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ABSTRACT

A Fully Convolutional Hybrid Fusion Network for Identification of

S1 and S2 from Phonocardiogram

Juyeong Jung

Department of Medical Science
The Graduate School, Yonsei University

(Directed by Professor Hyuk-Jae Chang)

Cardiac auscultation is simple, inexpensive, and helps in the early diagnosis of
heart disecases. However, because it requires extensive training, only a few
specialists can detect abnormal heart sounds via auscultation. A phonocardiogram
(PCQ) is a recording of heart sounds, and a computerized algorithm for PCG
analysis can support the clinical use of cardiac auscultation. It is important to
detect the fundamental components—i.e., the first heart sound (S1) and second

heart sound (S2)—in PCG analysis.

In this study, we propose a fully convolutional deep fusion network that
comprehensively analyzes heterogeneous envelopes and scalogram features. We
evaluated three variants of the proposed method—early, late, and hybrid fusion—
and found that multimodal factorized bilinear pooling-based hybrid fusion
produced the best results. Specifically, it exhibited state-of-the-art segmentation

performance, with an accuracy of 0.9455, positive predictive value of 0.9688, and



sensitivity of 0.9832. To the best of our knowledge, this is the first study to

completely interpret the heterogeneous features in PCG segmentation.

Key words : heart sound, phonocardiogram(pcg), deep learning, convolutional

neural network(cnn), hybrid fusion, envelope, scalogram



A Fully Convolutional Hybrid Fusion Network for Identification of

S1 and S2 from Phonocardiogram

Juyeong Jung

Department of Medical Science
The Graduate School, Yonsei University

(Directed by Professor Hyuk-Jae Chang)

L. INTRODUCTION
1. The importance of various feature-based heart sounds analysis

Heart auscultation is a simple and inexpensive first-line diagnostic test for
early screening of heart abnormalities. The two fundamental components of heart
sound, the first heart sound (S1) and second heart sound (S2), are produced by
the mechanical activities of the heart valves. S1 denotes the start of the systolic
phase, which is caused by the closure of the mitral and tricuspid valves. S2 occurs
early in the diastolic phase and is caused by the closure of the aortic and
pulmonary valves. Figure 1 shows an example of heart sound with S1 and S2
labels. Abnormal states S3 and S4 are observed as noise patterns between S1 and
S2 in the case of heart abnormalities (mainly valve abnormalities) and appear as
physiological heart sounds such as murmurs, clicks, and splitting. Based on these

characteristics, heart abnormalities can be detected by heart auscultation in a non-



invasive manner. However, despite the accessibility and simplicity of heart
auscultation, its role is gradually diminishing because of the time and effort
required to master it, diagnostic variances, and the advent of more accurate

downstream tests.

A phonocardiogram (PCG) is a digital recording of analog heart sound by an
electronic stethoscope, allowing repetitive listening and signal analysis. The
computerized algorithm for PCG analysis supports the detection of subtle
abnormal signal patterns, helping with precise diagnosis and contributing to the
clinical use of heart auscultation. The first step in PCG analysis is identifying the
location of heart sounds, S1 and S2. It is crucial to accurately localize S1 and S2
in order to identify abnormal signals and provide explanations [1], [2]. In practice,
PCG signals are often obtained under conditions that make it difficult to identify
S1 and S2, such as weak amplitude signals or motion-induced fricatives
(breathing, dialog, etc.). Consequently, accurately identifying S1 and S2 from
PCQG signals is challenging.
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2. Related works

Many methods have been proposed to identify S1 and S2 from PCG signals
[3]. According to their methodological characteristics, these methods can be
divided into three categories: 1) envelope feature-based method, 2) spectral

feature-based method, 3) deep neural network-based method.

The envelope is one of the most widely used features for signal processing.
The envelope represents a smooth curve outlining its amplitude extremes from an
oscillating input signal. The envelope features are extracted from the results
applied with signal processing techniques such as Hilbert transformation and
Shannon energy calculation. Rezek et al. [4] and Gupta et al. [5] used
homomorphic envelopes to extract the primary amplitude of signals, and Liang
et al. [6] used a Shannon energy-based envelope to segment PCG signals.
However, specific rules and assumptions were required to identify S1 and S2

from the envelope features unless the probabilistic modeling is used.

The Hidden Markov Model (HMM) series has been used as a representative
probabilistic framework for PCG segmentation. Gill et al. [7] proposed an HMM-
based PCG segmentation method that uses a homomorphic envelope as an
observed input sequence. Ricke et al. [8] proposed an HMM-based method that
uses multiple features: the average Shannon energy, delta Shannon energy, and
delta-delta Shannon energy of the heart sound signal. Springer et al. [9] proposed
a Hidden Semi-Markov Model (HSMM)-based method that uses multiple
envelope features: homomorphic, Hilbert, wavelet, and power spectral density
(PSD) envelopes. Because the probabilistic modeling does not rely on
experimental assumptions, they perform better than without probabilistic
modeling. However, HMM series has limitations in the long-range dependencies
within the sequences, and high-level feature fusion is not supported even though

multiple envelope features are used simultaneously.



Spectral feature, another frequently used feature for PCG analysis, can be
extracted by Fourier transform and wavelet transform (WT). Short-time Fourier
transform (STFT) effectively erases unnecessary frequency components by
converting signals from the time domain to the time-frequency domain. However,
it’s temporal resolution is limited due to fixed-size windows. In contrast, WT
represents the signal’s frequency components over time by controlling the
translation and scale parameters of the wavelets and has an optimal balance

between time and frequency resolution.

Patidar et al. [10] used CWT-based features and a least-squares support vector
machine to identify heart-valve disorders. Nivitha Varghees et al. [11] used WT
to segment heart sounds and classify abnormal heart sound. Vikhe et al. [12] used
STFT and continuous wavelet transform (CWT) to detect heart sound
abnormalities. Ghosh et al. [13] compared the various types of spectral features,

including short-time Fourier transform (STFT) and wavelet transform (WT).

Recently, deep neural networks—including convolutional neural networks
(CNNs) and recurrent neural networks (RNNs)—have shown promising
performance in the field of not only computer vision but also signal processing.
Renna et al. [14] proposed a 1D convolutional U-Net based PCG segmentation
method with envelope features [9]. In [9], the first convolutional layer integrates
multiple envelope features on the channel axis while simultaneously performing
temporal modeling on the time axis. RNNs, representative frameworks for
sequential data, have been used for various signal-processing tasks, such as
speech recognition and enhancement [15]. RNNs have been successfully applied
to long-range and multi-level sequential modeling, which are the limitations of
HMMs. Fernando et al. [16] proposed bi-directional long short-term memory
(BiLSTM) with an attention mechanism for PCG segmentation. In [16], the

proposed method takes the envelope and time-frequency features such as



homomorphic, Hilbert, wavelet, PSD, and Mel frequency cepstral coefficients
(MFCCs) as input and estimates the location of states S1 and S2 from them.
However, some input data, including the spectral features used in the studies
above, are linearly interpolated to increase temporal resolution. That may lead to

detailed information loss and degrade the performance of the segmentation model.

Kay and Agarwal [17] proposed an abnormal heart sound detection method
that interprets four different features from PCG signals: 1) CWT, 2) MFCCs, 3)
inter-beat statistics (the mean and standard deviation of the length), and 4)
complexity (the spectral entropy, skewness, and kurtosis of the signal). They used
principal component analysis to reduce the dimension size of all features and
combine them as an input to a fully connected neural network. The interpretation
of the integrated input features improved the detection performance, but the

performance gains were not significant owing to the shallow level of integration.

There have been several fusion techniques proposed in recent years. Fukui et
al. [18] proposed multimodal compact bilinear pooling (MCB) for visual question
answering. MCB projects the image and text features in high dimensions. Then
the projected features are fused via the elementwise product. However, MCB
requires a high computational cost to project features into high-dimensional space.
Zhou et al. [19] proposed a multimodal factorized bilinear (MFB) pooling layer
to fuse image and text feature. The MFB consisted of a feature expand stage and
a feature squeeze stage. In the squeeze stage, sum pooling was used to

approximate the representations of the input data.

Peng et al. [20] compared early, late, slow fusion to find proper feature fusion.
In early fusion, input data is integrated into one input, and in late fusion, the
results are integrated in the final layer after each network has learned the input

data. They proposed slow fusion to integrate two spatial-temporal information. In



[21], they improves natural language processing performance by incorporating
CNN and RNN submodules as combined network and it named hybrid fusion
model. The necessity for feature fusion has been recognized by many researchers,
but deep-level of feature fusion for PCG signal segmentation has yet to be studied.
We believed it was essential to study PCG signal segmentation using deep

learning-based high-level feature fusion.

3. Contribution of this paper

In this study, we propose a novel, fully convolutional deep fusion network for
identifying S1 and S2 from a PCG. The proposed network takes envelope and
scalogram features, which are complementary and dimensionally heterogeneous,
as input. As in [9], [14], we used four envelopes: Hilbert, homomorphic, wavelet,
and PSD. These multiple envelopes help identify the temporal characteristics of
the signal. As a scalogram feature, the CWT feature of the 2D representation is
used, which has an optimal balance between time and frequency localization in

the time-frequency domain.

We explicitly employ two sub-modules for intermediate representations and a
fusion module that integrates them to achieve effective deep-level fusion from
two heterogeneous but complementary features. The two sub-modules are
composed of multi-layered convolutional layers, allowing parameter- and
computational-efficient temporary modeling. The fusion module uses a
convolutional multimodal factorized bilinear (MFB) pooling, a modified version
of [19], to effectively consider all interactions between the intermediate
representations from two sub-modules. Finally, S1 and S2 are identified through

the last 1 x 1 convolution after time-wise information fusion.

To the best of our knowledge, this is the first study to focus on the integrated

interpretation of the heterogeneous features at a deep level to analyze PCG signals.



The proposed network effectively integrates these heterogeneous features at a

deep level, thereby improving the identification performance for S1 and S2.

10



II. PROPOSED METHOD

In this section, we describe the proposed novel deep-fusion method for
identifying S1 and S2 from heterogeneous features for PCG signals. It consists of
three main parts: 1) preprocessing and input feature extraction, 2) learning the
IRs, and 3) fusion and inference. Figure 2 shows the workflow of the proposed
method. Preprocessing is a fundamental step in the elimination of these noise
components. Because PCG signals often contain undesired noise components
such as fricative sounds and environmental noise. The proposed fusion method
takes four envelopes in the 1D time domain and a scalogram in the 2D time-
frequency domain as input features. These features are extracted from
preprocessed PCG signals. Preprocessing and input feature extraction are

described in Section II-1.

The proposed method produces IRs from two input features to integrate
complementary information. Since they contain information that have different
dimensions and characteristics of PCG, it is more effective to integrate them after
making them into IRs rather than direct fusion and then integrate them. The
module structure for learning IR is described in Section III-2. After fusing them,
the proposed method outputs the final inference from the integrated features. The

details of the fusion and inference module are described in Section III-3.

11
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1. Preprocessing and feature extraction

Heart sounds are usually contaminated by various sources and noise levels,
such as the voices of patients and staff, friction between stethoscopes, and
clothing. These noises make it difficult to accurately detect principal heart sounds
components. Therefore, signal preprocessing is an essential part of heart-sound
segmentation. The fundamental heart-sound components S1 and S2 have
dominant low-frequency characteristics (20--150 Hz). As the first preprocessing
step, Butterworth filters [22] are used to remove undesired noise components in
the signal. The cut-off frequencies for the Butterworth filters are 25 Hz and 400
Hz for the high-pass and low-pass bands, respectively. Spike removal is then

applied to the signal to remove the abnormal spike amplitudes.

As in [9], [14], we used four different envelopes: Hilbert, homomorphic,
wavelet, and power spectral density (PSD). These multiple envelopes help
identify the temporal characteristics of the signal. The Hilbert envelope is
computed as the absolute value of the Hilbert transform, which can transform a
real-valued signal into a complex one [23]. The homomorphic envelope is
computed as homomorphic filtering, which can remove certain noise [24]. The
wavelet envelope is computed using a wavelet transform, which can overcome
the disadvantages of the Fourier transform [25]. The PSD envelope is computed
by multiplying each frequency bin in a fast Fourier transform by its complex
conjugate [26]. Figure 3 shows an example of the four different envelopes

extracted from a preprocessed PCG signal.

The continuous wavelet transform (CWT) provides a 2D representation in the
time--frequency domain, called a scalogram. The scalogram represents the
frequency components of the signal over time by controlling the translation and
scale parameters of the wavelets and has an optimal trade-off between time and

frequency localization. Among them, CWT have continuous values for the scale

13



and translation parameters, which are usually used in the scalogram analysis of

signals. The CWT can be defined as
1

W (50 = [x@® ¢ (E-1/s)de (1)

where y(t) is the mother wavelet function, * is the complex conjugate, and s
and T are the scale and translation parameters, respectively. In this study, we
employed a Morlet wavelet as the mother wavelet [12]:

Wb = e2imft e—t2/20 (2)
where t denotes the time parameter, f denotes the frequency of the wavelet,
and o denotes the Gaussian width [12]. Envelope and scalogram features are
down-sampled at 50 Hz to synchronize with the electrocardiogram (ECG) as a
ground truth signal for the S1 and S2 labels and normalized using the mean and
standard deviation [9], [14]. Figure 4 shows an example of a scalogram extracted

from a preprocessed PCG with the labels S1 and S2.

14
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2. Structure of learning IR module

The proposed network has two submodules that generate IRs from
heterogeneous inputs and another fusion module that integrates the IRs. The
architecture of the proposed network is shown in Figure 5. Before presenting the
details of the proposed network, we define the symbols for the two heterogeneous

features. The envelope feature E € R**T

consists of the following four
envelopes: Hilbert E,;, € R™", homomorphic Ej,,, € R™T, wavelet E,, €
R™, and PSD E,sq € R™7, where T denotes the time of the sample. These
four envelopes are concatenated along the channel axis. The scalogram feature
S € RF*T s transformed using a continuous wavelet transform. F is the number

of frequency bins (scale bins) and T is the time length of the sample.
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Figure 5. The architecture of the proposed fully convolutional hybrid fusion

network.
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A. Intermediate representation for envelope

Inspired by [14], the envelope representation module M, is a U-Net
architecture. The convolution block consists of two 1D convolution layers with a
kernel of size of 3 and is activated with a rectified linear unit (ReLU) [27]. Zero
padding is applied before the convolution operation to prevent dimensional
reduction of the feature map. We employ a dropout [28] between the convolution
layers to prevent overfitting. In the encoding path, 1D max-pooling is applied,
and the number of feature maps is doubled. A skip connection between the
encoder and decoder blocks is used to improve the gradient flow. The decoding
path uses 1D upsampling to recover the original time resolution.

E = [Egnby Eimy Ewy Epsay].
RE = Me(E; 6e) (3)
where [] denotes concatenation, 6, are the parameters of the envelope

representation module, and Rg € RCEXT is the IR for the envelope.

B. Intermediate representation for scalogram

The scalogram representation module Mg has the same architecture as Mg;
however, 2D convolution is applied instead of 1D convolution. The convolution
block consists of two 2D convolution layers witha 3 X 3 kernel and is activated
with ReLU. Batch normalization [29] is used for training stability. An adaptive
average pooling (AAP) [30] layer is attached to the end of the Mg module. The
AAP aggregates the deep scalogram representation effectively along the
frequency axis, enabling the integration of two IRs from the envelope module
M, and the scalogram module Mg for all times.

Rs = AAP(Ms(S;65))  (4)

where 6 is a parameter of the scalogram representation module.
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3. Structure of fusion and inference module
A. Naive fusion

Before the fusion with IRs from envelope and scalogram, we tested naive
feature fusion to test whether the combination has a complementary effect. This
naive fusion has two approaches early fusion and late fusion. 1) Early fusion:
This combines the heterogeneous input features, and then the combined input
feature is interpreted by the submodule M,. 2) Late fusion: This combines the
output probability from each submodule M, and Mg. This means that each
module is trained independently, and then the output probabilities from M, and

Mg are averaged, as in the model ensemble methods.

In this study, we tested three naive feature fusions: 1) Early fusion between 1D
envelope and 1D scalogram (early fusion), 2) Late fusion between 1D envelope
and 1D scalogram (late fusion 1), and 3) Late fusion between 1D envelope and

2D scalogram (late fusion 2).

For the experiments, we used 1D scalogram by transforming 2D scalogram. In
1D scalogram, the frequency axis of 2D scalogram is concatenated along the
channel axis, which induces various frequency features at that time point. The 1D
envelope and 1D scalogram are concatenated along the channel axis as inputs for
early fusion. Therefore, the envelope representation module M., which consists
of a 1D convolution layer, has interpreted envelope and frequency features over
the same time point. For late fusion, we tested two late fusions. The difference
between 1D scalogram and 2D scalogram is clear from the results of this
experiment. The 1D convolutional kernel of M, strides along the time axis and
analyzes all frequency features. By contrast, the 2D convolutional kernel of Mg

analyzes adjacent time and frequency features.
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B. Hybrid fusion

There are many ways to combine the features of two different domains, such
as element-wise summation and outer product. We integrate two IRs from the
envelope (Rg) and a scalogram (Rg) instead of naive fusion. This fusion approach,
called hybrid fusion [20], [21], is effective for fusing heterogeneous features from

different perspectives on different dimensions.

In Hybrid fusion, The IRs Rg and Rg from each submodule M, and Mg
are interpreted by fusion module My. In this study, we tested four IR fusion
methods. 1) element-wise concatenation, 2) element-wise summation, 3)
element-wise product, and 4) multi-modal factorized bilinear pooling (MFB) [19].
To implement the MFB-based fusion, we refer to the following formula from [19] :

zi = x" Wy (5)
where x € R™ is the IR from envelope feature, y € R" is the IR from

scalogram feature, W; € R™*"

is feature projection matrix, z; € R is the
output of MFB. The aim of MFB is to obtain o-dimensional output by learning
W = [w;, ..., W,] € R™"™*°_ After several modifications in [19], Equation 5 can
be rewritten as follow:
Z = SumPooling(UTx o VTy, k) (6)

where U € R™%% and V € R™k°, o is element-wise product and k is the
latent dimension of factorized matrices. SumPooling is the method of using a
1D non-overlapping window with size k to perform sum pooling on x. After

SumPooling , Z was normalized with power normalization and L2

normalization.
At the end of the fusion module Mgy, there is a 1D convolution layers with a

kernel of size of 1, which takes the fused IRs and outputs the class probabilities

p € ROT for all times. C is the number of classes (S1, S2, systolic, and
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diastolic) and T is the time length of the sample.
p= Me(Z;60) (7)

where O¢ is a parameter of the inference module.
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III. EXPERIMENTAL EVALUATION
1. Dataset

In this study, we used the public dataset from PhysioNet/CinC Challenge 2016
[31]. This dataset consists of 792 heart sound recordings from 135 patients.
Among them, 406 heart sounds were collected from patients with heart disease
and the remaining 386 were collected from healthy individuals. Heart sounds
were recorded at different points in the chest, with recording times varying from
1 to 35s, and all signals were sampled at 1 kHz. Based on a synchronized
electrocardiogram, heart sounds are annotated for S1, S2, systolic, and diastolic.
The synchronization was performed with the agreement between the five R-peak

and final T-wave detectors.

To evaluate general performance, external validation was performed with an
open dataset [32], which is not used for training. The dataset consists of 69 paired
PCGs and ECGs, obtained from a total of 24 subjects. Eight of these were
recorded in a comfortable (stressless) environment for 30 seconds, and the
remaining 61 were recorded in a walking, running and cycling environment for

30 minutes.

2. Implementation details

We performed 10-fold cross-validation to evaluate segmentation performance.
For the 10-fold cross-validation, the training dataset was divided into ten subsets.
Then, nine subsets were used to train the network, and the remaining subset was
used for the validation. The result of each validation fold was evaluated using the
best-performance model, which was determined by the lowest validation loss. To
prevent performance overestimation, it is important to ensure that each patient's
data are not duplicated in the training and validation datasets. The process was

repeated ten times for cross-validation.
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We sampled a local patch from the PCG signal for generalized segmentation
performance. Local patches were sampled from the preprocessed PCG signal
using the defined sampling rules. The sampling rules were as follows: length of
sample patch = 64, 128, 256, and 512, and stride = 1/8 of the patch length. For
example, if the sample length is 64, approximately 0.64 s of heart sound is
sampled. The adaptive moment estimation (Adam) optimizer [33] with a weight
decay was used. The learning rate was le-4, and the weight decay rate was le-2.
The batch size was 64, number of training epochs was 150, and dropout rate was
0.3. The weights of each layer were determined using the categorical cross-
entropy loss function. We set MFB factor number Kk to 2, and output dimension
oto32. The proposed network was implemented using PyTorch 1.5.0 [34]. The
model training took approximately one hour on our workstation, with 32 GB of

RAM, an Intel Xeon(R) E-2174G CPU, and an Nvidia RTX-5000 GPU.

3. Evaluation Metrics

We employed three evaluation metrics to compare our proposed method with
conventional methods [9], [14], [16]. The three metrics were accuracy (ACC),
positive predictive value (PPV), and sensitivity (SEN). ACC is calculated by
comparing the predicted sequence S(t) labels with the ground truth sequence
s(t) labels, which means that the predicted labels are correctly positioned
compared to the ground truth labels. PPV and SEN are focused on the centers of
S1 and S2. A true positive (TP) is counted when the center of S1 and S2 of 5(t)
is closer than 60 ms from the center of the corresponding S1 and S2 of s(t). Any
positive except for true-positive was considered a false-positive. PPV was

calculated using the following equation:

#TP

PPV = e e (©)
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where # isthe number of values. SEN is calculated using the following equation:

#TP

SEN = o5t ssa)mer (7)
The evaluation was performed for each patient. The inference was performed

with sampled patches and then merged to obtain the original length.

4. Results
A. Performance comparison by feature

We compared the segmentation performance of the 1D envelope feature and
the 2D scalogram feature. Segmentation was performed in four classes: S1,
systole, S2, and diastole. The post-processing method MAX [14] was applied
after the segmentation. The MAX operation replaces the out-of-order predicted

values with appropriate values to fit the context.

For 1D envelope-based segmentation, the best performance was ACC = 0.9377,
PPV =0.9625, and SEN = 0.9673 when the patch length N was 512 and the stride
was 64. The segmentation performance improved when the length of the sample
patch increased. For 2D scalogram based segmentation, the best accuracy was
superior to 1D envelope-based segmentation, with 1D envelope vs. 2D scalogram
values as follows: ACC: 0.9377 vs. 0.9385, PPV: 0.9625 vs. 0.9604, SEN: 0.9673
vs. 0.9614 with a patch length N of 512 and a stride of 64. The performance is

summarized in Table 1.
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Table 1. Experimental results of single methods

Envelope based Scalogram based
ACC PPV SEN ACC PPV SEN
N=64,S=8 0.9204 0.9429 0.9436 0.9211  0.9259 0.9261
N=128,S=16 0.9334 0.9539 0.9552 0.9359  0.9528 0.9534
N=256, S=32 0.9368 0.9579 0.959%4 0.9359  0.9553  0.9567
N=512, S=64 0.9377 0.9625 0.9673 0.9385 0.9604 0.9614

N is the length of each patch. S is the stride between patches. The performance
evaluation metrics are Sample Accuracy (ACC), Positive Predictive Value (PPV),

and Sensitivity (SEN). Boldface indicates the best value.
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Figure 6. Comparison of segmentation performance with envelope feature and
scalogram feature. Black line indicates PCG signal, red line indicates ground
truth labels, yellow dotted line indicates 1D envelope-based method, and green

dashed line indicates 2D scalogram-based method.
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B. Performance comparison of the fusion methods

The best performance for early fusion was ACC = 0.9321, PPV = 0.9608, and
SEN = 0.9788, with a patch length N of 512 and a stride of 64. When early fusion
was compared with scalogram-based segmentation, PPV and SEN were higher in
early fusion, but the ACC was higher in 2D scalogram (early fusion vs. 2D
scalogram, ACC: 0.9321 vs. 0.9385, PPV: 0.9608 vs. 0.9604, SEN: 0.9788 vs.
0.9614). In early fusion, the 1D convolution kernel strides along the time axis and

analyzes all concatenated envelope and frequency features simultaneously.

Late fusion 1 exhibited higher performance than early fusion in all metrics
(early fusion vs. late fusion 1, ACC: 0.9321 vs. 0.9359, PPV: 0.9608 vs. 0.9717,
SEN: 0.9788 vs. 0.9792), with a patch length N of 512 and stride of 64. Late
fusion 2 exhibited higher performance than late fusion 1 on ACC and PPV (late
fusion 1 vs. late fusion 2, ACC: 0.9359 vs. 0.9456, PPV: 0.9717 vs. 0.9767, SEN:
0.9792 vs. 0.9774), with a patch length N of 512 and a stride of 64. From this
Table 2, analyzing a scalogram in a 2D domain is more helpful in improving
performance than analyzing it in a 1D domain. These results indicate that a
processing the scalogram in 1D is not suitable for inducing IR that has sufficiently
learned the characteristics of the scalogram. Conversely, the 2D scalogram is
appropriate for inducing proper IR and hybrid fusion 2 showed the best

segmentation accuracy.
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For hybrid fusion, we tested four hybrid fusion types: 1) elementwise
concatenation, 2) elementwise summation, 3) elementwise product, and 4) MFB
pooling. To find the optimal hyperparameters of MFB, we experimented with
various size of k and o in the Table 3. If o is greater than 32, one more convolution

layer was added in the final convolution block.
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Table 3. Experimental results of MFB hyperparameters

MFB hyperparameters

k/o ACC PPV SEN

1/32 0.9434 0.9656 0.9824
2/8 0.9412 0.9631 0.9823
2/16 0.9439 0.9628 0.9822
2/32 0.9455 0.9688 0.9832
2/ 64* 0.9430 0.9662 0.9823
3/32 0.9437 0.9639 0.9826
3/ 64* 0.9431 0.9637 0.9831
4/32 0.9388 0.9632 0.9820
5/32 0.9429 0.9650 0.9830

All experiments in this table used patch size 512, and stride 64.
The performance evaluation metrics are Sample Accuracy
(ACCQ), Positive Predictive Value (PPV), and Sensitivity (SEN).
Boldface indicates the best value. * means that two convolution

layer were used in the last convolution block.
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After finding an optimal hyperparameters of MFB, we compared the
performance by fusion types in Table 4. As a result, MFB outperforms other
compared fusion types: ACC: 0.9455, PPV: 0.9688, and SEN: 0.9832 with a patch
length N of 512 and stride of 64. This MFB fusion also superior to late fusion 2
in terms of the SEN, which was the best fusion methods among the tested naive
feature fusion methods (MFB fusion vs. late fusion 2, ACC: 0. 9455 vs. 0.9456,
PPV: 0.9688 vs. 0.9767, SEN: 0. 9832 vs. 0.9774)
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The result validates that the proper IRs from different features have
complementary impacts on segmentation performance, and we experimentally
demonstrate that the efficient and effective pooling approach can maximize the

feature analysis performance. The experimental results are presented in Table 4.

C. External validation

To find points S1 and S2, the code provided by the challenge [32] was used. In
this code, an R-peak is calculated from the synchronized ECG, and a systolic
period is obtained by calculating an interval from the R-peak to the next R-peak.
The points S1 and S2 of the PCG are obtained through the calculated systolic
period and R-peak. However, several S1 and S2 points were located incorrectly
due to the subject's voice and various noises. In this case, it is explained that the
expert modified it manually. The evaluation was conducted with the best
performance model and the result of the external validation are as follows: ACC:
0.7721, PPV: 0.7854, and SEN: 0.9743. It was validated with the most optimal

patch size 512 and stride 64 proved in the above experiments.
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IV. DISCUSSION

In this paper, we proposed a novel deep fusion network for PCG segmentation
that jointly analyzes envelope and scalogram features. Furthermore, we
experimentally demonstrated that the heterogeneous features from the PCG
signal have complementary impacts, and the proposed fusion method shows

state-of-the-art PCG segmentation performance.

In the independent use of features, 2D scalogram-based segmentation
outperformed 1D envelope-based segmentation (Table 1). The signal envelope
describes the change in the peak amplitude over time, whereas the scalogram
describes the change in frequency over time. Therefore, the scalogram feature can

consider a frequency feature that are not in the envelope feature.

The results indicate that the 2D scalogram provides better time--frequency
resolution features for PCG segmentation than the combination of multiple 1D
envelope features. This means that it is more efficient to analyze frequency

components than amplitude features of PCG when considering a single feature.

Figure 6 shows the segmentation results of the 1D envelope-based method and
2D scalogram-based method on abnormal heart sound in the test set. The
scalogram-based segmentation showed robust performance against noise because
it focused on the frequency components of the signal. On the other hand, the
envelope-based method is vulnerable to noise because it depends mainly on the
amplitude of the signal. However, since the envelope feature can consider the
patterns of PCG over time, it is important to consider the overall characteristics

of the heart sounds.
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In the next experiment, we tested naive fusion and hybrid fusion with IRs. In
naive fusion, early fusion was used to validate whether combinations of different
features can have complementary effects. And late fusion was used to validate
whether it is better to consider both features at the same time or to combine the

results after learning separately.

In early fusion, we transformed the 2D scalogram into a 1D scalogram. Early
fusion was more efficient in terms of computational cost because it used only the
1D convolutional layers of M.. By fusing envelope features and frequency
features on the same network, we demonstrated that using heterogeneous features
has complementary effects and provides better performance than using a single

feature.

In late fusion, fusion occurred after the learning and evaluation of each feature-
based model were completed. It shows better performance than early fusion,
indicating that it is more effective to fuse after sufficiently learning the
characteristics of the input data. However, late fusion is not intended to have
proper IRs owing to independent optimization and the combination of outputs
such as an ensemble. In addition, since two networks need to be trained, it takes

more time and cost of training than training a single network.

The aim of hybrid fusion is to find a cost-effective, high-performance fusion
method by fusing IRs that have sufficiently learned the features of two
heterogeneous input datasets within one network. We used the best performance
fusion method by experimentally comparing recently proposed methods with
classical feature fusion methods. The experimental results demonstrated the
importance of IRs in combining heterogeneous features. We found that
combining the IRs after proper conversion is more effective than simply

calculating and combining the IRs. The proposed deep fusion network exhibited
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state-of-the-art PCG segmentation performance as a single network, with ACC =

0.9455, PPV = 0.9688, and SEN = 0.9832

Figure 7 compares hybrid fusion, envelope-based segmentation, and
scalogram-based segmentation. Envelope and scalogram-based methods in heart
sound with noise do not accurately detect S1 and S2 regions. On the other hand,
the hybrid fusion-based method proposed in this paper shows stronger S1 and S2
segmentation performance by comprehensively considering the continuous

temporal features and the frequency features of the heart sounds.

We also compared the segmentation performance of the proposed method with
the methods proposed by Fernando et al. [16] and Renna et al. [14]. The method
by Fernando et al. [16], based on a BILSTM for sequential modeling and attention
techniques, achieved ACC = 0.969, PPV = 0.963, and SEN = 0.972 on the same
PhysioNet/CinC Challenge 2016 dataset. By contrast, the proposed deep fusion
network (MFB pooling based hybrid fusion) exhibited better performance in
terms of PPV and SEN (hybrid fusion vs. [16], ACC: 0.946 vs. 0.969, PPV: 0.969
vs. 0.963, SEN: 0.983 vs. 0.972). The proposed method achieved a more robust

segmentation performance without a sequential modeling method.

The method proposed by Renna et al. [14] achieved a segmentation
performance of ACC = 0.937, PPV = 0.958, SEN = 0.958. Our fusion method
outperformed their method on all metrics. Their method is based on 1D CNN with
1D envelope features, and the HMM and HSMM were additionally utilized for
sequential modeling. The sequential modeling methods utilized contribute to the

performance improvement but are not effective on all metrics.
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V. CONCLUSION

In this paper, we proposed a fully convolutional deep fusion network that
comprehensively analyzes heterogeneous envelopes and scalogram features. We
demonstrated the benefit of a comprehensive analysis of heterogeneous features
and state-of-the-art PCG segmentation accuracy on a single network. Since only
a few specialists can detect abnormal heart sounds using auscultation, various
diagnostic modalities such as electrocardiography, ultrasound imaging, and

Doppler techniques have contributed to reducing the clinical use of auscultation.

To use it in an actual medical environment, data and verification from the
actual medical field are required; this will be the subject of future research.
Furthermore, since the segmentation of S1 and S2 in heart sounds is finally
intended to help detect effective cardiac murmur, so we plan to develop artificial
intelligence technology for detecting cardiac murmur based on the method

proposed in this paper.
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