG

signals were collected over 14 days using HUINNO's MEMO Patch, which included both
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arrhythmia and noise signals, from patients with a history of arrhythmia or symptoms
indicative of arrhythmia. The proposed model was trained, and its performance evaluated

in classifying signals as either noise or non-noise.
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4.2 Methods

4.2.1 Data collection

Data were gathered from a multi-center clinical trial conducted at Korea University
Hospital and Seoul National University Bundang Hospital, receiving approval from the
Institutional Review Board of each institution. The IRB numbers for the clinical trial are
2021ANO0247(Korea University Hospital) and B-2105/686-002(Seoul National University
Bundang Hospital) respectively. Patients in need of ambulatory ECG monitoring were
considered eligible if they had been diagnosed with stroke or transient ischemic attack with
no identifiable causes, or if they exhibited symptoms such as palpitation, dizziness, or
syncope. Patients were invited to participate in the study if they were aged between 19 and
80 years old, capable of providing voluntary informed consents, and able to adhere to the
study protocol for 14 days of attaching a MEMO Patch for monitoring.

Figure 4.1 depicts the overall process of data collection. In the clinical trial, a total of
149 people participated. For this study, data from 70 individuals were randomly selected
and analyzed. The labeling process for ECG signals involved several steps. Initially, non-
clinical experts manually reviewed and selected 117,000 noisy ECG signals. Following this,
clinical technicians reviewed and labeled 2,084 noise signals, 7,552 normal sinus rhythm
(NSR) signals, and 8,086 arrhythmia signals, which were then further inspected by a
cardiologist. Noise signals not only consist of pure noise but also include signals that are a

mixture of noise and ECG. The arrhythmia signals in this study included various types,
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such as atrial premature contractions (APC), ventricular premature contractions (VPC),
atrial fibrillation (AF), supraventricular tachycardia (SVT), atrioventricular block (AVB),
and other arrhythmias. Table 4.1 shows the detailed classes and quantities of arrhythmia.
To increase the quantity of noise signals, we collected data from 21 healthy individuals
using the MEMO Patch during their daily life. The training and testing datasets were split
into a 7:3 ratio across the noise, NSR, and arrhythmia ECG signal categories, with no
patient overlap between the sets to prevent overfitting. The training dataset was divided

into an 8:2 ratio for the purposes of training and validating the model.

Table 4.1. Quantities of the collected and labeled data.

Arrhythmia Training Testing

Normal sinus rhythm 5242 2310

Noise signal 5113 2354

Atrial premature contractions 3476 1189
Ventricular premature contractions 1018 902
Atrial fibrillation 934 87
Supraventricular tachycardia 265 84
Atrioventricular block 3 102
Other arrhythmias 16 10

Total 16067 7038
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4.2.2 Device and software

Figure 2.1 displays the MEMO Patch, a single-lead adhesive patch-type ambulatory
electrocardiograph, used to record ECGs from patients participating in the clinical trial.
This device is approved by the Ministry of Food and Drug Safety (MFDS) in the Republic
of Korea. This device is capable of operating for up to 14 days, recording ECG at a
sampling rate of 250 Hz and with a 12-bit resolution. Patients visited the hospital to attach
the device to their bodies and then went about their daily lives, measuring their ECG signals.
After 14 days, they returned to the hospital to hand back the device. Upon its return, a
technician downloaded the ECG data stored in the device's memory. The ECG data are
initially pre-annotated using a machine learning model for arrhythmia classification, known
as MEMO Care, provided by HUINNO, the manufacturer of the device. Subsequently, all

the data referenced in this paper is reviewed by clinical technicians.
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4.2.3 Preprocessing

Some noise signals within the ECG can be eliminated using a simple digital filter. For
instance, baseline wander, a low-frequency noise, arises due to factors like breathing,
movement, or electrically charged electrodes [51]. This type of noise can be removed by
applying a high-pass filter with a cut-off frequency below 1 Hz. Additionally, the ECG
signal can be contaminated by high-frequency EMG signals during patient movement,
which can be filtered out using a low-pass filter [52]. Increasing the order of the filters and
narrowing the cut-off frequency can effectively eliminate these noises from the signals.
However, this approach may distort the ECG signal, potentially leading to reduced
performance in arrhythmia classification. We applied a second-order band-pass
Butterworth filter with a 0.5-50Hz range in this study to remove baseline drift and high-
frequency noise from each 10-second ECG signal. Subsequently, the signals were

normalized from 0 to 1 using min-max scaling.
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4.2.4 Architecture of SE-ResNet-Vit model

To classify noise signals within ECG signals, we propose a SE-ResNet-ViT hybrid model-
based architecture. The overall structure of the model is depicted in Figure 4.2. Since the
introduction of the hybrid model that combines Convolutional Neural Network (CNN) with
Vision Transformer (ViT) in Dosovitskiy's 2020 paper, numerous studies have adopted this
hybrid architecture [53]. The hybrid model employs a technique that applies feature maps
extracted from a CNN to the patch embedding projection for enhanced image analysis. The
hybrid model demonstrates superior performance in image classification compared to the
ResNet model, and it also outperforms ViT in smaller-sized models.

One of the ResNet models, SE-ResNet, is recognized for its high classification
performance among CNN-structured models, and our previous study confirmed it surpasses
the classification performance of the standard ResNet model [54, 55]. Given the high
performance of SE-ResNet, we aimed to create a hybrid by combining SE-ResNet and ViT.
This hybrid model projects the output of the CNN feature map, using a 1x1 patch size, into
the Transformer dimension. The difference between our previous study and the current one
is that the sampling rate has been changed from 200 Hz to 250 Hz.

The input shape for the model is set to batch size x 2500 x 1. The stem layer of the model
comprises a convolution layer with a kernel size of 7 and a stride of 2, followed by a max

pooling layer with a window size of 3, a stride of 2, and padding of 1. The layer composition,
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as represented by the stride block, aligns with that of SE-ResNet. However, within the

ResNet block, the stride is altered to 2 for the convolution process.

SE block

AvgPool
Conv
RelLU
Conv

Sigmoid

ResNet block

BN
RelU
Conv

BN
RelU

Drop Qut
Conv
SE block

Stride block

BN
RelU
Stride Conv
BN
RelU
Drop Qut
Conv
SE block

VIT

LayerNorm

Multihead Attention

LayerNorm
Feedforward

BN
RelU
Drop Out
Rearrange
Drop Qut

Figure 4.2. Architecture of the SE-ResNet-ViT hybrid model.



4.3 Results

4.3.1 Experiment setups

For model optimization, we employed the Adam optimizer with an initial learning rate of
0.0005. Cross entropy was used as the loss function, and the training was conducted for up
to 40 epochs with a batch size of 512. All experiments were conducted using PyTorch on

an RTX2080TI GPU.
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4.3.2 Performance of noise classification

Model performance was assessed using a test dataset, which was categorized into noise
and non-noise classes. The evaluation metrics, including precision, recall, and F1 score, are
detailed in Table 4.2. The average score for both classes was computed as a weighted

average to account for the differing quantities in each class.

Table 4.2. Score of noise classification.

Precision recall F1 score
Noise 0.932 0.962 0.947
Non-noise 0.980 0.965 0.973
Weighted Avg 0.964 0.964 0.964

The confusion matrix is presented in Figure 4.3. The weighted averages of the F1 score,
precision, and recall were all calculated to be 0.964. However, the precision for noise
signals was slightly lower at 0.932. This discrepancy is likely due to the smaller number of
noise signals in the test dataset compared to non-noise signals, or a larger number of non-
noise predictions. The supposed reason for the lower precision in noise signals is the fewer

number of noise signals in the test dataset compared to non-noise signals, or a higher
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number of predictions classified as non-noise. The specific classification details of ECG
signals identified as non-noise are presented in Table 4.3. Upon reviewing the misclassified
classes, we noted that VPC signals were most frequently misclassified as noise. A
comparison of the misclassified noise and VPC signals revealed similar shapes, especially

after min-max scaling, as illustrated in Figure 4.4. Both waveforms displayed wide QRS

complexes and abnormal shapes.

Confusion Matrix

90

Noise

True Label

164 4520

Non-noise

Noise Non-noise
Predicted Label

Figure 4.3. Confusion matrix of noise classification.
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Table 4.3. Number of count non-noise was incorrectly classified as noise.

Arrhythmia Counts

Normal sinus rhythm 44

Atrial premature contractions 15

Ventricular premature contractions 101
Atrial fibrillation 1
Supraventricular tachycardia 3
Atrioventricular block 0
Other arrhythmias 0

Total 164
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4.3.3 Comparison with other noise classification studies

We compare the performance of noise classification in ECG with previous studies [56-
59]. Table 4.4 shows comparison performance with other noise classification studies. Due
to the absence of ECG signals containing arrhythmias in public data, many previous studies
trained models on noise classification using NSR and then evaluated these models for their
tendency to misclassify arrhythmias as noise. The 2017 PhysioNet database used in the
study by Smisek et al, includes both arrhythmic signals and noise signals [58]. However,
the noise signals in this database consist of only 46 signals with an average length of 27.2
seconds, which may contribute to the poor classification performance of noise. The data
used in previous studies consist of ECGs measured in ICUs or 12-lead resting ECGs. The
2017 PhysioNet data was collected using AliveCor's single-lead electrocardiograph, but
this ECG is also a resting ECG. Therefore, noise classification models trained on resting
ECGs could face greater challenges in classifying noise arising from various activities

during daily life.
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Table 4.4. Comparison performance with other noise classification studies.

Method Data Accuracy Precision Recall F1 score Ref
ICU (without Arrythmia) 0.89 0.957 0.893 0.924
CNN [56]
ICU (Arrythmia only) 0.666 - - -
Spectrum ICU (without Arrythmia) 0.909 - - -
[571
analysis ICU (AF only) 0.862 . ; ;
2017 Physionet (Overall) - - - 0.81
2017 Physionet (AF) 0.81
SVM [58]
2017 Physionet (Others) 0.72
2017 Physionet (Noise) - - - 0.55
2020 Physionet (Overall) - - - 0.77
ResNet50 2020 Physionet (NSR) - - - 0.74 [59]
2020 Physionet (AF) - - - 0.92
Patch (Overall) 0.974 0.964 0.964 0.964
Patch (NSR) 0.983 - - -
Patch (APC) 0.987 - - -
ResNet-Vit  pyteh (VPC) 0.888 . . .
hybrid
(This study) — pyech (AF) 0.989 . - -
Patch (SVT) 0.964 - - -

Patch (AV block)

Patch (Others)
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4.4 Discussion

Analyzing signals from long-term wearable electrocardiographs can be more labor-
intensive, as the extended recording time results in a higher amount of noise being included
in the signal. To minimize the time-consuming aspect of ECG signal analysis, this study
introduces a SE-ResNet-ViT hybrid model considered for classifying noise signals in long-
term ECG data from wearable patch-type devices. ECG data for training and evaluating the
model were collected from participants in clinical trials, who were either diagnosed with
or suspected of having arrhythmia. The collected data were reviewed and labeled by clinical
experts. Upon evaluating the trained model, it achieved a weighted average F1 score of
0.964, demonstrating its effectiveness in accurately classifying noise signals measured by
patch-type wearable ECG devices. Nevertheless, it is observed that some VPC signals,
resembling noise signals in shape, are occasionally misclassified as noise. In the future, we
aim to minimize misclassification caused by the shape similarities between VPC signals
and certain noise signals. We expect that the proposed noise classification method will help

in screening arrhythmias more accurately.
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5. Conclusion

This study has presented reliable methods for classifying arrhythmias using deep learning

techniques to apply on adhesive patch-type wearable electrocardiographs.

In Chapter 3, we have designed SeqAFNet, a many-to-many RNN-based model,
specifically for the beat-wise sequential classification of AF. This model sequentially
utilized RRIs from ECG signal. Thanks to its robustness, SegAFNet demonstrated effective
classification of AF in ECG data, encompassing both records from public databases
obtained via ambulatory ECG recorders and those derived from wearable
electrocardiographs. Additionally, SegAFNet aligns with the 2020 ESC Guidelines for AF

diagnosis, attributable to its beat-wise input and output structure.

In Chapter 4, the SE-ResNet-ViT Hybrid model is introduced, designed to classify noise
signals occurring during the attachment of wearable electrocardiographs in daily life of
patients. Numerous deep learning and algorithm-based arrhythmia classification methods
are highly vulnerable to noise signals. To accurately classify arrhythmia in ECG signals,
an effective noise classification method is crucial. The SE-ResNet structure was able to
effectively extract morphological features from the ECG signals, and the ViT structure
enabled attention to the areas where noise occurred in the ECG signals. The SE-ResNet-
ViT Hybrid model, combining these advantages, was able to effectively classify noise

signals in ECG signals measured from wearable electrocardiographs.
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Despite the significant results, the current study had several limitations. First, SeqAFNet
depends on a method that identifies R peak locations in the ECG waveform. Should the R
peak detection methods malfunction, SeqAFNet's performance could deteriorate. To
prevent such issues, high-performance R peak detection methods are required. Additionally,
it is anticipated that the noise detection model introduced in Chapter 4 could be utilized to

prevent malfunctions in noisy ECG waveforms.

We believe that the proposed methods will be more effective with adhesive patch-type
wearable electrocardiographs, which offer a longer measurement duration compared to
traditional Holter monitors, particularly for patients suspected of arrhythmias. The
extended measurement duration of wearable electrocardiographs and the structural
limitations that make ECG signals more challenging and voluminous to analyze. Our
proposed methods would provide valuable assistance to medical professionals in clinical

practice.
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