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ABSTRACT 

 

CEA-based machine learning methods for predicting recurrence and survival 

in colorectal cancer patients 

 

Sukyong Yoon 

 

Department of Medical Science 

The Graduate School, Yonsei University  

 

(Directed by Professor Kyungsoo Park) 

 

 

 

Objectives: While colorectal cancer is the second leading cause of cancer-related deaths in 

developed countries and some patients still experience recurrence even after receiving the 

appropriate treatment, it is known that early diagnosis of recurrence improves the patient's 

prognosis. Nevertheless, currently there is no noninvasive approach available that enables 

early detection of recurrence. In this regard, this work was conducted to develop methods 

for early prediction of recurrence and survival in Korean colorectal cancer patients. 

Materials and Methods: Our data consisted of 4,020 patients who underwent surgery and 

were diagnosed with stage I-III colorectal cancer at Severance Hospital (Seoul, Korea). 

From each patient, demographic information and clinical characteristics, including pre- and 
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post-operative CEA levels, the number of infiltrated lymph nodes, the number of examined 

lymph nodes, tumor location, and age at the time of surgery, were collected as potential 

predictive variables for early detection of recurrence and survival in colorectal cancer. 

Additionally, another predictive variable named 'Slope’, which was derived from the blood 

levels of carcinoembryonic antigen (CEA), representing the slope of linear regression of 

CEA samples over the range from pre-recurrence up to approximately 1-year after surgery. 

Patients with a missing value for any of these variables were excluded. The analysis was 

conducted in two steps. In the first step, classification models were developed to predict 

recurrence status and survival status, respectively. In the second step, time-to-event models 

were developed to predict recurrence time and survival time, respectively. Then, given 

flexibility and scalability of machine learning, which does not require any specific form of 

a model and can be implemented based on the data available only, thus well suited for big 

data analysis such as retrospective studies based on electronic medical records, machine 

learning was used for model development. All data analysis and model building were 

performed using R software (ver 4.2.2) and its packages. 

Results: Classification models were developed by testing various machine learning 

algorithms, including logistic regression, support vector machine, decision tree, random 

forest, gradient boost, XGboost, Light-GBM, and CatBoost. These models demonstrated 

Area Under the Receiver Operating Characteristic Curve (AUROC) values ranging from 

0.87 to 0.92 for recurrence status and 0.87 to 0.89 for survival status. Among these models, 

the CatBoost model showed slightly better performance. Time-to-event models were 

developed using the random survival forest algorithm, resulting in AUROC values of 0.90 

for recurrence time and 0.89 for survival time, respectively. In all developed models, the 
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newly created 'Slope' variable was consistently selected as the most important predictor. 

For the time-to-event models developed, an R Shiny application was created to facilitate 

individual patient-level predictions. 

Conclusions: This work demonstrated the feasibility of utilizing CEA in early detection of 

recurrence status, survival status, recurrence time, and survival time in colorectal cancer. 

The developed model achieved good predictive performance. It is hoped that the model and 

the R Shiny application developed will be helpful in assessing the prognosis of colorectal 

cancer patients in Korea. 
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carcinoembryonic antigen 
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I. INTRODUCTION 

Cancer ranks as the second leading cause of death in developed countries, with colorectal 

cancer being the second leading contributor, following lung cancer according to a 

publication in 20211. In Global Cancer Statistics, it is reported that the worldwide number 

of colorectal cancer patients increased by approximately 2 million in 2020, resulting in a 

death toll of around 1 million2. Korean colorectal cancer patients show a similar trend, with 

a mortality rate of 17.4 per 100,000 people, ranking as the third highest, following lung 

cancer (36.4) and liver cancer (20.6)3. Unfortunately, some colorectal cancer patients 

experience recurrence even after receiving appropriate treatments such as resection and 
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chemotherapy. It is well-known that early detection of recurrence through rigorous follow-

up procedures can significantly enhance prognosis4. Hence, it is imperative to assess the 

recurrence risk in patients, identify high-risk groups for cancer recurrence, and facilitate 

intensive follow-up for these patients. 

Over the years, numerous studies have been conducted to ascertain potential risk factors 

for the recurrence in colorectal cancer patients. These factors encompass histopathological 

considerations, lifestyle choices, genetic factors, clinical characteristics, comorbidities, and 

anthropometric indices5-8. The carcinoembryonic antigen (CEA), a component of standard 

postoperative surveillance, is routinely monitored alongside chest and abdominal CT scans, 

colonoscopy, and other assessments. Its frequent measurement every 3-6 months also 

makes it suitable for time-dependent risk assessment for recurrence4,9. Identifying risk 

factors necessitates quantitative analyses, often requiring the utilization of models. In line 

with the recent trend of utilizing machine learning models for medical data analysis, there 

has been a steady increase in studies aimed at predicting the survival of colorectal cancer 

patients. These studies employ machine learning models and utilize variables obtained 

from patient data10-12. 

Machine learning-based approaches offer distinct advantages in the assimilation and 

evaluation of clinical data. In comparison to traditional statistical methods, they provide 

greater flexibility and scalability, making them suitable for applications in diagnosis, 

treatment, and survival prediction. And, in contrast to conventional statistics, where the 

model is determined by researchers, machine learning-based analysis does not assume a 

specific model but rather constructs the model based on available data and algorithms13. 

This makes it well-suited for big data research and offers advantages in deriving optimal 
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predictive results from complex interactions among various variables, and in retrospective 

studies based on electronic medical records, when the sample size is large, it becomes 

possible to overcome the limitations of insufficient or inaccurate individual patient 

information. Another notable advantage of machine learning-based approaches is their 

capacity to analyze diverse data types and integrate them into disease predictions14. Given 

these advantages, machine learning models have been applied in numerous studies 

analyzing data from hundreds to thousands of patients10,12,15,16, and we also employed such 

an analytical approach. Furthermore, there have been advancements in algorithms capable 

of handling censored data, and the opportunities to leverage these algorithms are on the 

rise17. In addition to employing machine learning for precise predictions, there is a growing 

interest in understanding how models can be interpreted and how their prediction results 

can be explained. This field is known as interpretable machine learning (IML), which is 

defined as the process of extracting pertinent knowledge from a machine learning model, 

encompassing relationships inherent in the data or acquired by the model itself18. 

While several studies have employed machine learning to predict the prognosis of 

colorectal cancer patients, there has been limited development of machine learning models 

capable of concurrently predicting both recurrence and survival within the same patient 

group, particularly for Korean patients. Therefore, the primary objective of this study is to 

bridge this gap by developing machine learning-based models capable of predicting both 

recurrence and survival outcomes for stage I-III colorectal cancer patients who have 

undergone surgical interventions. Furthermore, using the developed time-to-event models, 

we endeavored to create an R Shiny application designed to facilitate the straightforward 

assessment of recurrence and survival probabilities for individual patients.  
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II. MATERIALS AND METHODS 

1. Patients and data collection 

Our dataset included a cohort of 4,020 Korean patients who were diagnosed with stage I-

III colorectal cancer and underwent surgical procedures at Severance Hospital in Seoul, 

South Korea. These patients were subject to follow-up evaluations, with intervals of at least 

three months during the initial two years post-surgery, followed by six-month intervals for 

the subsequent three years, and annual check-ups thereafter. CEA concentrations were 

routinely measured during each outpatient visit, abdominopelvic CT scans were conducted 

every six months for the first five years, and chest CT scans were performed annually 

following surgery. 

This study was conducted in compliance with the principles outlined in the Declaration of 

Helsinki and received approval from the Institutional Review Board of Severance Hospital, 

Yonsei University College of Medicine (Seoul, South Korea). Patient consent was waived 

as this was a retrospective study. 

 

2. Variables 

Clinical features, including clinical stage (AJCC), histologic grade, tumor size, 

demographic information, operation-related details, and CEA concentrations, were 

systematically gathered from all patients as potential predictors, as these factors are 

recognized as risk factors linked to colorectal cancer prognosis4,19,20. The selection of these 

variables involved a screening process that considered p-values computed through 

statistical methods such as the log-rank test and Cox regression models. Additionally, 
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during the selection of candidate predictors, the inter-variable correlation and the presence 

of multicollinearity were taken into account. 

We also introduced a predictor named ‘Slope’, which was derived from the CEA samples, 

with the aim of improving the model's predictive performance. The values were estimated 

through linear regression using CEA samples from each individual patient, as shown in 

Figure 1. CEA samples prior to recurrence, or samples measured up to approximately 1 

year in patients who did not experience recurrence, were used to create this variable. 

 

 

Figure 1. Example of linear regression for CEA samples. Black dots indicate 

observations, and blue lines represent linear regression lines. 

3. Outcomes 

The endpoints encompassed the presence of recurrence and the 5-year survival following 
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surgical intervention, which served as criteria for classification models. Furthermore, time-

to-event models incorporated the time to recurrence and overall survival as additional 

parameters. Recurrence was diagnosed through clinical and radiological examinations. 

 

4. Statistical and machine learning-based modeling methods 

The statistical analysis methods employed in this study comprised basic descriptive 

statistics, nonparametric techniques, such as the Kaplan-Meier method, and a semi-

parametric approach using the Cox proportional hazard model. These procedures 

encompassed the development of machine learning-based models, the re-evaluation of 

predictive models, and the selection of relevant variables. 

Machine learning-based predictive models were constructed by partitioning patient data 

into training (75%) and validation (25%) sets, selected randomly from individuals with 

records of recurrence or survival. For classification models, a variety of algorithms were 

employed, including logistic regression, support vector machine, decision tree, random 

forest, gradient boost, XGboost, Light-GBM, and CatBoost, in order to forecast the 

presence of recurrence and 5-year survival. Random survival forests, an ensemble method 

well-suited for handling right-censored data commonly applied for medical datasets, were 

utilized to predict recurrence and survival probabilities over time17. 

Feature selection was performed by assessing the significance of variables derived from 

each algorithm in the screened predictors and evaluating their impact on predictive 

performance. All models underwent hyperparameter tuning, accomplished through a 5-fold 

cross-validation process within the training set, utilizing the R caret package. 
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5. Performance assessment 

Based on the developed models, predictive performance was evaluated using a validation 

dataset. The assessment involved calculating the Area Under the Receiver Operating 

Characteristic Curve (AUROC) as a measure of performance. Given the substantial class 

imbalance in the endpoints, performance was assessed by evaluating balanced accuracy. 

Additionally, precision, recall, and Kappa statistics were computed as performance 

indicators. 

 

6. Software 

R software (Version 4.2.2), in conjunction with its associated packages, was employed for 

all data analysis, the development of machine learning-based models, and the creation of 

R Shiny applications as outlined in the methods. 
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III. RESULTS 

1. Patient information 

A total of 2,318 patients were included in the machine learning-based prediction models. 

Out of the initial 4,020 patients, 563 individuals who were unable to compute the variable 

‘Slope’, from CEA samples and 1,139 patients who did not possess all of the potential 

predictors were excluded from the data set. The overall recurrence rate was approximately 

13.5%, with the majority of recurrences occurring within 3 years following surgery. In 

contrast, the 5-year mortality rate stood at about 7.9%, which was lower than the recurrence 

rate. All variables related to CEA exhibited significant differences (p < 0.05) in accordance 

with recurrence and survival. Detailed demographic information about the patients, 

including potential predictors, is presented in Tables 1 and 2. 
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Table 1. The demographic information related to patients based on recurrence 

Recurrence NO (N=2004) YES (N=314) P*(T) 

 Continuous variables: mean (SD)  

Age (year) 61.2 (11.2) 60.8 (11.7) 0.581 

Pre-operative CEA (ng/ml) 5.0 (9.1) 6.6 (12.5) 0.025 

Post-operative CEA (ng/ml) 2.1 (3.8) 3.2 (8.3) 0.023 

Number of infiltrated nodes 1.0 (2.2) 3.2 (5.3) <0.001 

Number of excised nodes 21.8 (14.0) 21.7 (15.3) 0.921 

Slope of CEA (ng/ml/month) 0.0 (0.4) 0.8 (4.2) 0.001 

 Categorical variables: number (%) P*(C) 

T stage 

T1 137 (6.8) T1 4 (1.3) <0.001 

T2 397 (19.8) T2 25 (8.0)  

T3 1328 (66.3) T3 234 (74.5)  

T4 142 (7.1) T4 51 (16.2)  

Tumor location 

Right-sided 497 (24.8) Right-sided 62 (19.7) <0.001 

Left-sided 788 (39.3) Left-sided 100 (31.8)  

Rectum, Anus 719 (35.9) Rectum, Anus 152 (48.4)  

Histologic grade 

Well 269 (13.4) Well 29 (9.2) 0.009 

Moderately 1597 (79.7) Moderate 251 (79.9)  

Poorly 138 (6.9) Poorly 34 (10.8)  

Lymphovascular invasion 
No 1615 (80.6) No 198 (63.1) <0.001 

Yes 389 (19.4) Yes 116 (36.9)  

Microsatellite instability 
MSI-H 200 (10.0) MSI-H 15 (4.8) 0.004 

MSI-L, MSS 1804 (90.0) MSI-L, MSS 299 (95.2)  

*P-values were calculated by t-test(T) or Chi-squared test(C); SD, standard deviation. 

  



10 

 

Table 2. The demographic information related to patients based on 5-year survival 

Recurrence NO (N=2004) YES (N=314) P*(T) 

 Continuous variables: mean (SD)  

Age (year) 60.9 (11.2) 64.2 (12.5) 0.001 

Pre-operative CEA (ng/ml) 5.1 (9.3) 7.2 (12.9) 0.028 

Post-operative CEA (ng/ml) 2.2 (4.3) 3.4 (7.9) 0.046 

Number of infiltrated nodes 1.1 (2.5) 3.4 (5.1) <0.001 

Number of excised nodes 21.6 (13.9) 23.5 (17.0) 0.15 

Slope of CEA (ng/ml/month) 0.0 (1.0) 1.0 (4.4) 0.003 

 Categorical variables: number (%) P*(C) 

T stage 

T1 138 (6.5) T1 3 (1.6) <0.001 

T2 405 (19.0) T2 17 (9.2)  

T3 1434 (67.2) T3 128 (69.6)  

T4 157 (7.4) T4 36 (19.6)  

Tumor location 

Right-sided 517 (24.2) Right-sided 42 (22.8) 0.075 

Left-sided 829 (38.8) Left-sided 59 (32.1)  

Rectum, Anus 788 (36.9) Rectum, Anus 83 (45.1)  

Histologic grade 

Well 279 (13.1) Well 19 (10.3) <0.001 

Moderately 1710 (80.1) Moderate 138 (75.0)  

Poorly 145 (6.8) Poorly 27 (14.7)  

Lymphovascular invasion 
No 1704 (79.9) No 109 (59.2) <0.001 

Yes 430 (20.1) Yes 75 (40.8)  

Microsatellite instability 
MSI-H 203 (9.5) MSI-H 12 (6.5) 0.226 

MSI-L, MSS 1931 (90.5) MSI-L, MSS 172 (93.5)  

*P-values were calculated by t-test(T) or Chi-squared test(C); SD, standard deviation. 
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2. Statistical approaches 

To facilitate statistical analysis, such as the log-rank test, the continuous variable was 

divided into two groups using the R maxstat package. For the two endpoints, distinct cut-

points were applied to continuous variables for grouping. As an example, the values for 

CEA before and after the operation were determined as 3 and 3 ng/ml for recurrence, 

respectively, while they were set at 10 and 2.5 ng/ml for 5-year survival. In the log-rank 

test, all variables were found to be statistically significant (p < 0.05) for recurrence, with 

the exception of age (p = 0.05). For 5-year survival, most variables also demonstrated 

statistical significance (p < 0.05), except for tumor location (p = 0.33) and microsatellite 

instability (p = 0.12). The Kaplan-Meier plots, along with p-values calculated from the log-

rank test and the cut-points for the continuous variables, can be found in Appendices. 

The odds ratios, estimated through logistic regression, are presented in Tables 3 and 4. The 

analysis revealed that the number of infiltrated nodes, the number of excised nodes, Slope, 

tumor location, and T stage were significant factors in both analyses. Among these variables, 

the 'Slope' exhibited the highest odds ratios of 14.7 and 18.51 for recurrence and 5-year 

survival, respectively. However, age and lymphovascular invasion were found to be 

significant only in the context of 5-year survival. The results of the Cox proportional hazard 

model are presented in Tables 5 and 6. Post-operative CEA, number of infiltrated nodes, 

Slope, T stage, tumor location, lymphovascular invasion, and microsatellite instability were 

found to be statistically significant (p<0.05) in multivariate analysis for recurrence. 

Conversely, age and histologic grade were also statistically significant (p<0.05), while 

postoperative CEA and MSI no longer exhibited statistical significance in the 5-year 

survival analysis. 
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Table 3. Odds ratios for recurrence estimated from logistic regression 

Recurrence OR (95% CI) 

Variables Univariate Multivariate 

Age (year) 
≤ 74 - - 

> 74 1.26 (0.86-1.80, p=0.227) 0.79 (0.50-1.24, p=0.318) 

Pre-operative CEA 

(ng/ml) 

≤ 3 - - 

> 3 1.36 (1.07-1.72, p=0.013) 0.91 (0.66-1.25, p=0.575) 

Post-operative CEA 

(ng/ml) 

≤ 3 - - 

> 3 1.41 (1.03-1.90, p=0.028) 1.22 (0.79-1.86, p=0.363) 

Number of infiltrated 

nodes 

≤ 1 - - 

> 1 4.01 (3.14-5.13, p<0.001) 2.74 (2.00-3.76, p<0.001) 

Number of excised 

nodes 

≤ 10 - - 

> 10 0.68 (0.51-0.92, p=0.010) 0.50 (0.35-0.73, p<0.001) 

Slope of CEA 

(ng/ml/month) 

≤ 0.05 - - 

> 0.05 14.70 (11.18-19.40, p<0.001) 14.87 (10.98-20.28, p<0.001) 

T stage 

T1 - - 

T2 2.16 (0.82-7.42, p=0.160) 2.19 (0.73-8.35, p=0.200) 

T3 6.04 (2.52-19.77, p<0.001) 6.64 (2.39-24.30, p=0.001) 

T4 12.30 (4.86-41.49, p<0.001) 10.01 (3.30-38.68, p<0.001) 

Tumor location 

Right-sided - - 

Left-sided 1.02 (0.73-1.43, p=0.920) 0.87 (0.58-1.31, p=0.497) 

Rectum, Anus 1.69 (1.24-2.34, p=0.001) 1.85 (1.24-2.78, p=0.003) 

Histologic grade 

Well - - 

Moderately 1.46 (0.99-2.23, p=0.068) 1.00 (0.63-1.65, p=0.991) 

Poorly 2.29 (1.34-3.93, p=0.003) 1.21 (0.61-2.39, p=0.578) 

Lymphovascular 

invasion 

No - - 

Yes 2.43 (1.88-3.13, p<0.001) 1.35 (0.97-1.87, p=0.075) 

Microsatellite 

instability 

MSI-H - - 

MSI-L, MSS 2.21 (1.33-3.95, p=0.004) 1.84 (0.99-3.63, p=0.064) 

CI, confidence interval.  
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Table 4. Odds ratios for 5-year survival estimated from logistic regression 

Recurrence OR (95% CI) 

Variables Univariate Multivariate 

Age (year) 
≤ 66 - - 

> 66 2.13 (1.57-2.89, p<0.001) 2.04 (1.42-2.93, p<0.001) 

Pre-operative CEA 

(ng/ml) 

≤ 10 - - 

> 10 1.93 (1.28-2.84, p=0.001) 1.37 (0.76-2.43, p=0.294) 

Post-operative CEA 

(ng/ml) 

≤ 2.5 - - 

> 2.5 1.82 (1.30-2.51, p<0.001) 1.15 (0.71-1.84, p=0.568) 

Number of infiltrated 

nodes 

≤ 1 - - 

> 1 3.64 (2.68-4.95, p<0.001) 1.96 (1.32-2.88, p=0.001) 

Number of excised 

nodes 

≤ 35 - - 

> 35 1.53 (1.01-2.26, p=0.038) 1.99 (1.17-3.33, p=0.010) 

Slope of CEA 

(ng/ml/month) 

≤ 0.085 - - 

> 0.085 18.51 (13.25-26.01, p<0.001) 14.30 (9.99-20.58, p<0.001) 

T stage 

T1 - - 

T2 1.93 (0.64-8.36, p=0.299) 2.01 (0.60-9.34, p=0.303) 

T3 4.11 (1.53-16.80, p=0.017) 2.85 (0.94-12.53, p=0.103) 

T4 10.55 (3.70-44.41, p<0.001) 5.48 (1.63-25.58, p=0.013) 

Tumor location 

Right-sided - - 

Left-sided 0.88 (0.58-1.33, p=0.528) 1.21 (0.72-2.05, p=0.484) 

Rectum, Anus 1.30 (0.89-1.93, p=0.189) 2.11 (1.28-3.55, p=0.004) 

Histologic grade 

Well - - 

Moderately 1.19 (0.74-2.01, p=0.502) 0.74 (0.43-1.35, p=0.309) 

Poorly 2.73 (1.48-5.15, p=0.001) 1.20 (0.56-2.60, p=0.638) 

Lymphovascular 

invasion 

No - - 

Yes 2.73 (1.99-3.72, p<0.001) 1.61 (1.08-2.39, p=0.018) 

Microsatellite 

instability 

MSI-H - - 

MSI-L, MSS 1.51 (0.86-2.90, p=0.182) 1.17 (0.59-2.50, p=0.669) 

CI, confidence interval.  
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Table 5. Cox proportional hazard model for recurrence 

Recurrence HR (95% CI) 

Variables Univariate Multivariate 

Continuous variables: mean (SD) 

Age (year) 1.00 (0.99-1.01, p=0.957) 1.00 (0.99-1.01, p=0.920) 

Pre-operative CEA (ng/ml) 1.02 (1.01-1.03, p<0.001) 1.00 (0.99-1.01, p=0.715) 

Post-operative CEA (ng/ml) 1.03 (1.02-1.04, p<0.001) 1.02 (1.01-1.04, p=0.012) 

Number of infiltrated nodes 1.08 (1.07-1.09, p<0.001) 1.07 (1.05-1.08, p<0.001) 

Number of excised nodes 1.00 (0.99-1.01, p=0.892) 0.99 (0.98-1.00, p=0.237) 

Slope of CEA (ng/ml/month) 1.10 (1.08-1.13, p<0.001) 1.07 (1.05-1.10, p<0.001) 

Categorical variables: number (%) 

T stage 

T1 - 

T2 2.21 (0.77-6.36, p=0.140) 2.13 (0.74-6.15, p=0.161) 

T3 5.85 (2.18-15.72, p<0.001) 5.38 (1.98-14.60, p=0.001) 

T4 12.56 (4.54-34.76, p<0.001) 9.68 (3.42-27.44, p<0.001) 

Tumor location 

Right-sided -  

Left-sided 1.02 (0.74-1.40, p=0.915) 0.93 (0.65-1.32, p=0.667) 

Rectum, Anus 1.51 (1.12-2.03, p=0.006) 1.52 (1.09-2.14, p=0.015) 

Histologic grade 

Well - 

Moderately 1.50 (1.02-2.20, p=0.038) 1.08 (0.73-1.59, p=0.709) 

Poorly 2.34 (1.42-3.84, p=0.001) 1.55 (0.93-2.60, p=0.092) 

Lymphovascular invasion 
No - 

Yes 2.30 (1.83-2.89, p<0.001) 1.55 (1.22-1.96, p<0.001) 

Microsatellite instability 
MSI-H - 

MSI-L, MSS 2.21 (1.31-3.71, p=0.003) 1.78 (1.03-3.08, p=0.038) 

CI, confidence interval; SD, standard deviation. 
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Table 6. Cox proportional hazard model for 5-year survival 

Recurrence HR (95% CI) 

Variables Univariate Multivariate 

Continuous variables: mean (SD) 

Age (year) 1.03 (1.02-1.05, p<0.001) 1.04 (1.02-1.05, p<0.001) 

Pre-operative CEA (ng/ml) 1.02 (1.01-1.03, p<0.001) 1.01 (1.00-1.03, p=0.136) 

Post-operative CEA (ng/ml) 1.03 (1.01-1.04, p<0.001) 1.01 (0.99-1.04, p=0.335) 

Number of infiltrated nodes 1.07 (1.06-1.09, p<0.001) 1.06 (1.04-1.08, p<0.001) 

Number of excised nodes 1.01 (1.00-1.02, p=0.073) 1.01 (1.00-1.02, p=0.089) 

Slope of CEA (ng/ml/month) 1.11 (1.09-1.14, p<0.001) 1.09 (1.07-1.12, p<0.001) 

Categorical variables: number (%) 

T stage 

T1 - 

T2 2.08 (0.61-7.11, p=0.241) 2.08 (0.61-7.11, p=0.241) 

T3 4.14 (1.32-13.01, p=0.015) 4.14 (1.32-13.01, p=0.015) 

T4 11.47 (3.53-37.25, p<0.001) 11.47 (3.53-37.25, p<0.001) 

Tumor location 

Right-sided - - 

Left-sided 0.89 (0.60-1.32, p=0.563) 0.89 (0.60-1.32, p=0.563) 

Rectum, Anus 1.15 (0.79-1.66, p=0.474) 1.15 (0.79-1.66, p=0.474) 

Histologic grade 

Well - 

Moderately 1.27 (0.79-2.05, p=0.331) 1.27 (0.79-2.05, p=0.331) 

Poorly 2.86 (1.59-5.15, p<0.001) 2.86 (1.59-5.15, p<0.001) 

Lymphovascular invasion 
No - 

Yes 2.52 (1.88-3.38, p<0.001) 2.52 (1.88-3.38, p<0.001) 

Microsatellite instability 
MSI-H - 

MSI-L, MSS 1.58 (0.88-2.83, p=0.127) 1.58 (0.88-2.83, p=0.127) 

CI, confidence interval; SD, standard deviation. 
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3. Machine learning-based approaches 

Before employing the machine learning-based approach, the data was randomly split into 

a 3:1 ratio to validate the developed models, and no significant differences (p > 0.05) were 

observed between the data sets with respect to potential predictors. The recurrence rate and 

mortality rate, serving as endpoints, were 13.7% and 8.1% in the training set, and 13.2% 

and 7.4% in the validation set, respectively. Further details are provided in Table 7. 
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Table 7. Demographic information of patients in the training and validation sets 

 Train set (N= 1748) Validation set (N=570) P*(T) 

 Continuous variables: mean (SD)  

Age (year) 61.2 (11.4) 61.1 (11.0) 0.79 

Pre-operative CEA (ng/ml) 5.2 (9.9) 5.2 (9.0) 0.836 

Post-operative CEA (ng/ml) 2.3 (4.7) 2.2 (4.7) 0.818 

Number of infiltrated nodes 1.3 (2.7) 1.3 (3.3) 0.789 

Number of excised nodes 22.0 (14.6) 21.1 (12.6) 0.15 

Slope of CEA (ng/ml/month) 0.1 (1.3) 0.2 (2.2) 0.333 

 Categorical variables: number (%) P*(c) 

Cancer recurrence 
No 1509 (86.3) No 495 (86.8) 0.809 

Yes 239 (13.7) Yes 75 (13.2)  

5-year survival 
No 142 (8.1) No 42 (7.4) 0.624 

Yes 1606 (91.9) Yes 528 (92.6)  

T stage 

T1 108 (6.2) T1 33 (5.8) 0.648 

T2 313 (17.9) T2 109 (19.1)  

T3 1175 (67.2) T3 387 (67.9)  

T4 152 (8.7) T4 41 (7.2)  

Location of primary tumor 

Right-sided 426 (24.4) Right-sided 133 (23.3) 0.083 

Left-sided 687 (39.3) Left-sided 201 (35.3)  

Rectum, Anus 635 (36.3) Rectum, Anus 236 (41.4)  

Histologic grade 

Well 232 (13.3) Well 66 (11.6) 0.444 

Moderately 1383 (79.1) Moderate 465 (81.6)  

Poorly 133 (7.6) Poorly 39 (6.8)  

Lymphovascular invasion 
No 1362 (77.9) No 451 (79.1) 0.584 

Yes 386 (22.1) Yes 119 (20.9)  

Microsatellite instability 
MSI-H 163 (9.3) MSI-H 52 (9.1) 0.951 

MSI-L, MSS 1585 (90.7) MSI-L, MSS 518 (90.9)  

*P-values were calculated by t-test(T) or Chi-squared test(C) 
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A. Classification prediction models 

The relative importance of the selected variables, as calculated from each classification 

model, is illustrated in Figures 2 and 3 for recurrence and 5-year survival, respectively. 

It's important to note that the support vector machine, due to its poor performance, and the 

logistic regression model, as previously demonstrated in the statistical analysis, were 

excluded from these figures. In the recurrence prediction models, a total of 7 variables were 

included, with 'Slope' identified as the most important variable, possessing the highest 

average score of 0.45. In contrast, for the 5-year survival prediction models, 'Slope' 

emerged as the most crucial variable as well. However, unlike the recurrence prediction 

model, 'lymphovascular invasion' was also incorporated into the model, leading to a total 

of 8 selected variables. 

Performance indicators obtained from all the models are provided in Table 8. Excluding 

the logistic regression model, the average AUROC value was 0.90 for recurrence and 0.88 

for 5-year survival, respectively. The performance of the models was similar when 

considering the selected variables. Additionally, the prediction models yielded kappa 

values that generally fell within an acceptable range, ranging from 0.27 to 0.56. Due to the 

limitations of the data characterized by a highly imbalanced distribution of endpoints, 

precision was calculated to be relatively low. Figures 4 and 5 display the receiver 

operating characteristic (ROC) curves for four models, which exhibited slightly better 

performance compared to the other models. 
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Figure 2. Relative variable importance calculated from recurrence prediction models. 

 

Figure 3. Relative variable importance calculated from 5-year survival prediction 

models.  
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Table 8. Performance of all classification prediction models 

Recurrence prediction models 

Model Accuracy Recall Precision Kappa AUROC 

Logistic regression 0.78 0.77 0.36 0.38 0.85 

Decision tree 0.77 0.59 0.65 0.56 0.87 

Random forest 0.82 0.83 0.39 0.43 0.90 

Gradient boost 0.81 0.83 0.37 0.40 0.89 

XGboost 0.82 0.81 0.43 0.47 0.91 

Light-GBM 0.83 0.84 0.42 0.47 0.91 

CatBoost 0.83 0.83 0.44 0.49 0.92 

5-year survival prediction models 

Model Accuracy Recall Precision Kappa AUROC 

Logistic regression 0.68 0.52 0.20 0.20 0.75 

Decision tree 0.82 0.79 0.30 0.36 0.87 

Random forest 0.83 0.83 0.28 0.34 0.88 

Gradient boost 0.81 0.81 0.27 0.33 0.86 

XGboost 0.82 0.81 0.23 0.27 0.89 

Light-GBM 0.79 0.81 0.23 0.27 0.89 

CatBoost 0.82 0.83 0.25 0.30 0.89 
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Figure 4. Receiver operating characteristic (ROC) curves obtained from recurrence 

prediction models; (a) random forest, (b) XGboost, (c) Light-GBM, and (d) CatBoost. 
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Figure 5. Receiver operating characteristic (ROC) curves obtained from 5-year 

survival prediction models; (a) random forest, (b) XGboost, (c) Light-GBM, and (d) 

CatBoost. 
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B. Time-to-event models 

Two models were developed using the R randomForestSRC package for predicting 

recurrence and survival probabilities over time. Figures 6 and 7 describe the variable 

importance for both models and the marginal effects on all the selected variables. Six 

variables were selected for inclusion in both models, and the 'Slope' demonstrated relative 

influences exceeding 0.4, indicating its substantial contributions, similar to what was 

observed in the classification models. Furthermore, the continuous ranked probability score 

(CRPS) consistently remained below 0.1 throughout the designated target time in both 

models, as depicted in Figure 8. In contrast to the survival model, which was assessed over 

a 5-year timeframe, the recurrence model was examined up to 3 years, as this period 

encompassed the majority of recurrence events in our dataset. Regarding performance 

indicators, in the recurrence model, the AUROC was 0.90, while the accuracy, recall, 

precision, and kappa values stood at 0.84, 0.85, 0.43, and 0.48, respectively. Conversely, 

in the survival model, the AUROC was 0.89, and the accuracy, recall, precision, and kappa 

values were 0.78, 0.83, 0.20, and 0.22. Similar to the classification model, the prediction 

performance in the survival model was lower compared to the recurrence model. Based on 

the two developed models, Figures 9 and 10 present the survival plots for 570 individuals 

in the validation dataset. Additionally, we selected three patients each who experienced 

recurrence or survival and three patients who did not, and visualized the results. 
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Figure 6. Relative variable importance calculated from two time-to-event models. 
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Figure 7. The marginal effects of all the selected variables calculated from (a) the 

recurrence model and (b) the survival model is shown. In the graphs, black dots 

represent observed data, while blue dots represent censored data. 
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Figure 8. Continuous rank probability score over time; (a) recurrence, (b) survival. 
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Figure 9. Simulation results for the recurrence rate in a validation dataset (top) and 

for randomly sampled patients (bottom). In the visualizations, an asterisk (*) denotes a 

patient with observed recurrence, and red stars indicate the same.  
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Figure 10. Simulation results for the survival rate in a validation dataset (top) and for 

randomly sampled patients (bottom). In the visualizations, an asterisk (*) denotes a 

patient with observed recurrence, and red stars indicate the same. 
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C. R Shiny 

The web-based application has been developed based on two time-to-event models, 

allowing users to visualize a patient's recurrence (disease free survival) and overall survival 

rate over time by inputting six predictor variables into the model. Additionally, users can 

obtain the slope generated from linear regression by providing CEA concentrations and 

their measurement dates, for the convenience of users. The application's user interface is 

displayed in Figure 11, providing a straightforward way to forecast outcomes for specific 

individual patients. 

 

 

Figure 11. R Shiny application for predicting the prognosis of colorectal cancer 

patients. 
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IV. DISCUSSION 

Machine learning-based models have been developed to predict the recurrence and survival 

of Korean colorectal cancer patients who underwent surgery, utilizing medical records. 

These models demonstrated strong performance, achieving AUROC values ranging from 

0.87 to 0.92 for recurrence and 0.87 to 0.89 for survival, taking into consideration the 

selected variables influencing model performance. Furthermore, time-to-event models 

have also been developed to estimate the likelihood of recurrence and survival as time 

progresses, and their performance was 0.90 and 0.89 based on AUROC values. 

Recently, there has been a growing interest in medical studies employing machine learning 

models. Consequently, numerous significant studies have been conducted in the field of 

colorectal cancer. A broad spectrum of research endeavors is underway, covering diverse 

aspects of this disease, including diagnosis, medical imaging, treatment, and prognosis. 

Previous studies have endeavored to forecast the survival of colorectal cancer patients21,22. 

In contrast to our study, a previous investigation employed immune genes instead of 

medical records. Their random survival forest model exhibited a 5-year survival prediction 

performance, achieving a Concordance index value of 0.81821. In a study involving 

Brazilian patients, various clinical features, including clinical staging, presence of 

recurrence, year of diagnosis, and surgery, were applied, demonstrating a survival 

performance with an AUC value of 0.8622. This study also exhibited commendable 

predictive performance; however, disparities in crucial variables were observed, likely 

attributable to variations in the target patient population. 

Efforts have also been made to predict cancer recurrence. Disease-free survival was 
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forecasted by incorporating patient information and a TAS score, which was determined 

based on tumor size, circumferential involvement, and tumor differentiation. The highest 

average AUC value achieved was 0.82 through a random forest model10. Notably, advanced 

age and a high lymph node ratio emerged as the most influential variables for predicting 

recurrence in patients with stage II–III colorectal cancer who underwent surgery. In 

Taiwanese studies, the projected AUC values from various models ranged from 

approximately 0.6 to 0.715. Conversely, within our patient dataset, no substantial difference 

in tumor size (p > 0.05) was observed in relation to the presence of recurrence or survival. 

Consequently, it had minimal impact on model performance and was ultimately excluded 

as a predictor variable. A study conducted on Chinese patients in stage IV after surgery 

aimed to predict recurrence16. It identified chemotherapy, age, CEA levels, and anesthesia 

time as the most significant variables. The AUC value obtained in this study, reaching 

0.761, showcased the highest performance in the gradient boost model. 

Similar to our study, a South African study aimed to simultaneously predict recurrence and 

prognosis12. In addition to clinical features, this study incorporated numerous data points. 

Among the various models employed, the artificial neural network demonstrated the 

highest performance, yielding AUC values of 0.87 for recurrence and 0.81 for survival. 

Unlike prior studies where histology consistently emerged as the most pivotal variable in 

predicting survival, our study excluded histological findings or grades, as they had a 

minimal impact on model performance. This divergence is likely attributed to disparities 

between the target patient population and the applied predictors. 

There was also a survival prediction study involving Korean patients as validation data, 

which confirmed significant differences between the characteristics of the Surveillance, 
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Epidemiology, and End Results (SEER) data and Korean data11. Furthermore, the study 

revealed that prediction performance based on survival probability in the Light gradient 

boosting model was significantly superior to prediction based on the AJCC stage. The key 

variables identified as influential in this context were age, lymph node count, and tumor 

size. Therefore, research is needed to create a prediction model for Korean patients, and 

there have also been few cases of simultaneously developing a recurrence and survival 

prediction model in all populations. 

One noteworthy aspect of the results is the inclusion of three CEA-related variables as 

predictors in each of the developed models. Carcinoembryonic antigen (CEA) has been 

widely used as a tumor marker since its initial description in 1965, and it is known to exhibit 

elevated levels in colorectal cancer patients9,23. However, it is important to note that CEA, 

while valuable, lacks specificity and can also increase in certain non-colorectal cancer 

conditions. Additionally, it may be measured as a normal value in early-stage colorectal 

cancer patients due to its limited sensitivity24. Given the continued challenge of early 

diagnosis, ongoing research is exploring alternatives such as long non-coding RNAs like 

PVT1, as well as molecular biomarkers like KRAS and MSI25. Nevertheless, due to its 

accessibility and cost-effectiveness, CEA is still recommended for postoperative 

surveillance alongside medical imaging in previous studies4,26. Therefore, its inclusion as a 

predictor in machine learning-based models holds an advantage, as it can be readily 

obtained in most clinical settings. 

Thresholds were computed for colorectal cancer recurrence and survival, with the 

thresholds set at 3 ng/ml for postoperative CEA in the case of recurrence and 2.5 ng/ml for 

survival in our study. These values are consistent with those previously reported in the 
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literature9,27-29. Furthermore, in an effort to enhance predictive performance, the 

postoperative CEA change rate was introduced as a novel predictor variable. Remarkably, 

this variable was established as the most critical predictor in all statistical analyses and 

machine learning-based models. It is established that CEA concentrations typically require 

approximately a month to return to within the normal range after surgery, with variations 

in both the time taken to reach the baseline and the extent of fluctuations observed9. Hence, 

given the challenge of incorporating the complete time profiles of CEA samples post-

surgery, we opted to utilize the slope derived from linear regression. This approach allowed 

us to capture the overall change in CEA concentration while mitigating the impact of the 

final measurement. Certainly, it is important to acknowledge that this approach comes with 

a drawback: the inability to promptly assess a patient's prognosis immediately after surgery, 

as it necessitates time for sample collection to generate this derived variable. Nonetheless, 

the inclusion of this variable was deemed worthwhile due to its ability to enhance 

performance, resulting in an AUROC improvement of 0.15 or more compared to the best 

model created without the predictor, ‘Slope’. It also remains valuable, especially when 

considering that about 76% of recurrences occur after the first year following surgery. 

We also compared the performance of repeatedly measured CEA concentrations after 

surgery and the rate of change obtained from linear regression to determine if they were 

clinically useful. The analysis was conducted using samples from the same period that were 

used to create the variable 'Slope’, ensuring a comparison under the same conditions. The 

cut-off value for CEA concentration was set at 5 ng/mL, which is the upper limit of the 

normal range. The cut-off value for 'Slope' was set at 0.045 ng/mL/month, based on the 

log-rank test. Among the 570 patients in the validation set, a total of 72 patients exceeded 
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the normal range at least once, resulting in a sensitivity of 0.23 and a specificity of 0.89 in 

the prediction of recurrence using repeatedly measured CEA concentrations. While the 

specificity was high, the sensitivity was quite lower compared to values reported in 

previous studies for known colorectal cancer recurrences, typically around 0.4 or 

higher24,30,31. This discrepancy may be attributed to the limited observation period in this 

analysis. On the other hand, the sensitivity and specificity when using the rate of change 

obtained from linear regression were 0.67 and 0.92, respectively, demonstrating a higher 

predictive accuracy. Furthermore, among the 498 patients whose CEA concentration 

consistently remained within the normal range (less than 5 ng/mL), 58 experienced cancer 

recurrence. However, using the rate of change, recurrence could be predicted in 36 of those 

58 patients. Conversely, recurrence was not observed in 55 out of the 72 patients who 

exceeded the normal range at least once. Using the rate of change, it was predicted that 

recurrence would not occur in 43 out of those 55 patients. Based on the analysis above, our 

data confirms that employing the rate of change obtained from linear regression is more 

effective in early-detecting recurrence in colorectal cancer patients than relying solely on 

measurements from repeatedly sampled after surgery. 

Machine learning-based models also used the number of infiltrated lymph nodes, the 

number of excised lymph nodes, age, and tumor location as predictors. The influence of 

infiltrated lymph node counts on the prognosis of patients is well established, as in AJCC 

staging. Our time-to-event models also found that the predicted recurrence and mortality 

rate increased linearly with the number of infiltrated lymph nodes. Regarding the number 

of excised lymph nodes, there have been numerous discussions on the quantity of lymph 

nodes that should be examined after surgery32-34. Considering the marginal effect estimated 



36 

 

from the time-to-event model for recurrence, although interactions with other variables 

such as clinical stage and the number of infiltrated lymph nodes should be taken into 

account when making interpretations, it appeared to be advantageous for the prognosis to 

examine about 15 lymph nodes. This is due to the fact that a greater number of excised 

lymph nodes was predicted to increase the risk of recurrence, whereas in cases with 15 or 

fewer resected lymph nodes, the lower the number of excised lymph nodes, the higher the 

risk of recurrence (Figure 7). Regarding age, recurrence and mortality rates generally 

increased with age. However, the prognosis was predicted to be poor in younger patients, 

which is presumed to be due to their poor clinical baseline. This point was consistent with 

national and international statistics35,36. Finally, patients with tumors in the rectum or anus 

were predicted to have a worse prognosis, which is consistent with findings from previous 

Japanese studies37,38. 

Recurrence was observed in approximately 13.5% of patients, with 84% of these cases 

occurring within the initial three years. These findings align closely with what has been 

reported in prior studies39,40. The trend in cumulative incidence rates exhibited similarity, 

although with lower overall recurrence rates among our patients. In addition, the five-year 

mortality rate was about 8%, which was lower than the recurrence rate. This aligns with 

the prognosis for non-metastatic colorectal cancer from previous literature41. However, 

such an imbalance in endpoints often leads to misconceptions when evaluating developed 

models. To mitigate this issue, we used 'balanced accuracy' as an evaluation metric, which 

considers weights based on the size of each class instead of 'accuracy,' thus providing a 

more reasonable assessment of the model's performance in the presence of imbalanced 

class distributions. We also presented Kappa values and ROC curves for a comprehensive 
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evaluation. However, it's worth noting that, due to the nature of the data, the 'precision' 

value was relatively low compared to the values of other indicators. To address this 

problem, various resampling techniques are sometimes employed in the data preparation 

process for creating machine learning models42. However, in cases like ours with an 

extremely high class imbalance, undersampling can result in significant data loss, diluting 

the significance of analyzing big data, and simultaneously leading to decreased model 

performance. On the other hand, oversampling generally yields better results than 

undersampling, but it can introduce bias and overfitting issues, particularly in highly 

imbalanced data42. Furthermore, in our dataset, we did not observe any benefits from 

applying resampling techniques; therefore, we chose not to utilize them. 

Machine learning-based models developed in this study demonstrated strong predictive 

performance for recurrence and survival in Korean colorectal cancer patients. This study 

also confirmed the advantage of using the CEA change rate estimated from linear 

regression for detecting recurrence and survival in patients. Furthermore, there is an 

advantage to developing predictive models using easily available routine clinical data in 

most clinical settings. However, this study also has limitations. External validation was not 

conducted for the developed models, and there are ethnic and genetic differences not only 

in the most important variable, CEA, but also in relation to the prognosis of colorectal 

cancer43,44. However, this also implies the need for developing prediction models for 

specific populations. 
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V. CONCLUSION 

Machine learning-based models were developed to predict survival and recurrence among 

Korean patients with stage I-III colorectal cancer who underwent surgery, using medical 

records. The classification models exhibited AUROC values of about 0.9, indicative of 

their strong predictive performance. The most important predictor was the created variable, 

Slope, followed by the number of infiltrated nodes, excised lymph node counts, age, CEA 

concentrations before and after surgery, and tumor location. And the time-to-event models 

developed using the random survival forest also exhibited good performance. In addition, 

an R Shiny application has been developed based on time-to-event models to facilitate the 

easy evaluation of the prognosis of colorectal cancer in individual patients. 
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Appendix 1. Kaplan-Meier plots for potential predictors of recurrence. 
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Appendix 2. Kaplan-Meier plots for potential predictors of 5-year survival. 
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ABSTRACT(IN KOREAN) 

 

대장암 환자의 재발과 생존 예측을 위한 CEA 기반의 머신러닝 기법 

 

<지도교수 박경수> 

 

연세대학교 대학원 의과학과 

 

윤석용 

 

 

 

목표: 대장암은 선진국에서 암 관련 사망의 두 번째 주요 원인이며 적절한 

치료를 받은 환자 중에도 일부는 암의 재발을 경험합니다. 재발 초기 진단은 

환자의 예후를 향상시킨다는 것이 알려져 있습니다. 그럼에도 불구하고 현재 

재발의 초기 감지를 가능하게 하는 비침습적 방법이 부족합니다. 이와 

관련하여, 이 연구는 대장암 환자의 재발 및 생존을 조기에 예측하기 위한 

방법을 개발하고자 하였습니다. 

자료 및 방법: 세브란스병원에서 1-3 기 대장암으로 진단 후 수술 받은 

4,020 명의 환자 자료를 기반으로 하고 있습니다. 각 환자로부터 재발 및 

생존을 조기 예측하기 위한 잠재적 예측 변수로서 인구학적 정보 및 임상 

특성, 수술 전 및 수술 후 CEA 농도, 침윤된 림프절 수, 절제된 림프절 수, 

종양 위치 및 수술 시 나이 등이 수집되었습니다. 또한 다른 예측 변수인 

‘Slope’ 라는 변수가 생성되었는데, 이것은 암태아성항원 (CEA)의 혈중 

농도에서 파생된 것으로, 재발 전 또는 수술 후 약 1년까지의 CEA 
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샘플로부터 얻은 선형 회귀 기울기를 의미합니다. 예측 변수 중 어느 하나에 

결측 값이 있는 환자는 제외되었습니다. 분석은 두 단계로 수행되었습니다. 

첫 번째 단계에서, 재발 여부와 생존 여부를 예측하기 위한 분류 모델이 

개발되었습니다. 두 번째 단계에서, 시간 의존적인 암의 재발 및 생존 확률을 

예측하기 위한 모델이 개발되었습니다. 이 연구에는 유연성과 확장성이 있고 

데이터만을 기반으로 구현할 수 있으며 특정 모델의 가정이 필요하지 않는 

이점이 있는 머신 러닝이 사용되었습니다. 데이터 분석과 모델 개발은 R 

소프트웨어 (버전 4.2.2) 및 패키지를 이용하여 수행되었습니다. 

결과: 다양한 머신 러닝 알고리즘을 테스트하여 분류 모델을 개발했습니다. 

이 알고리즘에는 로지스틱 회귀, 서포트 벡터 머신, 의사 결정 트리, 랜덤 

포레스트, Gradient boost, XGboost, Light-GBM, 그리고 CatBoost 가 

활용되었습니다. 재발 여부 예측 모델에서 ROC 곡선 아래 면적 (AUROC) 의 

범위는 0.87-0.92, 생존 여부 예측 모델에서 AUROC 값의 범위는 0.87-0.89 

였습니다. 이러한 모델 중에서 CatBoost 알고리즘이 적용된 모델이 약간 더 

나은 성능을 나타냈습니다. Time-to-event 모델은 랜덤 서바이벌 포레스트 

알고리즘을 이용하여 개발되었으며, 재발 모델에 대한 AUROC 값은 0.90 

이며, 생존 모델에 대한 AUROC 값은 0.89 로 산출되었습니다. 모든 개발된 

모델에서 새로 도입한 변수인 ‘Slope’ 가 가장 중요한 예측 변수였습니다. 

개발된 Time-to-event 모델에 기반하여, 개별 환자 수준의 예측을 용이하게 

하기 위한 R Shiny 애플리케이션을 만들었습니다. 
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결론: 본 연구는 대장암에서 재발 및 생존 여부와 시간 의존적 재발 및 생존 

확률을 조기에 예측하기 위한 CEA의 활용가능성을 확인했습니다. 환자의 

예후 예측을 위해 개발된 모델은 성능이 좋았으며, 개발된 모델과 R Shiny 

어플리케이션이 한국 대장암 환자의 예후 평가에 도움이 되길 기대합니다. 
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