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ABSTRACT

A Unified Approach for Comprehensive Analysis of Various Spectral
and Tissue Doppler Echocardiography

Doppler echocardiography offers critical insights into cardiac function and phases by quantifying
blood flow velocities and evaluating myocardial motion. However, previous methods for automating
Doppler analysis, ranging from initial signal processing techniques to advanced deep learning
approaches, have been constrained by their reliance on electrocardiogram (ECG) data and their
inability to process Doppler views collectively. We introduce a novel unified framework using a
convolutional neural network for comprehensive analysis of spectral and tissue Doppler
echocardiography images that combines automatic measurements and end-diastole (ED) detection
into a singular method. The network automatically recognizes key features across various Doppler
views, with novel Doppler shape embedding and anti-aliasing modules enhancing interpretation and
ensuring consistent analysis. Empirical results indicate a consistent outperformance in performance
metrics, including dice similarity coefficients (DSC) and intersection over union (IoU). The
proposed framework demonstrates strong agreement with clinicians in Doppler automatic

measurements and competitive performance in ED detection.

Key words : doppler imaging, deep learning, end-diastole detection, automatic measurement



1. Introduction

Doppler echocardiography is pivotal in assessing cardiac function, particularly through its ability
to capture dynamic, time-dependent changes in velocity. Spectral Doppler effectively maps the
velocity and direction of blood flow over time, while Tissue Doppler Imaging (TDI) is adept at
measuring the time-variant velocity of myocardial tissue. These modalities, through the analysis of
spectral and tissue Doppler imaging, provide critical clinical metrics, including maximum blood
flow velocity (Vmax) and velocity time integral (VTI). Importantly, the full spectrum of data these
techniques offer extends well beyond these commonly measured indicators, capturing a
comprehensive temporal dynamics of cardiac cycles.

Since early works, efforts to automatically measure clinical parameters from Doppler images
have been made. These approaches [1, 2, 3] primarily relied on digital and signal processing,
involving steps such as noise filtering to obtain the Doppler envelope and thresholding to detect key
points for obtaining clinical measurements. Nonetheless, these algorithms were often compromised
by poor contrast and image artifacts, and required hyperparameter tuning for each views, making
them less effective and creating significant challenges for comprehensive automated Doppler
analysis.

Recent deep learning-based methods have advanced the analysis of Doppler images, notably
improving the classification of Doppler types [4, 5], the evaluation of Doppler flow quality [6], and
the automation of mitral inflow velocity measurements [7]. Nevertheless, these methods depend on
electrocardiograms (ECG) for determining cardiac phases or identifying regions of interest, and are
restricted to processing each Doppler view individually. The continued dependence on ECG and the
view-specific limitation indicate only modest progress. Despite efforts to automatically detect end-
diastole (ED) [8], full integration with automated measurement is lacking. This gap highlights the
pressing need for a unified framework that would bring together all aspects of Doppler
echocardiography analysis. Such a framework would not only facilitate cardiac phase recognition
and extensive automatic measurement across the full spectrum of Doppler views but also achieve
this without the need for ECG or other auxiliary inputs.

In this work, we present a novel unified framework that enables comprehensive analysis of
various spectral and tissue Doppler echocardiography images using a single fully convolutional
network (Figure 1). To equip the network to discern the temporal dynamics of cardiac cycles without
ECG, we have trained the segmentation network using annotated segmentation masks that mimic
the VTI. This segmentation is pivotal; it not only captures key topological features for clinical
measurement but also integrates information on the cardiac phase, given that VTI is characterized
as the integral of the velocity curve over a cardiac cycle. Our single network is trained on a
comprehensive dataset that covers the full spectrum of Doppler modalities, including both pulsed
wave (PW) and continuous wave (CW) Doppler, as well as extending to TDI, thus enabling it to
autonomously learn and discern key features across these varied views. To effectively support an
integrated interpretation of diverse Doppler signal data, we propose a Doppler shape embedding
module. Additionally, we propose the integration of an anti-aliasing module to ensure baseline-shift
equivariance, which is essential for maintaining consistent analysis despite variations in baseline
positioning. Our tailored modules demonstrate consistent performance increases compared to
networks without these enhancements in metrics such as Dice similarity coefficients (DSC) and



Intersection over union (IoU). Our comprehensive approach not only excels in automatic
measurements and ED detection but also sets a new standard by eliminating the need for ECG data,
a significant step beyond previous ECG-dependent and single-view methods.



2. Methods

In the section, we provide a detailed description of the segmentation network, which
incorporates the Doppler shape embedding module alongside an anti-aliasing strategy. We will
then outline the methodology for extracting clinical parameters, such as Vmax and VTI. Moreover,
we will present a clinical application: a method for detecting ED.

2.1. Doppler envelope segmentation

The segmentation architecture is reinforced by two key modules: a Doppler Shape Embedding
module and an antialiasing module, each tailored to overcome distinct challenges in interpreting
Doppler signals.

The Doppler shape embedding module, inspired by insights from prior research [9], is designed
to capture the shape features intrinsic to Doppler spectrograms for each Doppler view. As depicted
in Figure 1, Doppler signals can be classified into seven distinct flow types based on valve positions
and the direction of blood flow — whether anterograde or retrograde. Accordingly, the shape
embedding block is strategically designed to incorporate this contextual knowledge, particularly at
the final stage of the encoder, possessing high-level semantic details. This module, situated at the
encoder’s final stage, applies global average pooling followed by a 1 x 1 convolution, enhancing the
semantic features related to Doppler shapes. This integration of contextual knowledge, along with a
shape head for signal pattern classification and correction via context loss, ensures precise feature
weighting corresponding to the diverse Doppler signals.
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Figure 1. Unified framework for comprehensive analysis. The network, with its anti-aliasing and Doppler shape embedding modules, accurately processes diverse Doppler
views and supports clinical tasks like automatic measurement and ED detection. Doppler shape embedding module integrates shape-specific features through global average
pooling and 1 X 1 convolution at the encoder’s final stage, enhancing the network’s ability to accurately classify and analyze diverse Doppler signal shapes. Anti-aliasing
module reduces sensitivity to small positional or scale changes in input Doppler signals, ensuring consistent and reliable outputs. By this modules, the segmentation network
automates the extraction of clinical parameters from Doppler, and detects end-diastole using direct observations of blood flow changes. This framework can result in multiple
clinical tasks with single deep learning network.




The anti-aliasing module tackles the issue of baseline shift. Clinicians often adjusts the Doppler
signals’ vertical position to better visualize regions of interest (e.g., dominant flow), as shown in
Figure 2. However, a recent study [10] reports that small input translations or rescaling significantly
affect modern network’s prediction. By incorporating an antialiasing strategy, our network maintains
robust performance, producing consistent segmentations even when the Doppler signal is manually
adjusted, thus optimizing the utility of echocardiographic analysis in clinical practice. In this paper,
we use Blurpool, proposed in [11], as our anti-aliasing strategy. Blurpool consists of two operations:
blurring filter with kernel k X k and subsampling. Therefore, we replace every max-pooling and
a strided convolution operation with Blurpool, enabling the segmentation model to be anti-aliased
and have a consistent output for baseline shift.
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Figure 2. Performance comparison with and without the anti-aliasing module, against
baseline shifts. (a) Performance comparison in Doppler auto-measurements (V,,,4, and VTI).
(b) Baseline shifts in Doppler imaging ranging from baseline to 200. Following shifts corresponds
to x-axis in ().

The total network optimization l0ss, Liytq;, combines segmentation loss, Lg,g, and context loss,
Leontext» Weighted by a factor p, and is defined as Liorar = Lseg + HLcontext, With both losses
calculated via cross-entropy.

2.2. Modular Segmentation Networks

Our framework’s modularity facilitates the seamless integration of Doppler Shape Embedding
and anti-aliasing modules into any existing encoder-decoder based convolutional architectures. To
evaluate our approach, we engaged in comparative analyses with renowned segmentation networks,
including Unet [12], UNet++ [13], and BiSeNetV2 [9].

2.3. Clinical Parameters Computation and ED detection

Given our segmentation network’s training protocol, acquiring clinical parameters becomes
remarkably straightforward. Once we obtain the segmentation mask, the VTI measurement naturally
falls into place. This mask diligently pinpoints velocity profiles within our designated regions of
interest, using the baseline for contextual reference. The maximum velocity is then measured by



identifying the pixel positioned at the greatest distance from this baseline within the segmented
Doppler signal.

In our approach, the detection of ED is based on the observation of blood flow initiation or
termination. For instance, in PW or CW Doppler of the atrioventricular (A-V) valves (mitral or
tricuspid valve), the termination of anterograde flow indicates the closure of the A-V wvalve,
delineating the ED, a detail that our Doppler envelope segmentation clearly capture. Similarly, the
initiation of anterograde flow in PW or CW Doppler across ventriculoarterial (V-Ar) valves (aortic
or pulmonic valve) marks the beginning of ventricular systole and simultaneously denotes the ED.
Traditional methods, like those seen in [8], determine these critical phases using the R-peak from
ECG data. However, our method offers a more direct and potentially precise way to determine these
events means of identifying these events by directly utilizing the timing of valve movements. A
comprehensive breakdown of how the start or end of flow in specific views determines the ED can
be found in Table 2.



3. Experiments and Results

Our research employed a dataset of 25,854 Doppler DICOM files from 6,854 patients provided
by the OpenAl Dataset Project (AI-Hub), a South Korean Ministry of Science and ICT initiative
[14]. In collaboration with clinicians, 11 clinically-relevant views were selected based on the ASE
guidelines. Sonographers annotated segmentation masks for training and validating our network,
which were also used to derive clinical parameters such as Vmax and VTI. ED labeling for ED
detection performance evaluation was initially automated using the R-peak detection algorithm from
ECG with subsequent manual verification. The data was split at the patient level into training (80%),
validation (10%), and testing (10%) sets. Employing the Monte Carlo cross-validation method, we
repeated the dataset split five times to thoroughly evaluate our model’s segmentation accuracy. For
the segmentation performance, we report the average values derived from multiple dataset splits,
and for the evaluation of Doppler measurements and end-diastole (ED) detection, we present the
results from the first split of the test set.

3.1. Implementation Details

Our experiments were carried out using PyTorch. Doppler envelope is cropped from the original
Dicom image using the header information (tag 0018, 6011), and resized to 256 X 512. Inputs
were resized to the same value in the validation and test phase, preserving the original ratio. All
image values were scaled between -1 and 1. No additional augmentations were used. The
segmentation networks were trained using the Adam optimizer with learning rate of 1e-3. Both the
proposed and comparison methods are trained for 200 epochs with a batch size of 32 and early
stopped training when the validation segmentation loss stops improving.

3.2. Doppler Envelope segmentation

The effectiveness of our proposed modules on segmentation performance was assessed using
DSC and IoU. Table 1 displays the comparison between our enhanced models with proposed
modules and baseline models, showing that our modules consistently outperforms network
performance. The improvements are particularly noticeable in CW Doppler, with metrics like DSC
and IoU consistently higher. This indicates that our Doppler shape embedding module, which
integrates shape context, is key to extracting semantically rich features.

Furthermore, Figure 2 shows that incorporating the antialiasing module effectively counters
baseline-shifts, maintaining automatic measurement performance. The absence of the anti-aliasing
module results in significant discrepancies in both Vmax and VTI whenever baseline shifts occur.
In contrast, the application of BlurPool demonstrates a notable reduction in deviations from the GT,
yielding more consistent outputs. This outcome underscores the module’s efficacy and validates its
capacity to faithfully capture and reflect the inherent traits and variations present in Doppler images.



Table 1 Comparative performance analysis across three different modalities

UNet UNet++ BiSeNetV2
Anti-aliasing Anti-aliasing Anti-aliasing
Module Mode  Vanilla + Shape Vanilla + Shape Vanilla + Shape

Embedding Embedding Embedding

PW 0.931 0.934 0.933 0.934 0.931 0.932

mDice CwW 0.921 0.926 0.925 0.927 0.923 0.924

TDI 0.914 0.915 0.916 0.917 0.909 0.912

PW 0.876 0.880 0.879 0.882 0.876 0.878

mloU CwW 0.870 0.877 0.876 0.879 0.873 0.875

TDI 0.845 0.846 0.848 0.849 0.836 0.841

Total (mDice) 0.922 0.925 0.925 0.926 0.921 0.923

Total (mIoU) 0.863 0.868 0.868 0.870 0.862 0.865

3.3. Clinical Tasks

3.3.1 Automatic Measurements

We employed Pearson correlation coefficients (PCC) to determine the agreement with clinicians.
Ground truth (GT) segmentation masks serve as the basis for extracting these clinical measurements.
The PCC was calculated by matching cardiac beats between the GT and the predictions, and the true
detection rate (TDR,oqsure) Was assessed by the ratio of number of correctly matched predictions
to the GT count.

In Table 2, a consistent and notably high correlation was observed for Vmax and VTI across all
views. Figure 3 (a) further illustrates this trend through a scatter plot, highlighting the outstanding
agreement between the model and clinician.

3.3.2 End-diastole Detection

For ED detection performance, a detection limit parameter A was set , classifying predictions as
accurate if the estimated ED fell within A of the R-peak in the ECG. The TDRpp, defined as the
ratio of correctly detected EDs to the entire count of labeled EDs, was then calculated, excluding
the EDs within 100ms of boundaries, aligning with the evaluation presented in [8].



Table 2 Summary of automatic measurement correlations and end-diastole detection rates across
various Doppler views

Clinical Measurements
Vmax VII TDR,,cq5ure

Valve type View # Images # Beats (PCC)  (PCC) (%)
VoAr PW Doppler LVOT 246 756 0952 0916 99.34
anterograde PW  pw Doppler RVOT 294 856 0971  0.930 97.72
VoAr CW Doppler AS 295 911 0.989  0.981 99.02
anterograde CW  CW Doppler PS 19 76 0.958 0.953 97.44
- tero‘;;’de py  MVinflowPW 417 1105 0982 ; 98.05
antem‘gr';ée cw CWDopplerMs 125 354 0963 0976 99.16
V-Ar CW Doppler AR 97 280 0.972 - 99.65
retrograde CW  CW Doppler PR 14 41 0.984 - 97.62
AV CW Doppler MR 129 366 0.965  0.956 99.73
retrograde CW  CW Doppler TR 467 1,210  0.961 0.940 98.45
Tissue Septal annulus TDI 405 1,436 0.916 - 98.09
Total 2,508 7,391 0.9648  0.9504 98.52

A-V: Atrioventricular; V-Ar: ventriculoarterial; E', A", S' for TDI and E, A for MV inflow in Vmax.

We present results obtained with the parameter A at 0.08sec in Table 2. The data overall are quite
promising. Particularly, examining PW or CW Doppler of A-V valves (mitral or tricuspid valve), we
observe TDRgp approaching 100%. This aligns with the theoretical expectations for ED detection.
On the other hand, we observe a decrease in the accuracy of ED detection in the context of CW
Doppler of V-Ar valve (aortic or pulmonic valve) regurgitation. This can be attributed to the
characteristic prolongation of regurgitant flow through the V-Ar valve, which extends beyond the
ED phase and into the isovolumic contraction time. Figure 3 (b) provides a graphical representation
of TDRgp as a function of A, offering insights into sensitivity. This visual aid helps us understand
the variations in TDR based on different A values.
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4. Conclusion

Our study presents a unified framework for analyzing spectral and tissue Doppler
echocardiography images, enabling automatic measurements and cardiac phase detection without
relying on electrocardiogram (ECG) data. Our method measures 11 types of Doppler views across
three modes, using a convolutional neural network (CNN) for automatic measurements and end-
diastole (ED) detection. The framework includes a Doppler shape embedding module and an anti-
aliasing strategy, ensuring accurate processing of diverse Doppler views.

Results show our approach outperforms existing methods in key performance metrics like dice
similarity coefficients (DSC) and intersection over union (IoU). High Pearson correlation
coefficients (PCC) for clinical parameters, such as maximum blood flow velocity (Vmax) and
velocity time integral (VTI), indicate strong agreement with clinicians. The method also maintains
high true detection rates (TDR) for ED across various Doppler views, crucial for accurate cardiac
phase recognition.

Future work will focus on enhancing measurement capabilities, particularly for time parameters,
and conducting external validations to confirm efficacy across different patient populations and
clinical settings. Additionally, we aim to extend our system to detect end-systole, enhancing the
clinical utility of automated Doppler echocardiography analysis.
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