
 

 

 

Deep Learning Approaches for Arrhythmia 

Screening in Adhesive Patch-Type 

Wearable Electrocardiographs 

 

 

 

 

 

 

 

 

 

Sangkyu Kim 

 

 

 

 

 

The Graduate School 

Yonsei University 

Graduate Program of Biomedical Engineering 

 



 

 

Deep Learning Approaches for Arrhythmia 

Screening in Adhesive Patch-Type 

Wearable Electrocardiographs 

 

 

 

 

 

A Dissertation Submitted  

to the Graduate Program of Biomedical Engineering 

and the Graduate School of Yonsei University 

in partial fulfillment of the  

requirements for the degree of  

Doctor of Philosophy in Graduate Program of Biomedical Engineering 

 

 

 

 

Sangkyu Kim 

 

 

 

 

June 2024 





Acknowledgements 
 

 

먼저 석사 및 박사 학위과정에 걸쳐 연세대학교 의과대학 의학공학교실에서 

배움과 연구의 기회를 주신 유선국 교수님께 진심으로 감사의 말씀을 

드립니다. 또한 귀중한 시간을 할애하여 저의 박사학위 논문을 지도해주신 

강희철 교수님께 감사의 말씀을 드립니다. 바쁘신 와중에도 학위논문의 

심사위원을 맡아 주시고 따뜻한 격려와 조언을 해 주신 박종철 교수님과 

이병채 교수님, 김자영 교수님께 감사드립니다. 졸업 후에도 교수님들의 

지도를 이어받아 연구와 학문에 정진하며, 사회에 기여할 수 있는 제자가 

되도록 노력하겠습니다.  

다음으로 좋은 연구 주제와 최적의 연구 환경을 제공해주신 ㈜휴이노와 

인공지능팀 동료 여러분께 감사의 인사를 전합니다. 동료 여러분의 협력과 

지원 덕분에 인공지능이라는 분야를 배울 수 있었고, 학위논문을 잘 마칠 수 

있었습니다. 여러분의 도움 없이는 이룰 수 없는 성과였습니다. 진심으로 

감사드립니다.  

다음으로 석사 및 박사 학위과정에서 연구실 생활 및 진로에 많은 조언을 

주셨던 UHCL 연구실의 수많은 선후배님들께 감사인사를 드립니다. 졸업 

후에도 많은 선후배님들이 목표하시는 바를 이루시기를 기원 드리며, 

학위과정에서의 배움을 바탕으로 선후배 님들에게 도움이 될 수 있는 동문이 

되도록 노력하겠습니다.  

끝으로, 제가 학업에 전념할 수 있도록 지원해주시고 응원해주신 소중한 

가족 여러분께 깊은 감사의 인사를 드립니다. 힘든 상황에서도 가족들이 있어 

버팀목이 되었습니다. 앞으로 기대에 어긋나지 않도록 자랑스러운 아들이 

되도록 노력하겠습니다. 

 

 

 

 

 

 

2024년 6월 

김상규 올림 

  



 

i 
 

TABLE OF CONTENTS 
 

 

Table of Contents  ···························································································· ⅰ 

List of Figures  ······························································································· ⅲ 

List of Tables  ································································································ ⅳ 

Abstract  ·······································································································ⅴ 

1. Introduction  ······························································································· 1 

1.1. Motivation  ····························································································· 1 

1.2. Contributions of this Dissertation  ·································································· 4 

1.3. Overview  ······························································································ 6 

2. Background  ······························································································· 7 

2.1. Ambulatory cardiac monitors  ······································································· 7 

2.2. Residual Network (ResNet)  ········································································ 10 

2.3. Recurrent Neural Network (RNN)  ································································ 11 

3. SeqAFNet: A Beat-Wise Sequential Neural Network for Atrial Fibrillation Classification in 

Adhesive Patch-Type Wearable Electrocardiographs ······································· 12 

3.1. Motivation  ···························································································· 12 

3.2. Methods  ······························································································ 16 

3.2.1. Databases  ························································································· 16 

3.2.2. Preprocessing  ···················································································· 22 

3.2.3. Sequential input  ·················································································· 24 

3.2.4. SeqAFNet ························································································· 25 

3.2.5. Ensemble decision and post-processing  ······················································ 28 

3.2.6. Metrics  ···························································································· 30 

3.3. Results  ································································································ 31 



ii 
 

3.3.1. Experiment setups  ··············································································· 31 

3.3.2. Comparison of performance based on the number of RRIs per frame  ···················· 33 

3.3.3. Comparison of performance based on the threshold for the label of frame  ·············· 34 

3.3.4. Comparison of performance based on the threshold for determining the ensemble 

 decision ······························································································ 35 

3.3.5. Intra-database performance of the AF classification  ······································· 36 

3.3.6. Inter-database performance of the AF classification  ········································ 39 

3.3.7. Comparison of performance before and after applying ensemble decision  ·············· 41 

3.4. Discussion  ···························································································· 43 

3.5. Summary  ····························································································· 50 

4. SE-ResNet-ViT Hybrid Model for Noise Classification in Adhesive Patch 

-Type Wearable Electrocardiographs  ························································ 51 

4.1. Motivation  ···························································································· 51 

4.2. Methods  ······························································································ 54 

4.2.1. Data collection  ··················································································· 54 

4.2.2. Device and software  ············································································· 57 

4.2.3. Preprocessing  ···················································································· 58 

4.2.4. Architecture of SE-ResNet-Vit model  ························································ 59 

4.3. Results  ································································································ 61 

4.3.1. Experiment setups  ··············································································· 61 

4.3.2. Performance of noise classification  ··························································· 62 

4.3.3. Comparison with other noise classification studies  ········································· 66 

4.4. Discussion  ···························································································· 68 

5. Conclusion  ······························································································· 69 

References  ·································································································· 71 

Abstract in Korean  ························································································· 77 



iii 
 

LIST OF FIGURES 

 

 

<Fig 2.1> Patch-type ambulatory electrocardiograph, MEMO Patch, HUINNO Co., Ltd.  ········9 

<Fig 3.1> MEMO Patch, an adhesive patch-type wearable electrocardiograph  ··················· 16 

<Fig 3.2> Procedure for making the chunk from the patch dataset ·································· 21 

<Fig 3.3> Method of generating sequential input from the ECG signal  ···························· 24 

<Fig 3.4> Illustration of SeqAFNet  ····································································· 27 

<Fig 3.5> Illustration of ensemble decision process  ·················································· 29 

<Fig 3.6> Comparison of beat-wise evaluation results on recording 00 from LTAFDB 

: study by Hao Wen et al. and our Study  ························································ 48 

<Fig 4.1> Flowchart of database collection process  ··················································· 56 

<Fig 4.2> Architecture of the SE-ResNet-ViT hybrid model  ········································ 60 

<Fig 4.3> Confusion matrix of noise classification  ··················································· 63 

<Fig 4.4> Comparison of the waveform VPC and noise after minmax scaling  ···················· 65 

  



iv 
 

LIST OF TABLES 

 

<Table 3.1> Statistics for each database  ································································ 17 

<Table 3.2> Composition of 5-fold for AFDB  ························································· 18 

<Table 3.3> Composition of 5-fold for LTAFDB  ····················································· 19 

<Table 3.4> AF in each database applying preprocessing  ············································ 23 

<Table 3.5> Detailed parameters of the proposed model  ············································· 32 

<Table 3.6> Performance of model at the number of RRIs per frame  ······························ 33 

<Table 3.7> Performance of model at the threshold for label of frame  ····························· 34 

<Table 3.8> Performance of model at the threshold for ensemble decision  ························ 35 

<Table 3.9> Inter-patient 5-fold cross validation score of AFDB  ··································· 37 

<Table 3.10> Inter-patient 5-fold cross validation score of LTAFDB  ······························ 38 

<Table 3.11> Inter-database performance of LTAFDB  ·············································· 40 

<Table 3.12> Performance of model before and after applying ensemble decision  ··············· 42 

<Table 3.13> Comparisons of the AF classification with recent deep learning models  ·········· 45 

<Table 4.1> Quantities of the collected and labeled data  ············································· 55 

<Table 4.2> Score of noise classification  ······························································· 62 

<Table 4.3> Number of count non-noise was incorrectly classified as noise  ······················ 64 

<Table 4.4> Comparison performance with other noise classification studies  ···················· 67 

  



v 
 

ABSTRACT 

 

Deep Learning Approaches for Arrhythmia Screening 

in Adhesive Patch-Type Wearable Electrocardiographs 

 

 

Due to their convenience and extended measurement duration, adhesive patch-type 

wearable electrocardiographs are increasingly utilized for arrhythmia screening. The 

growing adoption of these devices in clinical settings promises enhanced capabilities for 

early and accurate detection and treatment of heart diseases. However, the effectiveness of 

current arrhythmia screening techniques when applied to patch-type wearable 

electrocardiographs remains uncertain, primarily due to their single-lead structure and 

susceptibility to noise. This study aims to develop robust methods to improve the 

classification performance of arrhythmias using these devices. 

Firstly, SeqAFNet, a deep learning model, utilized RR interval frames specifically devised 

for beat-wise atrial fibrillation classification. This model was designed to classify each 

ECG beat sequentially, based on a recurrent neural network structure. To evaluate its 

performance not only on the training database but also more broadly, we compared it across 

three different databases. SeqAFNet demonstrates robust performance in AF classification, 

aligning with the 2020 European Society of Cardiology guidelines and the IEC 60601-2-

47 standard in clinical practice. 
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To address the problems caused by noise artifacts in wearable electrocardiographs, the 

SE-ResNet-ViT hybrid model was developed. The SE-ResNet encoder in this model can 

effectively extract features from ECG data, while the transformer component focuses 

attention on the noise sections within the 10 second data window. Thanks to this hybrid 

structure, the proposed model is capable of classifying signals with not only noise alone 

but also those with various arrhythmias measured alongside the noise. 

The methods proposed in this study hold significant promise for advancing the field of 

arrhythmia detection and management using wearable technologies. These robust and 

effective deep learning-based techniques could simplify the workload for medical 

professionals. Furthermore, they contribute to more accurate arrhythmia diagnoses and the 

early treatment of heart diseases in clinical settings. 

 

 

 

 

 

 

 

Key words: Deep learning, Arrythmia, Atrial fibrillation, Wearable device, Patch-

type electrocardiograph, RNN, ViT 
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1. Introduction 
 

1.1  Motivation 

 

Arrhythmia refers to an abnormal heart rhythm where the heart beats too slowly, too 

rapidly, or irregularly [1, 2]. This feature occurs due to the abnormal generation or 

transmission of electrical signals in the heart. Arrhythmia can range from mild symptoms 

to life-threatening conditions. Sometimes, they can lead to major complications such as 

heart failure, stroke, or cardiac arrest [3]. Therefore, the accurate diagnosis and monitoring 

of arrhythmias are essential for maintaining patients' cardiac health and administering 

appropriate treatment. 

The 12-lead electrocardiogram (ECG) is the golden standard for arrhythmia diagnosis [4]. 

Each lead records the electrical activity from a specific area of the heart, allowing for a 

comprehensive assessment of various regions of the heart. The patient typically undergoes 

this test while lying down, and it is conducted over a short period of time. If arrhythmia is 

not detected on the 12-lead ECG, however there is a high clinical suspicion, additional 

work-up may be required [5]. A Holter monitor can be utilized for the early diagnosis of 

arrhythmia [6]. This device first launched on the market in 1962. To date, it continues to 

be used for the diagnosis of arrhythmia. However, traditional Holter monitors have a 

limitation in recording duration. They capture data only for 24–48 hours. Therefore, the 

short recording duration presents a diagnostic challenge [6]. This limitation is important 
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when detecting such as paroxysmal AF, where abnormal episodes may not occur within the 

short monitoring period. 

To address the limited recording time and inconvenient design of traditional Holter 

monitors, various adhesive patch-type wearable electrocardiographs have been recently 

introduced to the market. These adhesive patch-type electrocardiographs can measure ECG 

up to 14 days with the advancement of hardware technology [7, 8]. Furthermore, these 

devices are compact and lightweight. Therefore, these devices are more convenient for 

daily use by patients. Currently, these wearable devices are becoming increasingly standard 

in the diagnosis of arrhythmias, complementing traditional methods [9]. However, despite 

these advantages, analyzing data collected from these wearable devices remains 

challenging due to the extended measurement time, resulting in a substantial increase in the 

amount of ECG data that must be analyzed. In addition, because of their single-lead 

structure, these wearable devices can be more vulnerable in terms of signal quality and 

noise than traditional Holter monitors [10]. Therefore, there is a need for a method capable 

of effectively analyzing the large volume of data and complex signals measured by these 

devices. 

Deep learning methodologies have revolutionized the accurate classification and 

diagnosis of arrhythmias [11, 12]. These methods exhibit exceptional performance in 

learning and predicting complex data patterns, offering higher accuracy and efficiency 

compared to traditional approaches. Recent advances have led to the development of 

numerous deep learning-based models for arrhythmia classification [13]. However, many 
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of these studies have focused on ECG data derived from 12-lead ECGs or Holter monitors 

[14-16]. As a result, the compatibility and performance of these models for analyzing 

arrhythmias in ECG signals recorded by adhesive patch-type wearable electrocardiographs 

remain insufficiently investigated. Furthermore, the suitability of these deep learning 

models for arrhythmia screening in clinical practice, or their potential for real-time 

arrhythmia monitoring, has not been adequately considered. 

The objective of this study is to develop and comprehensively evaluate deep learning 

models for their effective application in adhesive patch-type wearable electrocardiographs. 

It concentrates on the development and evaluation of these models for early arrhythmia 

screening in clinical settings.  
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1.2  Contributions of this Dissertation 

 

In this dissertation, a deep learning-based atrial fibrillation (AF) classification method, 

which is robust for inter-device and inter-patient variability, and a noise classification 

method, which is conducted in real-world clinical settings, are proposed. 

Obtaining a large dataset and labeling the data requires significant time and cost. If a new 

device is used instead of the previously used one, the performance of the deep learning 

model on data measured by the new device cannot be guaranteed. This is because the data 

from the new device may differ from the data used previously. Recently, various types of 

Long-term continuous cardiac monitoring (LTCM) devices have been introduced to the 

market. It is important to note the potential differences between the data measured by newly 

released LTCM devices and those obtained from Holter or 12-lead electrocardiograms. 

Such differences among devices may necessitate additional effort and cost in preparing 

data for training a new deep learning model. 

Noise signals can hinder the accurate classification of arrhythmias in electrocardiogram 

signals, particularly in single-lead wearable electrocardiographs, which may be more 

vulnerable to noise. However, there is a lack of prior research utilizing real-world data due 

to the difficulty in obtaining data where noise signals are labeled along with 

electrocardiogram signals measured from patients with arrhythmias. 
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The contribution of this dissertation is outlined as follows. First, a deep learning model 

utilizing RR intervals, which can effectively reflect the irregular characteristics of AF, is 

proposed. This model aligns with the current standards of multi-level deep learning 

architectures for time series data, where local features are extracted and long-term 

dependencies across the entire series are captured. Seconds, the model evaluation was 

conducted using cross-validation across different databases and devices, specifically 

focusing on inter-database and devices, and intra-database variations to assess the 

robustness of the electrocardiogram model. Finally, a deep learning model was developed 

utilizing electrocardiogram signals, including arrhythmias signals, using patch-type 

electrocardiographs in real-world clinical settings. 
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1.3  Overview 

 

The overview provides a brief introduction to the various chapters of this study.  

Chapter 2 introduces the medical significance of adhesive patch-type 

electrocardiographs and deep learning techniques utilized in this study. It presents 

architectures and concepts of Residual Network (ResNet) and Recurrent Neural Network 

(RNN). 

Chapter 3 analyzes deep learning-based methods for classifying atrial fibrillation (AF) 

using data from adhesive patch-type wearable electrocardiographs. The chapter highlights 

the innovative SeqAFNet, a beat-wise sequential neural network architecture designed for 

precise AF classification. This model is particularly adept at processing the continuous and 

irregular rhythms characteristic of AF, leveraging its sequential input and output processing 

capabilities. The chapter also addresses the challenges of interpreting ECG data collected 

from single-lead, adhesive patch-type wearables, which often involve extended 

measurement periods. It demonstrates how SeqAFNet effectively classifies atrial 

fibrillation, thus enhancing the practical utility of these wearable devices in clinical settings. 

Chapter 4 focuses on classifying noise signals caused by patient movements while using 

adhesive patch-type wearable electrocardiographs. Such noise signals can lead to the 

misclassification of arrhythmia signals. To address this issue, the chapter introduces the 

SE-ResNet-ViT hybrid model, which is specifically tailored to differentiate between noise 

and arrhythmia signals. 
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2. Background Ambulatory cardiac monitors 

 

Advancements in wearable technology have significantly enhanced the feasibility and 

effectiveness of ambulatory cardiac monitors (ACM). These technologies enable long-term, 

non-invasive, real-time tracking of heart rhythms and other relevant cardiac parameters, 

improving patient compliance and comfort. Moreover, the integration of algorithms and 

artificial intelligence in these systems has improved the precision of data analysis, allowing 

for the detection of subtle and transient cardiac events that might otherwise go unnoticed 

in traditional episodic monitoring settings. 

One of the ACMs, adhesive patch-type electrocardiographs are among the most actively 

used devices in the market, their unique blend of convenience, efficacy, and healthcare cost 

benefits. These lightweight, wearable devices adhere directly to the skin, allowing for 

continuous monitoring without the need for bulky equipment or frequent medical visits. 

 Since their introduction to the market, adhesive patch-type electrocardiographs have not 

been evaluated for variations in monitoring strategy, clinical outcomes, and healthcare 

utilization in patients undergoing ambulatory monitoring. 

Recently, the "Cardiac Ambulatory Monitor Evaluation of Outcomes and Time to Events 

(CAMELOT) study," a retrospective cohort study utilizing the full (100%) Medicare Fee-

For-Service sample, including inpatient and outpatient medical claims, was conducted to 

evaluate the clinical effectiveness of adhesive patch-type electrocardiographs [17]. In this 
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study, when comparing the new diagnosis of specified arrhythmia between adhesive patch-

type electrocardiographs and Holter monitors, the Odds Ratio was 0.5, indicating a higher 

arrhythmia detection rate with adhesive patch-type electrocardiographs. Furthermore, with 

an Odds Ratio of 1.35 for retesting any ACM within 180 days, it suggests that costs 

associated with retesting can be reduced. However, during the cohort period, differences in 

the Odds Ratio for new diagnosis of specified arrhythmia and ACM retest were observed 

among the five groups of adhesive patch-type electrocardiographs billed to Medicare. This 

suggests that even when using adhesive patch-type electrocardiographs, considerations 

should be given to the algorithms or deep learning technologies used for diagnosing 

arrhythmias, as they can influence the clinical utility of adhesive patch-type 

electrocardiographs in a real-world setting. 

In this dissertation, the MEMO Patch, a single-lead adhesive patch-type ambulatory 

electrocardiograph shown in Figure 2.1, used to record ECGs from patients participating in 

the clinical trial. This device is approved by the Ministry of Food and Drug Safety (MFDS) 

in the Republic of Korea. This device is capable of operating for up to 14 days, recording 

ECG at a sampling rate of 250 Hz and with a 12-bit resolution. 
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Figure 2.1. Patch-type ambulatory electrocardiograph, MEMO Patch, HUINNO Co., Ltd. 
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2.2  Residual Network (ResNet) 

 

A residual network (ResNet) is one of the neural network architectures that has 

significantly advanced the field of computer vision and deep learning. It was introduced by 

Kaiming He et al. in their 2015 paper. Deep learning models encounter the issue of 

vanishing gradients as the number of layers increases, a challenge that becomes more 

noticeable in deeper networks. The fundamental idea of this architecture is to facilitate 

learning while making the network deeper. 

The most significant innovation of ResNet is the residual block. This block directly adds 

the input to the output of a layer, also known as a skip connection. Through this, the 

network learns only the residual, or the modifications needed between the input and output. 

ResNet utilizes convolutional layers to extract features from input. These layers learn 

important information from data through a spatial hierarchical structure. In addition, batch 

normalization stabilizes and accelerates the learning process by normalizing the input 

across layers. Typically, the ReLU (Rectified Linear Unit) activation function is employed. 

ReLU introduces non-linearity, enabling the network to learn more complex patterns. 
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2.3  Recurrent Neural Network (RNN) 

 

A Recurrent Neural Network (RNN) is a neural network specifically designed for 

processing sequential and time-series data. It is widely used in fields such as natural 

language processing, speech recognition, and time-series forecasting. The key feature of an 

RNN is its internal memory, which retains previous information and combines it with 

current input to generate output. This allows the model to learn patterns and relationships 

in data over time. RNNs have a recurrent structure, allowing them to reflect information 

from previous time steps. This assists the network in considering past data when 

determining current output. Basic RNNs face the problem of long-term dependencies, 

meaning the network encounters difficulties in retaining and utilizing older information. 

To solve this issue, advanced RNN models such as LSTM (Long Short-Term Memory) and 

GRU (Gated Recurrent Units) have been developed. These models can more effectively 

handle long-term dependencies through their complex gating mechanisms. 

RNN has various types of input and output sequences leading to different architectures 

like many-to-many, many-to-one, and one-to-many. Each of these architectures leverages 

the ability of RNNs to process sequential data, making them suitable for a wide range of 

applications in natural language processing, computer vision, and beyond. 
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3. SeqAFNet: A Beat-Wise Sequential Neural Network for 

Atrial Fibrillation Classification in Adhesive Patch-Type 

Wearable Electrocardiographs 

3.1  Motivation 

Atrial fibrillation (AF) characterized by rapid and irregular contractions in the atria is 

known as the most common type of arrhythmia [18]. When the atria contract irregularly, it 

can disrupt the blood flow to the ventricles, subsequently increasing the risk of heart failure 

[19]. These irregular contractions may also lead to the formation of a thrombus, which can 

cause a stroke, a major complication associated with arrhythmia [3]. AF may initially occur 

with mild symptoms or remain asymptomatic but over time, these symptoms can gradually 

become worse [20]. For diagnosing AF, the 12-lead ECG is gold standard [4]. The 12-lead 

ECG is capable of identifying an irregular rhythm, detecting the absence of observable P 

waves, and the presence of F waves [5]. If AF is not identified through this procedure, yet 

there is a strong clinical suspicion of AF, further investigation may be required [5]. In such 

cases, a Holter monitor is employed for the detection of arrhythmias, including AF [6]. 

The European Society of Cardiology (ESC) categorizes AF into various types based on 

its duration and presentation, first diagnosed, paroxysmal, persistent, long-standing 

persistent, and permanent. These classification schemes are very useful in guiding 

appropriate treatment [5]. The diagnosis and classification of AF are essential for patient 



13 
 

management. These classifications can guide the choice of treatment methods. While 

Holter monitors are helpful in diagnosing AF, their limited recording duration, typically 

capturing data for only 24–48 hours, encounters a diagnostic challenge [6]. This 

shortcoming is particularly significant in detecting paroxysmal AF where episodes may not 

occur during the monitoring period [6].  To overcome these recording duration constraints 

and improve patient convenience in daily life, various adhesive patch-type wearable 

electrocardiographs have been developed and introduced to the market. These wearable 

devices are now widely used for diagnosing AF [7-9]. Despite their various benefits, 

wearable electrocardiographs encounter several challenges. The extended measurement 

duration significantly amplifies the amount of ECG data needing analysis. Furthermore, 

their single-lead structure makes these devices potentially more susceptible to signal 

quality problems and noise, in contrast to the more robust Holter monitors [10]. 

Consequently, developing a more robust and effective method tailored for wearable devices 

to process and analyze the substantial volume and complexity of these signals is essential. 

However, it is remarkable that numerous previous studies focusing on classifying AF using 

ECG signals have primarily used data from 12-lead or Holter monitors [14, 15, 21]. 

Therefore, the effectiveness of these traditional methods in analyzing ECG signals captured 

by wearable electrocardiographs remains unverified. 

Analysis on a fine-grained, sample-wise, or beat-wise basis may enhance the 

classification of ECG signals, compared to a window-based approach [14, 16, 22]. 

Particularly for rhythm-type arrhythmias like atrial flutter, supraventricular 
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tachyarrhythmia, and AF, analyzing ECG signals on a beat- or sample-wise basis offers a 

more comprehensive examination at the change in rhythm [23, 24]. After the 4th China 

Physiological Signal Challenge in 2021 (CPSC2021), several studies have conducted 

detailed sample- or beat-wise analyses of AF [16, 22]. However, they encounter limitations 

in objectively comparing their performance [25]. The underlying reason for this is that the 

testing dataset from the challenge has not been released to the public, and the scoring 

method was tailored specifically for ranking participants in the challenge. Additionally, 

another complication arises from the fact that many studies have not employed diverse 

datasets for both their training and testing phases [14, 26]. In other words, many studies 

have relied on a single dataset for both training and evaluating their models. Previous 

research has predominantly utilized the MIT-BIH Atrial Fibrillation Database (AFDB), and 

some studies have also made use of the Long-Term AF Database (LTAFDB) or CPSC2021 

training datasets [16, 22]. In a recent study conducted by Yating Hu et al., it was observed 

that their model, which was trained on one dataset and evaluated on another, experienced 

a reduction in classification performance [22]. While the model achieved a high F1-score 

of 0.985 on the CPSC2021 training dataset, this score significantly decreased when the 

model was tested on different datasets. Specifically, the F1-score dropped to 0.9 on the 

AFDB and further declined to 0.74 on the LTAFDB after the process of label merging. 

Another issue arises from the fact that some studies did not specify whether the patients (or 

recordings) used in the training dataset were excluded from the testing dataset. The absence 

of clear separation between patients (or recordings) in the training and testing datasets can 
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lead to overfitting [27, 28]. Because of these limitations, there is an increased risk of models 

inaccurately classifying unseen ECG signals, especially when these signals are compared 

to recordings obtained from wearable electrocardiographs[27-29]. 

To overcome the limitations, this study focused on developing a many-to-many recurrent 

neural network (RNN)-based model for the sequential classification of AF, utilizing the R-

peak intervals of ECG signals. This sequential approach allows the model to analyze each 

ECG beat at individual time steps. Thanks to its many-to-many configuration, the model is 

particularly adept at accurately classifying irregular AF patterns. Moreover, to take 

advantage of the many-to-many structure, the input to the model is successively strided by 

one beat, and the ensuing inferences are ensembled to produce a merged output. The ECG 

data, including AF were collected from patients who had either been previously diagnosed 

with arrhythmia or exhibited symptoms of suspected arrhythmia, using the MEMO Patch. 

The proposed model, trained using the AFDB and LTAFDB, was subjected to a 

performance evaluation [30, 31]. This evaluation involved comparing data from adhesive 

patch-type wearable electrocardiographs against those from public databases. Furthermore, 

to prevent overfitting, a strict separation of recordings was maintained between the training 

and testing datasets. 
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3.2  MethodsDatabases 

 

The model was trained with data from the AFDB and LTAFDB public databases [30, 31]. 

In order to evaluate the model's performance on data obtained from wearable 

electrocardiographs, we used ECG signals from a clinical trial that utilized the MEMO 

Patch, depicted in Figure 3.1, an adhesive patch-type wearable electrocardiograph 

manufactured by HUINNO Co., Ltd [32].  Table 3.1 presents detailed statistical 

information for both the public databases and the patch database. 

 

Figure 3.1. MEMO Patch, an adhesive patch-type wearable electrocardiograph, 

manufactured by HUINNO Co., Ltd. 
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Table 3.1. Statistics for each database. 

 AFDB LTAFDB Patch 

Number of participants - - 17 

Age (years) - - 58.9 (42–69) 

Male sex, n (%) - - 13 (76.5) 

Number of records (chunks) 23 82a 57 

Duration of records (chunks) 9.25–10.23 h 6.13–26.35 h 0.5–24 h 

Mean (σ) duration of records (chunks) 10.19 (0.2) h 23.32 (2.75) h 12.08 (7.59) h 

Beats in records (hunks) 34,837–61,915 31,190–184,809 2322–137321 

Episodes with paroxysmal AF 291 7,355 593 

AF episodes that tare <30 s 65 4,703 150 

Paroxysmal AF duration 1.7–36001.8 s 0.3–88378.8 s 2.7–51877.5 s 

Mean (σ) paroxysmal AF duration 1132.8 (4292.3) s 489.5 (4550) s 811.3 (3799.4) s 

a Record 64, 113 was excluded. 
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AFDB includes 23 long-term ECG recordings from human subjects with AF (mostly 

paroxysmal) [30]. The duration of each recording is 10 h, and the individual recordings 

contained two ECG signals sampled at 250 Hz with 12-bit resolution over a range of ±10 

mV. To evaluate the intra-database performance of the model, 23 records were divided into 

5 folds. To prevent patient overlap within a fold, training and testing data were split based 

on the record name. The patients comprised in the testing data for each fold are presented 

in Table 3.2. 

 

Table 3.2. Composition of 5-fold for AFDB. 

Fold number Record names 
Number of 

records 

Fold 1 '04015','04043','04048', '04126' 4 

Fold 2 '04746','04908','04936', '05091' 4 

Fold 3 '05121','05261','06426','06453', '06995' 5 

Fold 4 '07162','07859','07879','07910', '08215' 5 

Fold 5 '08219','08378','08405','08434', '08455' 5 

Total 23 
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LTAFDB includes 84 long-term ECG recordings from human subjects with sustained 

paroxysmal AF [31]. Each record included two simultaneously recorded ECG signals 

digitized at 128 Hz with 12-bit resolution over a 20-mV range. Although the record 

durations varied, they typically lasted between 24–25h. The record named 64 was excluded 

due to missing annotation and, the record named 113 was excluded because the ECG signal 

occasionally vanished. To evaluate the intra-database performance of the model, 82 records 

were divided into 5 folds. The patients comprised in the testing data for each fold are 

presented in Table 3.3. 

Table 3.3. Composition of 5-fold for LTAFDB. 

Fold number Record names 
Number of 

records 

Fold 1 

'00', '01', '03', '05', '06', '07', '08', '10', 

'11', '12', '13', '15', '16', '17', '18', '19' 

16 

Fold 2 

'20', '21', '22', '23', '24', '25', '26', '28', 

‘30', '32', '33', '34', '35', '37', '38', '39' 

16 

Fold 3 

'42', '43', '44', '45', '47', '48', '49', '51', 

 '53', '54', '55', '56', '58', '60', '62', '65' 

16 

Fold 4 

'68', '69', '70', '71', '72', '74', '75', '100', 

 '101', '102', '103', '104', '105', '110', '111', '112', '114' 

17 

Fold 5 

'115', '116', '117', '118', '119', '120', '121', '122',  

'200', '201', '202', '203', '204', '205', '206', '207', '208' 

17 

Total 82 
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The patch dataset was collected in a multi-center clinical trial conducted at Seoul National 

University Bundang Hospital and Korea University Hospital (IRB numbers: B-2105/686-

002 and 2021AN0247, respectively). In total, 149 participants were included in the clinical 

trial. Among them, 17 presented with AF. The patients visited the hospital to get the device 

attached to their chests and returned after 14 days to hand it back. Within 14 days, lead-off 

in the ECG signal could occur if the patients detach the device from their body during 

showering or due to the inadequate contact of electrodes. To exclude the lead-off, we only 

extracted the well-recorded ECG signals between the lead-off sections, and these sections 

were referred to as chunk. Based on the data of 17 participants with AF, we created 57 

chunks that may contain either AF, non-AF, or both types of signals. Procedure for making 

the chunk from the patch dataset depicted in Figure 3.2. All recordings were sampled at 

250 Hz with 12-bit resolution using MEMO Patch. 
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Figure 3.2. Procedure for making the chunk from the patch dataset. 
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3.2.2 Preprocessing 

 

The RR interval (RRI) of the ECG signal served as the input for our model. Previous 

research has employed the RRI as a characteristic to effectively depict the irregular or rapid 

rhythm of AF [14, 16, 21, 28, 30]. RRIs were calculated using beat annotations from AFDB 

and LTAFDB. For the patch dataset, beats were identified using the MEMO Care software 

provided by HUINNO Co., Ltd. Subsequently, the RRIs were computed based on the 

number of samples between a current R peak and its preceding R peak. The LTAFDB, 

having a different sampling rate of 128 Hz compared to other datasets, had its RRIs up-

sampled to 250 Hz. Each R peak was labeled as either non-AF or AF. 

According to the 2020 ESC Guidelines for AF diagnosis, a standard 12-lead ECG 

recording or a single-lead ECG tracing lasting longer than 30 s that shows cardiac rhythm 

without discernible repeating P waves and exhibits irregular RR intervals (provided there 

is no atrioventricular conduction impairment) is considered diagnostic of clinical AF [5].  

Consequently, AF durations of less than 30 s were relabeled as non-AF. Table 3.4 displays 

the statistics after applying preprocessing for AF in each database. 
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Table 3.4. AF in each database applying preprocessing. 

 AFDB LTAFDB Patch 

With Paroxysmal AF 226 26,51 443 

Paroxysmal AF duration 30.8–36001.8 s 30–88378.8 s 30–51877.5 s 

Mean (σ) paroxysmal AF duration 1454.7 (4822.7) s 1342.6 (7503.4) s 1079.8 (4363.3) s 
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3.2.3 Sequential input 

 

A frame consisting of 20 RRIs was generated for embedding into the input layer of our 

model, starting with the initial 20 RRIs in the first frame. To make a sequential input 

structure, the subsequent frame was shifted by one ECG beat. Thus, the second frame 

contains the 2nd to the 21st RRIs. Each frame received a label depending on the quantity 

of AF beats present. If this number was equal to or exceeds a certain threshold, the frame 

was labeled AF. If not, it was labeled as non-AF. This threshold was determined to be 11, 

more than half of the 20 RRIs per frame, and the label was placed at the central ECG beat 

of the frame. Figure 3.3 illustrates the process for creating sequential input from the ECG 

signal. 

 

 

Figure 3.3. Method of generating sequential input from the ECG signal. 
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3.2.4 SeqAFNet 

 

The proposed SeqAFNet employs a two-stage bidirectional RNN featuring a many-to-

many structure, specifically designed for handling sequential data like time series and 

sequence data [33]. A distinct attribute of RNNs is their capacity to integrate information 

from past data with the current input, offering significant advantages for predicting time-

series challenges [33, 34]. However, as the sequence length increases, RNNs may 

encounter vanishing or exploding gradient problems [35]. To address these challenges, both 

the long short-term memory (LSTM) and its simplified version, the gated recurrent unit 

(GRU), have been developed [36]. This model incorporates bidirectional GRU cells in its 

initial and subsequent stages, named a local-wise RNN layer and a sequence-wise RNN 

layer, respectively. Figure 3.4 illustrates overall architecture of SeqAFNet. 

Local-wise RNN layer: The local-wise RNN layer comprises 30 GRU cells, each cell 

configured to handle a singular frame consisting of 20 time steps. Each individual time step 

in the GRU cell is designed to process a one RRI. This layer is aims to identify short 

regional arrhythmias utilizing only the local RRI frames. The output from each GRU cell 

has 20 time steps, including both the forward and backward hidden states. 

Flatten layer: Positioned after the local-wise RNN layer, the flatten layer converts its 

multi-dimensional output into a one-dimensional vector. This reshaping facilitates efficient 

data transmission to the following fully connected layer, thus enhancing the model’s ability 

for high level representations from the sequential data. 
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Fully connected layer: In this model, two fully connected layers are integrated, each 

reducing the input and output sizes by a factor of four. This process of feature abstraction 

reduces the size of the model and ensures that it retains only the most important features, 

which can potentially enhance generalization capability. 

Multi-head attention: Prior to its integration into the sequence-wise RNN layer, the multi-

head attention layer was utilized, offering several advantages. The multi-head attention 

mechanism enables the model to simultaneously concentrate on different segments of the 

input sequence, effectively identifying different relationships and dependencies. This 

attention enhances the model’s ability to recognize patterns and handle long-range 

dependencies, which can be especially beneficial for processing complex sequences.  

Sequence-wise RNN layer: Features extracted by the preceding local-wise layer were 

input to the sequence-wise RNN layer. By utilizing local RRI patterns from each period, 

this layer enhances the effective prediction of arrhythmia, particularly in AF where 

irregular rhythms occur sequentially and continuously. 

Fully connected layer: To maintain the intrinsic sequential output features of the many-

to-many structure, independent processing is required. The fully connected layer is 

comprised of two distinct stages, and each sequence-wise layer operates independently, 

without interconnection. The preceding stage reduces the output shape to half of the input 

size, and the subsequent stage adjusts the output to a size of two. This configuration enables 

the binary categorization of each time step into either AF or non-AF, employing a sigmoid 

function. 
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Figure 3.4. Illustration of SeqAFNet. 
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3.2.5 Ensemble decision and post-processing 

 

To take advantage of SeqAFNet's many-to-many structure, an ensemble decision strategy, 

depicted in Figure 3.5, was employed. Initial inference of SeqAFNet returns 30 outputs, 

denoted as {𝑌𝑖}, each corresponding to the R peak of the ECG at time 𝑡(𝑛). In next 

inferences, the input frames are shifted by one beat to progress to the subsequent temporal 

sequence. This progression prompts the model to predict the next series of 30 outputs, 

designated as{𝑌𝑖+1}. At the specific moment of 𝑡(𝑛), corresponding to the single R peak 

in the ECG, there exist 30 outputs denoted as 𝑌𝑖[𝑡(𝑛)] from different temporal sequences. 

Every distinct output 𝑌[𝑡(𝑛)] within the assembled set {𝑌𝑖} represents a prediction of 

AF. At the position 𝑡(𝑛) , the classification is determined as AF if the count of AF 

predictions is equal to or exceeds the predefined threshold. The threshold is designated at 

16. When the predictions do not reach this threshold, the classification is settled on non-

AF. Following the ensemble decision approach, AF predictions with durations less than 30 

s are relabeled as non-AF. 
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Figure 3.5. Illustration of ensemble decision process. 
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3.2.6 Metrics 

 

The model's performance was assessed using two distinct metrics. The first metric focused 

on the beat-by-beat classification performance of AF, employing measures such as 

accuracy, precision, sensitivity, specificity, and F-1 score. The second metric, aligned with 

Subclause 201.12.1.101.1.5.3 of the IEC 60601-2-47 standard, aimed at evaluating the 

sensitivity and positive predictive value specific to AF duration [37]. 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(3.1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3.2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3.3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(3.4) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(3.5) 

𝐴𝐹 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑒 =  
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝐴𝑛𝑛𝑜𝑡𝑒𝑑 𝐴𝐹
(3.6) 

𝐴𝐹 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑃 =  
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 − 𝐴𝑛𝑛𝑜𝑡𝑒𝑑 𝐴𝐹
(3.7) 
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3.3  Results 

3.3.1 Experiment setups 

 

All experiments were conducted using the RTX3090 GPU within the PyTorch framework. 

We employed the Adam optimizer, beginning with an initial learning rate of 1𝑒−3 and a 

weight decay of 1𝑒−5. In the optimization process, a binary cross-entropy loss function 

was utilized. The model training continued for up to 15 epochs with a batch size of 256, 

and the optimal epoch was selected based on the performance in the validation dataset. 

Table 3.5 shows the detailed parameters of the model. The notation ‘30 ×’ in front of the 

layers was used to indicate that there are 30 layers in parallel. 
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Table 3.5. Detailed parameters of the proposed model.  

Layer Input shape Output shape Parameter 

Input (30, 20, 1) 30 × (20, 1)  

30 × GRU 30 × (20) 30 × (20, 128) Hidden size: 64 

30 × Flatten 30 × (20, 128) 30 × (1, 2560)  

30 × FC layer 30 × (1, 2560) 30 × (1, 640) Activation: ReLU 

Dropout - - Rate: 0.1 

30 × FC layer 30 × (1, 640) 30 × (1, 160) Activation: ReLU 

Multi-head 

attention 

(30, 160) (30, 160) Num head: 4 

Add & Layer Norm - -  

GRU (30, 160) (30, 128) Hidden size: 64 

30 × FC layer (30, 128) 30 × (1, 64) Activation: ReLU 

Dropout - - Rate: 0.1 

30 × FC layer 30 × (1, 64) 30 × (1, 2) Activation: sigmoid 
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3.3.2 Comparison of performance based on the number of RRIs per 

frame 

 

To determine the optimal number of RRIs for each frame, we evaluated the performance 

using frames containing 10, 15, 20, 25, and 30 RRIs, respectively. We set the threshold for 

determining the frame's label at a level exceeding half the number of RRIs. Table 3.6 shows 

performance of model at the number of RRIs per frame. We set the threshold for 

determining the ensemble decision at 16. The highest performance on the Patch database 

was when the frame contained 20 RRIs. However, there were no significant differences 

with other values.  

 

Table 3.6. Performance of model at the number of RRIs per frame. 

# RRIs 

per 

frame 

Label 

TH 
Train Test Accuracy Precision Sensitivity Specificity F1 score 

30 ≥ 16 LTAFDB Patch 0.983 0.975 0.976 0.988 0.975 

25 ≥ 13 LTAFDB Patch 0.981 0.977 0.969 0.992 0.973 

20 ≥ 11 LTAFDB Patch 0.986 0.981 0.979 0.992 0.98 

15 ≥ 8 LTAFDB Patch 0.969 0.951 0.961 0.976 0.959 

10 ≥ 6 LTAFDB Patch 0.983 0.969 0.983 0.983 0.976 
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3.3.3 Comparison of performance based on the threshold for the label 

of frame 

 

To determine the optimal number of thresholds for the label of frame, we evaluated the 

performance using threshold 1, 6, 11, 16, 20. If the number of AF beats within a frame 

exceeded the threshold, the frame was labeled as AF; otherwise, it was labeled as non-AF. 

The number of RRIs per frame was fixed at 20, which demonstrated the best performance 

in previous experiments. Table 3.7 shows performance of model at the threshold for label 

of frame. We set the threshold for the ensemble decision at 16. The highest performance 

on the Patch database was when the threshold at 11.  

 

Table 3.7. Performance of model at the threshold for label of frame. 

Label 

TH 
Train Test Accuracy Precision Sensitivity Specificity 

F1 

score 

≥ 20 LTAFDB Patch 0.981 0.975 0.971 0.989 0.973 

≥16 LTAFDB Patch 0.981 0.968 0.979 0.983 0.973 

≥ 11 LTAFDB Patch 0.986 0.981 0.979 0.992 0.98 

≥ 6 LTAFDB Patch 0.984 0.97 0.984 0.983 0.977 

≥ 1 LTAFDB Patch 0.965 0.934 0.975 0.957 0.952 
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3.3.4 Comparison of performance based on the threshold for 

determining the ensemble decision 

 

To determine the optimal number of thresholds for the ensemble decision, we evaluated 

the performance using threshold 6, 11, 16, 21, 26. We set the number of RRIs per frame at 

20 and, threshold for label at 11, which demonstrated the best performance in previous 

experiments. Table 3.8 shows performance of model at the threshold for ensemble decision. 

We observed that the performance at thresholds of 11 and 16 was nearly identical for the 

Patch database. Due to the negligible difference between the two values, we opted to use 

16. 

 

Table 3.8. Performance of model at the threshold for ensemble decision. 

Ensemble 

TH 
Train Test Accuracy Precision Sensitivity Specificity 

F1 

score 

≥ 26 LTAFDB Patch 0.979 0.983 0.957 0.997 0.969 

≥21 LTAFDB Patch 0.985 0.984 0.973 0.995 0.978 

≥ 16 LTAFDB Patch 0.986 0.981 0.979 0.992 0.98 

≥ 11 LTAFDB Patch 0.986 0.977 0.983 0.988 0.98 

≥ 6 LTAFDB Patch 0.982 0.967 0.983 0.982 0.975 
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3.3.5 Intra-database performance of the AF classification 

 

To assess the model’s performance within each AFDB and LTAFDB, we implemented 

an inter-patient 5-fold cross validation. Generally, k-fold cross validation was sufficient for 

assessing the model’s generalization ability on unseen data. However, ECG data from a 

single patient exhibit almost similar morphology and patterns that repeat. Therefore, if ECG 

data from a single patient are mixed across the training and testing sets within each fold, 

the model may learn to recognize the specific patterns of that patient rather than generalized 

patterns of ECG. To prevent this overfitting problem, we utilized record names to separate 

the training and testing sets within each fold. The patients comprised in the testing sets for 

each fold are presented in Table 3.2 and Table 3.3. Table 3.9 shows the results of cross 

validation of AFDB and Table 3.10 shows the results of cross validation of LTAFDB. 
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3.3.6 Inter-database performance of the AF classification 

 

To assess the model’s performance with the unseen data that was measured from different 

devices, we implemented inter-database cross validation. The model was trained separately 

on the AFDB and LTAFDB databases, and then tested on the LTAFDB and AFDB, 

respectively. Additionally, Patch dataset is used to evaluate its performance. Table 3.11 

shows the results of inter-databases performance of AF classification. To enhance 

performance on the Patch dataset, all parameters in this paper have been optimized 

specifically for the Patch dataset. Finally, we trained the model using the entirety of both 

the AFDB and LTAFDB databases and then evaluated its performance on the Patch dataset. 

However, we obtained lower performance when using both AFDB and LTAFDB for 

training, compared to using only LTAFDB. 
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3.3.7 Comparison of performance before and after applying ensemble 

decision 

 

For the ensemble decision, ECG was shifted by 1 beat at a time for inference. In the 

performance experiment without applying the ensemble decision, ECG was shifted by 30 

beats at a time without overlap. Table 3.12 shows performance of model before and after 

applying ensemble decision. When the batch size is 256, it takes approximately 5.76 ms for 

the model to perform one inference (CPU: Intel i9-12900K, GPU: RTX3090). This means 

that 30 ECG beats take 22.5 us and a single ECG beat takes 0.75us. Since the ensemble 

decision uses the results of 30 inferences for a single ECG beat, it takes 22.5 us. 
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Table 3.12. Performance of model before and after applying ensemble decision. 

Ensemble 

Decision 
Train Test Accuracy Precision Sensitivity Specificity 

F1 

score 

X AFDB LTAFDB 0.956 0.955 0.956 0.955 0.955 

O AFDB LTAFDB 0.961 0.96 0.96 0.954 0.96 

X AFDB Patch 0.97 0.969 0.945 0.991 0.956 

O AFDB Patch 0.974 0.973 0.953 0.992 0.963 

X LTAFDB AFDB 0.967 0.966 0.967 0.964 0.966 

O LTAFDB AFDB 0.975 0.974 0.975 0.97 0.975 

X LTAFDB Patch 0.98 0.974 0.97 0.989 0.972 

O LTAFDB Patch 0.986 0.981 0.979 0.992 0.98 
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3.4  Discussion 

 

In this work, we have developed SeqAFNet, an RNN-based architecture with a many-to-

many approach, specifically designed for sequentially classifying AF utilizing the RRIs of 

ECG signals. The novel configuration of input frames in a sequential shift, illustrated in 

Figure 3.3, allows the model to consider surrounding rhythm variations for more accurate 

AF classification. Moreover, SeqAFNet's beat-wise output structure, as shown in Figure 

3.5, not only contributes to the effective classification of each ECG beat, enhancing overall 

results, but also supports continuous output inference. This approach leads to an ensemble 

of these outputs, enabling more accurate decision-making by accumulating predictions 

from various time points. In the context of diagnosing AF using 12-lead or single-lead ECG 

recordings, the ESC guidelines propose that clinical AF should be identified when AF 

symptoms lasting for longer than 30 s [5]. However, applying these guidelines is 

challenging for many existing automated AF screening due to their specific output 

structures [21, 38, 39]. Many previous AF screening methods rely on their own criteria for 

AF screening, which are not always acceptable in clinical practice [21]. In contrast, 

SeqAFNet, with its beat-wise output structure, can effectively determine the duration of 

predicted AF exceeds 30 s, thereby aligning more closely with established clinical 

guidelines. Furthermore, the proficiency of our method in AF screening was evaluated 

based on its performance in determining AF duration, adhering to the IEC 60601-2-47 

standards titled 'Particular Requirements for the Basic Safety and Essential Performance of 
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Ambulatory Electrocardiographic Systems.' The results, detailed in Table 3.6, highlight the 

effectiveness of our approach, especially when applied to adhesive patch-type wearable 

electrocardiographs. 

Previous research has demonstrated the ability of their methods to accurately classify AF 

in a specific dataset. However, as shown in Table 3.13, these methods often exhibit 

decreased performance when applied to unseen data. In contrast, our proposed method, 

SeqAFNet, maintains consistent and reliable performance across different datasets, 

including AFDB, LTAFDB, and the patch dataset, as detailed in Table 3.13. Therefore, we 

believe that our approach, which has been effective in screening for AF using data 

measured by adhesive patch-type wearable electrocardiographs in this study, will also be 

effective in screening for AF in a variety of unseen data. 
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Deep learning-based research for atrial fibrillation (AF) classification often overlooks 

practical challenges encountered in real-world clinical settings. Specifically, clinical 

technicians are required to review and correct misclassified results generated by automatic 

screening systems, making this a labor-intensive step in ensuring accurate diagnosis [43, 

44]. In a recent study by Hao Wen et al., a beat-wise AF classification model based on 

LSTM was developed [16]. They utilized the recording ‘00’ from the LTAFDB to assess 

its performance over time. The model achieved macro-averaged scores of 0.938 for 

sensitivity, 0.938 for specificity, 0.982 for precision, and 0.974 for accuracy, respectively. 

Initially, these results might indicate the model can classify AF effectively. However, an 

output displayed over time on a graph, as illustrated in Figure 3.6(a), reveals a significant 

number of misclassifications. Consequently, clinical technicians expend a significant 

amount of effort and time correcting such segmentalized misclassifications during ECG 

signal analysis. On the same recording '00', our proposed model, which was trained on the 

LTAFDB fold 1 trainset, achieved score of 0.988 for accuracy, 0.988 for precision, 0.989 

for sensitivity, 0.981 for specificity, and 0.988 for F1 score. The output of our model was 

also plotted over time, as illustrated in Figure 3.6. Employing the proposed ensemble 

decision method enhances the robustness of the analysis, particularly in diminishing 

segmentalized misclassifications during beat-wise analysis, demonstrated in Figure 3.6(b). 

In Figure 3.6(b), the labels indicating non-AF correspond to instances of ventricular 

tachycardia (VT), characterized by the occurrence of three or four premature ventricular 

complexes in succession during episodes of AF. Figure 3.6(c), presenting a magnified view 



47 
 

of the section from 40,000 to 50,000 beats, demonstrates our model's capability to 

accurately classify transitions into and termination of AF. Consequently, our proposed 

method substantially lightens the workload of clinical technicians by minimizing the 

necessity for reviewing and correcting misclassifications. As a result of its efficiency, it 

holds significant potential as a valuable tool in clinical practice. 
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Figure 3.6. Comparison of beat-wise evaluation results on recording 00 from LTAFDB: 

Study by Hao Wen et al. and our Study. (a) Study by Hao Wen et al. [16] (b) Results of our 

proposed method. (c) Magnified view of section from 40,000 to 50,000 beats. 
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Despite its significant results, the current study is not without limitations. The primary 

limitation lies in the model's reliance on RRIs of ECG waveforms for input. While this 

approach enables our model to effectively capture irregular cardiac rhythms, which is a 

characteristic of AF, it overlooks the detailed morphological features associated with AF. 

These include the lack of distinct, repeating P waves or the presence of F waves, which are 

crucial for a comprehensive AF analysis. Incorporating morphological features along with 

the irregular intervals currently utilized in AF classification could potentially elevate the 

model's accuracy in diagnosing AF. As a secondary limitation, our proposed methods are 

vulnerable to VT events during AF episodes. In the LTAFDB, the occurrence of three or 

four consecutive premature ventricular complexes, indicative of VT, can coincide with AF 

episodes. These ventricular arrhythmias may obscure the exact start and end points of AF 

episodes, thereby complicating the classification process. Considering the morphological 

features of the ECG during such episodes could provide crucial context, potentially 

enhancing the accuracy of classification. For future work, it is essential to investigate 

methodologies that combine RR intervals and detailed ECG waveform features as 

sequential inputs within a frame-based model. This advancement could notably enhance 

the performance and accuracy of AF classification systems. 
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3.5  Summary 

 

This study presented the use of SeqAFNet, a many-to-many RNN-based model designed 

for the beat-wise sequential classification of AF. This model is suitable for wearable 

electrocardiographs. By employing an ensemble decision strategy, our approach refines the 

model’s many-to-many output, thereby effectively correcting mispredicted beats. The 

performance of SeqAFNet was comprehensively tested by training it on two separate 

databases (AFDB and LTAFDB). Further, its capabilities were evaluated using data from 

MEMO Patch, a type of adhesive patch-type wearable electrocardiograph. SeqAFNet had 

a consistently high efficacy, indicating a robust performance with not only the MEMO 

Patch dataset but also the tested datasets from public databases. Furthermore, our model 

was evaluated based on the Subclause 201.12.1.101.1.5.3 of the IEC 60601-2-47 standard, 

which involves the basic safety and essential performance of ambulatory 

electrocardiographic systems, with a specific focus on AF duration assessment. In 

conclusion, our proposed method improves the screening of clinical AF using adhesive 

patch-type wearable electrocardiographs that can be used for up to 14 days, which is in 

accordance with the 2020 ESC Guidelines for AF diagnosis in clinical practice. 
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4. SE-ResNet-ViT Hybrid Model for Noise Classification 

in Adhesive Patch-Type Wearable Electrocardiographs 

4.1  Motivation 

 

Arrhythmia is a heart rhythm abnormality where the heart beats too slowly, too rapidly, 

or irregularly [1, 2]. Certain arrhythmias pose risks of serious complications, including 

stroke, heart failure, and cardiac arrest. Detecting these arrhythmias, which can occur 

intermittently, is challenging when patients undergo electrocardiogram (ECG) 

measurements during hospital visits [45]. Hence, to diagnose arrhythmia, ECG signals are 

commonly recorded using a Holter monitor over a period of 24 or 48 hours. However, 

previous studies indicate that 24- or 48-hour Holter monitoring is often ineffective in 

diagnosing certain clinically significant asymptomatic arrhythmias, including episodes of 

atrial fibrillation and transient bradyarrhythmia [46, 47]. Furthermore, these Holter 

monitors, also known as memory recorders, can be cumbersome for patients due to their 

bulky size or complex design. 

Recently, to minimize patient inconvenience, patch-type single-lead electrocardiographs 

have been launched in market, such as the Zio Patch (iRhythm in the United States), Ezypro 

(SIGKNOW in Taiwan), and MEMO Patch (HUINNO in Korea). These patch-type 

electrocardiographs improve patient convenience in daily life, thanks to their lightweight 

and compact design. The patch-type electrocardiograph, designed for low-power 
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consumption, can record ECG signals for up to 14 days. Previous studies have shown that 

recording ECG for approximately 14 days is effective in detecting most symptomatic 

arrhythmias [7]. Therefore, using this long-term patch-type electrocardiograph can enable 

more accurate diagnosis of arrhythmia and prevention of serious complications like stroke, 

heart failure, and cardiac arrest, compared to the 24- or 48-hour monitoring using a Holter 

monitor. Analyzing signals from patch-type electrocardiographs is more labor-intensive 

compared to those from Holter monitors, as the longer recording time leads to an increase 

in the absolute amount of noise within the signal. Furthermore, the fact that the 

morphologies of some noise signals are similar to some of arrhythmia signals complicates 

the task for machine learning models or algorithms in distinguishing between noise and 

arrhythmia signals. Therefore, patch-type long-term electrocardiographs require more 

robust software support for automated ECG analysis and arrhythmia classification 

compared to Holter monitors. Previous studies have proposed deep learning models to 

classify noise and ECG signals. However, these methods used only ECG data from ICU or 

Holter monitors for training and evaluating their models [48, 49]. Therefore, the efficacy 

of these models in classifying ECG signals from wearable electrocardiographs has yet to 

be evaluated. Additionally, some studies face the issue of not including arrhythmia signals 

in their data, consequently making these models less effective for arrhythmia diagnosis [50]. 

In this study, we introduce a SE-ResNet-ViT hybrid model designed to classify noise 

signals from arrhythmic ECG signals in patch-type wearable electrocardiographs. ECG 

signals were collected over 14 days using HUINNO's MEMO Patch, which included both 
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arrhythmia and noise signals, from patients with a history of arrhythmia or symptoms 

indicative of arrhythmia. The proposed model was trained, and its performance evaluated 

in classifying signals as either noise or non-noise. 
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4.2  Methods 

4.2.1 Data collection 

 

Data were gathered from a multi-center clinical trial conducted at Korea University 

Hospital and Seoul National University Bundang Hospital, receiving approval from the 

Institutional Review Board of each institution. The IRB numbers for the clinical trial are 

2021AN0247(Korea University Hospital) and B-2105/686-002(Seoul National University 

Bundang Hospital) respectively. Patients in need of ambulatory ECG monitoring were 

considered eligible if they had been diagnosed with stroke or transient ischemic attack with 

no identifiable causes, or if they exhibited symptoms such as palpitation, dizziness, or 

syncope. Patients were invited to participate in the study if they were aged between 19 and 

80 years old, capable of providing voluntary informed consents, and able to adhere to the 

study protocol for 14 days of attaching a MEMO Patch for monitoring. 

 Figure 4.1 depicts the overall process of data collection. In the clinical trial, a total of 

149 people participated. For this study, data from 70 individuals were randomly selected 

and analyzed. The labeling process for ECG signals involved several steps. Initially, non-

clinical experts manually reviewed and selected 117,000 noisy ECG signals. Following this, 

clinical technicians reviewed and labeled 2,084 noise signals, 7,552 normal sinus rhythm 

(NSR) signals, and 8,086 arrhythmia signals, which were then further inspected by a 

cardiologist. Noise signals not only consist of pure noise but also include signals that are a 

mixture of noise and ECG. The arrhythmia signals in this study included various types, 
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such as atrial premature contractions (APC), ventricular premature contractions (VPC), 

atrial fibrillation (AF), supraventricular tachycardia (SVT), atrioventricular block (AVB), 

and other arrhythmias. Table 4.1 shows the detailed classes and quantities of arrhythmia. 

To increase the quantity of noise signals, we collected data from 21 healthy individuals 

using the MEMO Patch during their daily life. The training and testing datasets were split 

into a 7:3 ratio across the noise, NSR, and arrhythmia ECG signal categories, with no 

patient overlap between the sets to prevent overfitting. The training dataset was divided 

into an 8:2 ratio for the purposes of training and validating the model. 

 

Table 4.1. Quantities of the collected and labeled data. 

Arrhythmia Training Testing 

Normal sinus rhythm 5242 2310 

Noise signal 5113 2354 

Atrial premature contractions 3476 1189 

Ventricular premature contractions 1018 902 

Atrial fibrillation 934 87 

Supraventricular tachycardia 265 84 

Atrioventricular block 3 102 

Other arrhythmias 16 10 

Total 16067 7038 
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4.2.2 Device and software 

 

Figure 2.1 displays the MEMO Patch, a single-lead adhesive patch-type ambulatory 

electrocardiograph, used to record ECGs from patients participating in the clinical trial. 

This device is approved by the Ministry of Food and Drug Safety (MFDS) in the Republic 

of Korea. This device is capable of operating for up to 14 days, recording ECG at a 

sampling rate of 250 Hz and with a 12-bit resolution. Patients visited the hospital to attach 

the device to their bodies and then went about their daily lives, measuring their ECG signals. 

After 14 days, they returned to the hospital to hand back the device. Upon its return, a 

technician downloaded the ECG data stored in the device's memory. The ECG data are 

initially pre-annotated using a machine learning model for arrhythmia classification, known 

as MEMO Care, provided by HUINNO, the manufacturer of the device. Subsequently, all 

the data referenced in this paper is reviewed by clinical technicians. 
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4.2.3 Preprocessing 

 

Some noise signals within the ECG can be eliminated using a simple digital filter. For 

instance, baseline wander, a low-frequency noise, arises due to factors like breathing, 

movement, or electrically charged electrodes [51]. This type of noise can be removed by 

applying a high-pass filter with a cut-off frequency below 1 Hz. Additionally, the ECG 

signal can be contaminated by high-frequency EMG signals during patient movement, 

which can be filtered out using a low-pass filter [52]. Increasing the order of the filters and 

narrowing the cut-off frequency can effectively eliminate these noises from the signals. 

However, this approach may distort the ECG signal, potentially leading to reduced 

performance in arrhythmia classification. We applied a second-order band-pass 

Butterworth filter with a 0.5-50Hz range in this study to remove baseline drift and high-

frequency noise from each 10-second ECG signal. Subsequently, the signals were 

normalized from 0 to 1 using min-max scaling. 
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4.2.4 Architecture of SE-ResNet-Vit model 

 

To classify noise signals within ECG signals, we propose a SE-ResNet-ViT hybrid model-

based architecture. The overall structure of the model is depicted in Figure 4.2. Since the 

introduction of the hybrid model that combines Convolutional Neural Network (CNN) with 

Vision Transformer (ViT) in Dosovitskiy's 2020 paper, numerous studies have adopted this 

hybrid architecture [53]. The hybrid model employs a technique that applies feature maps 

extracted from a CNN to the patch embedding projection for enhanced image analysis. The 

hybrid model demonstrates superior performance in image classification compared to the 

ResNet model, and it also outperforms ViT in smaller-sized models. 

One of the ResNet models, SE-ResNet, is recognized for its high classification 

performance among CNN-structured models, and our previous study confirmed it surpasses 

the classification performance of the standard ResNet model [54, 55]. Given the high 

performance of SE-ResNet, we aimed to create a hybrid by combining SE-ResNet and ViT. 

This hybrid model projects the output of the CNN feature map, using a 1x1 patch size, into 

the Transformer dimension. The difference between our previous study and the current one 

is that the sampling rate has been changed from 200 Hz to 250 Hz.  

The input shape for the model is set to batch size × 2500 × 1. The stem layer of the model 

comprises a convolution layer with a kernel size of 7 and a stride of 2, followed by a max 

pooling layer with a window size of 3, a stride of 2, and padding of 1. The layer composition, 
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as represented by the stride block, aligns with that of SE-ResNet. However, within the 

ResNet block, the stride is altered to 2 for the convolution process. 

 

 

Figure 4.2. Architecture of the SE-ResNet-ViT hybrid model. 
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4.3  Results 

4.3.1 Experiment setups 

 

For model optimization, we employed the Adam optimizer with an initial learning rate of 

0.0005. Cross entropy was used as the loss function, and the training was conducted for up 

to 40 epochs with a batch size of 512. All experiments were conducted using PyTorch on 

an RTX2080TI GPU. 
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4.3.2 Performance of noise classification 

 

Model performance was assessed using a test dataset, which was categorized into noise 

and non-noise classes. The evaluation metrics, including precision, recall, and F1 score, are 

detailed in Table 4.2. The average score for both classes was computed as a weighted 

average to account for the differing quantities in each class.  

 

 

Table 4.2. Score of noise classification. 

 Precision recall F1 score 

Noise 0.932 0.962 0.947 

Non-noise 0.980 0.965 0.973 

Weighted Avg 0.964 0.964 0.964 

 

 

The confusion matrix is presented in Figure 4.3. The weighted averages of the F1 score, 

precision, and recall were all calculated to be 0.964. However, the precision for noise 

signals was slightly lower at 0.932. This discrepancy is likely due to the smaller number of 

noise signals in the test dataset compared to non-noise signals, or a larger number of non-

noise predictions. The supposed reason for the lower precision in noise signals is the fewer 

number of noise signals in the test dataset compared to non-noise signals, or a higher 
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number of predictions classified as non-noise. The specific classification details of ECG 

signals identified as non-noise are presented in Table 4.3. Upon reviewing the misclassified 

classes, we noted that VPC signals were most frequently misclassified as noise. A 

comparison of the misclassified noise and VPC signals revealed similar shapes, especially 

after min-max scaling, as illustrated in Figure 4.4. Both waveforms displayed wide QRS 

complexes and abnormal shapes. 

 

 

Figure 4.3. Confusion matrix of noise classification. 
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Table 4.3. Number of count non-noise was incorrectly classified as noise. 

Arrhythmia Counts 

Normal sinus rhythm 44 

Atrial premature contractions 15 

Ventricular premature contractions 101 

Atrial fibrillation 1 

Supraventricular tachycardia 3 

Atrioventricular block 0 

Other arrhythmias 0 

Total 164 
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4.3.3 Comparison with other noise classification studies 

 

 We compare the performance of noise classification in ECG with previous studies [56-

59]. Table 4.4 shows comparison performance with other noise classification studies. Due 

to the absence of ECG signals containing arrhythmias in public data, many previous studies 

trained models on noise classification using NSR and then evaluated these models for their 

tendency to misclassify arrhythmias as noise. The 2017 PhysioNet database used in the 

study by Smisek et al, includes both arrhythmic signals and noise signals [58]. However, 

the noise signals in this database consist of only 46 signals with an average length of 27.2 

seconds, which may contribute to the poor classification performance of noise. The data 

used in previous studies consist of ECGs measured in ICUs or 12-lead resting ECGs. The 

2017 PhysioNet data was collected using AliveCor's single-lead electrocardiograph, but 

this ECG is also a resting ECG. Therefore, noise classification models trained on resting 

ECGs could face greater challenges in classifying noise arising from various activities 

during daily life. 
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Table 4.4. Comparison performance with other noise classification studies. 

  

Method Data Accuracy Precision Recall F1 score Ref 

CNN 

ICU (without Arrythmia) 0.89 0.957 0.893 0.924 

[56] 

ICU (Arrythmia only) 0.666 - - - 

Spectrum 

analysis 

ICU (without Arrythmia) 0.909 - - - 

[57] 

ICU (AF only) 0.862 - - - 

SVM 

2017 Physionet (Overall) - - - 0.81 

[58] 

2017 Physionet (AF)    0.81 

2017 Physionet (Others)    0.72 

2017 Physionet (Noise) - - - 0.55 

ResNet50 

2020 Physionet (Overall) - - - 0.77 

[59] 2020 Physionet (NSR) - - - 0.74 

2020 Physionet (AF) - - - 0.92 

ResNet-Vit 

hybrid 

(This study) 

Patch (Overall) 0.974 0.964 0.964 0.964 

 

Patch (NSR) 0.983 - - - 

Patch (APC) 0.987 - - - 

Patch (VPC) 0.888 - - - 

Patch (AF) 0.989 - - - 

Patch (SVT) 0.964 - - - 

Patch (AV block) 1    

Patch (Others) 1 - - - 
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4.4  Discussion 

 

Analyzing signals from long-term wearable electrocardiographs can be more labor-

intensive, as the extended recording time results in a higher amount of noise being included 

in the signal. To minimize the time-consuming aspect of ECG signal analysis, this study 

introduces a SE-ResNet-ViT hybrid model considered for classifying noise signals in long-

term ECG data from wearable patch-type devices. ECG data for training and evaluating the 

model were collected from participants in clinical trials, who were either diagnosed with 

or suspected of having arrhythmia. The collected data were reviewed and labeled by clinical 

experts. Upon evaluating the trained model, it achieved a weighted average F1 score of 

0.964, demonstrating its effectiveness in accurately classifying noise signals measured by 

patch-type wearable ECG devices. Nevertheless, it is observed that some VPC signals, 

resembling noise signals in shape, are occasionally misclassified as noise. In the future, we 

aim to minimize misclassification caused by the shape similarities between VPC signals 

and certain noise signals. We expect that the proposed noise classification method will help 

in screening arrhythmias more accurately. 
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5. Conclusion 

 

This study has presented reliable methods for classifying arrhythmias using deep learning 

techniques to apply on adhesive patch-type wearable electrocardiographs. 

In Chapter 3, we have designed SeqAFNet, a many-to-many RNN-based model, 

specifically for the beat-wise sequential classification of AF. This model sequentially 

utilized RRIs from ECG signal. Thanks to its robustness, SeqAFNet demonstrated effective 

classification of AF in ECG data, encompassing both records from public databases 

obtained via ambulatory ECG recorders and those derived from wearable 

electrocardiographs. Additionally, SeqAFNet aligns with the 2020 ESC Guidelines for AF 

diagnosis, attributable to its beat-wise input and output structure. 

In Chapter 4, the SE-ResNet-ViT Hybrid model is introduced, designed to classify noise 

signals occurring during the attachment of wearable electrocardiographs in daily life of 

patients. Numerous deep learning and algorithm-based arrhythmia classification methods 

are highly vulnerable to noise signals. To accurately classify arrhythmia in ECG signals, 

an effective noise classification method is crucial. The SE-ResNet structure was able to 

effectively extract morphological features from the ECG signals, and the ViT structure 

enabled attention to the areas where noise occurred in the ECG signals. The SE-ResNet-

ViT Hybrid model, combining these advantages, was able to effectively classify noise 

signals in ECG signals measured from wearable electrocardiographs. 
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Despite the significant results, the current study had several limitations. First, SeqAFNet 

depends on a method that identifies R peak locations in the ECG waveform. Should the R 

peak detection methods malfunction, SeqAFNet's performance could deteriorate. To 

prevent such issues, high-performance R peak detection methods are required. Additionally, 

it is anticipated that the noise detection model introduced in Chapter 4 could be utilized to 

prevent malfunctions in noisy ECG waveforms. 

We believe that the proposed methods will be more effective with adhesive patch-type 

wearable electrocardiographs, which offer a longer measurement duration compared to 

traditional Holter monitors, particularly for patients suspected of arrhythmias. The 

extended measurement duration of wearable electrocardiographs and the structural 

limitations that make ECG signals more challenging and voluminous to analyze. Our 

proposed methods would provide valuable assistance to medical professionals in clinical 

practice.  
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Abstract in Korean 

 

패치형 웨어러블 심전도계를 이용한 부정맥 검사를 하기 위한 

딥러닝 기법 

 

 

 패치형 부착형 심전도계는 편리함과 더 늘어난 데이터 측정기간으로 부정맥 

검사에 홀터 심전계를 대체하며 점점 더 보편화되고 있다. 이러한 웨어러블 

장비들이 진료환경에서 더욱 보편적으로 사용됨에 따라 심장 질환의 보다 

정확한 진단과 질병의 조기 발견 및 치료가능성이 증가하고 있다. 그럼에도 

불구하고 패치형 심전도계의 단일 리드 구조와 노이즈에 대한 취약성으로 

인하여, 기존에 12 리드 심전도 또는 홀터 심전계에서 측정한 데이터를 

분석하는데 사용되던 부정맥 진단 기법들을 적용할 경우 그 유효성이 

입증되지 않았다. 이 연구는 이러한 패치형 심전도계를 사용하였을 때 부정맥 

분류 성능을 향상시키기 위한 방법을 개발하고자 한다. 

첫째로, 심전도 신호의 RR 간격 프레임을 사용하여 심방세동을 비트 단위로 

분류하는 SeqAFNet 을 설계하였다. 이 모델은 순환신경망 구조를 기반으로 

심전도 신호 각각 비트를 순차적으로 분류하기 위하여 설계되었다.  이 

모델의 성능이 학습에 사용된 데이터베이스에서만 국한되지 않았다는 것을 

평가하기 위하여 3 개의 서로 다른 데이터베이스에 대하여 비교하였다. 

SeqAFNet 은 심방세동을 분류에 확고한 성능을 보여주며, 임상 기준에 대하여 
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2020 유럽 심장학회 심방세동 분류와 관리에 관한 가이드라인과 IEC 60601-2-

47 표준에 부합하였다. 

패치형 심전도계의 노이즈로 인한 문제를 해결하기 위해, SE-ResNet-ViT 

하이브리드 모델을 개발하였다. 이 모델의 SE-ResNet 인코더는 심전도 신호의 

특징을 효과적으로 추출할 수 있으며, 트랜스포머 구조는 10 초 단위의 심전도 

신호 안에서 노이즈 구간에 집중하여 분류할 수 있다. 이러한 하이브리드 

구조 덕분에 제안된 모델은 노이즈만 있는 신호뿐만 아니라 노이즈와 함께 

측정된 다양한 부정맥 신호 또한 분류할 수 있다. 

이 연구에서 제안된 방법들은 웨어러블 기기를 이용하여 부정맥 검사와 관리 

분야를 발전하는데 주요한 역할을 할 것으로 기대한다. 정확하고 높은 성능을 

갖고 있는 딥러닝 기반의 기법들이 임상환경에서 의료진들의 업무량을 

간소화할 수 있을 것으로 생각한다. 또한, 임상 환경에서 더 정확한 부정맥 

진단과 심장 질환의 조기 치료에 기여할 수 있을 것으로 기대한다. 
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