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ABSTRACT 
 

Development of Predictive Model based on Medical Image for Prediction 
of Diagnosis and Treatment Prognosis in Patients with Pulmonary 

Hypertension 
 

Pulmonary hypertension (PH) is a condition characterized by elevated pressure in the pulmonary 
arteries resulting from various pulmonary and cardiac diseases. This elevation in pressure increases 
the strain on the heart, leading to right ventricular overload and potentially right heart failure, which 
significantly affects the patient's prognosis.  

This study aims to develop a technology that supports non-invasive examinations by deriving 
hemodynamic computational fluid dynamics (CFD) simulation results from echocardiography and 
computed tomography (CT) images. These results will be used to develop a deep learning model 
(DL-CFD). Additionally, a model incorporating the clinical results of echocardiography (eDL-CFD) 
will be evaluated for validity. By comparing these models with traditional echocardiography 
methods, the study confirms the potential for clinical use of this combined approach. 

Between 2008 and 2019, a retrospective study analyzed 92 patients who underwent right heart 
catheterization (RHC) for PH assessment, including 75 diagnosed with PH (mPAP > 25 mmHg) 
and 17 suspected but not diagnosed (mPAP < 25 mmHg). The results of this study demonstrated the 
efficacy of integrating DL-CFD and eDL-CFD for non-invasive diagnosis of PH. The deep learning 
model's predictions closely matched the simulation results, showcasing high accuracy and reliability. 
Comparative analysis revealed that while the correlation between RHC and the developed CFD and 
DL-CFD methods was lower than traditional echocardiography, eDL-CFD method exhibited a 
higher correlation with RHC and improved diagnostic accuracy. The area under the curve (AUC) 
for the combined method was 98.9%, significantly higher than the 94.6% for echocardiography 
alone. Stratified analysis highlighted that the combined approach improved specificity to 94.1% 
from 76.4%, maintaining a high sensitivity of 97.3%. This indicates the potential of the combined 
method to serve as a more reliable non-invasive diagnostic tool for pulmonary hypertension. 

These results indicate that the eDL-CFD approach can be a viable non-invasive alternative for 
diagnosing PH, potentially offering improved diagnostic accuracy and reliability over traditional 
echocardiography alone. This study demonstrates the potential of eDL-CFD for non-invasive PH 
diagnosis, supporting personalized treatment planning and accurate prediction of disease 
progression. Future research will focus on utilizing diverse datasets and applying data augmentation 
techniques to enhance the model's generalizability and accuracy. 

 

                                                                   
Key words: pulmonary hypertension, hemodynamics, deep learning, computational fluid 
dynamics, non-invasive diagnosis 
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I. INTRODUCTION 
 

1. Rare Incurable Condition: Pulmonary Hypertension 
 

Pulmonary hypertension (PH) is when the pressure in the pulmonary arteries is 

abnormally high. This causes the pulmonary arteries to narrow, or the blood vessel walls 

in the lungs to thicken, increasing resistance to blood flow. PH places excessive strain on 

the heart and lungs, and if left untreated, it can gradually worsen and lead to heart failure 

or other serious health problems. Normal pulmonary artery pressure is less than 25 mmHg, 

but in patients with PH, this pressure is measured at rest above 25 mmHg (Figure 1)[1-3]. 

PH can be caused by various causes, and the main causes are genetic factors, heart 

disease, lung disease, and certain drugs or toxins. PH is broadly classified into five types 

according to the cause, and each type has different pathological characteristics and 

treatment methods. For example, primary pulmonary hypertension (pulmonary arterial 

hypertension, PAH) often has an unknown cause, and secondary pulmonary hypertension 

is caused by another disease of the heart or lungs[4, 5]. The prognosis and survival rate of 
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PH vary depending on the stage and treatment method at the time of diagnosis, and the 

prognosis is better if it is detected early and treated appropriately. (Table 1) [6-8]. 

A variety of testing methods are needed to diagnose pulmonary hypertension. The 

initial diagnosis is performed through noninvasive echocardiography, which estimates 

whether pulmonary artery pressure is elevated. However, echocardiographic estimates can 

sometimes be inaccurate compared to invasive right heart catheterization (RHC). RHC is 

considered the gold standard for diagnosing PH and directly measures pulmonary artery 

pressure (PAP). This discrepancy can lead to delayed diagnosis or unnecessary right heart 

catheterization. In addition, tests such as blood tests, computed tomography (CT), and 

magnetic resonance imaging (MRI) can be performed to determine the cause. 

PH is a disease that occurs worldwide, and the prevalence and incidence vary by 

region and population group. While the prevalence is relatively low in North America and 

Europe, the prevalence is high in Africa and some parts of Asia. These differences are 

mainly due to genetic factors, environmental factors, and differences in access to medical 

care. As awareness of PH increases worldwide, diagnostic and treatment methods steadily 

improve. However, there are still many challenges, such as difficulty in early diagnosis and 

high treatment costs[9-12]. 

PH often has delayed diagnosis because symptoms are not clear in the early stages. 

Noninvasive echocardiography is useful for initial screening, but its accuracy may be 

limited due to discrepancies with invasive right heart catheterization. Therefore, the 

development of faster and more accurate diagnostic methods is needed. New noninvasive 

and cost-effective diagnostic technologies can enable early detection and treatment of 

pulmonary hypertension, thereby improving patients' quality of life[13, 14]. 
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Table 1. Clinical classification of pulmonary hypertension 

Group Type 

1 Pulmonary arterial hypertension 

2 Pulmonary hypertension with left-heart disease 

3 Pulmonary hypertension associated with lung disorders, hypoxemia, or both 

4 Pulmonary hypertension due to pulmonary artery obstructions 

5 Miscellaneous (unclear or multifactorial mechanisms) 
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Figure 1. Pulmonary hypertension, (a): Normal pulmonary artery pressure is 8~25 mmHg 

at rest, (b): Pulmonary hypertension is pressure in the pulmonary artery that is greater 

than 25 mmHg at rest or 30 mmHg during physical activity. 
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2. Diagnostic Modalities for PH 
PH is a severe and progressive disorder characterized by elevated PAP and vascular 

resistance, leading to right heart failure and reduced exercise capacity. The diagnostic 

process for PH is multifaceted, involving various modalities to assess and manage the 

condition accurately[1, 3]. 

Initial clinical suspicion of PH arises from symptom observation and physical 

examination. However, definitive diagnosis requires hemodynamic assessment primarily 

through RHC. RHC is considered the gold standard for diagnosing PH, as it directly 

measures mPAP, PAWP, and cardiac output, providing essential data for confirming PH 

and differentiating it from other forms of pulmonary hypertension[5, 15]. 

Transthoracic echocardiography (TTE) plays a pivotal role in the initial screening and 

evaluation of suspected PH cases. TTE, a non-invasive imaging modality, estimates 

pulmonary artery pressures by measuring tricuspid regurgitant velocity. It also assesses the 

right ventricle's size, function, and pressure overload. Despite its utility, TTE alone cannot 

definitively diagnose PH but serves as an invaluable tool in early identification and risk 

stratification of patients. Currently, TTE is widely used for the primary diagnosis of 

pulmonary hypertension, but it is less accurate compared to RHC. This discrepancy can 

lead to unnecessary RHC procedures for some patients, while missing those who need it, 

thereby delaying the diagnosis[16, 17]. 

Computed Tomography (CT) supplements TTE by providing detailed structural 

information about the thoracic cavity. CT scans are instrumental in identifying and 

characterizing lung parenchymal disease, assessing pulmonary vasculature, and evaluating 

for thromboembolic disease (Figure 2). Moreover, CT imaging offers insights into the 

differential diagnosis of PH, assisting in identifying underlying causes and contributing to 

prognostic assessments[18-20]. 

Other diagnostic tests, such as pulmonary function tests, blood tests for biomarkers, 

and exercise testing, contribute to the comprehensive evaluation of PH. These tests provide 

information about the functional status of patients, disease severity, and response to therapy, 



- 6 - 
 

thereby guiding treatment decisions[4, 5, 21]. 

The diagnosis of PH is complex and requires a combination of clinical evaluation and 

multiple diagnostic modalities. RHC remains the definitive method for diagnosis, while 

non-invasive techniques like TTE and CT scans play crucial roles in the initial evaluation, 

risk stratification, and ongoing management of PH patients. Given the fatal nature of PH, 

even missing a single diagnosis can delay early treatment, leading to poor outcomes. 

Therefore, there is a need for a superior non-invasive approach to diagnose PH that 

surpasses the current echocardiographic methods, using RHC as the reference standard[13, 

22]. 
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Figure 2. Normal pulmonary artery CT image of a healthy individual (left) and an 

enlarged pulmonary artery CT image of a patient with PH (right). 
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3. Hemodynamic Analysis in PH 
PH is a complex cardiovascular condition characterized by increased pressure in the 

pulmonary arteries. Traditional diagnostic methods have relied heavily on invasive 

procedures like right heart catheterization. However, recent advancements in non-invasive 

diagnostic technologies, notably computational fluid dynamics (CFD), have opened new 

avenues for assessing and managing PH[4, 23]. 

CFD is a branch of fluid mechanics that uses numerical analysis and algorithms to 

solve and analyze problems involving fluid flows. In the context of PH, CFD utilizes 

advanced computational algorithms, such as the finite difference method (FDM), finite 

element method (FEM), and finite volume method (FVM), to solve the Navier-Stokes 

equations, which describe the motion of viscous fluid substances. This approach allows for 

the detailed visualization and analysis of blood flow dynamics within the pulmonary 

vasculature[24, 25]. 

The application of CFD in PH provides invaluable insights into hemodynamic 

parameters, which are crucial for understanding the progression and severity of the disease. 

Simulations using patient-specific 3D models enable clinicians to visualize blood flow 

patterns, assess flow velocity, and evaluate parameters such as wall shear stress (WSS). 

WSS is particularly significant as it indicates the mechanical stress exerted on the vascular 

endothelium, a critical factor in the pathophysiology of PH[26, 27]. 

One of the significant advantages of CFD in PH diagnosis is its ability to provide 

superior spatial and temporal resolutions of blood flow. Unlike traditional imaging 

modalities, CFD simulations can resolve complex pathological hemodynamic challenges, 

offering detailed insights into the disturbed flow patterns typical in PH patients. This level 

of detail can be critical in diagnosing challenging cases where conventional methods may 

not provide sufficient information[28, 29]. 

Furthermore, CFD simulations can potentially enhance personalized medicine 

approaches in PH. Using patient-specific models, clinicians can predict disease progression, 

assess the efficacy of therapeutic interventions, and tailor treatment plans to individual 
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patient needs. This precision approach could lead to better outcomes and improved quality 

of life for PH patients[30]. 

CFD represents a revolutionary step forward in the non-invasive diagnosis of PH. Its 

ability to provide detailed insights into blood flow dynamics and its application in patient-

specific models offers significant advantages over traditional diagnostic methods. As CFD 

technology continues to evolve, it promises to further enhance our understanding and 

management of PH (Figure 3) [31, 32]. 
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Figure 3. The AS-IS (1) process for clinical diagnosis involves invasive tests with 

significant operator involvement and structural examination. The AS-IS (2) utilizes non-

invasive methods but requires operator intervention and longer processing times. The TO-

BE process aims to achieve rapid clinical outcomes using non-invasive methods while 

minimizing operator involvement. 
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4. Deep Learning with CFD Simulation for PH Diagnosis 
 

The advent of deep learning in the medical and healthcare sector marks a 

transformative era, offering rapid and accurate diagnostics across various fields, including 

cardiology. Recently, deep learning technologies have been successfully implemented in 

the medical field, especially in diagnosing cardiac diseases. These technologies have shown 

exceptional capability in performing repetitive image analysis tasks comparable to 

professional medical practitioners[33-37]. 

Particularly in the context of pulmonary hypertension, a condition where diagnosis 

crucially depends on changes in blood flow and pressure, the use of non-invasive imaging 

techniques like CT and magnetic resonance imaging (MRI) has been paramount. However, 

these methods often involve time-consuming processes like segmentation and localization, 

with the accuracy heavily dependent on the analyst's expertise. Deep learning transforms 

the field by offering rapid and precise analysis, enhancing patient care through timely and 

accurate diagnostics[38, 39]. 

Our study utilizes non-invasive imaging tests, specifically echocardiography and CT, 

in conjunction with deep learning with CFD simulations (DL-CFD) and echocardiography 

+ DL-CFD (eDL-CFD) supplemented with analytical values calculated using Mahan's 

equation from echocardiography. This approach is compared against the current gold 

standard, RHC, which is an invasive diagnostic procedure. The goal is to validate the 

significance of the developed technology compared to RHC and to ascertain its accuracy 

in distinguishing between regular patients and those suffering from PH[40]. 

Deep learning in medical imaging and CFD simulation represents a significant step 

forward in PH diagnosis. By leveraging advanced algorithms and large datasets, deep 

learning models can efficiently process and analyze complex medical images. This 

capability is particularly advantageous in CFD simulations, where the accurate 

representation and analysis of blood flow dynamics are crucial. In PH, where subtle 

changes in pulmonary hemodynamics are pivotal, DL-CFD and eDL-CFD can provide 
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more detailed and accurate assessments than traditional methods[33, 41-44]. 

Physics-informed neural networks (PINNs) are another innovative approach that 

integrates physical laws into neural network training, enhancing the model's accuracy and 

generalizability. PINNs use governing equations of physics, such as Navier-Stokes for fluid 

dynamics, as constraints during the training process, allowing them to learn from both data 

and physical principles. This integration is particularly beneficial in medical applications 

like CFD simulations, where accurate modeling of hemodynamic conditions is essential. 

Representative works in this area include Raissi et al.'s seminal papers on physics-informed 

deep learning[45-47]. 

Furthermore, deep learning algorithms can continuously learn and improve from new 

data, potentially increasing diagnostic accuracy. This aspect mainly benefits handling 

diverse patient populations and complex clinical scenarios, enabling personalized and 

precise healthcare delivery[34-36, 48, 49]. 

In conclusion, incorporating deep learning in non-invasive diagnostic methods, 

particularly in the context of PH, presents a promising frontier in medical technology. By 

combining, this approach aims to enhance the accuracy and efficiency of PH diagnostics, 

potentially surpassing the capabilities of traditional methods and paving the way for more 

patient-centric and non-invasive diagnostic procedures (Figure 4)[35]. 

 

This research aims to evaluate the efficacy of a combined model incorporating 

noninvasive tests such as echocardiography, CT, CFD, and deep learning, using RHC as 

the gold standard. Furthermore, the study seeks to determine the potential of this combined 

approach as an alternative or complementary method to the widely used echocardiography 

for diagnosing PH. 
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Figure 4. Traditional diagnosis of PH involves invasive methods and is not real-time. 

Using CFD simulation provides a non-invasive method, but it is also not real-time. 

Applying DL-CFD and eDL-CFD enables real-time, non-invasive diagnosis. 
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II. MATERIALS and METHODS 
 

1. Subjects 
Between 2008 and 2019, a retrospective cohort was composed of 92 patients who 

underwent RHC for various clinical reasons, including PAH or other conditions causing 

PH. This cohort included 75 patients diagnosed with PH (mPAP > 25 mmHg) and 17 

patients who were suspected of having PH and underwent RHC but were not diagnosed 

with PH (mPAP < 25 mmHg). Additionally, all patients underwent echocardiography and 

computed tomography (CT). Participants were selected using random sampling to ensure a 

representative sample of the patient population. This study received approval from the IRB 

of Severance Hospital. Before enrollment, informed consent was obtained in writing from 

all participants. This cohort allowed for a comprehensive analysis of diagnostic modalities 

and their effectiveness in assessing and managing PH, contributing valuable insights into 

these patients' clinical characteristics and outcomes. 
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2. Right Heart Catheterization 
All patients diagnosed with PH underwent RHC using a balloon-tipped, 7-Fr 

SwanGanz CCombo PA catheter (Baxter, Irvine, CA, USA), which was inserted either via 

the right or left femoral vein. During the catheterization procedure, patients were positioned 

supine, resting comfortably while breathing room air, ensuring they were stable. 

Hemodynamic data were collected while the patients were at rest to obtain accurate and 

consistent measurements. The following hemodynamic parameters were meticulously 

measured: systolic pulmonary artery pressure (sPAP), diastolic pulmonary artery pressure 

(dPAP), mPAP, right atrial pressure (RAP), PAWP, cardiac output (CO) using 

thermodilution, and cardiac index (CI), which is the CO normalized to body surface area. 

PVR was calculated using the values of mPAP, PAWP, and CO, providing a 

comprehensive assessment of the pulmonary circulatory system. stroke volume (SV) was 

also calculated during RHC using the measured CO and heart rate. These detailed 

hemodynamic assessments through RHC were critical in accurately diagnosing and 

evaluating the severity of PH in these patients, facilitating the appropriate clinical 

management and therapeutic decision-making process. 
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3. Velocity Segmentation in Echocardiography  
Echocardiography represents a cornerstone in the non-invasive PH diagnosis, offering 

a convenient and widely accessible method to assess hemodynamic variables. TTE images 

were utilized for this study, with inclusion criteria mandating that all echocardiographic 

footage conformed to standard views and visual norms. Exclusion criteria were set to omit 

patients diagnosed with conditions that could confound the interpretation of 

echocardiographic data, such as heart failure, coronary artery disease, valvular heart disease, 

or pregnancy, and those with substandard image quality obtained from non-standardized 

scans. 

Measurements were explicitly focused on cases where at least one view in the Doppler 

echocardiogram allowed for calculating mPAP. Three primary methods, utilizing spectral 

Doppler, were employed to measure pulmonary artery pressure: 

 

A. Average Pulmonary Artery Pressure Using Tricuspid Regurgitation (Based 

on Systolic Pulmonary Artery Pressure) 

This method involved the use of pulmonic valve (PV) pulse wave (PW) Doppler, 

targeting the right ventricular outflow tract (RVOT) to determine the PV PW. This 

approach is instrumental in calculating the mPAP, with the RVOT velocity maximum 

measured and applied in a specific formula for mPAP calculation. Furthermore, the mPAP 

can be estimated from the sPAP using empirical relations. 

 

𝑠𝑃𝐴𝑃 = 4 × (𝑇𝑅𝑉)! + 𝑅𝐴𝑃, 

𝑚𝑃𝐴𝑃 = 4 × .𝑅𝑉𝑂𝑇"#$%&'()	+,-0
! + 𝑅𝐴𝑃. 
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B. Mahan's Method for Systolic Flow Acceleration Time in the Right Ventricular 

Outflow Tract  

Using Mahan's equation, this method entailed measuring pulmonic valve continuous 

wave (PV CW) Doppler, targeting pulmonic regurgitation (PR) to derive measurements. 

The PR velocity maximum was measured and then applied in another specific formula to 

calculate the mPAP. 

 

𝑃𝐴𝑃 =
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒
+ 𝑎𝑑𝑗. 

 

C. Diastolic Pulmonary Artery Regurgitation Velocity Measurement  

The measurement was taken by targeting tricuspid regurgitation (TR) at the tricuspid 

valve and measuring the TR continuous wave (TV CW). The TR velocity maximum was 

then used in a formula to calculate the mPAP (Figure 5). 

 

𝑚𝑃𝐴𝑃 = 4 × (𝐷𝑃𝑅𝑉)! + 𝐷𝑅𝐴𝑃. 

 

Combined with the image acquisition and interpretation standardization, these 

methodologies provide a comprehensive and reliable approach to the echocardiographic 

assessment of PH. Multiple Doppler techniques enhance diagnostic accuracy, allowing for 

a detailed evaluation of the hemodynamic status in patients with suspected or confirmed 

PH. The application of these methods aligns with current best practices in 

echocardiographic diagnostics and underscores the role of non-invasive imaging in 

managing pulmonary hypertension. 
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Figure 5. Confirmation of the RVOT location in B-mode using echocardiography, 

followed by spectral Doppler imaging to measure blood flow velocity at the RVOT  

 

D. Spectral Doppler Segmentation 

The segmentation of Doppler signals from echocardiography data is a critical step in 

our methodology, particularly for accurately capturing the velocity profiles necessary for 

subsequent CFD simulations. This process begins with the selection and preprocessing of 

RVOT spectral Doppler images stored in digital imaging and communications in medicine 

(DICOM) format. The selected Doppler images are converted into a standardized format 

suitable for annotation, ensuring they meet the quality criteria necessary for creating 

training datasets. Using a commercial framework, 2D masks are generated for each Doppler 

image to delineate the Doppler signal regions within the RVOT. These annotations, 

performed by trained experts, ensure high accuracy and create a reliable ground truth 

dataset for model training. 

The annotated Doppler images serve as the foundation for training a segmentation 

model based on the U-net architecture, which is well-suited for biomedical image 

segmentation. The U-net model, with its encoder-decoder structure and skip connections, 

captures fine details in complex medical images. The encoder compresses the input image 
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to capture essential features, while the decoder reconstructs the image to its original 

dimensions, providing a detailed segmentation map. The skip connections enhance the 

segmentation accuracy by retaining spatial information. The annotated dataset is split into 

training and validation sets, and the U-net model is trained using these datasets. Data 

augmentation techniques such as rotation, scaling, and translation are employed to enhance 

the model's robustness. The Adam optimizer is used to optimize the model parameters, with 

cross-entropy as the loss function to handle the segmentation task effectively (Figure 6). 

The model's performance is evaluated using metrics such as the dice similarity coefficient 

(DSC), which measures the overlap between the predicted segmentation and the ground 

truth. 

Once trained, the U-net model is employed to segment RVOT spectral Doppler signals 

from new echocardiography data, significantly reducing the manual effort and time 

required for Doppler signal extraction. The trained model processes new RVOT Doppler 

images, generating segmentation masks that accurately delineate the Doppler signals. 

These masks are reviewed for consistency and accuracy, ensuring that the segmented 

regions correspond precisely to the actual Doppler signals. The segmented Doppler signals 

are then converted into velocity profiles, which serve as inlet boundary conditions for CFD 

simulations. The velocity profiles are extracted by averaging the Doppler signal intensities 

over time, providing a detailed representation of the blood flow dynamics through the 

RVOT. These extracted inlet velocity profiles are integrated into the CFD simulation 

framework, enabling accurate modeling of blood flow through the pulmonary arteries. This 

integration ensures that the simulations reflect realistic hemodynamic conditions, 

enhancing the validity of the study's findings. 
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Figure 6. Using echocardiography to capture spectral Doppler images at the RVOT and 

annotating the blood flow velocity profile data to train a U-net based segmentation model. 
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4. Segmentation of the Pulmonary Artery in Computed 

Tomography 
The CT scans utilized in this study were acquired between 2008 and 2019. Of the 92 

CT scans, 51 were performed using Siemens, 23 using GE, 15 using Philips, and 3 using 

Canon. The scans were obtained with tube voltages of 140kVp (n=32), 120kVp (n=3), and 

100kVp (n=57). The slice thicknesses were 1.25mm (n=17), 1mm (n=72), and 0.625mm 

(n=3). All CT scans were acquired with prospective electrocardiogram (ECG) gating while 

administering contrast agents. 

Deep learning-based segmentation was performed to extract the three-dimensional 

structure of the pulmonary artery automatically. First, to create ground truth data, 2-

dimensional masks for each CT slice were generated using the commercial framework, 3-

matics (Materialise NV, Leuven, Belgium). The range for mask generation was set from 

the main pulmonary artery to the right/left pulmonary artery, excluding branches from the 

first branch onwards. The DICOM image size was 512x512, and the z-slice range was 

approximately 200 to 400. 

 

 
Figure 7. After performing contrast-enhanced CT imaging of the pulmonary artery, the 

data is masked and annotated to train a U-net based segmentation model. 

 

The network architecture comprised an encoder and decoder connected by skip 

connections. In the encoder, the image size was reduced through 2D convolutional layers, 

batch normalization, and ReLU activation, with feature extraction co-occurring. The 
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subsequent application of max pooling reduced the size of the feature map, leading to the 

loss of local information. Conversely, the decoder also involved 2D convolutional layers, 

batch normalization, and ReLU activation, but using upsampling layers resulted in the 

reflection of feature information onto the image. Finally, the network was configured for 

mask inference by concatenating dimensions and applying a softmax function after the skip 

connections, utilized at each layer stage to preserve essential feature information and 

prevent the loss of critical features. The loss function employed was cross-entropy, which 

is defined as: 

𝐿(𝑦, 𝑦B) = −∑ 𝑦' log(𝑦B')' , 

Where 𝑦 represents the actual label, and 𝑦B is the predicted probability (Figure 7). 

To evaluate the performance of the segmentation, the DSC was used to assess the 

congruence between the ground truth data and the resulting segmentation masks. 

 

𝐷𝑆𝐶 =
2 × 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) + (𝑇𝑃 + 𝐹𝑁)
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5. Model geometric parameters modification 
 

To perform accurate CFD simulations, it is essential to ensure that the geometric 

models of the pulmonary artery are precise and representative of the actual patient-specific 

anatomy. The modifications to the geometric parameters of the models are performed as 

follows: 

 

A. Preprocessing and Mesh Generation  

The initial step involves preprocessing the segmented pulmonary artery structures 

obtained from CT scans. The raw segmented data are smoothed to remove noise and 

improve the quality of the geometric model. Smoothing algorithms, such as Gaussian 

smoothing or Laplacian smoothing, are applied to achieve a balance between retaining 

anatomical details and eliminating artifacts. 

Once the smoothing process is completed, the geometric model is converted into a 

mesh suitable for CFD simulations. This involves generating a high-quality, 

computationally efficient mesh that accurately represents the pulmonary artery's 3D 

structure (Figure 8). The meshing process typically includes: 

Surface meshing: Creating a fine mesh on the surface of the pulmonary artery using 

triangular or quadrilateral elements. 

Volume meshing: Filling the interior of the pulmonary artery with tetrahedral or 

hexahedral elements to create a volumetric mesh suitable for flow simulations. 
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Figure 8. Extracting 3D pulmonary artery masks from CT images, followed by 

preprocessing such as 3D smoothing, and generating a surface mesh. 
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B. Boundary Conditions Definition  

To ensure realistic simulation results, appropriate boundary conditions are defined for 

the CFD model. This includes specifying the inlet and outlet boundaries, wall boundaries, 

and any internal boundaries within the pulmonary artery (Figure 9): 

Inlet boundary: The main pulmonary artery serves as the inlet where blood flow enters. 

Flow velocity or pressure profiles are applied based on physiological data. 

Outlet boundaries: The right and left pulmonary arteries act as outlets. Outlet pressure 

or flow distributions are assigned to simulate realistic blood flow exiting the model. 

Wall boundaries: The arterial walls are treated as no-slip boundaries, meaning that the 

fluid velocity at the wall surface is zero, simulating the interaction between the blood and 

the vessel wall. 

 

C. Geometric Parameter Adjustments  

Modifications to geometric parameters may be necessary to represent patient-specific 

conditions accurately. Adjustments include scaling the model to match patient dimensions, 

refining regions with complex flow dynamics, and incorporating anatomical variations 

such as bifurcations or stenosis. 
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Figure 9. Using spectral Doppler to input inlet information of the 3D pulmonary artery 

geometry and employing RHC wedge pressure for outlet information in the CFD 

simulation. 
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6. Simulated operation of CFD 
 

The CFD simulation setup for this study involved a comprehensive definition of 

physical and numerical parameters governing the fluid dynamics of blood flow within the 

pulmonary artery. The Navier-Stokes equations, which describe the motion of viscous fluid 

substances, were solved numerically to ensure mass conservation and account for the forces 

acting on the fluid, including pressure and viscous forces. 

Blood was modeled as an incompressible, non-Newtonian fluid with properties 

defined by the Carreau model to capture its shear-thinning behavior. The fluid properties 

were set with a density of 1060 kg/m³, and the dynamic viscosity was determined by the 

equation: 

𝜇 = 𝜇. + (𝜇/ − 𝜇.)[1 + (𝜆𝛾)!]
012
!  

Where 𝜆 = 3.313	𝑠, 𝑛 = 0.3568, 𝜇/ = 0.056	𝑘𝑔/𝑚𝑠, 𝜇. = 0.0035	𝑘𝑔/𝑚𝑠. 

 

Boundary conditions were critical for the accuracy of the CFD model. The inlet 

condition was defined at the RVOT using a mass flow inlet boundary, specifying the rate 

of blood entering the pulmonary artery. The outlet boundary condition was based on the 

PAWP measured during RHC. Wall boundaries were treated with a no-slip condition, 

ensuring the fluid velocity at the arterial wall surface was zero. 

A transient solver was used to capture the dynamic behavior of blood flow over time, 

implementing the k-epsilon turbulence model to account for turbulence effects. The 

pressure-based solver was chosen for its ability to resolve pressure and velocity fields 

accurately. The simulation ran over an R-R interval of 1 second, sampled at 60 points to 

capture temporal variations in hemodynamic parameters. 

The FVM was employed to discretize the governing equations, with time-stepping schemes 

designed to handle the transient nature of the simulations. Convergence criteria were set to 

monitor residuals for continuity, momentum, and other relevant variables, ensuring 

accurate and stable results when residuals dropped below 1013. 
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Post-processing involved extracting meaningful hemodynamic parameters such as 

velocity fields, pressure distribution. These parameters provided insights into the flow 

dynamics within the pulmonary artery, highlighting regions of high velocity, analyzing 

pressure gradients, and assessing the mechanical stress exerted on the vascular endothelium. 

Results were extracted at 60 time points throughout the cardiac cycle, offering a detailed 

temporal analysis of hemodynamic changes (Figure 10). 
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Figure 10. Generating a surface mesh from the segmentation results of CT geometry 

using deep learning and inputting the RVOT velocity from spectral Doppler and wedge 

pressure from RHC into a CFD simulation to derive pressure-inclusive  

volume information. 
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7. Patient specific deep learning with CFD simulation 
 

To enhance the diagnostic process, patient-specific DL-CFD and eDL-CFD were 

developed. The initial step involved the segmentation of pulmonary artery geometries from 

CT scans, which were then converted into surface meshes, capturing detailed contours and 

structural features. The corresponding volume mesh was generated using the surface mesh 

as a reference, ensuring accurate volumetric representation of the pulmonary artery. These 

meshes were annotated with hemodynamic data such as mPAP values (Figure 11). 

The geometric PointNet framework was utilized to model the hemodynamic behavior 

within the pulmonary artery. PointNet, designed to handle 3D point cloud data, was suitable 

for analyzing the surface and volume meshes. The model employed a dual-layer feature 

extraction process: local features were extracted from both the surface and volume meshes, 

capturing details such as curvature, area, and centroid pressure values. Skip connections 

were integrated to preserve essential information and enhance learning. 

Incorporating patient-specific meta-features such as age and gender, the model 

processed these inputs through dedicated layers to extract weights, which were then 

concatenated with geometric features. The combined weights from both the local feature 

layers and the meta-feature layers were further processed to extract global features, 

encapsulating the patient's overall condition. This approach ensured a comprehensive 

analysis of both structural and functional aspects of the pulmonary artery (Figure 12, 13).  

Additionally, a model was developed that included the results of the Mahan equation 

analyzed from echocardiography as part of the meta-features in the deep learning model 

(eDL-CFD). This model was designed to facilitate mutual complementation between 

hemodynamic information (CFD) and conventional examination methods 

(echocardiography, CT). (Figure 12, 13). 

The final layer of the model predicted the mPAP by leveraging the comprehensive 

feature set. The training process involved minimizing the mean absolute error (L1 loss 

function) between predicted and actual mPAP values, defined as: 



- 31 - 
 

argmin 𝐿(𝜃) =
1
𝑛
ab𝑌' − 𝑌4db
0

'52

 

where 𝑌' represents the actual mPAP and 𝑌4d  denotes the predicted mPAP. The 

Adam optimizer was used for efficient convergence during training. 

Performance was evaluated using mean absolute error (MAE) and root mean square 

error (RMSE), with RMSE defined as: 

𝑅𝑀𝑆𝐸 = g1
𝑁
aa||(𝑅(𝑠, 𝜃) − 𝑅i(𝑠, 𝜃)||!

6!

752

6"

852

. 

where 𝑅(𝑠, 𝜃) and 𝑅i(𝑠, 𝜃) represent the actual and predicted values, respectively. 
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Figure 11. The DL-CFD and eDL-CFD consists of three steps. Step 1: Using deep 

learning to extract geometry from CT and velocity profile at RVOT from 

echocardiography. Step 2: Using the extracted geometry and velocity profile (inlet) and 

wedge pressure from RHC (outlet) to perform hemodynamic calculations. Step 3: Using 

the calculated hemodynamics (volume mesh) along with the existing surface mesh and 

meta-data (e.g., age, gender, Mahan’s results) to train a PointNet for predicting PAP. 
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Figure 12. Inputting surface mesh and volume mesh (PAP) data into mesh features layer 

and concatenating with meta-data (e.g., age, gender, Mahan’s results) and a layer for 

extracting global state information to ultimately predict mPAP. 
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Figure 13. Matching the predicted results with anatomical locations at inlet/outlet. 
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8. Statistics 
Demographic and clinical characteristics were summarized using mean values and 

standard deviations for continuous variables and frequencies and percentages for 

categorical variables. Bivariate comparisons between measured and predicted results were 

assessed using paired t-tests and Pearson correlation coefficients. A p-value of less than 

0.05 was considered statistically significant. Bland-Altman plots with 95% confidence 

intervals were calculated for assessing the correlation. Inter-observer and intra-observer 

reliability were evaluated by the intraclass correlation coefficient (ICC) based on the 

absolute agreement of single measurements between two observers. The diagnostic 

performance of each modality for PH was analyzed using area under the curve (AUC) to 

assess changes in specificity and sensitivity based on a threshold of 25 mmHg. Evaluation 

metrics including sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV) and accuracy were also used to assess the method's performance. 

A p-value less than 0.05 was considered statistically significant. Data analyses were 

performed using MedCalc statistical software, version 18.2.1 (MedCalc Software bvba, 

Ostend, Belgium). 
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Ⅲ. EXPERIMENTS 
 

1. Patient Characteristics 
A total of 92 patients were included in this study, comprising 75 patients diagnosed 

with PH and 17 patients without PH. The demographic and clinical characteristics of the 

study population are summarized in Table 1. The PH group had a mean age of 55.3 years 

(± 16.9), while the non-PH group had a mean age of 59.0 years (± 15.4), with a statistically 

significant difference (p < 0.001). The proportion of females was slightly higher in the PH 

group (65.3%) compared to the non-PH group (70.5%), also statistically significant (p < 

0.001). Hemodynamic measurements showed that the PH group had significantly higher 

dPAP, sPAP, and mPAP values compared to the non-PH group (all p < 0.001), (Table 2). 

 

2. Pre-processing 
The pre-processing phase involved several critical steps to ensure the accuracy and 

quality of the data used for CFD simulations and deep learning model training. Firstly, the 

CT scan data were segmented to isolate the pulmonary arteries, from which surface meshes 

were generated. This surface meshes were further refined to remove noise and enhance 

geometric accuracy through smoothing algorithms such as Gaussian and Laplacian 

smoothing. Subsequently, volume meshes were created using the refined surface meshes 

as a reference, ensuring a detailed volumetric representation suitable for CFD analysis. 

These meshes were then annotated with hemodynamic data such as mPAP values obtained 

from RHC. 

 

3. Implementation Details 
The CFD simulations were set up using a transient solver to capture the dynamic 

behavior of blood flow within the pulmonary artery. The simulations utilized the k-epsilon 

turbulence model to account for turbulent effects. Blood was modeled as an incompressible, 

non-Newtonian fluid, with properties defined as density 1060 kg/m³, specific heat capacity 
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3515 J/kg·K, and viscosity following the Carreau model. Boundary conditions were 

specified with mass flow inlet at the RVOT and pressure outlet corresponding to the 

pulmonary capillary wedge pressure. Each simulation was run over an R-R interval of 1 

second, sampled at 60 points to capture temporal variations in hemodynamics. 

For the deep learning model, a geometric PointNet was employed. This model was 

trained using segmented pulmonary artery geometries converted into surface and volume 

meshes. Local features from these meshes, along with patient-specific meta features (e.g., 

age, gender), were extracted and concatenated to form a comprehensive feature set. The 

model was trained to minimize the MAE between predicted and actual mPAP values, using 

the Adam optimizer for efficient convergence. The model was evaluated using 5-fold cross-

validation. 

 

4. Evaluation 
The performance of the DL-CFD and eDL-CFD was evaluated using various metrics. 

The MAE and RMSE were calculated to assess the accuracy of mPAP predictions.  
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Table 2. Patient Characteristics 

 Non-PH PH p value 

Number of subjects 17 75  

Age (years) 59.0 ± 15.4 55.3 ± 16.9 <0.001 

Female 12 (70.5%) 49 (65.3%) <0.001 

dPAPRHC (mmHg) 19.5 ± 8.4  32.7 ± 13.7 <0.001 

sPAPRHC (mmHg) 43.3 ± 17.2 75.5 ± 23.8 <0.001 

mPAPRHC (mmHg) 28.6 ± 9.8 48.8 ± 16.1 <0.001 

Values are mean ± standard deviation, or n (%); PAP: pulmonary artery pressure;  

RHC: right heart catheterization 
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Ⅳ. RESULTS 
The results of this study demonstrated the efficacy of integrating DL-CFD and eDL-

CFD for non-invasive diagnosis of PH. The deep learning model's predictions closely 

matched the simulation results, showcasing high accuracy and reliability. Comparative 

analysis revealed that while the correlation between RHC and the developed CFD and DL-

CFD methods was lower than traditional echocardiography, eDL-CFD method exhibited a 

higher correlation with RHC and improved diagnostic accuracy. The area under the curve 

(AUC) for the combined method was 98.9%, significantly higher than the 94.6% for 

echocardiography alone. Stratified analysis highlighted that the combined approach 

improved specificity to 94.1% from 76.4%, maintaining a high sensitivity of 97.3%. This 

indicates the potential of the combined method to serve as a more reliable non-invasive 

diagnostic tool for pulmonary hypertension. 
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1. Evaluation Metrics 
The segmentation of the pulmonary artery from CT images is a crucial step in the CFD 

simulation process. In this study, a deep learning-based segmentation model was employed 

to automatically segment the pulmonary artery from CT scans. The model utilized a U-net 

architecture, which is well-suited for biomedical image segmentation tasks. The 

performance of the segmentation model was evaluated using the DSC, which measures the 

overlap between the predicted segmentation and the ground truth. The DSC value achieved 

by the model was 85.53, indicating a high level of accuracy in segmenting the pulmonary 

artery (Figure 14). 

The MAE and RMSE were calculated to assess the model's performance. The MAE 

for PH patients was 2.8 mmHg, and for non-PH patients, it was 3.2 mmHg. The RMSE for 

PH patients was 3.4 mmHg, while for non-PH patients, it was 3.8 mmHg. These low error 

values indicate the high precision of the model in predicting hemodynamic parameters.  

 

 
Figure 14. Comparison between the deep learning with segmentation results of the 

pulmonary artery in CT images and the ground truth. 
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2. Inter-Observer and Intra-Observer Reliability 
The ICC was calculated for inter-observer and intra-observer measurements, showing 

excellent reliability. The ICC for inter-observer reliability was 0.95, and for intra-observer 

reliability, it was 0.97, demonstrating high consistency in the model's predictions. 

 

3. Comparative Analysis 
A. Comparison of RHC, CFD Simulation and DL-CFD 

The deep learning model's performance was compared with traditional diagnostic 

methods such as RHC and echocardiography. The non-invasive nature of the deep learning 

model, combined with its high accuracy, presents significant advantages over these 

traditional methods. RHC, though the gold standard, is invasive and carries risks, whereas 

the deep learning model offers a safer, non-invasive alternative. Echocardiography, while 

non-invasive, has limitations in accuracy and operator dependency, which the deep learning 

model overcomes by integrating comprehensive hemodynamic data and advanced 

computational techniques (Figure 15, 16). 
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Figure 15. Box plot of mean, systolic, and diastolic PAP values from RHC, CFD 

simulation, and DL-CFD in PH and non-PH patients. 
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Figure 16. Pressure results according to phase (systolic, diastolic pressure),  

mPAP, and pressure range. 
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B. Comparison of Traditional Echocardiography and the Proposed Method 

When comparing the correlation between the hemodynamic parameters measured by 

RHC and the CFD and DL-CFD methods, it is observed that the correlations are lower than 

those with the traditionally used echocardiography. Specifically, the correlation coefficient 

between RHC and echocardiography was 0.714 (p < 0.001), while the correlation 

coefficients between RHC and CFD simulation and DL-CFD were 0.543 (p < 0.001) and 

0.674 (p < 0.001), respectively. However, eDL-CFD method showed a higher correlation 

coefficient of 0.768 (p < 0.001) with RHC (Table 3). 

 

Table 3. Correlation coefficients among RHC, echocardiography,  

CFD simulation, DL-CFD, and eDL-CFD 
 

RHC 
Echocardio-

graphy 

CFD 

simulation 
DL-CFD eDL-CFD 

RHC - 
0.714 

(p < 0.001) 

0.543 

(p < 0.001) 

0.674 

(p < 0.001) 

0.768 

(p < 0.001) 

Echocardio-

graphy 

0.714 

(p < 0.001) 
- 

0.605 

(p < 0.001) 

0.620 

(p < 0.001) 

0.874 

(p < 0.001) 

CFD 

simulation 

0.543 

(p < 0.001) 

0.605 

(p < 0.001) 
- 

0.904 

(p < 0.001) 

0.724 

(p < 0.001) 

DL-CFD 
0.674 

(p < 0.001) 

0.620 

(p < 0.001) 

0.904 

(p < 0.001) 
- 

0.922 

(p < 0.001) 

eDL-CFD 
0.768 

(p < 0.001) 

0.874 

(p < 0.001) 

0.724 

(p < 0.001) 

0.922 

(p < 0.001) 
- 

DL: deep learning, CFD: computational fluid dynamics, AUC: area under the curve 

 
These results highlight the enhanced diagnostic accuracy of eDL-CFD method over 

traditional echocardiography. The AUC for the combined method was 98.9%, compared to 

94.6% for echocardiography alone, 89.0% for CFD simulation, and 93.0% for DL-CFD. 
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This demonstrates the potential of the combined approach to serve as a more reliable non-

invasive diagnostic tool, improving both sensitivity and specificity in diagnosing PH 

(Figure 17). This figure illustrates the distribution of predicted PH using various non-

invasive techniques, specifically echocardiography, CFD simulation, DL-CFD, and eDL-

CFD method in patients with PH confirmed by RHC (mPAP > 25 mmHg). 
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Figure 17. Distribution of predicted PH by non-invasive methods in patients  

with mPAP > 25 mmHg confirmed by RHC. 
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Stratified analysis by patient groups revealed significant findings. When the patients 

were categorized into those with PH (mPAP > 25 mmHg; active group) and those without 

(mPAP < 25 mmHg; control group), it was observed that many patients who were not 

diagnosed with PH using echocardiography alone were correctly identified with the eDL-

CFD method. This combined approach resulted in an improved specificity of 94.1% 

compared to 76.4% with echocardiography alone while maintaining a high sensitivity of 

97.3% (Table 4). 

Additionally, the Positive Predictive Value (PPV) and Negative Predictive Value 

(NPV) for the eDL-CFD method were significantly higher. The PPV for the eDL-CFD 

method was 94.3%, indicating that a high proportion of patients identified as having PH by 

this method indeed had the condition. Similarly, the NPV was 97.2%, meaning that nearly 

all patients identified as not having PH by this method truly did not have the condition. 

These results show that the eDL-CFD method not only improves sensitivity and specificity 

but also offers higher PPV and NPV than traditional echocardiography, thus providing a 

more reliable non-invasive method for PH (Table 4).  

  



- 48 - 
 

 

 

 

 

 

 

 

 

 

 
Table 4. Diagnostic accuracy of PH patients derived from  

echocardiography, CFD simulation, DL-CFD and eDL-CFD. 

  Sensitivity Specificity PPV NPV AUC Accuracy 

Echocardiography 97.3% 76.4% 80.5% 96.6% 94.6% 86.9% 

CFD simulation  85.0% 75.0% 77.3% 83.3% 89.0% 83.1% 

DL-CFD 90.0% 83.3% 84.4% 89.3% 93.0% 84.3% 

eDL-CFD 97.3% 94.1% 94.3% 97.2% 98.9% 91.0% 
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V. DISCUSSION 
 

The relationship between RV-Pulmonary artery coupling and PH is a critical area of 

focus in the pathophysiology of PH. RV-Pulmonary artery coupling refers to the interaction 

and synchronization between the RV and the pulmonary artery, which is significantly 

impacted in PH. As PH progresses, the increased PVR leads to elevated pulmonary artery 

pressures, placing substantial mechanical stress on the RV. This stress can result in RV 

hypertrophy and dysfunction, further complicating the management of PH[7, 8]. 

 

The integration of eDL-CFD offers several notable clinical benefits, addressing some 

of the significant challenges in diagnosing and managing PH: 

 

1. Non-Invasive Diagnosis  
The eDL-CFD model provides a reliable non-invasive method for diagnosing PH. 

Traditional diagnostic methods such as RHC are invasive and carry risks of complications. 

By accurately predicting mPAP through non-invasive imaging techniques like CT and 

echocardiography, the deep learning model significantly reduces the need for these invasive 

procedures, thereby improving patient safety and comfort. Additionally, this study 

examined the correlation between the imaging modalities used (CT, echocardiography), 

CFD simulation, and RHC. Significant results were observed, confirming the validity of 

the non-invasive methods in accurately assessing pulmonary hemodynamics. While 

traditional echocardiography strongly correlates with RHC, the proposed method 

demonstrates significant correlation and agreement. This indicates that the eDL-CFD 

approach can be a viable non-invasive alternative for diagnosing PH, potentially offering 

improved diagnostic accuracy and reliability over traditional echocardiography alone 

(Figure 18) [16, 50-54]. 
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Figure 18. Process and results of eDL-CFD in a PH patient case. 
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2. Personalized Medicine  
One of the standout features of this deep learning model is its ability to incorporate patient-

specific data, including anatomical and hemodynamic parameters, to support personalized 

treatment planning. This capability ensures that each patient receives tailored management 

strategies based on their unique physiological characteristics, which can improve treatment 

outcomes and enhance the quality of life for PH patients. 

 

3. Efficiency and Speed  
The deep learning model excels in its ability to rapidly analyze and predict hemodynamic 

parameters. This efficiency is crucial for the timely diagnosis and intervention required in 

progressive conditions like PH. Quick and accurate diagnostics allow for earlier treatment 

initiation, which can slow disease progression and improve prognosis. 

 

4. Enhanced Monitoring  
The deep learning model facilitates continuous monitoring and assessment of PH patients. 

By providing real-time insights into the hemodynamic status, the model enables dynamic 

adjustments to treatment plans, ensuring that therapeutic interventions are always aligned 

with the current state of the disease. This continuous monitoring capability is particularly 

beneficial in managing chronic and progressive diseases like PAH, where regular 

assessment and timely intervention are critical. 

 

Despite the promising results, this study has several limitations that need to be 

addressed in future research to enhance the model's applicability and robustness: 

 

1. Dataset Size  
The current study utilized a relatively small dataset, which may limit the generalizability 

of the findings. A larger and more diverse dataset would help improve the model's accuracy 
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and robustness. Future research should focus on incorporating data from a broader patient 

population, including various demographics and disease severities, to validate the model's 

effectiveness across different groups. 

 

2. Data Augmentation 
 Incorporating data augmentation techniques during the training phase can significantly 

improve the model's ability to handle variability in patient-specific geometries and 

hemodynamic conditions. Data augmentation methods such as rotation, scaling, and 

translation can create a more diverse training set, which can help the model generalize 

better to new, unseen data. 

 

3. Modeling Distal Arteries  
To predict wedge pressure more accurately, it is crucial to include detailed representations 

of the distal sections of the pulmonary arteries in the model. These distal segments play a 

significant role in the overall hemodynamic profile of the pulmonary circulation. Future 

models should incorporate this level of detail to enhance the accuracy of wedge pressure 

predictions, a critical parameter in diagnosing PH. 

 

4. Prospective Clinical Studies  
Conducting prospective clinical studies will provide valuable insights into the real-world 

applicability and impact of the deep learning model on patient outcomes. Such studies can 

assess the model's performance in clinical settings, evaluate its integration with existing 

diagnostic workflows, and determine its overall effectiveness in improving patient care. 

These studies are essential for validating the model's clinical utility and ensuring that it 

meets the needs of healthcare providers and patients. 

 

In summary, the integration of eDL-CFD represents a significant advancement in the 

non-invasive diagnosis and management of PH. This study demonstrates the potential of 
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the deep learning model to provide accurate, patient-specific predictions of hemodynamic 

parameters, thereby offering a viable alternative to traditional invasive diagnostic methods. 

The model's ability to facilitate personalized medicine, enhance diagnostic efficiency, and 

enable continuous monitoring underscores its potential to improve clinical outcomes for 

PH patients. 

 

Future research should focus on expanding the dataset, incorporating data 

augmentation techniques, and refining the model to include distal arterial segments. 

Prospective clinical studies will be crucial in validating the model's effectiveness in real-

world settings and ensuring its seamless integration into clinical practice. By addressing 

these areas, we can further enhance the model's predictive capabilities and clinical 

applicability, ultimately leading to better patient care and outcomes in PH management. 
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VI. CONCLUSION 
In this study, we developed a non-invasive, rapid diagnostic model for PH using eDL-

CFD based on CT and echocardiography data. The proposed method demonstrated high 

accuracy in predicting mPAP, offering a viable alternative to the current gold standard of 

RHC. The integration of patient-specific geometric and hemodynamic data with advanced 

deep learning algorithms holds significant promise for improving PH diagnosis and 

treatment planning, ultimately leading to better patient outcomes. Our comparative analysis 

revealed that while traditional echocardiography strongly correlates with RHC, the eDL-

CFD method shows significant correlation and agreement. This indicates that the eDL-CFD 

approach can be a viable non-invasive alternative for diagnosing PH, potentially offering 

improved diagnostic accuracy and reliability over traditional echocardiography alone. 

By continuing to refine this technology and incorporating larger datasets, we aim to 

further enhance its diagnostic precision and clinical applicability. This approach represents 

a significant advancement in the field of medical imaging and computational diagnostics, 

providing a robust framework for the non-invasive assessment and management of PH. 
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ABSTRACT IN KOREAN 

폐고혈압 환자의 진단 · 치료 예후예측을 위한 의료영상기반 

예측모델 개발과 유효성 검증 

 

<지도교수 장혁재> 

연세대학교 대학원 생체공학협동과정 

하성민 

 

폐고혈압(pulmonary hypertension, PH)은 폐동맥 압력이 

비정상적으로 상승하여 심장과 폐에 과도한 부담을 주며, 치료하지 

않으면 심부전 등의 심각한 건강 문제를 초래할 수 있는 질환이다. 

일반적으로 폐고혈압 검사는 우심도자술(right heart catheterization, 

RHC)이 표준 진단법(gold standard)이나, 침습검사로 환자에게 부담이 

있을 수 있다. 반면, 비침습검사인 심초음파는 초기 스크리닝 도구로 

유용하지만, 진단 정확도가 우심도자술에 비해 낮은 상황이다. 따라서 

본 연구는 심초음파(echocardiography)와 컴퓨터 단층촬영(computed 

tomography, CT)으로 혈역학적 유체 역학(computational fluid 

dynamics, CFD) 시뮬레이션 결과를 도출하고, 이러한 결과를 이용해 

딥러닝 모델(deep learning with CFD simulation, DL-CFD) 및 

심초음파의 임상 결과를 포함한 모델(echocardiography + DL-CFD, 

eDL-CFD)을 개발하고 유효성을 평가하였다. 2008년부터 2019년까지, 

PH 평가를 위해 우심도자술(RHC)을 받은 92 명의 환자를 대상으로 

후향적 연구를 수행하였다. 이 중 75 명은 PH 로 진단되었고(평균 

폐동맥압; mean pulmonary arterial pressure, mPAP > 25 mmHg), 

17 명은 정상군이다 (mPAP < 25 mmHg). 비교 분석 결과, RHC 와 

개발된 CFD 및 DL-CFD 방법 간의 상관관계는 전통적인 
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심초음파보다 낮았으나, eDL-CFD 방법은 RHC 와 더 높은 상관관계를 

보였다. eDL-CFD 방법의 AUC 는 98.9%로, 심초음파 단독(94.6%)보다 

높은 결과를 보였고, 특이도가 76.4%에서 94.1%로 향상되었으며, 

민감도는 97.3%로 유지되었다. 이 결과 eDL-CFD 접근법이 심초음파  

단독검사 보다 개선된 진단 정확도와 신뢰성을 제공할 수 있는 유효한 

비침습적 대안임을 보였다. 또한 본 연구는 비침습적인 방법으로 개인 

맞춤형 치료 계획 및 질병 진행에 대한 예측 가능성을 확인하였다. 

향후 연구는 다양한 데이터셋을 활용하고 데이터 증강 기법을 적용하여 

모델의 일반화 가능성과 정확성을 더욱 향상시키는 데 초점을 맞출 

것이다. 

 

 

 

 

 

 

 

 

 

                                                                      

핵심되는 말 : 폐고혈압, 혈류역학, 딥러닝, 전산 유체 역학, 비침습적 

진단 
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