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ABSTRACT

Development of Predictive Model based on Medical Image for Prediction
of Diagnosis and Treatment Prognosis in Patients with Pulmonary
Hypertension

Pulmonary hypertension (PH) is a condition characterized by elevated pressure in the pulmonary
arteries resulting from various pulmonary and cardiac diseases. This elevation in pressure increases
the strain on the heart, leading to right ventricular overload and potentially right heart failure, which
significantly affects the patient's prognosis.

This study aims to develop a technology that supports non-invasive examinations by deriving
hemodynamic computational fluid dynamics (CFD) simulation results from echocardiography and
computed tomography (CT) images. These results will be used to develop a deep learning model
(DL-CFD). Additionally, a model incorporating the clinical results of echocardiography (eDL-CFD)
will be evaluated for validity. By comparing these models with traditional echocardiography
methods, the study confirms the potential for clinical use of this combined approach.

Between 2008 and 2019, a retrospective study analyzed 92 patients who underwent right heart
catheterization (RHC) for PH assessment, including 75 diagnosed with PH (mPAP > 25 mmHg)
and 17 suspected but not diagnosed (mPAP <25 mmHg). The results of this study demonstrated the
efficacy of integrating DL-CFD and eDL-CFD for non-invasive diagnosis of PH. The deep learning
model's predictions closely matched the simulation results, showcasing high accuracy and reliability.
Comparative analysis revealed that while the correlation between RHC and the developed CFD and
DL-CFD methods was lower than traditional echocardiography, eDL-CFD method exhibited a
higher correlation with RHC and improved diagnostic accuracy. The area under the curve (AUC)
for the combined method was 98.9%, significantly higher than the 94.6% for echocardiography
alone. Stratified analysis highlighted that the combined approach improved specificity to 94.1%
from 76.4%, maintaining a high sensitivity of 97.3%. This indicates the potential of the combined
method to serve as a more reliable non-invasive diagnostic tool for pulmonary hypertension.

These results indicate that the eDL-CFD approach can be a viable non-invasive alternative for
diagnosing PH, potentially offering improved diagnostic accuracy and reliability over traditional
echocardiography alone. This study demonstrates the potential of eDL-CFD for non-invasive PH
diagnosis, supporting personalized treatment planning and accurate prediction of disease
progression. Future research will focus on utilizing diverse datasets and applying data augmentation
techniques to enhance the model's generalizability and accuracy.

Key words: pulmonary hypertension, hemodynamics, deep learning, computational fluid
dynamics, non-invasive diagnosis
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I. INTRODUCTION

1. Rare Incurable Condition: Pulmonary Hypertension

Pulmonary hypertension (PH) is when the pressure in the pulmonary arteries is
abnormally high. This causes the pulmonary arteries to narrow, or the blood vessel walls
in the lungs to thicken, increasing resistance to blood flow. PH places excessive strain on
the heart and lungs, and if left untreated, it can gradually worsen and lead to heart failure
or other serious health problems. Normal pulmonary artery pressure is less than 25 mmHg,
but in patients with PH, this pressure is measured at rest above 25 mmHg (Figure 1)[1-3].

PH can be caused by various causes, and the main causes are genetic factors, heart
disease, lung disease, and certain drugs or toxins. PH is broadly classified into five types
according to the cause, and each type has different pathological characteristics and
treatment methods. For example, primary pulmonary hypertension (pulmonary arterial
hypertension, PAH) often has an unknown cause, and secondary pulmonary hypertension

is caused by another disease of the heart or lungs[4, 5]. The prognosis and survival rate of



PH vary depending on the stage and treatment method at the time of diagnosis, and the
prognosis is better if it is detected early and treated appropriately. (Table 1) [6-8].

A variety of testing methods are needed to diagnose pulmonary hypertension. The
initial diagnosis is performed through noninvasive echocardiography, which estimates
whether pulmonary artery pressure is elevated. However, echocardiographic estimates can
sometimes be inaccurate compared to invasive right heart catheterization (RHC). RHC is
considered the gold standard for diagnosing PH and directly measures pulmonary artery
pressure (PAP). This discrepancy can lead to delayed diagnosis or unnecessary right heart
catheterization. In addition, tests such as blood tests, computed tomography (CT), and
magnetic resonance imaging (MRI) can be performed to determine the cause.

PH is a disease that occurs worldwide, and the prevalence and incidence vary by
region and population group. While the prevalence is relatively low in North America and
Europe, the prevalence is high in Africa and some parts of Asia. These differences are
mainly due to genetic factors, environmental factors, and differences in access to medical
care. As awareness of PH increases worldwide, diagnostic and treatment methods steadily
improve. However, there are still many challenges, such as difficulty in early diagnosis and
high treatment costs[9-12].

PH often has delayed diagnosis because symptoms are not clear in the early stages.
Noninvasive echocardiography is useful for initial screening, but its accuracy may be
limited due to discrepancies with invasive right heart catheterization. Therefore, the
development of faster and more accurate diagnostic methods is needed. New noninvasive
and cost-effective diagnostic technologies can enable early detection and treatment of

pulmonary hypertension, thereby improving patients' quality of life[ 13, 14].



Table 1. Clinical classification of pulmonary hypertension

Group Type
1 Pulmonary arterial hypertension
2 Pulmonary hypertension with left-heart disease
3 Pulmonary hypertension associated with lung disorders, hypoxemia, or both
4 Pulmonary hypertension due to pulmonary artery obstructions
5 Miscellaneous (unclear or multifactorial mechanisms)




Normal Heart Pulmonary Hypertension

(a) (b)
Figure 1. Pulmonary hypertension, (a): Normal pulmonary artery pressure is 8~25 mmHg
at rest, (b): Pulmonary hypertension is pressure in the pulmonary artery that is greater

than 25 mmHg at rest or 30 mmHg during physical activity.



2. Diagnostic Modalities for PH

PH is a severe and progressive disorder characterized by elevated PAP and vascular
resistance, leading to right heart failure and reduced exercise capacity. The diagnostic
process for PH is multifaceted, involving various modalities to assess and manage the
condition accurately[1, 3].

Initial clinical suspicion of PH arises from symptom observation and physical
examination. However, definitive diagnosis requires hemodynamic assessment primarily
through RHC. RHC is considered the gold standard for diagnosing PH, as it directly
measures mPAP, PAWP, and cardiac output, providing essential data for confirming PH
and differentiating it from other forms of pulmonary hypertension[5, 15].

Transthoracic echocardiography (TTE) plays a pivotal role in the initial screening and
evaluation of suspected PH cases. TTE, a non-invasive imaging modality, estimates
pulmonary artery pressures by measuring tricuspid regurgitant velocity. It also assesses the
right ventricle's size, function, and pressure overload. Despite its utility, TTE alone cannot
definitively diagnose PH but serves as an invaluable tool in early identification and risk
stratification of patients. Currently, TTE is widely used for the primary diagnosis of
pulmonary hypertension, but it is less accurate compared to RHC. This discrepancy can
lead to unnecessary RHC procedures for some patients, while missing those who need it,
thereby delaying the diagnosis[16, 17].

Computed Tomography (CT) supplements TTE by providing detailed structural
information about the thoracic cavity. CT scans are instrumental in identifying and
characterizing lung parenchymal disease, assessing pulmonary vasculature, and evaluating
for thromboembolic disease (Figure 2). Moreover, CT imaging offers insights into the
differential diagnosis of PH, assisting in identifying underlying causes and contributing to
prognostic assessments[18-20].

Other diagnostic tests, such as pulmonary function tests, blood tests for biomarkers,
and exercise testing, contribute to the comprehensive evaluation of PH. These tests provide

information about the functional status of patients, disease severity, and response to therapy,



thereby guiding treatment decisions[4, 5, 21].

The diagnosis of PH is complex and requires a combination of clinical evaluation and
multiple diagnostic modalities. RHC remains the definitive method for diagnosis, while
non-invasive techniques like TTE and CT scans play crucial roles in the initial evaluation,
risk stratification, and ongoing management of PH patients. Given the fatal nature of PH,
even missing a single diagnosis can delay early treatment, leading to poor outcomes.
Therefore, there is a need for a superior non-invasive approach to diagnose PH that
surpasses the current echocardiographic methods, using RHC as the reference standard[13,
22].



Normal Pulmonary arterial hypertension

Figure 2. Normal pulmonary artery CT image of a healthy individual (left) and an
enlarged pulmonary artery CT image of a patient with PH (right).



3. Hemodynamic Analysis in PH

PH is a complex cardiovascular condition characterized by increased pressure in the
pulmonary arteries. Traditional diagnostic methods have relied heavily on invasive
procedures like right heart catheterization. However, recent advancements in non-invasive
diagnostic technologies, notably computational fluid dynamics (CFD), have opened new
avenues for assessing and managing PH[4, 23].

CFD is a branch of fluid mechanics that uses numerical analysis and algorithms to
solve and analyze problems involving fluid flows. In the context of PH, CFD utilizes
advanced computational algorithms, such as the finite difference method (FDM), finite
element method (FEM), and finite volume method (FVM), to solve the Navier-Stokes
equations, which describe the motion of viscous fluid substances. This approach allows for
the detailed visualization and analysis of blood flow dynamics within the pulmonary
vasculature[24, 25].

The application of CFD in PH provides invaluable insights into hemodynamic
parameters, which are crucial for understanding the progression and severity of the disease.
Simulations using patient-specific 3D models enable clinicians to visualize blood flow
patterns, assess flow velocity, and evaluate parameters such as wall shear stress (WSS).
WSS is particularly significant as it indicates the mechanical stress exerted on the vascular
endothelium, a critical factor in the pathophysiology of PH[26, 27].

One of the significant advantages of CFD in PH diagnosis is its ability to provide
superior spatial and temporal resolutions of blood flow. Unlike traditional imaging
modalities, CFD simulations can resolve complex pathological hemodynamic challenges,
offering detailed insights into the disturbed flow patterns typical in PH patients. This level
of detail can be critical in diagnosing challenging cases where conventional methods may
not provide sufficient information[28, 29].

Furthermore, CFD simulations can potentially enhance personalized medicine
approaches in PH. Using patient-specific models, clinicians can predict disease progression,

assess the efficacy of therapeutic interventions, and tailor treatment plans to individual



patient needs. This precision approach could lead to better outcomes and improved quality
of life for PH patients[30].

CFD represents a revolutionary step forward in the non-invasive diagnosis of PH. Its
ability to provide detailed insights into blood flow dynamics and its application in patient-
specific models offers significant advantages over traditional diagnostic methods. As CFD
technology continues to evolve, it promises to further enhance our understanding and

management of PH (Figure 3) [31, 32].
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Figure 3. The AS-IS (1) process for clinical diagnosis involves invasive tests with

invasive methods but requires operator intervention and longer processing times. The TO-

BE process aims to achieve rapid clinical outcomes using non-invasive methods while

minimizing operator involvement.

_10_



4. Deep Learning with CFD Simulation for PH Diagnosis

The advent of deep learning in the medical and healthcare sector marks a
transformative era, offering rapid and accurate diagnostics across various fields, including
cardiology. Recently, deep learning technologies have been successfully implemented in
the medical field, especially in diagnosing cardiac diseases. These technologies have shown
exceptional capability in performing repetitive image analysis tasks comparable to
professional medical practitioners[33-37].

Particularly in the context of pulmonary hypertension, a condition where diagnosis
crucially depends on changes in blood flow and pressure, the use of non-invasive imaging
techniques like CT and magnetic resonance imaging (MRI) has been paramount. However,
these methods often involve time-consuming processes like segmentation and localization,
with the accuracy heavily dependent on the analyst's expertise. Deep learning transforms
the field by offering rapid and precise analysis, enhancing patient care through timely and
accurate diagnostics[38, 39].

Our study utilizes non-invasive imaging tests, specifically echocardiography and CT,
in conjunction with deep learning with CFD simulations (DL-CFD) and echocardiography
+ DL-CFD (eDL-CFD) supplemented with analytical values calculated using Mahan's
equation from echocardiography. This approach is compared against the current gold
standard, RHC, which is an invasive diagnostic procedure. The goal is to validate the
significance of the developed technology compared to RHC and to ascertain its accuracy
in distinguishing between regular patients and those suffering from PH[40].

Deep learning in medical imaging and CFD simulation represents a significant step
forward in PH diagnosis. By leveraging advanced algorithms and large datasets, deep
learning models can efficiently process and analyze complex medical images. This
capability is particularly advantageous in CFD simulations, where the accurate
representation and analysis of blood flow dynamics are crucial. In PH, where subtle

changes in pulmonary hemodynamics are pivotal, DL-CFD and eDL-CFD can provide

_11_



more detailed and accurate assessments than traditional methods[33, 41-44].

Physics-informed neural networks (PINNs) are another innovative approach that
integrates physical laws into neural network training, enhancing the model's accuracy and
generalizability. PINNs use governing equations of physics, such as Navier-Stokes for fluid
dynamics, as constraints during the training process, allowing them to learn from both data
and physical principles. This integration is particularly beneficial in medical applications
like CFD simulations, where accurate modeling of hemodynamic conditions is essential.
Representative works in this area include Raissi et al.'s seminal papers on physics-informed
deep learning[45-47].

Furthermore, deep learning algorithms can continuously learn and improve from new
data, potentially increasing diagnostic accuracy. This aspect mainly benefits handling
diverse patient populations and complex clinical scenarios, enabling personalized and
precise healthcare delivery[34-36, 48, 49].

In conclusion, incorporating deep learning in non-invasive diagnostic methods,
particularly in the context of PH, presents a promising frontier in medical technology. By
combining, this approach aims to enhance the accuracy and efficiency of PH diagnostics,
potentially surpassing the capabilities of traditional methods and paving the way for more

patient-centric and non-invasive diagnostic procedures (Figure 4)[35].

This research aims to evaluate the efficacy of a combined model incorporating
noninvasive tests such as echocardiography, CT, CFD, and deep learning, using RHC as
the gold standard. Furthermore, the study seeks to determine the potential of this combined
approach as an alternative or complementary method to the widely used echocardiography

for diagnosing PH.
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Figure 4. Traditional diagnosis of PH involves invasive methods and is not real-time.

Using CFD simulation provides a non-invasive method, but it is also not real-time.

Applying DL-CFD and eDL-CFD enables real-time, non-invasive diagnosis.
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I1. MATERIALS and METHODS

1. Subjects

Between 2008 and 2019, a retrospective cohort was composed of 92 patients who
underwent RHC for various clinical reasons, including PAH or other conditions causing
PH. This cohort included 75 patients diagnosed with PH (mPAP > 25 mmHg) and 17
patients who were suspected of having PH and underwent RHC but were not diagnosed
with PH (mPAP < 25 mmHg). Additionally, all patients underwent echocardiography and
computed tomography (CT). Participants were selected using random sampling to ensure a
representative sample of the patient population. This study received approval from the IRB
of Severance Hospital. Before enrollment, informed consent was obtained in writing from
all participants. This cohort allowed for a comprehensive analysis of diagnostic modalities
and their effectiveness in assessing and managing PH, contributing valuable insights into

these patients' clinical characteristics and outcomes.

_14_



2. Right Heart Catheterization

All patients diagnosed with PH underwent RHC using a balloon-tipped, 7-Fr
SwanGanz CCombo PA catheter (Baxter, Irvine, CA, USA), which was inserted either via
the right or left femoral vein. During the catheterization procedure, patients were positioned
supine, resting comfortably while breathing room air, ensuring they were stable.
Hemodynamic data were collected while the patients were at rest to obtain accurate and
consistent measurements. The following hemodynamic parameters were meticulously
measured: systolic pulmonary artery pressure (sSPAP), diastolic pulmonary artery pressure
(dPAP), mPAP, right atrial pressure (RAP), PAWP, cardiac output (CO) using
thermodilution, and cardiac index (CI), which is the CO normalized to body surface area.
PVR was calculated using the values of mPAP, PAWP, and CO, providing a
comprehensive assessment of the pulmonary circulatory system. stroke volume (SV) was
also calculated during RHC using the measured CO and heart rate. These detailed
hemodynamic assessments through RHC were critical in accurately diagnosing and
evaluating the severity of PH in these patients, facilitating the appropriate clinical

management and therapeutic decision-making process.

_15_



3. Velocity Segmentation in Echocardiography

Echocardiography represents a cornerstone in the non-invasive PH diagnosis, offering
a convenient and widely accessible method to assess hemodynamic variables. TTE images
were utilized for this study, with inclusion criteria mandating that all echocardiographic
footage conformed to standard views and visual norms. Exclusion criteria were set to omit
patients diagnosed with conditions that could confound the interpretation of
echocardiographic data, such as heart failure, coronary artery disease, valvular heart disease,
or pregnancy, and those with substandard image quality obtained from non-standardized
scans.

Measurements were explicitly focused on cases where at least one view in the Doppler
echocardiogram allowed for calculating mPAP. Three primary methods, utilizing spectral

Doppler, were employed to measure pulmonary artery pressure:

A. Average Pulmonary Artery Pressure Using Tricuspid Regurgitation (Based
on Systolic Pulmonary Artery Pressure)

This method involved the use of pulmonic valve (PV) pulse wave (PW) Doppler,
targeting the right ventricular outflow tract (RVOT) to determine the PV PW. This
approach is instrumental in calculating the mPAP, with the RVOT velocity maximum
measured and applied in a specific formula for mPAP calculation. Furthermore, the mPAP

can be estimated from the sPAP using empirical relations.

sPAP = 4 x (TRV)? + RAP,

mPAP = 4 X (RVOT peiocity max) + RAP.
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B. Mahan's Method for Systolic Flow Acceleration Time in the Right Ventricular
Outflow Tract

Using Mahan's equation, this method entailed measuring pulmonic valve continuous
wave (PV CW) Doppler, targeting pulmonic regurgitation (PR) to derive measurements.
The PR velocity maximum was measured and then applied in another specific formula to

calculate the mPAP.

constant ]
PAP = - — + adj.
Acceleration time

C. Diastolic Pulmonary Artery Regurgitation Velocity Measurement
The measurement was taken by targeting tricuspid regurgitation (TR) at the tricuspid
valve and measuring the TR continuous wave (TV CW). The TR velocity maximum was

then used in a formula to calculate the mPAP (Figure 5).

mPAP = 4 x (DPRV)? + DRAP.

Combined with the image acquisition and interpretation standardization, these
methodologies provide a comprehensive and reliable approach to the echocardiographic
assessment of PH. Multiple Doppler techniques enhance diagnostic accuracy, allowing for
a detailed evaluation of the hemodynamic status in patients with suspected or confirmed
PH. The application of these methods aligns with current best practices in
echocardiographic diagnostics and underscores the role of non-invasive imaging in

managing pulmonary hypertension.
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Figure 5. Confirmation of the RVOT location in B-mode using echocardiography,
followed by spectral Doppler imaging to measure blood flow velocity at the RVOT

D. Spectral Doppler Segmentation

The segmentation of Doppler signals from echocardiography data is a critical step in
our methodology, particularly for accurately capturing the velocity profiles necessary for
subsequent CFD simulations. This process begins with the selection and preprocessing of
RVOT spectral Doppler images stored in digital imaging and communications in medicine
(DICOM) format. The selected Doppler images are converted into a standardized format
suitable for annotation, ensuring they meet the quality criteria necessary for creating
training datasets. Using a commercial framework, 2D masks are generated for each Doppler
image to delineate the Doppler signal regions within the RVOT. These annotations,
performed by trained experts, ensure high accuracy and create a reliable ground truth
dataset for model training.

The annotated Doppler images serve as the foundation for training a segmentation
model based on the U-net architecture, which is well-suited for biomedical image
segmentation. The U-net model, with its encoder-decoder structure and skip connections,

captures fine details in complex medical images. The encoder compresses the input image
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to capture essential features, while the decoder reconstructs the image to its original
dimensions, providing a detailed segmentation map. The skip connections enhance the
segmentation accuracy by retaining spatial information. The annotated dataset is split into
training and validation sets, and the U-net model is trained using these datasets. Data
augmentation techniques such as rotation, scaling, and translation are employed to enhance
the model's robustness. The Adam optimizer is used to optimize the model parameters, with
cross-entropy as the loss function to handle the segmentation task effectively (Figure 6).
The model's performance is evaluated using metrics such as the dice similarity coefficient
(DSC), which measures the overlap between the predicted segmentation and the ground
truth.

Once trained, the U-net model is employed to segment RVOT spectral Doppler signals
from new echocardiography data, significantly reducing the manual effort and time
required for Doppler signal extraction. The trained model processes new RVOT Doppler
images, generating segmentation masks that accurately delineate the Doppler signals.
These masks are reviewed for consistency and accuracy, ensuring that the segmented
regions correspond precisely to the actual Doppler signals. The segmented Doppler signals
are then converted into velocity profiles, which serve as inlet boundary conditions for CFD
simulations. The velocity profiles are extracted by averaging the Doppler signal intensities
over time, providing a detailed representation of the blood flow dynamics through the
RVOT. These extracted inlet velocity profiles are integrated into the CFD simulation
framework, enabling accurate modeling of blood flow through the pulmonary arteries. This
integration ensures that the simulations reflect realistic hemodynamic conditions,

enhancing the validity of the study's findings.

_19_



8F
e

Input: axial dicom image U-Net

Output: 1 channel mask

Figure 6. Using echocardiography to capture spectral Doppler images at the RVOT and

annotating the blood flow velocity profile data to train a U-net based segmentation model.
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4. Segmentation of the Pulmonary Artery in Computed
Tomography

The CT scans utilized in this study were acquired between 2008 and 2019. Of the 92
CT scans, 51 were performed using Siemens, 23 using GE, 15 using Philips, and 3 using
Canon. The scans were obtained with tube voltages of 140kVp (n=32), 120kVp (n=3), and
100kVp (n=57). The slice thicknesses were 1.25mm (n=17), Imm (n=72), and 0.625mm
(n=3). All CT scans were acquired with prospective electrocardiogram (ECG) gating while
administering contrast agents.

Deep learning-based segmentation was performed to extract the three-dimensional
structure of the pulmonary artery automatically. First, to create ground truth data, 2-
dimensional masks for each CT slice were generated using the commercial framework, 3-
matics (Materialise NV, Leuven, Belgium). The range for mask generation was set from
the main pulmonary artery to the right/left pulmonary artery, excluding branches from the
first branch onwards. The DICOM image size was 512x512, and the z-slice range was

approximately 200 to 400.

Computed tomography Al inference model (segmentation) Segmented mask
images

Figure 7. After performing contrast-enhanced CT imaging of the pulmonary artery, the

data is masked and annotated to train a U-net based segmentation model.
The network architecture comprised an encoder and decoder connected by skip

connections. In the encoder, the image size was reduced through 2D convolutional layers,

batch normalization, and ReLU activation, with feature extraction co-occurring. The
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subsequent application of max pooling reduced the size of the feature map, leading to the
loss of local information. Conversely, the decoder also involved 2D convolutional layers,
batch normalization, and ReLU activation, but using upsampling layers resulted in the
reflection of feature information onto the image. Finally, the network was configured for
mask inference by concatenating dimensions and applying a softmax function after the skip
connections, utilized at each layer stage to preserve essential feature information and
prevent the loss of critical features. The loss function employed was cross-entropy, which
is defined as:
Ly, ) = — Xiyilog(¥),
Where y represents the actual label, and § is the predicted probability (Figure 7).
To evaluate the performance of the segmentation, the DSC was used to assess the

congruence between the ground truth data and the resulting segmentation masks.

B 2xTP
~ (TP + FP) + (TP + FN)

DSC
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5. Model geometric parameters modification

To perform accurate CFD simulations, it is essential to ensure that the geometric
models of the pulmonary artery are precise and representative of the actual patient-specific
anatomy. The modifications to the geometric parameters of the models are performed as

follows:

A. Preprocessing and Mesh Generation

The initial step involves preprocessing the segmented pulmonary artery structures
obtained from CT scans. The raw segmented data are smoothed to remove noise and
improve the quality of the geometric model. Smoothing algorithms, such as Gaussian
smoothing or Laplacian smoothing, are applied to achieve a balance between retaining
anatomical details and eliminating artifacts.

Once the smoothing process is completed, the geometric model is converted into a
mesh suitable for CFD simulations. This involves generating a high-quality,
computationally efficient mesh that accurately represents the pulmonary artery's 3D
structure (Figure 8). The meshing process typically includes:

Surface meshing: Creating a fine mesh on the surface of the pulmonary artery using
triangular or quadrilateral elements.

Volume meshing: Filling the interior of the pulmonary artery with tetrahedral or

hexahedral elements to create a volumetric mesh suitable for flow simulations.
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Segmented mask Segmented mask to surface/volume mesh Surface/volume mesh

Figure 8. Extracting 3D pulmonary artery masks from CT images, followed by

preprocessing such as 3D smoothing, and generating a surface mesh.
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B. Boundary Conditions Definition

To ensure realistic simulation results, appropriate boundary conditions are defined for
the CFD model. This includes specifying the inlet and outlet boundaries, wall boundaries,
and any internal boundaries within the pulmonary artery (Figure 9):

Inlet boundary: The main pulmonary artery serves as the inlet where blood flow enters.
Flow velocity or pressure profiles are applied based on physiological data.

Outlet boundaries: The right and left pulmonary arteries act as outlets. Outlet pressure
or flow distributions are assigned to simulate realistic blood flow exiting the model.

Wall boundaries: The arterial walls are treated as no-slip boundaries, meaning that the
fluid velocity at the wall surface is zero, simulating the interaction between the blood and

the vessel wall.

C. Geometric Parameter Adjustments

Modifications to geometric parameters may be necessary to represent patient-specific
conditions accurately. Adjustments include scaling the model to match patient dimensions,
refining regions with complex flow dynamics, and incorporating anatomical variations

such as bifurcations or stenosis.
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Figure 9. Using spectral Doppler to input inlet information of the 3D pulmonary artery

geometry and employing RHC wedge pressure for outlet information in the CFD

simulation.
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6. Simulated operation of CFD

The CFD simulation setup for this study involved a comprehensive definition of
physical and numerical parameters governing the fluid dynamics of blood flow within the
pulmonary artery. The Navier-Stokes equations, which describe the motion of viscous fluid
substances, were solved numerically to ensure mass conservation and account for the forces
acting on the fluid, including pressure and viscous forces.

Blood was modeled as an incompressible, non-Newtonian fluid with properties
defined by the Carreau model to capture its shear-thinning behavior. The fluid properties
were set with a density of 1060 kg/m?, and the dynamic viscosity was determined by the

equation:

n-—1

H= o + (o — Hoo)[1+ ()?] 2
Where 4 =3.313s, n=0.3568, yy = 0.056 kg/ms, u, = 0.0035kg/ms.

Boundary conditions were critical for the accuracy of the CFD model. The inlet
condition was defined at the RVOT using a mass flow inlet boundary, specifying the rate
of blood entering the pulmonary artery. The outlet boundary condition was based on the
PAWP measured during RHC. Wall boundaries were treated with a no-slip condition,
ensuring the fluid velocity at the arterial wall surface was zero.

A transient solver was used to capture the dynamic behavior of blood flow over time,
implementing the k-epsilon turbulence model to account for turbulence effects. The
pressure-based solver was chosen for its ability to resolve pressure and velocity fields
accurately. The simulation ran over an R-R interval of 1 second, sampled at 60 points to
capture temporal variations in hemodynamic parameters.

The FVM was employed to discretize the governing equations, with time-stepping schemes
designed to handle the transient nature of the simulations. Convergence criteria were set to
monitor residuals for continuity, momentum, and other relevant variables, ensuring

accurate and stable results when residuals dropped below 107°.
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Post-processing involved extracting meaningful hemodynamic parameters such as
velocity fields, pressure distribution. These parameters provided insights into the flow
dynamics within the pulmonary artery, highlighting regions of high velocity, analyzing
pressure gradients, and assessing the mechanical stress exerted on the vascular endothelium.
Results were extracted at 60 time points throughout the cardiac cycle, offering a detailed

temporal analysis of hemodynamic changes (Figure 10).
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Figure 10. Generating a surface mesh from the segmentation results of CT geometry
using deep learning and inputting the RVOT velocity from spectral Doppler and wedge
pressure from RHC into a CFD simulation to derive pressure-inclusive

volume information.

_29_



7. Patient specific deep learning with CFD simulation

To enhance the diagnostic process, patient-specific DL-CFD and eDL-CFD were
developed. The initial step involved the segmentation of pulmonary artery geometries from
CT scans, which were then converted into surface meshes, capturing detailed contours and
structural features. The corresponding volume mesh was generated using the surface mesh
as a reference, ensuring accurate volumetric representation of the pulmonary artery. These
meshes were annotated with hemodynamic data such as mPAP values (Figure 11).

The geometric PointNet framework was utilized to model the hemodynamic behavior
within the pulmonary artery. PointNet, designed to handle 3D point cloud data, was suitable
for analyzing the surface and volume meshes. The model employed a dual-layer feature
extraction process: local features were extracted from both the surface and volume meshes,
capturing details such as curvature, area, and centroid pressure values. Skip connections
were integrated to preserve essential information and enhance learning.

Incorporating patient-specific meta-features such as age and gender, the model
processed these inputs through dedicated layers to extract weights, which were then
concatenated with geometric features. The combined weights from both the local feature
layers and the meta-feature layers were further processed to extract global features,
encapsulating the patient's overall condition. This approach ensured a comprehensive
analysis of both structural and functional aspects of the pulmonary artery (Figure 12, 13).

Additionally, a model was developed that included the results of the Mahan equation
analyzed from echocardiography as part of the meta-features in the deep learning model
(eDL-CFD). This model was designed to facilitate mutual complementation between
hemodynamic information (CFD) and conventional examination methods
(echocardiography, CT). (Figure 12, 13).

The final layer of the model predicted the mPAP by leveraging the comprehensive
feature set. The training process involved minimizing the mean absolute error (L1 loss

function) between predicted and actual mPAP values, defined as:
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n

1 -

argmin L(6) = ;2|Yl — YL|
i=1

where Y; represents the actual mPAP and Y, denotes the predicted mPAP. The
Adam optimizer was used for efficient convergence during training.

Performance was evaluated using mean absolute error (MAE) and root mean square

error (RMSE), with RMSE defined as:

Ny Ny

1 i
RMSE = NE SZ 1(Rs, 8) — R(s, 0)]]2.

6=1s=

where R(s,8) and R(s,8) represent the actual and predicted values, respectively.
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Figure 11. The DL-CFD and eDL-CFD consists of three steps. Step 1: Using deep

learning to extract geometry from CT and velocity profile at RVOT from

echocardiography. Step 2: Using the extracted geometry and velocity profile (inlet) and

wedge pressure from RHC (outlet) to perform hemodynamic calculations. Step 3: Using

the calculated hemodynamics (volume mesh) along with the existing surface mesh and

meta-data (e.g., age, gender, Mahan’s results) to train a PointNet for predicting PAP.
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Figure 12. Inputting surface mesh and volume mesh (PAP) data into mesh features layer

and concatenating with meta-data (e.g., age, gender, Mahan’s results) and a layer for

extracting global state information to ultimately predict mPAP.
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Figure 13. Matching the predicted results with anatomical locations at inlet/outlet
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8. Statistics

Demographic and clinical characteristics were summarized using mean values and
standard deviations for continuous variables and frequencies and percentages for
categorical variables. Bivariate comparisons between measured and predicted results were
assessed using paired t-tests and Pearson correlation coefficients. A p-value of less than
0.05 was considered statistically significant. Bland-Altman plots with 95% confidence
intervals were calculated for assessing the correlation. Inter-observer and intra-observer
reliability were evaluated by the intraclass correlation coefficient (ICC) based on the
absolute agreement of single measurements between two observers. The diagnostic
performance of each modality for PH was analyzed using area under the curve (AUC) to
assess changes in specificity and sensitivity based on a threshold of 25 mmHg. Evaluation
metrics including sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV) and accuracy were also used to assess the method's performance.
A p-value less than 0.05 was considered statistically significant. Data analyses were
performed using MedCalc statistical software, version 18.2.1 (MedCalc Software bvba,

Ostend, Belgium).
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III. EXPERIMENTS

1. Patient Characteristics

A total of 92 patients were included in this study, comprising 75 patients diagnosed
with PH and 17 patients without PH. The demographic and clinical characteristics of the
study population are summarized in Table 1. The PH group had a mean age of 55.3 years
(= 16.9), while the non-PH group had a mean age of 59.0 years (+ 15.4), with a statistically
significant difference (p < 0.001). The proportion of females was slightly higher in the PH
group (65.3%) compared to the non-PH group (70.5%), also statistically significant (p <
0.001). Hemodynamic measurements showed that the PH group had significantly higher
dPAP, sPAP, and mPAP values compared to the non-PH group (all p < 0.001), (Table 2).

2. Pre-processing

The pre-processing phase involved several critical steps to ensure the accuracy and
quality of the data used for CFD simulations and deep learning model training. Firstly, the
CT scan data were segmented to isolate the pulmonary arteries, from which surface meshes
were generated. This surface meshes were further refined to remove noise and enhance
geometric accuracy through smoothing algorithms such as Gaussian and Laplacian
smoothing. Subsequently, volume meshes were created using the refined surface meshes
as a reference, ensuring a detailed volumetric representation suitable for CFD analysis.
These meshes were then annotated with hemodynamic data such as mPAP values obtained

from RHC.

3. Implementation Details
The CFD simulations were set up using a transient solver to capture the dynamic
behavior of blood flow within the pulmonary artery. The simulations utilized the k-epsilon
turbulence model to account for turbulent effects. Blood was modeled as an incompressible,

non-Newtonian fluid, with properties defined as density 1060 kg/m?, specific heat capacity
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3515 J/kg-K, and viscosity following the Carreau model. Boundary conditions were
specified with mass flow inlet at the RVOT and pressure outlet corresponding to the
pulmonary capillary wedge pressure. Each simulation was run over an R-R interval of 1
second, sampled at 60 points to capture temporal variations in hemodynamics.

For the deep learning model, a geometric PointNet was employed. This model was
trained using segmented pulmonary artery geometries converted into surface and volume
meshes. Local features from these meshes, along with patient-specific meta features (e.g.,
age, gender), were extracted and concatenated to form a comprehensive feature set. The
model was trained to minimize the MAE between predicted and actual mPAP values, using
the Adam optimizer for efficient convergence. The model was evaluated using 5-fold cross-

validation.
4. Evaluation

The performance of the DL-CFD and eDL-CFD was evaluated using various metrics.

The MAE and RMSE were calculated to assess the accuracy of mPAP predictions.
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Table 2. Patient Characteristics

Non-PH PH p value
Number of subjects 17 75
Age (years) 59.0+15.4 553+16.9 <0.001
Female 12 (70.5%) 49 (65.3%) <0.001
dPAPgruc (mmHg) 19.5+8.4 32.7+13.7 <0.001
SPAPruc (mmHg) 433+17.2 75.5+23.8 <0.001
mPAPruc (mmHg) 28.6+9.8 48.8+16.1 <0.001

Values are mean + standard deviation, or n (%); PAP: pulmonary artery pressure;

RHC: right heart catheterization
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IV. RESULTS
The results of this study demonstrated the efficacy of integrating DL-CFD and eDL-

CFD for non-invasive diagnosis of PH. The deep learning model's predictions closely
matched the simulation results, showcasing high accuracy and reliability. Comparative
analysis revealed that while the correlation between RHC and the developed CFD and DL-
CFD methods was lower than traditional echocardiography, eDL-CFD method exhibited a
higher correlation with RHC and improved diagnostic accuracy. The area under the curve
(AUC) for the combined method was 98.9%, significantly higher than the 94.6% for
echocardiography alone. Stratified analysis highlighted that the combined approach
improved specificity to 94.1% from 76.4%, maintaining a high sensitivity of 97.3%. This
indicates the potential of the combined method to serve as a more reliable non-invasive

diagnostic tool for pulmonary hypertension.
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1. Evaluation Metrics

The segmentation of the pulmonary artery from CT images is a crucial step in the CFD
simulation process. In this study, a deep learning-based segmentation model was employed
to automatically segment the pulmonary artery from CT scans. The model utilized a U-net
architecture, which is well-suited for biomedical image segmentation tasks. The
performance of the segmentation model was evaluated using the DSC, which measures the
overlap between the predicted segmentation and the ground truth. The DSC value achieved
by the model was 85.53, indicating a high level of accuracy in segmenting the pulmonary
artery (Figure 14).

The MAE and RMSE were calculated to assess the model's performance. The MAE
for PH patients was 2.8 mmHg, and for non-PH patients, it was 3.2 mmHg. The RMSE for
PH patients was 3.4 mmHg, while for non-PH patients, it was 3.8 mmHg. These low error

values indicate the high precision of the model in predicting hemodynamic parameters.

CT Ground-truth Prediction

Figure 14. Comparison between the deep learning with segmentation results of the

pulmonary artery in CT images and the ground truth.
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2. Inter-Observer and Intra-Observer Reliability

The ICC was calculated for inter-observer and intra-observer measurements, showing
excellent reliability. The ICC for inter-observer reliability was 0.95, and for intra-observer

reliability, it was 0.97, demonstrating high consistency in the model's predictions.

3. Comparative Analysis

A. Comparison of RHC, CFD Simulation and DL-CFD

The deep learning model's performance was compared with traditional diagnostic
methods such as RHC and echocardiography. The non-invasive nature of the deep learning
model, combined with its high accuracy, presents significant advantages over these
traditional methods. RHC, though the gold standard, is invasive and carries risks, whereas
the deep learning model offers a safer, non-invasive alternative. Echocardiography, while
non-invasive, has limitations in accuracy and operator dependency, which the deep learning
model overcomes by integrating comprehensive hemodynamic data and advanced

computational techniques (Figure 15, 16).
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Figure 15. Box plot of mean, systolic, and diastolic PAP values from RHC, CFD
simulation, and DL-CFD in PH and non-PH patients.
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Figure 16. Pressure results according to phase (systolic, diastolic pressure),

mPAP, and pressure range.
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B. Comparison of Traditional Echocardiography and the Proposed Method

When comparing the correlation between the hemodynamic parameters measured by
RHC and the CFD and DL-CFD methods, it is observed that the correlations are lower than
those with the traditionally used echocardiography. Specifically, the correlation coefficient
between RHC and echocardiography was 0.714 (p < 0.001), while the correlation
coefficients between RHC and CFD simulation and DL-CFD were 0.543 (p < 0.001) and
0.674 (p < 0.001), respectively. However, eDL-CFD method showed a higher correlation
coefficient of 0.768 (p < 0.001) with RHC (Table 3).

Table 3. Correlation coefficients among RHC, echocardiography,
CFD simulation, DL-CFD, and eDL-CFD

Echocardio- CFD
RHC DL-CFD eDL-CFD
graphy simulation
0.714 0.543 0.674 0.768
RHC -
(p<0.001) | (p<0.001) | (p<0.001) | (»<0.001)
Echocardio- 0.714 0.605 0.620 0.874
graphy (» <0.001) (»<0.001) | (p<0.001) | (p<0.001)
CFD 0.543 0.605 0.904 0.724
simulation (»<0.001) | (p<0.001) (»<0.001) | (p<0.001)
0.674 0.620 0.904 0.922
DL-CFD -
(»<0.001) | (p<0.001) | (»p<0.001) (» <0.001)
0.768 0.874 0.724 0.922
eDL-CFD -
(»<0.001) | (p<0.001) | (p<0.001) | (p<0.001)

DL: deep learning, CFD: computational fluid dynamics, AUC: area under the curve

These results highlight the enhanced diagnostic accuracy of eDL-CFD method over
traditional echocardiography. The AUC for the combined method was 98.9%, compared to
94.6% for echocardiography alone, 89.0% for CFD simulation, and 93.0% for DL-CFD.

_44_



This demonstrates the potential of the combined approach to serve as a more reliable non-
invasive diagnostic tool, improving both sensitivity and specificity in diagnosing PH
(Figure 17). This figure illustrates the distribution of predicted PH using various non-
invasive techniques, specifically echocardiography, CFD simulation, DL-CFD, and eDL-
CFD method in patients with PH confirmed by RHC (mPAP > 25 mmHg).
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Figure 17. Distribution of predicted PH by non-invasive methods in patients
with mPAP > 25 mmHg confirmed by RHC.
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Stratified analysis by patient groups revealed significant findings. When the patients
were categorized into those with PH (mPAP > 25 mmHg; active group) and those without
(mPAP < 25 mmHg; control group), it was observed that many patients who were not
diagnosed with PH using echocardiography alone were correctly identified with the eDL-
CFD method. This combined approach resulted in an improved specificity of 94.1%
compared to 76.4% with echocardiography alone while maintaining a high sensitivity of
97.3% (Table 4).

Additionally, the Positive Predictive Value (PPV) and Negative Predictive Value
(NPV) for the eDL-CFD method were significantly higher. The PPV for the eDL-CFD
method was 94.3%, indicating that a high proportion of patients identified as having PH by
this method indeed had the condition. Similarly, the NPV was 97.2%, meaning that nearly
all patients identified as not having PH by this method truly did not have the condition.
These results show that the eDL-CFD method not only improves sensitivity and specificity
but also offers higher PPV and NPV than traditional echocardiography, thus providing a

more reliable non-invasive method for PH (Table 4).
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Table 4. Diagnostic accuracy of PH patients derived from

echocardiography, CFD simulation, DL-CFD and eDL-CFD.

Sensitivity Specificity PPV NPV AUC  Accuracy
Echocardiography 97.3% 76.4% 80.5% 96.6% 94.6% 86.9%
CFD simulation 85.0% 75.0% 77.3% 83.3% 89.0% 83.1%
DL-CFD 90.0% 83.3% 84.4% 89.3% 93.0% 84.3%
eDL-CFD 97.3% 94.1% 94.3% 97.2% 98.9% 91.0%
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V. DISCUSSION

The relationship between RV-Pulmonary artery coupling and PH is a critical area of
focus in the pathophysiology of PH. RV-Pulmonary artery coupling refers to the interaction
and synchronization between the RV and the pulmonary artery, which is significantly
impacted in PH. As PH progresses, the increased PVR leads to elevated pulmonary artery
pressures, placing substantial mechanical stress on the RV. This stress can result in RV

hypertrophy and dysfunction, further complicating the management of PH[7, 8].

The integration of eDL-CFD offers several notable clinical benefits, addressing some

of the significant challenges in diagnosing and managing PH:

1. Non-Invasive Diagnosis
The eDL-CFD model provides a reliable non-invasive method for diagnosing PH.
Traditional diagnostic methods such as RHC are invasive and carry risks of complications.
By accurately predicting mPAP through non-invasive imaging techniques like CT and
echocardiography, the deep learning model significantly reduces the need for these invasive
procedures, thereby improving patient safety and comfort. Additionally, this study
examined the correlation between the imaging modalities used (CT, echocardiography),
CFD simulation, and RHC. Significant results were observed, confirming the validity of
the non-invasive methods in accurately assessing pulmonary hemodynamics. While
traditional echocardiography strongly correlates with RHC, the proposed method
demonstrates significant correlation and agreement. This indicates that the eDL-CFD
approach can be a viable non-invasive alternative for diagnosing PH, potentially offering
improved diagnostic accuracy and reliability over traditional echocardiography alone

(Figure 18) [16, 50-54].
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Figure 18. Process and results of eDL-CFD in a PH patient case.
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2. Personalized Medicine
One of the standout features of this deep learning model is its ability to incorporate patient-
specific data, including anatomical and hemodynamic parameters, to support personalized
treatment planning. This capability ensures that each patient receives tailored management
strategies based on their unique physiological characteristics, which can improve treatment

outcomes and enhance the quality of life for PH patients.

3. Efficiency and Speed
The deep learning model excels in its ability to rapidly analyze and predict hemodynamic
parameters. This efficiency is crucial for the timely diagnosis and intervention required in
progressive conditions like PH. Quick and accurate diagnostics allow for earlier treatment

initiation, which can slow disease progression and improve prognosis.

4. Enhanced Monitoring
The deep learning model facilitates continuous monitoring and assessment of PH patients.
By providing real-time insights into the hemodynamic status, the model enables dynamic
adjustments to treatment plans, ensuring that therapeutic interventions are always aligned
with the current state of the disease. This continuous monitoring capability is particularly
beneficial in managing chronic and progressive diseases like PAH, where regular

assessment and timely intervention are critical.

Despite the promising results, this study has several limitations that need to be

addressed in future research to enhance the model's applicability and robustness:
1. Dataset Size

The current study utilized a relatively small dataset, which may limit the generalizability

of the findings. A larger and more diverse dataset would help improve the model's accuracy
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and robustness. Future research should focus on incorporating data from a broader patient
population, including various demographics and disease severities, to validate the model's

effectiveness across different groups.

2. Data Augmentation
Incorporating data augmentation techniques during the training phase can significantly
improve the model's ability to handle variability in patient-specific geometries and
hemodynamic conditions. Data augmentation methods such as rotation, scaling, and
translation can create a more diverse training set, which can help the model generalize

better to new, unseen data.

3. Modeling Distal Arteries

To predict wedge pressure more accurately, it is crucial to include detailed representations
of the distal sections of the pulmonary arteries in the model. These distal segments play a
significant role in the overall hemodynamic profile of the pulmonary circulation. Future
models should incorporate this level of detail to enhance the accuracy of wedge pressure

predictions, a critical parameter in diagnosing PH.

4. Prospective Clinical Studies
Conducting prospective clinical studies will provide valuable insights into the real-world
applicability and impact of the deep learning model on patient outcomes. Such studies can
assess the model's performance in clinical settings, evaluate its integration with existing
diagnostic workflows, and determine its overall effectiveness in improving patient care.
These studies are essential for validating the model's clinical utility and ensuring that it

meets the needs of healthcare providers and patients.

In summary, the integration of eDL-CFD represents a significant advancement in the

non-invasive diagnosis and management of PH. This study demonstrates the potential of
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the deep learning model to provide accurate, patient-specific predictions of hemodynamic
parameters, thereby offering a viable alternative to traditional invasive diagnostic methods.
The model's ability to facilitate personalized medicine, enhance diagnostic efficiency, and
enable continuous monitoring underscores its potential to improve clinical outcomes for

PH patients.

Future research should focus on expanding the dataset, incorporating data
augmentation techniques, and refining the model to include distal arterial segments.
Prospective clinical studies will be crucial in validating the model's effectiveness in real-
world settings and ensuring its seamless integration into clinical practice. By addressing
these areas, we can further enhance the model's predictive capabilities and clinical

applicability, ultimately leading to better patient care and outcomes in PH management.
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VI. CONCLUSION

In this study, we developed a non-invasive, rapid diagnostic model for PH using eDL-
CFD based on CT and echocardiography data. The proposed method demonstrated high
accuracy in predicting mPAP, offering a viable alternative to the current gold standard of
RHC. The integration of patient-specific geometric and hemodynamic data with advanced
deep learning algorithms holds significant promise for improving PH diagnosis and
treatment planning, ultimately leading to better patient outcomes. Our comparative analysis
revealed that while traditional echocardiography strongly correlates with RHC, the eDL-
CFD method shows significant correlation and agreement. This indicates that the eDL-CFD
approach can be a viable non-invasive alternative for diagnosing PH, potentially offering
improved diagnostic accuracy and reliability over traditional echocardiography alone.

By continuing to refine this technology and incorporating larger datasets, we aim to
further enhance its diagnostic precision and clinical applicability. This approach represents
a significant advancement in the field of medical imaging and computational diagnostics,

providing a robust framework for the non-invasive assessment and management of PH.
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