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ABSTRACT 

 

A Fully Convolutional Hybrid Fusion Network for Identification of 

S1 and S2 from Phonocardiogram 

 

Juyeong Jung 

 

Department of Medical Science 

The Graduate School, Yonsei University  

 

(Directed by Professor Hyuk-Jae Chang) 
       

 

 

 

 Cardiac auscultation is simple, inexpensive, and helps in the early diagnosis of 

heart diseases. However, because it requires extensive training, only a few 

specialists can detect abnormal heart sounds via auscultation. A phonocardiogram 

(PCG) is a recording of heart sounds, and a computerized algorithm for PCG 

analysis can support the clinical use of cardiac auscultation. It is important to 

detect the fundamental components—i.e., the first heart sound (S1) and second 

heart sound (S2)—in PCG analysis. 

 

In this study, we propose a fully convolutional deep fusion network that 

comprehensively analyzes heterogeneous envelopes and scalogram features. We 

evaluated three variants of the proposed method—early, late, and hybrid fusion—

and found that multimodal factorized bilinear pooling-based hybrid fusion 

produced the best results. Specifically, it exhibited state-of-the-art segmentation 

performance, with an accuracy of 0.9455, positive predictive value of 0.9688, and 
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sensitivity of 0.9832. To the best of our knowledge, this is the first study to 

completely interpret the heterogeneous features in PCG segmentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            

Key words : heart sound, phonocardiogram(pcg), deep learning, convolutional 

neural network(cnn), hybrid fusion, envelope, scalogram 
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I. INTRODUCTION 

1. The importance of various feature-based heart sounds analysis 

Heart auscultation is a simple and inexpensive first-line diagnostic test for 

early screening of heart abnormalities. The two fundamental components of heart 

sound, the first heart sound (S1) and second heart sound (S2), are produced by 

the mechanical activities of the heart valves. S1 denotes the start of the systolic 

phase, which is caused by the closure of the mitral and tricuspid valves. S2 occurs 

early in the diastolic phase and is caused by the closure of the aortic and 

pulmonary valves. Figure 1 shows an example of heart sound with S1 and S2 

labels. Abnormal states S3 and S4 are observed as noise patterns between S1 and 

S2 in the case of heart abnormalities (mainly valve abnormalities) and appear as 

physiological heart sounds such as murmurs, clicks, and splitting. Based on these 

characteristics, heart abnormalities can be detected by heart auscultation in a non-
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invasive manner. However, despite the accessibility and simplicity of heart 

auscultation, its role is gradually diminishing because of the time and effort 

required to master it, diagnostic variances, and the advent of more accurate 

downstream tests.  

 

 A phonocardiogram (PCG) is a digital recording of analog heart sound by an 

electronic stethoscope, allowing repetitive listening and signal analysis. The 

computerized algorithm for PCG analysis supports the detection of subtle 

abnormal signal patterns, helping with precise diagnosis and contributing to the 

clinical use of heart auscultation. The first step in PCG analysis is identifying the 

location of heart sounds, S1 and S2. It is crucial to accurately localize S1 and S2 

in order to identify abnormal signals and provide explanations [1], [2]. In practice, 

PCG signals are often obtained under conditions that make it difficult to identify 

S1 and S2, such as weak amplitude signals or motion-induced fricatives 

(breathing, dialog, etc.). Consequently, accurately identifying S1 and S2 from 

PCG signals is challenging. 
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2. Related works 

Many methods have been proposed to identify S1 and S2 from PCG signals 

[3]. According to their methodological characteristics, these methods can be 

divided into three categories: 1) envelope feature-based method, 2) spectral 

feature-based method, 3) deep neural network-based method. 

 

The envelope is one of the most widely used features for signal processing. 

The envelope represents a smooth curve outlining its amplitude extremes from an 

oscillating input signal. The envelope features are extracted from the results 

applied with signal processing techniques such as Hilbert transformation and 

Shannon energy calculation. Rezek et al. [4] and Gupta et al. [5] used 

homomorphic envelopes to extract the primary amplitude of signals, and Liang 

et al. [6] used a Shannon energy-based envelope to segment PCG signals. 

However, specific rules and assumptions were required to identify S1 and S2 

from the envelope features unless the probabilistic modeling is used.  

 

The Hidden Markov Model (HMM) series has been used as a representative 

probabilistic framework for PCG segmentation. Gill et al. [7] proposed an HMM-

based PCG segmentation method that uses a homomorphic envelope as an 

observed input sequence. Ricke et al. [8] proposed an HMM-based method that 

uses multiple features: the average Shannon energy, delta Shannon energy, and 

delta-delta Shannon energy of the heart sound signal. Springer et al. [9] proposed 

a Hidden Semi-Markov Model (HSMM)-based method that uses multiple 

envelope features: homomorphic, Hilbert, wavelet, and power spectral density 

(PSD) envelopes. Because the probabilistic modeling does not rely on 

experimental assumptions, they perform better than without probabilistic 

modeling. However, HMM series has limitations in the long-range dependencies 

within the sequences, and high-level feature fusion is not supported even though 

multiple envelope features are used simultaneously. 
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Spectral feature, another frequently used feature for PCG analysis, can be 

extracted by Fourier transform and wavelet transform (WT). Short-time Fourier 

transform (STFT) effectively erases unnecessary frequency components by 

converting signals from the time domain to the time-frequency domain. However, 

it’s temporal resolution is limited due to fixed-size windows. In contrast, WT 

represents the signal’s frequency components over time by controlling the 

translation and scale parameters of the wavelets and has an optimal balance 

between time and frequency resolution.  

 

Patidar et al. [10] used CWT-based features and a least-squares support vector 

machine to identify heart-valve disorders. Nivitha Varghees et al. [11] used WT 

to segment heart sounds and classify abnormal heart sound. Vikhe et al. [12] used 

STFT and continuous wavelet transform (CWT) to detect heart sound 

abnormalities. Ghosh et al. [13] compared the various types of spectral features, 

including short-time Fourier transform (STFT) and wavelet transform (WT).  

 

Recently, deep neural networks—including convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs)—have shown promising 

performance in the field of not only computer vision but also signal processing. 

Renna et al. [14] proposed a 1D convolutional U-Net based PCG segmentation 

method with envelope features [9]. In [9], the first convolutional layer integrates 

multiple envelope features on the channel axis while simultaneously performing 

temporal modeling on the time axis. RNNs, representative frameworks for 

sequential data, have been used for various signal-processing tasks, such as 

speech recognition and enhancement [15]. RNNs have been successfully applied 

to long-range and multi-level sequential modeling, which are the limitations of 

HMMs. Fernando et al. [16] proposed bi-directional long short-term memory 

(BiLSTM) with an attention mechanism for PCG segmentation. In [16], the 

proposed method takes the envelope and time-frequency features such as 
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homomorphic, Hilbert, wavelet, PSD, and Mel frequency cepstral coefficients 

(MFCCs) as input and estimates the location of states S1 and S2 from them. 

However, some input data, including the spectral features used in the studies 

above, are linearly interpolated to increase temporal resolution. That may lead to 

detailed information loss and degrade the performance of the segmentation model.  

 

Kay and Agarwal [17] proposed an abnormal heart sound detection method 

that interprets four different features from PCG signals: 1) CWT, 2) MFCCs, 3) 

inter-beat statistics (the mean and standard deviation of the length), and 4) 

complexity (the spectral entropy, skewness, and kurtosis of the signal). They used 

principal component analysis to reduce the dimension size of all features and 

combine them as an input to a fully connected neural network. The interpretation 

of the integrated input features improved the detection performance, but the 

performance gains were not significant owing to the shallow level of integration.   

 

There have been several fusion techniques proposed in recent years. Fukui et 

al. [18] proposed multimodal compact bilinear pooling (MCB) for visual question 

answering. MCB projects the image and text features in high dimensions. Then 

the projected features are fused via the elementwise product. However, MCB 

requires a high computational cost to project features into high-dimensional space. 

Zhou et al. [19] proposed a multimodal factorized bilinear (MFB) pooling layer 

to fuse image and text feature. The MFB consisted of a feature expand stage and 

a feature squeeze stage. In the squeeze stage, sum pooling was used to 

approximate the representations of the input data.  

 

Peng et al. [20] compared early, late, slow fusion to find proper feature fusion. 

In early fusion, input data is integrated into one input, and in late fusion, the 

results are integrated in the final layer after each network has learned the input 

data. They proposed slow fusion to integrate two spatial-temporal information. In 
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[21], they improves natural language processing performance by incorporating 

CNN and RNN submodules as combined network and it named hybrid fusion 

model. The necessity for feature fusion has been recognized by many researchers, 

but deep-level of feature fusion for PCG signal segmentation has yet to be studied. 

We believed it was essential to study PCG signal segmentation using deep 

learning-based high-level feature fusion. 

 

3. Contribution of this paper 

In this study, we propose a novel, fully convolutional deep fusion network for 

identifying S1 and S2 from a PCG. The proposed network takes envelope and 

scalogram features, which are complementary and dimensionally heterogeneous, 

as input. As in [9], [14], we used four envelopes: Hilbert, homomorphic, wavelet, 

and PSD. These multiple envelopes help identify the temporal characteristics of 

the signal. As a scalogram feature, the CWT feature of the 2D representation is 

used, which has an optimal balance between time and frequency localization in 

the time-frequency domain.  

 

We explicitly employ two sub-modules for intermediate representations and a 

fusion module that integrates them to achieve effective deep-level fusion from 

two heterogeneous but complementary features. The two sub-modules are 

composed of multi-layered convolutional layers, allowing parameter- and 

computational-efficient temporary modeling. The fusion module uses a 

convolutional multimodal factorized bilinear (MFB) pooling, a modified version 

of [19], to effectively consider all interactions between the intermediate 

representations from two sub-modules. Finally, S1 and S2 are identified through 

the last 1 x 1 convolution after time-wise information fusion.  

 

To the best of our knowledge, this is the first study to focus on the integrated 

interpretation of the heterogeneous features at a deep level to analyze PCG signals. 
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The proposed network effectively integrates these heterogeneous features at a 

deep level, thereby improving the identification performance for S1 and S2. 
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II. PROPOSED METHOD 

In this section, we describe the proposed novel deep-fusion method for 

identifying S1 and S2 from heterogeneous features for PCG signals. It consists of 

three main parts: 1) preprocessing and input feature extraction, 2) learning the 

IRs, and 3) fusion and inference. Figure 2 shows the workflow of the proposed 

method. Preprocessing is a fundamental step in the elimination of these noise 

components. Because PCG signals often contain undesired noise components 

such as fricative sounds and environmental noise. The proposed fusion method 

takes four envelopes in the 1D time domain and a scalogram in the 2D time-

frequency domain as input features. These features are extracted from 

preprocessed PCG signals. Preprocessing and input feature extraction are 

described in Section II-1.  

 

The proposed method produces IRs from two input features to integrate 

complementary information. Since they contain information that have different 

dimensions and characteristics of PCG, it is more effective to integrate them after 

making them into IRs rather than direct fusion and then integrate them. The 

module structure for learning IR is described in Section III-2. After fusing them, 

the proposed method outputs the final inference from the integrated features. The 

details of the fusion and inference module are described in Section III-3. 
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1. Preprocessing and feature extraction 

Heart sounds are usually contaminated by various sources and noise levels, 

such as the voices of patients and staff, friction between stethoscopes, and 

clothing. These noises make it difficult to accurately detect principal heart sounds 

components. Therefore, signal preprocessing is an essential part of heart-sound 

segmentation. The fundamental heart-sound components S1 and S2 have 

dominant low-frequency characteristics (20--150 Hz). As the first preprocessing 

step, Butterworth filters [22] are used to remove undesired noise components in 

the signal. The cut-off frequencies for the Butterworth filters are 25 Hz and 400 

Hz for the high-pass and low-pass bands, respectively. Spike removal is then 

applied to the signal to remove the abnormal spike amplitudes.  

 

As in [9], [14], we used four different envelopes: Hilbert, homomorphic, 

wavelet, and power spectral density (PSD). These multiple envelopes help 

identify the temporal characteristics of the signal. The Hilbert envelope is 

computed as the absolute value of the Hilbert transform, which can transform a 

real-valued signal into a complex one [23]. The homomorphic envelope is 

computed as homomorphic filtering, which can remove certain noise [24]. The 

wavelet envelope is computed using a wavelet transform, which can overcome 

the disadvantages of the Fourier transform [25]. The PSD envelope is computed 

by multiplying each frequency bin in a fast Fourier transform by its complex 

conjugate [26]. Figure 3 shows an example of the four different envelopes 

extracted from a preprocessed PCG signal. 

 

The continuous wavelet transform (CWT) provides a 2D representation in the 

time--frequency domain, called a scalogram. The scalogram represents the 

frequency components of the signal over time by controlling the translation and 

scale parameters of the wavelets and has an optimal trade-off between time and 

frequency localization. Among them, CWT have continuous values for the scale 
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and translation parameters, which are usually used in the scalogram analysis of 

signals. The CWT can be defined as 

Ψ𝑥𝑥 (𝑠𝑠, τ) = 1
√𝑠𝑠
  ∫ 𝑥𝑥(𝑡𝑡)  ψ∗ �(𝑡𝑡 − τ)/𝑠𝑠�𝑑𝑑𝑡𝑡 (1) 

where ψ(𝑡𝑡) is the mother wavelet function, ∗ is the complex conjugate, and 𝑠𝑠 

and τ are the scale and translation parameters, respectively. In this study, we 

employed a Morlet wavelet as the mother wavelet [12]: 

ψ(t) = e2jπft e−t2/2σ (2) 

where 𝑡𝑡 denotes the time parameter, 𝑓𝑓 denotes the frequency of the wavelet, 

and σ denotes the Gaussian width [12]. Envelope and scalogram features are 

down-sampled at 50 Hz to synchronize with the electrocardiogram (ECG) as a 

ground truth signal for the S1 and S2 labels and normalized using the mean and 

standard deviation [9], [14]. Figure 4 shows an example of a scalogram extracted 

from a preprocessed PCG with the labels S1 and S2. 
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Figure 3. Four envelope features extracted from a PCG signal with labels S1 

and S2. Certain amplitudes are strong in the states S1 and S2. 



16 

 

Fi
gu

re
 4

. E
xa

m
pl

e 
of

 sc
al

og
ra

m
 w

ith
 h

ea
rt 

so
un

d 
st

at
es

 S
1 

an
d 

S2
. B

lu
e 

an
d 

re
d 

in
di

ca
te

 th
e 

lo
w

es
t a

nd
 h

ig
he

st
 e

ne
rg

ie
s, 

re
sp

ec
tiv

el
y.

 C
er

ta
in

 fr
eq

ue
nc

y 
en

er
gy

 a
pp

ea
rs

 st
ro

ng
ly

 in
 th

e 
st

at
es

 S
1 

an
d 

S2
. 



17 

2. Structure of learning IR module 

The proposed network has two submodules that generate IRs from 

heterogeneous inputs and another fusion module that integrates the IRs. The 

architecture of the proposed network is shown in Figure 5. Before presenting the 

details of the proposed network, we define the symbols for the two heterogeneous 

features. The envelope feature E ∈ ℝ𝟜𝟜×T  consists of the following four 

envelopes: Hilbert 𝐸𝐸ℎ𝑏𝑏 ∈  ℝ𝟙𝟙×𝑇𝑇 , homomorphic 𝐸𝐸ℎ𝑚𝑚 ∈ ℝ𝟙𝟙×𝑇𝑇 , wavelet 𝐸𝐸𝑤𝑤𝑤𝑤 ∈

ℝ𝟙𝟙×𝑇𝑇, and PSD 𝐸𝐸𝑝𝑝𝑠𝑠𝑝𝑝 ∈ ℝ𝟙𝟙×𝑇𝑇, where T denotes the time of the sample. These 

four envelopes are concatenated along the channel axis. The scalogram feature 

S ∈ ℝF×T is transformed using a continuous wavelet transform. F is the number 

of frequency bins (scale bins) and T is the time length of the sample. 
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Figure 5. The architecture of the proposed fully convolutional hybrid fusion 

network. 
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A. Intermediate representation for envelope 

Inspired by [14], the envelope representation module Me  is a U-Net 

architecture. The convolution block consists of two 1D convolution layers with a 

kernel of size of 3 and is activated with a rectified linear unit (ReLU) [27]. Zero 

padding is applied before the convolution operation to prevent dimensional 

reduction of the feature map. We employ a dropout [28] between the convolution 

layers to prevent overfitting. In the encoding path, 1D max-pooling is applied, 

and the number of feature maps is doubled. A skip connection between the 

encoder and decoder blocks is used to improve the gradient flow. The decoding 

path uses 1D upsampling to recover the original time resolution. 

𝐄𝐄 =  �𝐸𝐸{hb},𝐸𝐸{ℎ𝑚𝑚},𝐸𝐸{wv},𝐸𝐸{𝑝𝑝𝑠𝑠𝑝𝑝}�, 

RE = Me(𝐄𝐄; θe)  (3) 

where [] denotes concatenation, θe  are the parameters of the envelope 

representation module, and RE ∈ RCE×T is the IR for the envelope. 

 

B. Intermediate representation for scalogram 

The scalogram representation module Ms  has the same architecture as Me ; 

however, 2D convolution is applied instead of 1D convolution. The convolution 

block consists of two 2D convolution layers with a 3 × 3 kernel and is activated 

with ReLU. Batch normalization [29] is used for training stability. An adaptive 

average pooling (AAP) [30] layer is attached to the end of the Ms module. The 

AAP aggregates the deep scalogram representation effectively along the 

frequency axis, enabling the integration of two IRs from the envelope module 

Me and the scalogram module Ms for all times. 

R𝑆𝑆 =  AAP�Ms(S;θ𝑠𝑠)� (4) 

where θs is a parameter of the scalogram representation module. 
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3. Structure of fusion and inference module 

A. Naïve fusion 

Before the fusion with IRs from envelope and scalogram, we tested naïve 

feature fusion to test whether the combination has a complementary effect. This 

naïve fusion has two approaches early fusion and late fusion. 1) Early fusion: 

This combines the heterogeneous input features, and then the combined input 

feature is interpreted by the submodule Me. 2) Late fusion: This combines the 

output probability from each submodule Me  and Ms . This means that each 

module is trained independently, and then the output probabilities from Me and 

Ms are averaged, as in the model ensemble methods. 

 

In this study, we tested three naïve feature fusions: 1) Early fusion between 1D 

envelope and 1D scalogram (early fusion), 2) Late fusion between 1D envelope 

and 1D scalogram (late fusion 1), and 3) Late fusion between 1D envelope and 

2D scalogram (late fusion 2). 

 

For the experiments, we used 1D scalogram by transforming 2D scalogram. In 

1D scalogram, the frequency axis of 2D scalogram is concatenated along the 

channel axis, which induces various frequency features at that time point. The 1D 

envelope and 1D scalogram are concatenated along the channel axis as inputs for 

early fusion. Therefore, the envelope representation module Me, which consists 

of a 1D convolution layer, has interpreted envelope and frequency features over 

the same time point. For late fusion, we tested two late fusions. The difference 

between 1D scalogram and 2D scalogram is clear from the results of this 

experiment. The 1D convolutional kernel of Me strides along the time axis and 

analyzes all frequency features. By contrast, the 2D convolutional kernel of Ms 

analyzes adjacent time and frequency features. 
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B. Hybrid fusion 

There are many ways to combine the features of two different domains, such 

as element-wise summation and outer product. We integrate two IRs from the 

envelope (RE) and a scalogram (RS) instead of naïve fusion. This fusion approach, 

called hybrid fusion [20], [21], is effective for fusing heterogeneous features from 

different perspectives on different dimensions.  

 

In Hybrid fusion, The IRs RE  and RS  from each submodule Me  and Ms 

are interpreted by fusion module Mf . In this study, we tested four IR fusion 

methods. 1) element-wise concatenation, 2) element-wise summation, 3) 

element-wise product, and 4) multi-modal factorized bilinear pooling (MFB) [19]. 

To implement the MFB-based fusion, we refer to the following formula from [19] : 

𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑇𝑇𝑊𝑊𝑖𝑖𝑦𝑦 (5) 

where 𝑥𝑥 ∈ ℝ𝑚𝑚  is the IR from envelope feature, 𝑦𝑦 ∈ ℝ𝑛𝑛  is the IR from 

scalogram feature, 𝑊𝑊𝑖𝑖 ∈ ℝ𝑚𝑚×𝑛𝑛  is feature projection matrix, 𝑧𝑧𝑖𝑖 ∈ ℝ  is the 

output of MFB. The aim of MFB is to obtain 𝑜𝑜-dimensional output by learning 

𝑊𝑊 = [𝑤𝑤𝑖𝑖, … ,𝑊𝑊𝑜𝑜] ∈ ℝ𝑚𝑚×𝑛𝑛×𝑜𝑜. After several modifications in [19], Equation 5 can 

be rewritten as follow: 

𝑍𝑍 = 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑈𝑈�𝑇𝑇𝑥𝑥 ∘  𝑉𝑉�𝑇𝑇𝑦𝑦,𝑘𝑘) (6) 

where 𝑈𝑈� ∈ ℝ𝑚𝑚×𝑘𝑘𝑜𝑜  and 𝑉𝑉� ∈ ℝ𝑛𝑛×𝑘𝑘𝑜𝑜 , ∘  is element-wise product and 𝑘𝑘  is the 

latent dimension of factorized matrices. 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the method of using a 

1D non-overlapping window with size k to perform sum pooling on x. After 

𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑍𝑍  was normalized with power normalization and L2 

normalization. 

 

At the end of the fusion module Mf, there is a 1D convolution layers with a 

kernel of size of 1, which takes the fused IRs and outputs the class probabilities 

p� ∈ ℝC×T  for all times. C  is the number of classes (S1, S2, systolic, and 
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diastolic) and T is the time length of the sample. 

�̂�𝑝 =  Mf(𝑍𝑍;θf) (7) 

where θf is a parameter of the inference module. 
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III. EXPERIMENTAL EVALUATION 

1. Dataset 

In this study, we used the public dataset from PhysioNet/CinC Challenge 2016 

[31]. This dataset consists of 792 heart sound recordings from 135 patients. 

Among them, 406 heart sounds were collected from patients with heart disease 

and the remaining 386 were collected from healthy individuals. Heart sounds 

were recorded at different points in the chest, with recording times varying from 

1 to 35s, and all signals were sampled at 1 kHz. Based on a synchronized 

electrocardiogram, heart sounds are annotated for S1, S2, systolic, and diastolic. 

The synchronization was performed with the agreement between the five R-peak 

and final T-wave detectors.  

 

To evaluate general performance, external validation was performed with an 

open dataset [32], which is not used for training. The dataset consists of 69 paired 

PCGs and ECGs, obtained from a total of 24 subjects. Eight of these were 

recorded in a comfortable (stressless) environment for 30 seconds, and the 

remaining 61 were recorded in a walking, running and cycling environment for 

30 minutes. 

 

2. Implementation details 

We performed 10-fold cross-validation to evaluate segmentation performance. 

For the 10-fold cross-validation, the training dataset was divided into ten subsets. 

Then, nine subsets were used to train the network, and the remaining subset was 

used for the validation. The result of each validation fold was evaluated using the 

best-performance model, which was determined by the lowest validation loss. To 

prevent performance overestimation, it is important to ensure that each patient's 

data are not duplicated in the training and validation datasets. The process was 

repeated ten times for cross-validation. 
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We sampled a local patch from the PCG signal for generalized segmentation 

performance. Local patches were sampled from the preprocessed PCG signal 

using the defined sampling rules. The sampling rules were as follows: length of 

sample patch = 64, 128, 256, and 512, and stride = 1/8 of the patch length. For 

example, if the sample length is 64, approximately 0.64 s of heart sound is 

sampled. The adaptive moment estimation (Adam) optimizer [33] with a weight 

decay was used. The learning rate was 1e-4, and the weight decay rate was 1e-2. 

The batch size was 64, number of training epochs was 150, and dropout rate was 

0.3. The weights of each layer were determined using the categorical cross-

entropy loss function. We set MFB factor number k to 2, and output dimension 

o to 32. The proposed network was implemented using PyTorch 1.5.0 [34]. The 

model training took approximately one hour on our workstation, with 32 GB of 

RAM, an Intel Xeon(R) E-2174G CPU, and an Nvidia RTX-5000 GPU. 

 

3. Evaluation Metrics 

We employed three evaluation metrics to compare our proposed method with 

conventional methods [9], [14], [16]. The three metrics were accuracy (ACC), 

positive predictive value (PPV), and sensitivity (SEN). ACC is calculated by 

comparing the predicted sequence s�(t) labels with the ground truth sequence 

s(t)  labels, which means that the predicted labels are correctly positioned 

compared to the ground truth labels. PPV and SEN are focused on the centers of 

S1 and S2. A true positive (TP) is counted when the center of S1 and S2 of s�(t) 

is closer than 60 ms from the center of the corresponding S1 and S2 of s(t). Any 

positive except for true-positive was considered a false-positive. PPV was 

calculated using the following equation: 

PPV = #TP 
#TP +#FP 

 (6) 
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where # is the number of values. SEN is calculated using the following equation: 

SEN = #TP 
(#S1 +#S2 )in G.T

 (7) 

The evaluation was performed for each patient. The inference was performed 

with sampled patches and then merged to obtain the original length. 

 

4. Results 

A. Performance comparison by feature 

We compared the segmentation performance of the 1D envelope feature and 

the 2D scalogram feature. Segmentation was performed in four classes: S1, 

systole, S2, and diastole. The post-processing method MAX [14] was applied 

after the segmentation. The MAX operation replaces the out-of-order predicted 

values with appropriate values to fit the context.  

 

For 1D envelope-based segmentation, the best performance was ACC = 0.9377, 

PPV = 0.9625, and SEN = 0.9673 when the patch length N was 512 and the stride 

was 64. The segmentation performance improved when the length of the sample 

patch increased. For 2D scalogram based segmentation, the best accuracy was 

superior to 1D envelope-based segmentation, with 1D envelope vs. 2D scalogram 

values as follows: ACC: 0.9377 vs. 0.9385, PPV: 0.9625 vs. 0.9604, SEN: 0.9673 

vs. 0.9614 with a patch length N of 512 and a stride of 64. The performance is 

summarized in Table 1. 
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Table 1. Experimental results of single methods 

 
N is the length of each patch. S is the stride between patches. The performance 

evaluation metrics are Sample Accuracy (ACC), Positive Predictive Value (PPV), 

and Sensitivity (SEN). Boldface indicates the best value. 

  

Envelope based Scalogram based
ACC PPV SEN ACC PPV SEN

N=64, S=8 0.9204 0.9429 0.9436 0.9211 0.9259 0.9261
N=128, S=16 0.9334 0.9539 0.9552 0.9359 0.9528 0.9534
N=256, S=32 0.9368 0.9579 0.9594 0.9359 0.9553 0.9567
N=512, S=64 0.9377 0.9625 0.9673 0.9385 0.9604 0.9614
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Figure 6. Comparison of segmentation performance with envelope feature and 

scalogram feature. Black line indicates PCG signal, red line indicates ground 

truth labels, yellow dotted line indicates 1D envelope-based method, and green 

dashed line indicates 2D scalogram-based method. 
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B. Performance comparison of the fusion methods 

The best performance for early fusion was ACC = 0.9321, PPV = 0.9608, and 

SEN = 0.9788, with a patch length N of 512 and a stride of 64. When early fusion 

was compared with scalogram-based segmentation, PPV and SEN were higher in 

early fusion, but the ACC was higher in 2D scalogram (early fusion vs. 2D 

scalogram, ACC: 0.9321 vs. 0.9385, PPV: 0.9608 vs. 0.9604, SEN: 0.9788 vs. 

0.9614). In early fusion, the 1D convolution kernel strides along the time axis and 

analyzes all concatenated envelope and frequency features simultaneously.  

 

Late fusion 1 exhibited higher performance than early fusion in all metrics 

(early fusion vs. late fusion 1, ACC: 0.9321 vs. 0.9359, PPV: 0.9608 vs. 0.9717, 

SEN: 0.9788 vs. 0.9792), with a patch length N of 512 and stride of 64. Late 

fusion 2 exhibited higher performance than late fusion 1 on ACC and PPV (late 

fusion 1 vs. late fusion 2, ACC: 0.9359 vs. 0.9456, PPV: 0.9717 vs. 0.9767, SEN: 

0.9792 vs. 0.9774), with a patch length N of 512 and a stride of 64. From this 

Table 2, analyzing a scalogram in a 2D domain is more helpful in improving 

performance than analyzing it in a 1D domain. These results indicate that a 

processing the scalogram in 1D is not suitable for inducing IR that has sufficiently 

learned the characteristics of the scalogram. Conversely, the 2D scalogram is 

appropriate for inducing proper IR and hybrid fusion 2 showed the best 

segmentation accuracy. 
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Table 2. Experimental results of naïve 

fusion methods 
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For hybrid fusion, we tested four hybrid fusion types: 1) elementwise 

concatenation, 2) elementwise summation, 3) elementwise product, and 4) MFB 

pooling. To find the optimal hyperparameters of MFB, we experimented with 

various size of k and o in the Table 3. If o is greater than 32, one more convolution 

layer was added in the final convolution block. 
 

 



31 

All experiments in this table used patch size 512, and stride 64. 

The performance evaluation metrics are Sample Accuracy 

(ACC), Positive Predictive Value (PPV), and Sensitivity (SEN). 

Boldface indicates the best value. * means that two convolution 

layer were used in the last convolution block. 

Table 3. Experimental results of MFB hyperparameters 

 

MFB hyperparameters
k / o ACC PPV SEN

1 / 32 0.9434 0.9656 0.9824

2 / 8 0.9412 0.9631 0.9823

2 / 16 0.9439 0.9628 0.9822

2 / 32 0.9455 0.9688 0.9832

2 / 64* 0.9430 0.9662 0.9823

3 / 32 0.9437 0.9639 0.9826

3 / 64* 0.9431 0.9637 0.9831

4 / 32 0.9388 0.9632 0.9820

5 / 32 0.9429 0.9650 0.9830
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After finding an optimal hyperparameters of MFB, we compared the 

performance by fusion types in Table 4. As a result, MFB outperforms other 

compared fusion types: ACC: 0.9455, PPV: 0.9688, and SEN: 0.9832 with a patch 

length N of 512 and stride of 64. This MFB fusion also superior to late fusion 2 

in terms of the SEN, which was the best fusion methods among the tested naïve 

feature fusion methods (MFB fusion vs. late fusion 2, ACC: 0. 9455 vs. 0.9456, 

PPV: 0. 9688 vs. 0.9767, SEN: 0. 9832 vs. 0.9774) 
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Figure 7. Comparison between the hybrid fusion method and the single feature-

based methods. Black line indicates PCG signal, red line indicates ground truth 

labels, yellow dotted line indicates envelope-based method, green dashed line 

indicates scalogram-based method, and blue dashed-dotted line indicates MFB-

based hybrid fusion method. 



35 

The result validates that the proper IRs from different features have 

complementary impacts on segmentation performance, and we experimentally 

demonstrate that the efficient and effective pooling approach can maximize the 

feature analysis performance. The experimental results are presented in Table 4. 

 

C. External validation 

To find points S1 and S2, the code provided by the challenge [32] was used. In 

this code, an R-peak is calculated from the synchronized ECG, and a systolic 

period is obtained by calculating an interval from the R-peak to the next R-peak. 

The points S1 and S2 of the PCG are obtained through the calculated systolic 

period and R-peak. However, several S1 and S2 points were located incorrectly 

due to the subject's voice and various noises. In this case, it is explained that the 

expert modified it manually. The evaluation was conducted with the best 

performance model and the result of the external validation are as follows: ACC: 

0.7721, PPV: 0.7854, and SEN: 0.9743. It was validated with the most optimal 

patch size 512 and stride 64 proved in the above experiments. 
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IV. DISCUSSION 

In this paper, we proposed a novel deep fusion network for PCG segmentation 

that jointly analyzes envelope and scalogram features. Furthermore, we 

experimentally demonstrated that the heterogeneous features from the PCG 

signal have complementary impacts, and the proposed fusion method shows 

state-of-the-art PCG segmentation performance. 

 

In the independent use of features, 2D scalogram-based segmentation 

outperformed 1D envelope-based segmentation (Table 1). The signal envelope 

describes the change in the peak amplitude over time, whereas the scalogram 

describes the change in frequency over time. Therefore, the scalogram feature can 

consider a frequency feature that are not in the envelope feature.  

 

The results indicate that the 2D scalogram provides better time--frequency 

resolution features for PCG segmentation than the combination of multiple 1D 

envelope features. This means that it is more efficient to analyze frequency 

components than amplitude features of PCG when considering a single feature.  

 

Figure 6 shows the segmentation results of the 1D envelope-based method and 

2D scalogram-based method on abnormal heart sound in the test set. The 

scalogram-based segmentation showed robust performance against noise because 

it focused on the frequency components of the signal. On the other hand, the 

envelope-based method is vulnerable to noise because it depends mainly on the 

amplitude of the signal. However, since the envelope feature can consider the 

patterns of PCG over time, it is important to consider the overall characteristics 

of the heart sounds. 
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In the next experiment, we tested naïve fusion and hybrid fusion with IRs. In 

naïve fusion, early fusion was used to validate whether combinations of different 

features can have complementary effects. And late fusion was used to validate 

whether it is better to consider both features at the same time or to combine the 

results after learning separately.  

 

In early fusion, we transformed the 2D scalogram into a 1D scalogram. Early 

fusion was more efficient in terms of computational cost because it used only the 

1D convolutional layers of Me . By fusing envelope features and frequency 

features on the same network, we demonstrated that using heterogeneous features 

has complementary effects and provides better performance than using a single 

feature.   

 

In late fusion, fusion occurred after the learning and evaluation of each feature-

based model were completed. It shows better performance than early fusion, 

indicating that it is more effective to fuse after sufficiently learning the 

characteristics of the input data. However, late fusion is not intended to have 

proper IRs owing to independent optimization and the combination of outputs 

such as an ensemble. In addition, since two networks need to be trained, it takes 

more time and cost of training than training a single network. 

 

The aim of hybrid fusion is to find a cost-effective, high-performance fusion 

method by fusing IRs that have sufficiently learned the features of two 

heterogeneous input datasets within one network. We used the best performance 

fusion method by experimentally comparing recently proposed methods with 

classical feature fusion methods. The experimental results demonstrated the 

importance of IRs in combining heterogeneous features. We found that 

combining the IRs after proper conversion is more effective than simply 

calculating and combining the IRs. The proposed deep fusion network exhibited 
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state-of-the-art PCG segmentation performance as a single network, with ACC = 

0.9455, PPV = 0.9688, and SEN = 0.9832 

 

Figure 7 compares hybrid fusion, envelope-based segmentation, and 

scalogram-based segmentation. Envelope and scalogram-based methods in heart 

sound with noise do not accurately detect S1 and S2 regions. On the other hand, 

the hybrid fusion-based method proposed in this paper shows stronger S1 and S2 

segmentation performance by comprehensively considering the continuous 

temporal features and the frequency features of the heart sounds. 

 

We also compared the segmentation performance of the proposed method with 

the methods proposed by Fernando et al. [16] and Renna et al. [14]. The method 

by Fernando et al. [16], based on a BiLSTM for sequential modeling and attention 

techniques, achieved ACC = 0.969, PPV = 0.963, and SEN = 0.972 on the same 

PhysioNet/CinC Challenge 2016 dataset. By contrast, the proposed deep fusion 

network (MFB pooling based hybrid fusion) exhibited better performance in 

terms of PPV and SEN (hybrid fusion vs. [16], ACC: 0.946 vs. 0.969, PPV: 0.969 

vs. 0.963, SEN: 0.983 vs. 0.972). The proposed method achieved a more robust 

segmentation performance without a sequential modeling method.  

 

The method proposed by Renna et al. [14] achieved a segmentation 

performance of ACC = 0.937, PPV = 0.958, SEN = 0.958. Our fusion method 

outperformed their method on all metrics. Their method is based on 1D CNN with 

1D envelope features, and the HMM and HSMM were additionally utilized for 

sequential modeling. The sequential modeling methods utilized contribute to the 

performance improvement but are not effective on all metrics. 
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V. CONCLUSION 

In this paper, we proposed a fully convolutional deep fusion network that 

comprehensively analyzes heterogeneous envelopes and scalogram features. We 

demonstrated the benefit of a comprehensive analysis of heterogeneous features 

and state-of-the-art PCG segmentation accuracy on a single network. Since only 

a few specialists can detect abnormal heart sounds using auscultation, various 

diagnostic modalities such as electrocardiography, ultrasound imaging, and 

Doppler techniques have contributed to reducing the clinical use of auscultation.  

 

To use it in an actual medical environment, data and verification from the 

actual medical field are required; this will be the subject of future research. 

Furthermore, since the segmentation of S1 and S2 in heart sounds is finally 

intended to help detect effective cardiac murmur, so we plan to develop artificial 

intelligence technology for detecting cardiac murmur based on the method 

proposed in this paper. 
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ABSTRACT (IN KOREAN) 
 

심장음의 S1과 S2 식별을 위한 완전 컨볼루션 기반 

하이브리드 융합 네트워크 

 

<지도교수 장혁재> 

 

연세대학교 대학원 의과학과 

 

정 주 영 

 

 

 

 

심장 청진법은 간단하고 저렴하며 심장 질환의 조기 진단에 도움을 

준다. 그러나 심장 청진음을 듣고 심장 질환을 구별하는 것은 상당한 

노력과 훈련이 필요하기 때문에, 심장 청진음을 통해 비정상적인 

심장 소리를 감지하는 것은 소수의 전문가만이 가능했다. PCG 

(Phonocardiogram)는 심장 청진음을 녹음한 것으로, 심장 청진의 

임상적 사용을 지원하기 위해 디지털화된 PCG 분석 알고리즘은은 

꾸준히 연구되어 왔다. PCG 분석에서 가장 중요한 것 중에 하나는, 

심장음의 주성분인 첫 번째 심장음(S1)과 두 번째 심장음(S2)을 

구별하는 것이다.  

 

본 연구에서는 심장음의 서로 다른 특성을 갖는 포락선 특징과 

스칼로그램 특징을 종합적으로 분석하는 완전 컨볼루션(합성곱) 연산 
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기반의 하이브리드 융합 네트워크를 제안한다. 본 논문에서 제안한 

융합 방법의 강건함을 증명하기 위해 세 가지 변형인 초기, 후기 및 

하이브리드 융합 방법 또한 평가했다. 특징 융합 방법들 중, 서로 

다른 모달리티를 입력으로 받은 후 이중 선형 풀링 기반(MFB)으로 

특징을 융합하는 하이브리드 융합이 최상의 결과를 보였다. 

구체적으로 0.9455의 정확도, 0.9688의 양의 예측값, 0.9832의 민감도로 

현존하는 가장 높은 성능을 보였다.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            

핵심되는 말 : 심장음, 심장 청진음, 인공지능, 합성곱 신경망, 

하이브리드 융합, 포락선, 스칼로그램 
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