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ABSTRACT 

Systematic screening and analysis of disease-relevant mutations 

using prime editors 

 

Jinman Park 

 

Department of Medical Science 

 

The Graduate School, Yonsei University  

 

(Directed by Professor Hyongbum Henry Kim) 

 

 

 

Manipulating DNA materials through recombinant DNA technologies has 

been the foundation of modern biological and medical research. Each 

innovative breakthrough through re-engineered techniques from nature has 

opened new frontiers for understanding complex genetic mechanisms and 

created new opportunities for tackling genetic diseases. First discovered in 

bacteria as a form of adaptive immunity against viral genetic materials, 

elucidation of the CRISPR-Cas9 system has allowed for its wide application 

in nearly all fields of biology and medicine, such as the analysis of large-scale 

screenings for therapeutic targets of various drugs in the treatment of cancers 

and hereditary diseases1. Since then, concerted efforts by laboratories across 

the world have aided in the advancement of its application potential, 

specificity, and programmability for genome editing, leading to the 

development various Cas9 variants and base editors2-4. Most recently, Dr. 

Liu’s group introduced prime editing, a bio-engineered form of the CRISPR-

Cas9 system that intrinsically alleviated many of the limitations of the 

canonical system by combining a reverse transcriptase to the Cas9 protein. 

Notably, prime editing has significantly improved genome editing by 
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allowing for the introduction of potentially any combination of specific 

genetic alterations without requiring donor DNAs or double-strand breaks5. 

However, determining the optimal conditions for improving prime editing 

efficiencies in various experimental factors required extensive time and 

resources. Our previous effort evaluated the efficacies of around 50K pairs of 

prime editing guide RNAs (pegRNAs) and their target sequences in human 

cells. In doing so, we determined features that affect prime editing efficiency 

and constructed three computational models that can predict pegRNA 

efficiencies. Although our efforts provided valuable insights for practical 

applications of prime editing in future studies, our approach was limited to a 

set of specific alteration types and positions. In this study, we aim to expand 

our data a degree of magnitude to 600K pairs of pegRNAs and their 

efficiencies in inducing any combination of alterations up to 3 nucleotides in 

size. In doing so, we aim to identify and evaluate the impact of factors that 

contribute to prime editing efficiency. In addition, we will carefully curate 

our pegRNA and target pairs using the extensive repertoire of disease relevant 

mutations available on the ClinVar database so that their prime editing 

efficiencies could be better evaluated within the context of disease therapy 

and modeling. We also aim to evaluate the optimal prime editing conditions 

in various cell lines and compare other variants of prime editors that have 

been recently reported5. Taken together, we found that our vastly expanded 

pegRNA design can cover up to 87% of reported disease-relevant mutations. 

Using our large-scale profiling data, we will develop a significantly improved 

prediction model based on the latest deep learning-based algorithms. Our 

work is expected to provide a more comprehensive tool to aid future works 

in expanding the application of prime editing in basic and clinical research 

efforts. 

                                                            

Key words: prime editing, high-throughput profiling, deep-learning  
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I. INTRODUCTION 

First reported by the Liu group in 2019, prime editing (PE) has 

demonstrated immense potential in gene editing by allowing for any 

combination of specific alteration to the genome including insertions, 

deletions, and all 12 single point mutations1. Biochemically engineered, 

prime editors are composed of a Cas9 nickase–reverse transcriptase fusion 

protein and a prime editing guide RNA (pegRNA). The pegRNA consists of 

a guide sequence that recognizes a target sequence, a tracrRNA scaffold 

sequence, a primer binding site (PBS) necessary for reverse transcription (RT) 

initiation and an RT template that is designed to induce the desired genetic 

alteration. Multiple improved variants of prime editors have been since 

reported, including PE1, PE2, PE3, PE4, and PE51,2.They are distinguished 

by their biochemical properties and most notably their improved efficiencies 

in introducing genetic alterations at target sequences.  

PE1 is the least efficient and less likely to be widely adapted. PE3 

systems implements an additional single guide RNA (sgRNA) that can 

improve efficiencies according to specific targets in the genome. However, 

due to the additional sgRNA with the pegRNA, PE3 systems have been 
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shown to be more susceptible to the introduction of unintended off-target 

alterations. As the only difference between PE2 and PE3 systems is the 

additional sgRNA, the systematic evaluation of PE2 efficiencies in various 

genetic context is expected to apply consistently to PE3 systems. PE4 and 

PE5 are the most recent variants of the PE systems in which specific DNA 

repair mechanism within the cell can be transiently suppressed with the co-

expression of a dominant negative MMR (DNA mismatch repair) protein, 

MLH1dn. PE4 and PE5 are PE2 with MLH1dn and PE3 with MLH1dn, 

respectively 2. 

Previous works that have successfully implemented large-scale 

high-throughput evaluation of various Cas proteins and base editors have 

shown that the efficiency in inducing genetic alteration at target locations can 

depend on various genetic and epigenetic factors3-6. Such large-scale data 

have allowed the development of computational models that can accurately 

predict the activity levels of guide RNAs in various genetic contexts. 

Accordingly, these prediction tools have aided research efforts involving 

CRISPR nucleases. Previous efforts from our group have constructed a large-

scale pegRNA library to systematically evaluate the efficiencies of around 

50K pegRNAs in a high-throughput manner. Using this data, we were able to 

develop a computational tool, DeepPE, to predict pegRNA activities in 

specific, yet limited, context. The pegRNA library constructed for the 

evaluation of the 50K pegRNAs were specifically designed for a single point 

mutation induced at a single location.  

In this study, we expanded our pegRNA library design to include 

more than 500K pegRNAs, a substantial improvement in scope, which will 

examine all possible 3-nt long alterations with single nucleotide resolution, 

including insertions, deletions, and substitutions. Importantly, we curated our 

pegRNAs using disease-relevant mutations that have been validated and 

reported on the ClinVar database7. In doing so, we conducted a systematic 
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evaluation of prime editing efficiencies in disease-relevant context and 

further demonstrated its potential in clinical applications and disease therapy. 

We developed DeepPrime, a high-performance prediction model, through our 

well-established high-throughput library profiling techniques combined with 

the latest convolutional and recurrent neural network algorithms. Taken 

together, we conducted a more comprehensive evaluation of pegRNA 

activities in diverse disease-based context to improve the performance and 

prediction power of our deep learning-based model that is expected to be a 

valuable tool in aiding future research and application of prime editing. 
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II. MATERIALS AND METHODS  

 

 

1. Designing large-scale libraries for evaluation of prime editing 

A. General oligonucleotide library preparation 

 The oligonucleotide pools containing pegRNA-target sequence 

pairs used in this study were synthesized by Twist Bioscience (San Francisco, 

CA). Each oligonucleotide contained the following elements: a 19-nt guide 

sequence, BsmBI restriction site #1, a 10~15-nt barcode sequence (barcode 

1), BsmBI restriction site #2, the RT template sequence, the PBS sequence, a 

poly-T sequence, a 14~18-nt barcode sequence (barcode 2), and a 

corresponding 74-nt wide target sequence that included the PAM and RT 

template binding region. Barcode 1 was included to minimize template 

switching during PCR amplification, while barcode 2 (located upstream of 

the target sequence) allowed the identification of individual pegRNA and 

target sequence pairs after deep sequencing. Oligonucleotides that included 

unintended BsmBI restriction sites in their sequences were excluded. 

 

B. Design of Library-Profiling 

To evaluate the prime editing efficiencies under various pegRNA 

conditions, we designed a library of 47,839 oligonucleotides. These 

pegRNAs were selected from 40 seed target sequences from our previous 

study6 that exhibited high editing efficiencies. The top half of the target 

sequences exhibited 70-75% editing efficiencies while the bottom half 

demonstrated 50-55% efficiencies. For each of these 40 high efficiency 

targets, we generated a 74-nt wide target sequence and designed 1,196 

pegRNAs-target sequences pairs with various range of PBS and RT template 

lengths and various edit positions, lengths, and types. A total of 81 
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oligonucleotides containing the BsmBI cut site were excluded. We 

categorized the pegRNA-target sequence pairs into 8 groups as follows.  

Group 1: Effect of PBS length 

The intended edit was set to +5 G to C conversion. The pegRNAs 

were designed with a combination of RT template lengths fixed to 5, 12, 20, 

33 and 50-nt and PBS length ranged from 1 to 17-nt. Of the total 3,400 

oligonucleotides (40 seed targets x 17 PBS lengths X 5 RT template lengths), 

4 oligonucleotides were excluded for BsmBI recognized sequences to a final 

count of 3,396 pegRNA-target pairs. 

Group 2: Effect of RT template length 

The intended edit was set to +5 G to C conversion. The pegRNAs 

were designed with a combination of PBS lengths fixed at 7, 12, 17-nt and 

RT template length ranged from 5 to 40, 42, 44, 46, 48, and 50-nt. Of the total 

4,920 oligonucleotides (40 seed targets x 3 PBS lengths X 41 RT template 

lengths), 4 oligonucleotides were excluded for BsmBI recognized sequences 

to a final count of 4,917 pegRNA-target pairs. 

Group 3: Effect of edit position 

For intended edits of substitutions, pegRNAs were designed with a 

combination of PBS length was fixed to 12-nt and RT template lengths at 5, 

12, 20, 30, 50-nt with all possible 1bp substitution of A•C•G•T-to-T•G•C•A 

set for all edit positions. Of the 4,800 oligonucleotides (40 seed targets x 

(5+12+20+33+50 positions for RT template lengths 5, 12, 20, 33, and 50-nt, 

respectively)), 12 oligonucleotides were excluded for BsmBI recognized 

sequences to a final count of 4,788 pegRNA-target pairs. For intended edits 

of insertion or deletion, the pegRNAs were designed with fixed lengths of 

PBS and RT template at 12-nt and 22-nt, respectively, and intended insertion 

of AGG or CCT and a 3bp deletion at +1 to +12 edit positions from the 

nicking site. Of the 1,440 oligonucleotides (40 seed targets x 12 positions x 3 
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edit type (AGG insertion, CCT insertion, and 3-nt deletion)), 2 

oligonucleotides were excluded for BsmBI recognized sequences to a final 

count of 1,438 pegRNA-target pairs.  

Group 4: Effect of edit type 

The pegRNAs were designed with a fixed PBS length of 12-nt and 

RT template length up to 40-nt with intended edits of 1bp substitution, 3bp 

insertion of AGG or CCT, or a 3bp deletion at +1, +5, +12, +20 positions 

from the nicking site. For substitution or insertions, the minimal RHA length 

was 0 while for deletions, the minimal RHA was 1-nt long. Of the 19,640 

oligonucleotides (40 seed targets x 491 of 3′ extensions (126+118+118+129 

for A•C•G•T-to-T•G•C•A 1bp substitution, AGG insertion, CCT insertion, 

and 3-nt deletion, respectively)), 27 oligonucleotides were excluded for 

BsmBI recognized sequences to a final count of 19,613 pegRNA-target pairs.  

Group 5: Effect of PAM co-editing 

The pegRNAs were designed with fixed PBS and RT template 

lengths of 12-nt and 22-nt, respectively. For intended edits of substitutions, 

the pegRNAs were designed to install A•C•G•T-to-T•G•C•A 1bp 

substitutions at the +1, +2, +3, +4, and +8 positions from the nicking site 

while simultaneously installing all possible 16 PAM co-edits at the +5 and +6 

positions (NGG of the PAM). Of the 3,200 oligonucleotides (40 seed targets 

x 5 edit positions x 16 types of PAM editing), 4 oligonucleotides were 

excluded for BsmBI recognized sequences to a final count of 3,196 pegRNA-

target pairs. For intended edits of insertions, pegRNAs were designed to 

insert AGG or CTT at the +1, +4, or +8 positions from the nicking site and 

simultaneously install a +5 G to C conversion. Of the 480 oligonucleotides 

(40 seed targets x 3 edit positions x 2 insertion types (AGG or CCT) x 2 types 

of PAM co-edits (with or without +5 G to C conversion)), 2 oligonucleotides 

were excluded for BsmBI recognized sequences to a final count of 478 
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pegRNA-target pairs. For intended edits of deletions, pegRNAs were 

designed to install a 3bp deletion at the +1 or +8 positions from the nicking 

site and simultaneously install a +5 G to C conversion. Of the 160 

oligonucleotides (40 seed targets x 2 edit positions x 2 types of PAM co-edits 

(with or without +5 G to C conversion)), a single oligonucleotide was 

excluded for BsmBI recognized sequences to a final count of 159 pegRNA-

target pairs.  

Group 6: Effect of edit length – substitution 

The pegRNAs were designed with fixed PBS and RT template 

lengths of 12-nt and 22-nt, respectively. From the positions of +1, +2, +4, +7, 

+8, +9, +10, +11, +12, +13 and +14 from the nicking site, up to 10 edit 

positions were randomly chosen to install a substitution. For cases that 

included an intended edit size of 3bp substitution, a simultaneous co-edit of 

+5 G to C conversion was also installed. Random selection of 1 to 10 edit 

positions was conducted 5 times to yield 55 pegRNAs per see target. Of the 

2,200 oligonucleotides (40 seed targets x 11 RT-PBS selections x 5 iterations), 

7 oligonucleotides were excluded for BsmBI recognized sequences to a final 

count of 2,193 pegRNA-target pairs.  

Group 7: Effect of edit length – insertion and deletion 

The pegRNAs were designed with fixed PBS and RT template 

lengths of 12-nt and 22-nt, respectively, with intended edits of insertion at 1 

to 10, 12, 15, and 20-nt in size or deletions at 1 to 10, 12, 15, 20, and 30-nt in 

size. The edits were installed at positions +2, +5, +10, and +15 from the 

nicking site. The intended edits of insertions were designed from two 

template sequences, Type I: AGGATCGATCCTGTACTTGC, Type II: 

CCTGACAACGCTTAGACAGA, where according to the edit size, the insert 

was spliced from the template sequence starting at their 5′ end. For example, 

an intended edit of 4bp insertion would yield two pegRNAs for inserting 
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AGGA or CCTG, Type I and Type II, respectively. The pegRNA designs 

where the edit position and insertion length combined to exceed the RT 

template length of 22-nt were excluded. Of the 5,760 oligonucleotides (40 

seed targets x 144 edit lengths (44+44+56 for Type I insertions, Type II 

insertions, and deletions, respectively)), 11 oligonucleotides were excluded 

for BsmBI recognized sequences to a final count of 5,749 pegRNA-target 

pairs.  

Group 8: Effect of inserted sequence  

The pegRNAs were designed with fixed PBS and RT template 

lengths of 12-nt and 22-nt, respectively, with intended edits of all possible 

2bp insertions at the +2, +5, and +10 positions from the nicking site. Of the 

1,920 oligonucleotides (40 seed targets x 3 edit positions x 16 2bp insertions), 

5 oligonucleotides were excluded for BsmBI recognized sequences to a final 

count of 1,915 pegRNA-target pairs.  

 

C. Design of Library-ClinVar 

To evaluate prime editing efficiencies for installation and correction 

of disease relevant mutations, we designed a library of 549,168 pairs of 

pegRNA and target sequences. We selected variants that exhibited continuous 

1 to 3bp substitutions, insertions, and deletions that were classified as 

pathogenic or likely pathogenic in the ClinVar database (version dated 2020-

04-20). We extracted a 60-nt size flanking window around the variant position 

and determined all possible PAM sequences in the top and bottom DNA 

strands that could be used to designed guide RNAs for installing (disease 

modeling) or correcting (disease therapeutics) the target variant. A seed target 

sequence of 74-nt in the surrounding context containing each spacer sequence 

was extracted, and pegRNAs were generated from a combination of all 

possible PBS sequence (1 to 17-nt) and RT template sequences (from 
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minimum length to edit variant up to 50-nt). The final pegRNA library 

consisted of eight randomly selected pegRNAs from each seed target. The 

library included pegRNAs for installing (disease modeling) and correcting 

(disease therapeutics) variant edits. As the ClinVar database heavily favors 

single nucleotide variants, the proportion of pegRNAs targeting 2-3bp 

variants was adjusted accordingly to reflect the actual ClinVar distribution to 

ensure a dataset with proportionally accurate representation of the ClinVar 

variants. Lastly, oligonucleotides with internal BsmBI cut site were removed 

from the selection process.  

D. Design of Library-Small 

Library-Small was derived from the pegRNAs selected as the test 

dataset used from Library-ClinVar where high efficiency pegRNAs were 

selected for further modification to evaluate prime editing efficiency under 

various cell line and alternate PE system condition. Of the total 6,000 

pegRNA-target pairs in the library, there were 1,495 pegRNAs-target pairs 

for each disease modeling and therapeutics, respectively, in which half were 

randomly selected and the other half was proportionally selected from 0%, 0 

to 1%, 1 to 5% and over 5% editing efficiency ranges. 2,990 additional 

pegRNAs included randomly altered NGG PAM sequence to a NNN PAM 

sequence to examine the effect of PAM variants on prime editing. Lastly, 20 

pegRNAs were included in 5-folds redundancy (5 x 4 pegRNAs) that 

exhibited the highest editing efficiencies from our previous study as positive 

controls. 

 

2. Construction of large-scale libraries 

A. Plasmid library preparation  

The plasmid library containing pairs of pegRNA-encoding and 

corresponding target sequences was prepared using a two-step cloning 
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process: (Step I) Gibson assembly and (Step II) restriction enzyme-induced 

cutting and ligation. Uncoupling between paired guide RNA and target 

sequences during oligonucleotide amplification via PCR is effectively 

prevented by this two-step process8. The multistep procedure was adapted 

and modified from a previously reported method9. 

Step I: Construction of the initial plasmid library containing the 

pegRNA-encoding and target sequence pairs.  

The oligonucleotide pool was amplified via PCR for 15 cycles using 

Phusion Polymerase (NEB) and gel purified. The Lenti_gRNA-Puro vector 

(Addgene #84752) was digested with BsmBI enzyme (NEB) at 55℃ at least 

3 hours. The linearized vector was then treated with 1 μl of Quick CIP at 37℃ 

for 10 minutes, followed by gel-purification. Gibson assembly was used to 

assemble the amplified pool of oligonucleotides with the linearized 

Lenti_gRNA-Puro vector. After isopropanol precipitation, the assembled 

products were transformed into electrocompetent cells (Lucigen) using a 

MicroPulser (Bio-Rad). SOC media was then added to the transformation 

mixture, which was incubated at 37℃ for 1 hour. The cells were then spread 

and incubated on Luria-Bertani (LB) agar plates containing 50 μg/ml 

carbenicillin. Small fractions of the culture (0.1, 0.01, and 0.001 μl) were 

separately spread to allow determination of the library coverage. Plasmids 

were extracted from the total harvested colonies using QIAGEN Plasmid 

Maxi kit (QIAGEN). The calculated coverages of this initial plasmid library 

Profiling & ClinVar, Library-Off, Library-Small-PE2 and Library-Small-PE4 

were 986X, 2,486X, 2,210X and 500X the number of oligonucleotides for 

each library, respectively. 

Step II: sgRNA scaffold insertion.  

The initial plasmid library produced in Step I was digested with 

BsmBI for at least 6 hours, followed by treatment with 1 μl of Quick CIP at 
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37℃ for 10 minutes. The digested product was gel-purified after size-

selection on a 0.6% agarose gel. 

Independently, an insert fragment containing either the conventional 

sgRNA scaffold sequence in the pRG2 plasmid (Addgene #104174) or the 

optimized sgRNA scaffold sequence from the previous study10 was PCR-

amplified using Phusion Polymerase and a primer pair with a BsmBI 

restriction site in each member of the pair followed by TOPO vector cloning 

(T-blunt vector; Solgent). The TOPO vector containing the insert fragment 

was digested with BsmBI for at least 12 hours and gel-purified on a 2% 

agarose gel to isolate the scaffold sequence. The purified insert was ligated 

with the digested initial plasmid library vector using T4 ligase (Enzynomics) 

at 16℃ for 3 hours (vector and insert; 1:10 weight ratio). The ligation 

products were purified by isopropanol precipitation and electroporated into 

Endura electrocompetent cells (Lucigen). Colonies were harvested and the 

final plasmid library was extracted using QIAGEN Plasmid Maxi kit. The 

calculated coverages of this initial plasmid library Profiling and ClinVar, 

Library-Off, Library-Small-Conv, Library-Small-Opti and Library-Small-

PE4-Opti were 353X, 6,371X, 6,015X, 8,630X and 1,183X the number of 

oligonucleotides for each library, respectively. 

 

B. Prime editor-encoding lentiviral plasmids  

pLenti-PE2-BSD (Addgene #161514) and pLenti-NG-PE2-BSD 

(Addgene #176933) previously generated were used in this study for 

evaluating PE efficiencies of the original PE2 and NG-PE2, PEmax, NRCH-

PE, and NRCH-PEmax -encoding fragment were amplified by PCR with 

Phusion High-Fidelity DNA Polymerase (NEB, M0530L). To prepare the 

lentiviral backbone vector, pLenti-PE2-BSD was digested with XcmI and 

BamHI (for cloning with hyPE fragment) or XbaI and EcoRI (for cloning 
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with PEmax, and NRCH-PEmax) restriction enzymes (NEB). After digestion, 

the vector was treated with 1uL of Quick CIP (NEB, M0525L) for 10 minutes 

at 37℃. The prime editor fragment amplicons and digested pLenti-PE2-BSD 

backbone vector were separated via 1% or 2% agarose gel electrophoresis, 

purified with a MEGAquick-spin™ Plus Total Fragment DNA Purification 

Kit (iNtRON Biotechnology, 17290), and assembled using NEBuilder HiFi 

DNA Assembly Master Mix (NEB, E2621L) according to the manufacturer’s 

protocol. All plasmids were verified by sanger sequencing, and the primers 

used for cloning are summarized in Supplementary Table 6 (Make Table 

1). 

 

C. Culture and selection conditions for cell lines 

HEK293T, HCT116, HeLa, DLD1, A549, and NIH3T3 cells were 

cultured in DMEM (Dulbecco’s Modified Eagle Medium; Thermo Fisher 

Scientific) supplemented with 10% fetal bovine serum. MDA-MB-231 was 

cultured in Roswell Park Memorial Institute (RPMI) 1640 medium 

containing HEPES (Thermo Fisher Scientific) supplemented with 10% fetal 

bovine serum. All cell types were maintained below 80% confluency at 37℃ 

and 5% CO2 and passaged every 3-4 days. For the high-throughput 

experiments, each cell line was seeding to 150-mm dishes according to the 

following cell density: HEK293THCT116: 1.2x107 or 6x106 cells for PE2 or 

PE4 system respectively, HCT116: 1.2x107 cells, MDA-MB-231: 1.2x107 

cells, HeLa and NIH3T3: 6x106 cells, DLD1and A549: 8x106 cells. Unless 

otherwise noted, blasticidin S (BSD) selection concentration was 5ng/ml for 

NIH3T3 and 10ng/ml for all other cell lines while the puromycin selection 

concentration was 1μg/ml. 
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D. Production of lentivirus 

HEK293T cells were seeded on 100-mm or 150-mm cell culture 

dishes (55,000 cells / cm2) containing Dulbecco’s Modified Eagle Medium 

(DMEM). 15 hours later, the DMEM was exchanged with fresh medium 

containing 25 μM chloroquine diphosphate, after which the cells were 

incubated for up to 5 hours. The transfer plasmid, psPAX2 (Addgene #12260), 

was mixed with pMD2.G (Addgene #12259) at a molar ratio of 1.3:0.72:1.64 

and co-transfected into HEK293T cells using polyethyleneimine. 15 hours 

after transfection, cells were refreshed with maintaining medium. At 48 hours 

after transfection, the lentivirus-containing supernatant was collected, filtered 

through a Millex-HV 0.45-μm low protein-binding membrane (Millipore), 

aliquoted, and stored at -80℃. To determine the virus titer, serial dilutions of 

a viral aliquot were transduced into cells in the presence of polybrene (8 

μg/ml). Both untransduced cells and cells treated with the serially diluted 

virus were cultured in the presence of puromycin (Invitrogen).  

 

E. Preparation of PE2-expressing cell lines 

 We adopted the PE2-expressing HCT116 and MDA-MB-231 cell 

lines produced from our previous study. To generate each PE-expressing cell 

line used in this experiment, we created and maintained a lentiviral vector of 

each prime editor as described above at -80℃ until the cell line was ready to 

be prepared. For transduction, HEK293T, HeLa, DLD1, A549, and NIH3T3 

cells were seeded on a 6 well plate with 2x105 cells per well. After 12-24 

hours, lentivirus was transduced in various amounts (0.8 μl-1mL per well) 

with polybrene. Following 24-48 hours after transduction, BSD selection was 

initiated by replacing the media. To produce a cell line containing only a 

single copy of the prime editor encoding gene, the cell lines with cell survival 

rates under 30% or less were selected for further experiments. All cell lines 
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were verified using prime editor targeted PCR and sanger sequencing. 

F. Delivery of pegRNA-target library into the prime editor 

expressing cell for PE2 system 

For the high-throughput experiment, we transferred the pegRNA-

target paired library to the cell as described in our previous study. Briefly, the 

lentivirus containing the pegRNA and target-encoding plasmid library in the 

lentiviral backbone plasmid was prepared and stored at -80℃ until the PE-

expressing cell line was ready. For lentiviral library transduction, PE-

expressing cell lines were seeded in 150-mm dish and then incubated for 12 

hours. Next, lentiviral library was transduced into the cells at 0.5 MOI to 

achieve greater than 500 coverage above the initial number of 

oligonucleotides. At 12 hours after transduction, the culture medium was 

replaced with DMEM containing 10% FBS and puromycin (2 μg ml). The 

cells were harvested 8 days (for Library- Profiling / ClinVar), 7 days (for 

Library-Small) after library transduction.  

 

3. Bioinformatic platforms for library design and evaluation 

A. Input processing for pegRNA design. 

To facilitate a simply yet robust design system, the major databases 

for obtaining reference gene information on the human genome and genetic 

variants were curated, cleaned, and indexed for fast and resource-efficient 

manipulation. Databases included the NCBI’s RefSeq gene information 

(REF), Ensembl database for vertebrate genomes (REF), the HUGO Gene 

Nomenclature Committee, HGNC, database, where the gene name and 

symbol, with corresponding identification and accession numbers for 

representative gene forms were cross-referenced and verified manually. In 

doing so, a comprehensive reference list of the major 18K human genes and 

their collective IDs from each database was established. Furthermore, the 



15 

 

transcription start and end positions as well as the distribution of each exon 

start and end positions were procured from the Matched Annotation from 

NCBI and EMBL-EBI (MANE) database to established a uniform 

representative transcript information through all future studies. Our reference 

source of human genes will continuously be updated and curated using the 

automated preprocessing scripts that require the most up-to-date or desired 

data file version from each database portal. 

In addition to the inputs that utilize gene identifiers, our platform 

also can process variants from the ClinVar and COSMIC databases. The 

mutation identifiers from the archives can be used as inputs in which the 

preprocessed and index variant information can be fetched efficiently and all 

feasible pegRNAs targeting the variant for installing (disease model) or 

correcting (disease therapy) the mutation will be designed.  

Lastly, basic inputs of sequence or genic positions of interest can be 

used to obtain a basic output of pegRNA and features. However, certainly 

annotation information regarding genic location or variant pathogenicity are 

omitted. 

B. Analysis of prime editing efficiencies  

For analysis of deep-sequencing data, we used in-house Python 

scripts that were adopted and expanded from our previous study. Each 

pegRNA and target sequence pair was identified via a 36-nt sequence (12-nt 

sequence that contained PBS domain of pegRNAs + 18-nt barcode + 6-nt 

sequences that include 4-nt 5′ neighboring sequence of target sequence and 

2-nt ‘5 target sequence). The reads containing the specified edits without 

unintended mutations within the wide target sequence were considered to 

represent PE2-induced mutations. To exclude the background prime editing 

frequency originating from array synthesis and PCR amplification procedures, 

we normalized the observed prime editing frequency using the background 



16 

 

prime editing frequency determined in the absence of PE2 as shown below.  

=

𝑅𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑 𝑒𝑑𝑖𝑡 𝑎𝑛𝑑 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑏𝑎𝑟𝑐𝑜𝑑𝑒 −
(𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑏𝑎𝑟𝑐𝑜𝑑𝑒 ×  𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑟𝑖𝑚𝑒 𝑒𝑑𝑖𝑡𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) ÷ 100

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑏𝑎𝑟𝑐𝑜𝑑𝑒 −
(𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑏𝑎𝑟𝑐𝑜𝑑𝑒 ×  𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑟𝑖𝑚𝑒 𝑒𝑑𝑖𝑡𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) ÷ 100

× 100 

Deep sequencing data were filtered to improve the accuracy of our analysis. 

pegRNA and target sequence pairs for which the deep sequencing read counts 

were below 200 or the background prime editing frequencies were above 5% 

were excluded as reported previously. 

 

C. Analysis of prime editing byproducts 

We determined the possible byproduct edits from prime editing by 

examining the top 20K pegRNAs by predicted activity and their indel and 

substitution frequencies. Only the reads containing imperfect or random edits 

were selected for analysis. The insertion, deletion, and substitution 

frequencies within a 5-nt window regions around the nicking position and RT 

template end position were compared to that of the non-window regions. 

Accordingly, the frequencies were normalized based on the size of the region 

and the total read count and compared along with the frequencies from the 

background samples.  

 

D. Data preprocessing for machine learning 

We combined the NGS read counts of replicates sorted by barcodes 

and obtained prime editing efficiency data as described above. We filtered 

pegRNAs with less than 200 reads without any unintended mutation, or 

greater than 5% background PE efficiencies. For extraction of features from 

the pegRNA and corresponding target sequences, we used the biopython 

(1.79), ViennaRNA package (2.5.0), and DeepSpCas9 to calculate the melting 
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temperature, GC counts, GC contents, minimum free energy, and 

DeepSpCas9 score. These features were combined with other sequence-based 

features named “Biofeatures” including length of RT-PBS, RHA length, edit 

type, edit position, and edit length using in-house Python scripts.  

 

E. Conventional machine learning-based model generation 

To compare various machine learning models that predict PE 

efficiency for pegRNA, we used the Pycaret package (2.3.10)11. To prepare 

datasets for model training, we add wide target sequence, PBS, and RT 

template sequence 1- and 2-nt motif features to HT-B by one-hot encoding. 

Tm, GC count, GC contents, MFE, and DeepSpCas9 score were normalized 

by z-score to produce a dataset with a total of 2,956 features. For evaluating 

estimator performance, we performed five-fold cross-validation. We used the 

default parameters as the other data preprocessing options. We generate linear 

regression, Lasso, Ridge, ElasticNet, Bayesian ridge, random forest, gradient 

boosting, extra tree, XGboost, CatBoost, and LightGBM regression model 

using the default parameters of pycaret. LightGBM, CatBoost, and XGboost, 

which had the best performance, were tuned using random grid search to 

select better performance models as final models and compare performance. 

 

4. Development of deep learning-based model, DeepPrime 

DeepPrime is a deep learning-based computational model that predicts 

the prime editing efficiency of any target gene and corresponding PBS and 

RT template lengths to introduce a 1 to 3-nt substitution, insertion, or deletion 

at position from +1 to +30. DeepPrime is implemented with PyTorch and 

takes a sequence of unedited and edited, and type of prime editing as an input. 

The input sequence processing module of DeepPrime consists of four 

convolutional layers and a recurrent neural network. Each convolutional layer 
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uses a kernel with a width of 3 and a stride of 1 and preserves the length by 

performing zero padding at both ends. The number of channels is 128, 108, 

108, and 128, respectively, and average pooling is performed after the 2nd, 

3rd, and 4th convolution operations. Input sequences are one-hot encoded 

into four channels and fed to the convolutional module. The output of the 

convolutional module is input to a bidirectional gated recurrent unit (GRU) 

to analyze long-distance interactions and positional characteristics of a gene. 

The GRU hidden state is 128-dimensional, and the output is linearly projected 

as a 12-dimensional vector. In addition, DeepPrime has a separate three-layer 

perceptron module for analyzing the physicochemical properties of pegRNA 

and target sequences (previously mentioned Biofeatures) Through this, 128-

dimensional features are extracted and then concatenated with the 12-

dimensional RNN output to create a 140-dimensional vector. This vector 

finally goes through a linear projection and outputs one regression floating 

point value as an output. For hyperparameter optimization, we used AdamW, 

cosine annealing learning rate scheduler, and Bayesian optimization.  

 

5. SynDesign pipeline and web portal access 

We have established a simple yet powerful bioinformatics pipeline that 

combines systematic targeting of gene or variant of interests, design and 

evaluation of saturation pegRNA library using DeepPrime and DeepPrime-

FT and the automated incorporation of synonymous mutation markers in 

oligonucleotide constructs. This pipeline has been optimized for online 

access through our web portal called SynDesign. This webtool provides an 

end-to-end interface for targeting genes or variants of interest using prime 

editing in a highly programmable and automated manner. SynDesign 

facilitates precise gene targeting through extensive curation of major public 

databases. Users can effortlessly target their gene of interest using common 



19 

 

identifiers such as the gene symbol, GI from NCBI, NMID from RefSeq, 

Ensembl ID, and the HGNC ID. The integration of variant archives from 

ClinVar and COSMIC databases enhances the tool's utility, enabling users to 

focus on specific variants associated with human diseases. 

In addition, with a single gene or variant input, SynDesign streamlines 

saturation genome editing (SGE). Our platform automates the design of all 

feasible pegRNAs and assesses their efficiency using advanced prediction 

models, DeepPrime and DeepPrime-FT. The extensive coverage of the prime 

editors and cell types of DeepPrime and DeepPrime-FT establishes 

SynDesign as the most up-to-date automation of pegRNA design and 

evaluation for precision SGE research.  

Lastly, SynDesign's results section ensures a smooth transition to the 

saturation design of oligonucleotides. This includes incorporating 

synonymous mutation markers and other critical features from the top 

pegRNA designs. The platform facilitates comparative analysis, allowing 

users to assess the efficiency of top pegRNAs against others specific to the 

corresponding prime editor and cell type. This contextual information 

provides a more complete understanding of their efficiency. 

The web portal includes an easy-to-follow tutorial with extensive 

examples for input and output. The help section provides visual examples of 

all the parameters and their impact on the data processing. We believe that 

with our expanded inputs, automation of key steps, and an in-depth guide on 

proper usage with optimal parameters will significantly facilitate the 

application of prime editing to future studies.   
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III. RESULTS 

 

1. Factors that impact prime editing efficiency 

 

 

Figure 1. Schematic of prime editing guide RNA. 

 

 

Prime editing efficiency can be affected by the parameters of its 

design at a given target sequence such as the lengths of prime binding site 

(PBS) and the reverse transcriptase template (RTT) regions in the pegRNA1,6 

(Figure 1). Our previous efforts explored a pre-determined set of PBS lengths 

and RTT lengths ((7, 9, 11, 13, 15, and 17-nt), (10, 12, 15, and 20-nt), 

respectively), which reveal certain insights into the importance of these 

parameters when designing effective pegRNAs6. Here, we expanded our 

scope to examine the effects of PBS and RTT lengths more systematically. 

We explored all experimentally feasible ranges of PBS and RTT to understand 

their impact on PE efficiency at a single-nucleotide resolution. We deployed 

all possible PBS (1~17-nt) and RTTs (5~35-nt) at various target sequences to 

induce a specific G to C substitution at the +5 edit position (Figure 2).  

In doing so, we found that for pegRNAs with 12-nt and 20-nt RTTs, 

the highest average efficiencies were observed when PBS lengths were 11-nt 

(average efficiency 13%) and 12-nt (8.5%), respectively. (Figure 3A), which 
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is consistent with our previous findings6. 

Figure 2 Profiling library design for evaluation of PE. Each profiling 

group focused on evaluating a specific pegRNA feature on PE efficiency. A 

pre-determined set of 40 seed target sequence was designated for each library 

with varying lengths of PBS and RTT lengths, editing positions within the 

pegRNA with respect to the PAM sequence, or editing types of substitutions, 

insertions, or deletions. Library-Profiling was comprised of a total of 47,839 

pegRNAs designs.  

 

 

In evaluating pegRNAs with 5-nt or 33-nt long RTTs, our findings indicate 
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the editing efficiencies were relatively low in identifying the optimal PBS 

lengths despite pegRNAs with 5-nt RTTs showing relatively high efficiency 

levels when paired with PBS lengths of 6 to 11-nt. We found that pegRNAs 

with 33-nt RTTs also exhibited relatively high activity levels with PBS at 12 

to 17-nts. Collectively, our results indicate that using 11-nt PBS for RTT 

lengths 12-nt or lower and 12-nt PBS for RTT lengths at 12-nt or longer will 

yield generally high PE efficiencies.   

Figure 3. Evaluation of factors that impact PE efficiency. (A) The heat 

maps demonstrate the average PE efficiencies induced by pegRNAs designed 

with all possible PBS sequence lengths (1~17-nt) paired with fixed RTT 

lengths of 5, 12, 20, or 33-nt or (B) various RTT lengths (5~35-nt) with fixed 

PBS lengths 7, 12, or 17-nts. The number of pegRNA and target sequence 

pairs were n = 2,201 and 2,929, respectively. (C) Effect of the editing position 

on PE efficiencies for inducing 1bp substitutions. Each line indicates average 

efficiency at positions +1 to +33 with RTT at 5, 12, 20, and 33-nts. The length 

of PBS was fixed to 12-nts. The number of pegRNA and target sequence pairs 

are n = 195, 460, 683, and 474, for pegRNAs 5-, 12-, 20-, and 33-nts RT 

template, respectively. (D) Effect of edited nucleotide count on prime editing 

efficiency when inducing 1~10bp sized substitutions. Edit positions were 

randomly chosen among the positions +1, +2, +4, and +7 to+14 on the target 

sequence. The lengths of PBS and RT template were fixed to 13-nts and 22-
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nts, respectively. The number of pegRNA and target sequence pairs was n = 

1,920. Error bars represent 95% confidence interval. (E) Line plots indicating 

the average prime editing efficiency when introducing different lengths (1 to 

10, 12, 25, and 20-nts) of insertion positions +2, +5, +10, and +15. The 

lengths of PBS and RT template were fixed to 12-nts and 22-nts, respectively. 

The number of pegRNA and target sequence pairs was n = 3,052. 

 

 

Next, we assessed the impact of RTT lengths on editing efficiencies using 

pegRNAs with fixed PBS lengths of 7, 12, and 17-nt for RTT lengths ranging 

from 5 to 48-nt in length. Such a scope was previously unexplored, and our 

analysis showed that independent of PBS lengths, RTTs at 12-nt and within a 

2-nt window exhibited the most efficient editing levels (Figure 3B). 

Examination of Library-ClinVar suggested consistent finding in line with that 

of our previous analyses6. Unique to the RTT, the intended edit position 

directly impacts its size such that a 1bp substitution intended for the +20 edit 

position requires a minimum RTT length of 20-nt. When we investigated the 

optimal RTT lengths for intended edit positions at +1, +5, +12, and +20, the 

optimal editing was observed when the RTT lengths were large enough to 

encompass the edit position and allow for a minimum right homology arm 

(RHA) of 4 to 7-nt (Figure 1). Larger insertions and deletions indicated 

consistent requirements of at least 7-nt and 9-nt RHA, respectively (Figure 

4). Importantly, all editing types demonstrated that once a minimum RHA is 

achieved, there was an immediate diminishing return in RHA size as its length 

past 6-nt yielded reductions in efficiencies. Additionally, we were able to 

determine consistent findings for RHA requirement from analysis using 

Library-ClinVar. Altogether, we found that using pegRNAs designed with 7 

to 9-nt RHA to achieve general high performance in prime editing.  



24 

 

Figure 4. RHA length and edit type effects prime editing. Heatmap shows 

the average prime editing efficiency of pegRNAs with all evaluated edit types 

and sizes (1 to 3bp substitution, insertion, or deletion) with RHA lengths (0 

to 30-nts). 
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We also investigated the effect of the editing position by examining 

pegRNAs designed to install 1bp substitutions at positions +1 to +33 with 

RTT lengths fixed at 5, 12, 20, and 33-nt and found consistent PE2 

efficiencies up to edit positions +2, +8, +17, and +30, respectively, suggesting 

that with a minimum RHA length, editing position in general exhibit similar 

editing efficiencies, except at positions +5 and +6 which affect the PAM 

sequence (Figure 4). 

Then, we assessed the effect of the number of edited nucleotides on 

prime editing and found that PE2 efficiencies were similar for 1 to 4bp 

substitutions, decreased for 5 to 7bp substitutions and drastically decreased 

for 8 to 10bp substitutions (Figure 1D). We next examined the effect of 

inserted nucleotide length on prime editing efficiency. We observed the 

insertion efficiencies were similar for 1 to 5bp insertions and decreased for 

6bp or greater insertion sizes when the editing positions were +2 or +5 (Figure 

1E).  

 

2. Role of last templated nucleotide on PE 

It has been previously reported that the last templated nucleotide of 

the RTT should not be a guanine (G) to prevent RTTs locating a cytosine (C) 

close to the 3′ hairpin of the sgRNA scaffold1. However, findings from our 

previous study showed contradictory results as pegRNAs with RTTs 20-nt 

exhibited consistent findings the previous work but pegRNAs with RTTs at 

15-nt, indicated no importance of the last templated nucleotide to PE 

efficiency. Accordingly, when pegRNAs with RTT lengths at 10 or 12-nt were 

used, G as the last templated nucleotide yielded highest average PE 

efficiencies. To elucidate the underlying mechanism behind the contradicting 

observations, we explored the role of the last templated nucleotide using the 

vast Library-ClinVar data. As a result, we found that the average editing 
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efficiencies followed the optimal pattern of C > T > A > G all edit types 

(Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of last templated nucleotide on prime editing efficiency. 

Heatmap showing the effect of last templated nucleotide on prime editing 

efficiency according to RTT lengths and edit types. Each value represents the 

average PE2 efficiency. Those with an average PE2 efficiency of 4 or more 

were indicated in white letters. 
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3. Role of PAM co-editing on PE 

Previous reports showed that simultaneous perturbation of the PAM 

sequence, traditionally NGG, can result in improved editing efficiencies by 

blocking the re-binding of the Cas9 protein to the target sequence, which can 

lead to multiple nicking of the reverse-transcribed DNA strand before the 

repair of the complementary strand1,6. Accordingly, the two G’s (NGG) 

corresponding to the +5 and +6 positions on the wide target sequence (Figure 

1) can be altered to any of the 15 dinucleotide sequence combinations. We 

investigated the impact of all 15 co-edits on PE efficiency by designing 

pegRNAs to induce 1bp substitutions at positions +1, +2, +3, +4, and +8 

simultaneously with all possible PAM co-edit dinucleotides. When compared 

to the same pegRNAs without the PAM co-edits, we found that PE 

efficiencies were improved by on average 1.7-folds, in which the NAT co-

edit exhibiting the highest efficiency improvements (Figure 6). On the other 

hand, NCT, NCC, and NCA yielded the lowest improvement and should be 

avoided. Interestingly, we found that for edit positions +1, +2, and +3, PAM 

editing induced higher editing efficiencies than those of positions +4 and +8, 

which may be potentially due to the synergistic effects between the close 

proximity of the intended edit and the PAM co-edit that blocks the nickase 

activity of the Cas9 protein.  

Figure 6. Effect of PAM co-editing on PE2 efficiency. Evaluation of PE 
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when introducing 1bp substitutions at positions +1, +2, +3, +4, and +8 with 

co-edited +5 and +6 positions on the PAM (NGG). The average prime editing 

efficiencies with PAM co-editing were normalized to that of without PAM 

co-editing. The number of pegRNA and target sequence pairs was n = 2,686. 

 

 

4. DeepPrime is a powerful tool for predicting prime editing 

efficiency 

Our previous study focused on the development of accurate models 

for the prediction of editing efficiencies of Cas12a4, Cas93, base editors12. In 

addition, our most recent study evaluated PE2 activity levels and developed 

three prediction models, DeepPE, PE_type and PE_position. However, the 

models were limited by the scope of experimental conditions of the high-

throughput library design6. DeepPE was limited to a single intended edit of 

G to C substitution at the +5 edit position with only 24 different combinations 

of PBS and RTT lengths. PE_type can predict prime editing efficiencies of 

pegRNAs with only 13-nt long PBS and predominantly RHA of 14-nt for 24 

edit types at limited edit positions and PE_position can predict editing 

efficiencies of pegRNAs with only 13-nt PBS and 20-nt RTT for intended 

editing of 1bp substitution. Notably, the two models were developed using 

conventional machine learning algorithms as opposed to the more robust deep 

learning based techniques. In addition, the size of the dataset used for training 

the models were limited to sets of 3,775 and 1,774 pegRNAs, respectively, 

yielding modest performances of R = 0.47 and 0.56 for PE_type, PE_position, 

respectively. Development of a more comprehensive model for evaluating 

pegRNAs with potentially all experimentally feasible combination of 

parameters can reveal a clearer landscape of the factors impacting prime 

editing efficiency. Our Library-ClinVar contains 549,618 pairs of pegRNA 

and target sequences with 850 (= 17 x 50) combinations of PBS and RTT 

lengths for all edit types including up to 3bp substitutions, insertions, and 
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deletions across an extensive edit position range of +1 to +30 positions. We 

exhaustively examined the prime editing efficiencies of the 549,618 pairs of 

pegRNA and target sequences. However, human capacity for determining the 

feature map of such an enormous amount of data is impossible. After best-

practice methods for reducing data noise and errors, we split the data into two 

data sets, ClinVar_Train (n = 259,910) and ClinVar_Test (n = 28,883), by 

random sampling with unique representation by each pegRNA. As the scale 

of ClinVar_Train significantly overshadows those of DeepPE, PE_type, and 

PE_train, we conducted comparative analysis of its performance across 

various conventional machine learning-based and deep-learning based 

models. Subsequently, we tested each model using 5-fold cross-validation, 

and found that a convolutional neural network (CNN) based algorithm, not 

unlike those of previous studies, combined with gated recurrent units (GRU), 

a key component of recurrent neural networks (Figure 7), exhibited the 

highest performance and significantly greater that of the next best algorithm 

(CNN with attention module) (P = 2.3 x 10-2; Steiger’s test) (Figure 8A). 

Accordingly, we adopted this algorithm developed using CNN with GRU-

based approach, as our main prime editing prediction model, DeepPrime.  
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Figure 7. DeepPrime model development schematic. A diagram of 

DeepPrime model architecture. Inputs for the prediction model require non-

edited target and prime-edited target sequences, pegRNA information 

(guide/PBS/RT), and an additional “Biofeatures.” The non- / prime edited 

target sequences are converted into one-hot encoding, fixed-length array data, 

and merged into a vector. Then, the target sequence vector is trained with a 

convolutional filter to extract a feature map, and then a flattened layer is made 

through a bidirectional GRU. In addition, feature information extracted from 

target sequence and pegRNAs creates another layer through multilayer 

perceptron and combines these two layers to create a final output layer. 
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Figure 8. Comparison of DeepPrime model performance. (A) 

Comparative analysis of various model algorithms for predicting PE 

efficiency. Each dot represents the Spearman’s correlation coefficient 

between the measured and predicted prime editing efficiency levels using 

five-fold cross-validation (total, n = 5 correlation coefficients). Statistical 

analysis of the top two algorithms is as shown (***P = 9.4 x 10-4; two-sided 

Steiger’s test). The bar and error bar indicate the average and standard 

deviation of coefficient values, respectively. (B) Validation of DeepPrime 

using ClinVar_Test. Dot color gradient was generated using Kernel Density 

Estimation (KDE) with a Gaussian kernel. Spearman’s (R) and Pearson’s (r) 

correlation coefficients are as indicated. 

 

 

Testing of DeepPrime was conducted first using the non-redundant 

test dataset, ClinVar_Test. As a result, we were able to confirm the high 

performance of DeepPrime with a Spearman’s and Pearson’s correlation 

coefficient (R = 0.86 and r = 0.84, respectively). As expected, these findings 

were notably higher than that of DeepPE, PE_type, and PE_position6 (Figure 

8B). We segmented our testing further to the different factors that impact PE 

efficiency to ascertain whether DeepPrime exhibited consistent prediction 

power. Nine subsets of ClinVar_Test were created to focus on the nine 

different combination of intended edit types (1 to 3bp substitutions, insertions, 

and deletions). Our findings indicated high Spearman’s (R) and Pearson’s (r) 

correlation coefficients for each of the nine edit type combinations, indicating 



32 

 

that DeepPrime is a robust and versatile prediction model that can serve as a 

valuable asset in a variety of pegRNA configuration (Figure 9A).  

 

Figure 9. DeepPrime model profiling and validation. (A) Evaluation of 

DeepPrime robust prediction power across all edit configurations. Otherwise 

as Figure 7. (B) DeepPrime performance across various edit positions 

according to Pearson’s and Spearman’s correlation coefficients. (C) 

Evaluation of DeepPrime using an independent test dataset1, which include 

prime editing efficiencies obtained from endogenous sites in HEK293T cells. 

The number of pegRNAs, Spearman’s (R) and Pearson’s (r) correlation 

coefficients are shown. 

 

 

Furthermore, our testing of DeepPrime also indicated high 

performance across editing positions, Pearson’s coefficients ranged from 0.68 

to 0.85 at intended positions +1 to +30 while Spearman’s ranged from 0.63 

to 0.88 at positions +1 to +27 but dropped off at positions +28 to +30 to 0.47 

to 0.58 (Figure 9B). Most importantly, DeepPrime was assessed using an 

independent dataset published previously that measured prime editing at 

endogenous sites, DeepPrime demonstrated excellent Spearman’s and 
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Pearson’s correlation coefficient of R = 0.74 and r = 0.74, respectively, 

indicating its robust performance in predicting PE2 efficiencies at 

endogenous sites (Figure 9C). 

 

5. DeepPrime identifies important context features impacting PE 

To systematically ascertain the degree of contribution from each 

feature associated with prime editing efficiency, we performed SHAP 

(SHapley Additive exPlanations) analysis using 2,956 features that include 

the melting temperature, GC counts, GC contents, the minimum self-folding 

free energy of various regions in the pegRNAs, PBS and the RTT lengths, 

edit types, edit positions, edit lengths, RHA lengths, and the DeepSpCas9 

scores3. In addition, we included direct sequence information, such as all 

mononucleotides and dinucleotides that are position independent and 

dependent. We distinguished features as favored or disfavored when its values 

were associated with high and low prime editing efficiencies (Figure 10). We 

found that the features distinguished for their association with high PE 

efficiency were generally in line with the previously reported features6. 

The SHAP analysis showed that the GC count of the PBS sequence 

was the most favored feature associated with high PE efficiency. Accordingly, 

Tm of PBS and number of ‘C’ in PBS were also favored and were within the 

top 10 important features. In our previous study, we identified the GC counts 

in PBS and Tm of PBS as one of the top three features6. The difference in 

findings is potentially due to the increase in the diversity of PBS compositions 

in the ClinVar_train dataset including very short PBS of 1 to 6-nt in size. 
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Figure 10. DeepPrime features analysis. The 20 most important features 

associated with prime editing efficiencies. Tree SHAP determined the feature 

importance. The summary violin plot (the left graph) represents each target 

sequence as a dot where its position on the x-axis reflects the SHAP value. 

High SHAP value indicates that feature is associated with high prime editing 

efficiency. The color of dot shown in red, or blue represents high or low value 

of the relevant feature for that particular target sequence, respectively. 

 

 

We expect that higher GC count and Tm of the PBS can facilitate an 

increase in affinity between the pegRNA and the nicked strand of the target 

DNA, which would mediate an increase in reverse transcription rate. To 

investigate this thoroughly, we compared the prime editing efficiencies across 

different Tm, GC count, and length of PBS. We found that all three factors 

affected prime editing efficiency with GC counts consistently being the most 

important feature associated with efficient prime editing. With fixed PBS 

lengths, our findings remained similar with the average prime editing 

efficiencies varied at a large scale depending on the GC count (favored) and 

Tm (favored) (Figure 10). Importantly, the GC count and Tm of PBS that 

yielded the highest average efficiencies in general, were higher than 6 and 25 
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degrees, respectively (Figure 10). The optimal range of Tm also varied 

depending on PBS length and GC count. Once GC count was higher than or 

equal to 6, pegRNAs with longer PBS than 13-nt led to lower prime editing 

efficiencies. Consistently, GC contents in PBS was 7th important feature 

(favored) and pegRNAs with GC contents higher than 60% were associated 

with high prime editing efficiency as long as the PBS length is longer than 6-

nt (Figure 10).  
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Figure 11. DeepPrime PAM compatibility analysis. Alternative Cas9 

nuclease and prime editing systems were evaluated. The relative Cas9 activity 

are shown in blue and average PE efficiencies for each PE system are shown 

in red (n = 2,588 for each). 

 

 

 

6. Further methods for improving PE using optimized molecular 

components 

It has been reported that prime editors and Cas9 activities are 

interdependent due to prime editors being based on bioengineered Cas9 

proteins6, it is feasible to hypothesize an improvement in PE efficiency using 

experimental techniques that improve Cas9 activity. One key aspect for 

improvement is the use of an optimized sgRNA scaffold that has a 5nt longer 

loop and TTTC instead of TTTT that has been reported to improve Cas9 

activity13. Accordingly, we implemented and compared the potential 

improvement in PE efficiency between conventional and optimized scaffolds 

using Library-Small. Notably, our findings indicate that using an optimized 

scaffold infrastructure for pegRNA design can improve PE efficiencies by on 

average 1.25-folds over conventional pegRNAs. Our analysis showed that 

optimized scaffold design exhibited improved PE efficiencies in 79% 

(1,674/2,132) of the pegRNA and target sequence pairs that were examined. 

As PEs contain the Cas9 nickase domain, we expect that Cas9 nucleases and 

PE variants would exhibit similar PAM. To uncover this phenomenon, we 

compared the average efficiencies of prime editing and nuclease-induced 

indel generation at target sequences with varying 3-nt PAM sequences. As a 

result, we found that high correlation between them, suggesting that PEs and 

Cas9 share an overlapping repertoire of PAM compatibilities (Figure 11). 

Traditional NGG PAM sequences present certain challenges when 

targeting regions of the genome with a targetable PAM sequence. To expand 

the targetable PAM repertoire for future studies, we applied our high-
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throughput screening for all possible non-NGG PAM sequence when we 

expanded the definition of the PAM sequence as a sequence that yields higher 

than 1% editing at the associated target sequences 7 days post-transduction 

of the pegRNA-target pairwise library using Library-Small with optimal 

pegRNAs. We found 35 of the 64 3-nt PAM sequences can be used as PAMs 

by at least one of the PE2 variants (i.e., PE2, NG-PE2, NRCH-PE2) (Figure 

11). Especially, at target sequences with NGTN, NGAN, NGCH, and NACH 

PAM sequence, NRCH-PE2 showed high average prime editing efficiencies, 

whereas PE2 showed high average efficiency of 7.3% at target sequences 

exhibiting the NGGN PAM. At target sequences with NWGA and NAMG 

PAM sequences, NG-PE2 showed the highest efficiency although the average 

efficiencies are 1.9% and 1.8%, respectively. 

Prime editing efficiency can also be enhanced by using recently 

reported prime editor improvements including PE2max and PE4max2. We 

applied our high-through put screening and analysis as described and 

examined the editing efficiencies by PE2, PE2max, and PE4max using 

Library-Small. When compared to the canonical PE2, we found that when 

combined with optimal pegRNA conditions, PE2max and PE4max exhibited 

1.9 and 2.7-folds improvement in general prime editing efficiency, 

respectively (Figure 11).  

Lastly, we explored the variation in PE efficiency according to 

different cell types as they have been reported to express varying levels of 

mismatch repair (MMR)-related components such as MSH2, MSH6, MLH, 

and PMS22. These intrinsic MMR-related proteins have been shown to 

negatively affect PE efficiencies2. Our experiments have predominantly 

utilized HEK293T cells which is partially MMR-deficient due to 

hypermethylation of the MLH1 promoter14. We conducted a more in-depth 

evaluation of the MMR effect on prime editing efficiency by conducting high-

throughput analyses on two additional cell types, HCT116, an MMR-
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deficient cell line, and MDA-MB-231, an MMR-proficient cell line using 

Library-Small. Our finding from comparing the PE2 efficiencies measured in 

HEK293T cells to those of HCT116 and MDA-MB-231 cells, we found 

strong correlations (R = 0.92, r = 0.89) and modest correlation (R = 0.81, r = 

0.63), respectively (Figure 11). We further investigated a previous report that 

edit types are associated with prime editing efficiencies in HEK293T cells 

due to varying MMR mechanisms on different DNA alterations. Accordingly, 

we compared prime editing efficiencies in HEK293T cells with those of 

MDA-MB-231 and HCT116 cells under all nine different editing 

configurations using Library-Small. Interestingly, we found differential 

preference of MMR mechanism for certain edit configurations where MDA-

MB-231 cells demonstrated higher PE efficiencies for 1bp G to C and A to G 

substitutions, similar or slight decrease for 1 to 3bp insertions, and a drastic 

reduction for 1 to 3bp substitutions. These effects were not observed in 

MMR-deficient HCT116 cells (Figure 11).  

 

7. Role of synonymous mutation markers for improving on-target 

efficiency and sequence analysis. 

 It has been reported that in addition to multiple biochemical 

improvements to the Cas9 protein and the reverse transcriptase, the optimal 

structural improvements to the pegRNA scaffold complex, a secondary edit 

adjacent to the intended edit that is silent through a synonymous amino acid 

change can improve on-target efficiency by diluting the intrinsic mismatch 

repair mechanism (Figure 12). Furthermore, the secondary edit functions as 

a sequence marker for properly edited reads that can clearly distinguish the 

intended and secondary edit combination among other byproducts caused by 

sequencing or PCR-based random errors and noise. This dual function system 

has been implemented in the SynDesign platform to automatically 
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incorporate the secondary synonymous marker at a user-specified region of 

the pegRNA. Based on previous observation, we have established a default 

priority parameter of the LHA, PAM co-edit, and RHA.  

Figure 11. Improved prime editing efficiency using optimized components. 

The +max system utilizes human codon-optimized RT, a 34-aa linker containing 

a bipartite SV40 NLS, an additional C-terminal c-Myc NLS and R221K N394K. 

The +epegRNA takes advantage of structural variants that perform better than the 

canonical pegRNA. The silent mutation adjacent to the intended edit dilutes the 

cellular mismatch repair machinery and leads to higher on-target efficiency16.  

 

 

 

8. Overall performance optimization of SynDesign. 

 

 Our analysis pipeline has been optimized extensively for online 

access and simultaneous use by multiple users. First, the input tables for all 

databases were preprocessed and indexed according to gene identifier using 

random access locating through the built-in function, seek(). Furthermore, a 

reference point for each gene identifier was made to address “Not Found” 

exceptions extremely quickly. The preprocessing step of the input databases 

allows for fast and resource-efficient location of the correct gene information, 

exon positions, and genome sequence retrieval.  

 For processing, the webserver currently hosts multiple web portals 

that are independently run on two Nvidia RTX 3090 GPUs that allocate 
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resources according to the size of input. For example, larger input loads 

involving full gene runs or large exons (3k bps or larger) are distributed 

among 4 jobs across both GPUS. Smaller input loads such as 1k bps or 

smaller exon targets or single variant targets are distributed across 2 jobs on 

a single GPU. This job scheduling allows the GPU-optimized feature 

engineering and predicting scoring steps to run as efficiently as possible. 

 Lastly, the pipeline allows for the construction of a precision prime 

editing library that incorporates the silent synonymous mutation markers in 

the priority of the left homology arm, PAM sequence, and right homology 

arm.   
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Figure 12. Flowchart of SynDesign pipeline. The schematic shows each major 

analysis step of SynDesign from the initial input to pegRNA design, feature 

engineering, and evaluation using DeepPrime/DeepPrime-FT. Annotation and 

library construction are greatly aided through the automated inclusion of 

synonymous mutation markers as well as annotation against public variant 

databases.  

 

 

IV. DISCUSSION 

Here we designed, synthesized, and evaluated hundreds of thousands 

of prime editing guide RNAs (pegRNAs) in a systematic, high-throughput 

manner. In doing so, we profiled these pegRNAs to distill valuable factors 

that impact prime editing in various molecular contexts. Our well-establish 

library screening methodologies combined with highly optimized analysis 

pipelines for determining PE efficiencies revealed key parameters in pegRNA 

design and function that will aid future studies aimed at utilizing prime 

editing in important biomedical applications. Notably, our library was based 

on the ClinVar database, a vast resource of human disease-relevant mutations, 

where the pegRNAs were designed to install or correct these mutations to 

investigate disease modeling or disease therapeutic conditions. Our focus on 

disease-relevant mutations provides useful context and platform for 

addressing variants that were previously difficult or impossible to profile in-

depth. Accordingly, we found that with our pegRNAs designed to target 

ClinVar variants inducing substitutions, insertions, and deletion up to 3bp, we 

can cover up to 88% of the variants reported as pathogenic or likely 

pathogenic.  

Key factors that impact PE efficiency in human cells are the sizes 

and sequence context of the main pegRNA components1,6. In general, we 

found that RTT length of 12-nt or less should be paired with a PBS length of 

11-nt and RTT length of 13-nt and longer yields the best performance when 
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designed with a PBS length of 12-nt. The optimal nucleotide for the last 

templated positions has been a focus of debate in previous studies1,6. However, 

our extensive analysis revealed that cytosine, at the last template positions 

provides the most efficient prime editing performance. In general, PAM co-

editing has been shown to yield improved PE efficiencies across all 15 non-

GG dinucleotide variations. However, our findings show that there is a 

distinct hierarchy in efficiency where NAT leads to the best performance in 

general with CT, CC, and CA being the least effective forms of PAM co-

editing. Taken together, our in-depth profiling of pegRNA performance 

across various design conditions and target context has demonstrated key 

components and their optimal range in size and nucleotide composition for 

maximizing general primed editing performance. 

As the massive profiling experiments cannot be replicated by those 

seeking optimal pegRNA designs specific to their research requirements, we 

sought to train a deep-learning based model using our data to evaluate 

pegRNAs according to the user-specific parameters and predict their 

efficiencies in real-time without the need for time or resources of 

experimental procedures. DeepPrime, our convolutional neural network with 

recurrent neural network components is in part a hybrid model that combines 

CNN with bidirectional gated recurrent units (GRUs). When finely tuned 

using our pegRNA “Biofeatures,” we found that DeepPrime exhibits high 

performance in predicting PE efficiencies in various contexts. DeepPrime 

also exhibited excellent reproducibility of endogenous targets and 

independent datasets.  

With recent improvements to PE and its components, designing the 

most appropriate genome editing system for a specific experiment can be 

challenging. To remedy this issue and expand the application of prime editing 

and saturation genome editing, we generated an easy-to-use web portal for 

accessing our powerful analysis tool for designing and optimizing pegRNA 
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designs under various cellular and sequence contexts. Our web portal allows 

researchers to evaluate all possible pegRNA designs for a specific target gene 

with parameters adjusted for their experimental conditions without resource-

heavy experimental procedures. SynDesign also empowers saturation prime 

editing library designs by automatically installing synonymous mutation 

markers for improved precision and on-target efficiency. Additional 

annotations can be conducted against public variant databases to improve 

designs that target disease models and improve prime editing applications in 

therapeutics. We expect that our analysis platform will serve as a valuable 

tool for future studies in exploring prime editing for understanding human 

disease and expanding its therapeutic potential. 
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V. CONCLUSION 

 Genome editing has established a vast field of research in 

manipulating human DNA for understanding human disease and developing 

effective therapeutic methods. As the most recent innovation in genome 

editing, prime editing (PE) allows for the installation or correction of virtually 

any desired nucleotide composition in the human genome1,6. Understanding 

the factors that impact PE efficiency is of paramount importance for its safe 

and effective application in biomedical research. We profiled PEs in various 

cellular and sequence conditions using our high-throughput library screening 

techniques in concert with a highly optimized PE analysis pipeline that 

computationally determines PE levels with additional “Biofeatures” such as 

thermal dynamic properties, sequence context, and secondary structures. We 

developed DeepPrime15 using our large-scale profiling and feature data as the 

train and test set to develop a deep-learning model that utilizes convolutional 

neural network with bidirectional gated recurrent units. We found that 

DeepPrime consistently outperforms other conventional machine-learning 

methods by providing more accurate prediction of PE levels. We established 

a user-friendly web portal for accessing our PE data and analysis tools in 

addition to DeepPrime for future works in prime editing. We expect that 

DeepPrime, and our web portal will serve to better facilitate the 

understanding and application of prime editing in biomedical research.  
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ABSTRACT (IN KOREAN) 

 

프라임에디터를 이용한 질병관련유전자 돌연변이 기능 분석   

 

<지도교수 김형범> 

 

연세대학교 대학원 의과학과 

 

박 진 만 

 

 

 

재조합 DNA 기술을 통한 DNA 물질 조작은 현재 생물학 및 의학 

연구의 기초가 되었다. 자연에서 재설계되거나 재구성된 기술을 통한 

각각의 혁신적인 이노베이션은 복잡한 유전 메커니즘을 이해하기 

위한 새로운 지평을 열었고 유전 질환을 해결할 수 있는 새로운 

기회를 창출했다. 바이러스 유전 물질에 대한 적응 면역의 한 형태로 

박테리아에서 처음 발견된 CRISPR-Cas9 시스템의 연구는 다양한 

치료 표적에 대한 대규모 스크리닝 분석과 대다수의 생물학 및 의학 

분야에 적용할 수 있게 되었다. 그 이후로 전 세계 실험실의 여러 

노력으로 게놈 편집에 대한 응용 가능성, 특이성 및 프로그래밍 

가능성이 향상되어 다양한 Cas9 변이체 및 기본 편집기가 

개발되었다. 가장 최근에 Liu 의 그룹은 역전사효소를 Cas9 단백질에 

결합하여 표준 시스템의 많은 한계를 본질적으로 개선하는 CRISPR-

Cas9 시스템의 생체 공학 형태인 프라임에디팅을 도입했다. 특히, 

프라임에디팅은 기증자 DNA 또는 이중 가닥 절단 없이 특정 유전자 

변형의 잠재적인 조합을 도입할 수 있게 함으로써 게놈 편집을 크게 

개선했다. 그러나 다양한 실험적 요인에서 프라임에디팅 효율을 

향상시키기 위한 최적의 조건을 결정하는 데는 많은 시간과 자원이 

필요하다. 이전 노력은 인간 세포에서 약 50K 쌍의 프라임에디팅 

가이드 RNA(pegRNA)와 표적 서열의 효능을 평가했다. 이를 통해 

프라임에디팅 효율성에 영향을 미치는 기능을 결정하고 pegRNA 

효율성을 예측할 수 있는 세 가지 계산 모델을 구성했다. 우리의 

노력이 미래 연구에서 프라임에디팅의 실제 적용을 위한 귀중한 
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통찰력을 제공했지만, 우리의 접근 방식은 일련의 특정 변경 유형 및 

위치로 제한되었다. 

본 연구에서는 데이터를 600K 쌍의 pegRNA 로 크게 확장하고 최대 

3 개의 염기서열 크기까지 변경 조합을 유도하는 효율성을 목표로 

합니다. 이를 통해 주요 편집 효율성에 기여하는 요소의 영향을 

식별하고 평가하는 것을 목표로 한다. 또한, 우리는 ClinVar 

데이터베이스에서 사용할 수 있는 광범위한 질병 관련 돌연변이 

레퍼토리를 사용하여 pegRNA 및 표적 쌍을 신중하게 선별하여 질병 

치료 및 모델링의 맥락에서 주요 편집 효율성을 더 잘 평가할 수 

있게 도입예정이다. 우리는 또한 다양한 세포줄기에서 최적의 

프라임에디팅 조건을 평가하고 최근에 보고된 프라임에디팅의 다른 

변이체를 비교하는 것을 목표로 한다. 종합하면, 우리는 광범위하게 

확장된 pegRNA 디자인이 보고된 질병 관련 돌연변이의 최대 88%를 

포함할 수 있음을 확인했다. 우리의 대규모 프로파일링 데이터를 

사용하여 최신 딥러닝 기반 알고리즘을 기반으로 크게 개선된 예측 

모델을 개발했다. 우리의 노력은 기본 및 임상 연구 노력에서 

프라임에디팅의 적용을 확장하는 미래 작업에 크게 도움이 되고 

포괄적인 도구를 제공할 것으로 기대한다. 
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