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ABSTRACT 

 

Development and validation of a prediction model using sella magnetic 

resonance imaging-based radiomics and clinical parameters for 

diagnosis of growth hormone deficiency and idiopathic short stature 

 

 

 

 

For differential diagnosis of growth hormone deficiency (GHD) and idiopathic short stature (ISS), 

growth hormone provocation test is the gold standard test, but it is very invasive and has limited 

validity and reproducibility. Thus, investigations on prediction model for differential diagnosis of 

GHD and ISS are required.  

Radiomics, a method of extracting various features using mathematical algorithm, can find 

molecular profile and disease characteristics which cannot be detected by human eye. Based on 

concept of information in biomedical images which reflects underlying pathophysiology, radiomics 

converts digital medical images into mineable high-dimensional data. However, investigations on 

pituitary gland using radiomics in children are limited. 

 Therefore, we aim to develop a machine learning-based prediction model for diagnosis of GHD 

and ISS using radiomics including sella magentic resonance imaging (MRI) and clinical parameters 

and validate the prediction model with external validation. 

A total of 293 children with normal sella MRI findings in the training set and 47 children in the 

test set from different hospitals were enrolled. A total of 186 radiomic features were extracted from 

the pituitary glands for both the T2-weighted and contrast-enhanced T1-image. The clinical 

parameters included auxological data, insulin-like growth factor-I (IGF-I), and bone age. The 

XGBoost algorithm was used to train the prediction models. Internal validation was conducted using 

five-fold cross-validation on the training set, and external validation was conducted on the test set. 

Model performance was assessed by plotting the area under the receiver operating characteristic 

curve (AUC). The mean absolute Shapley values were computed to quantify the impact of each 

parameter.  
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The AUCs of the clinical, radiomics, and combined models were 0.684, 0.691, and 0.830, 

respectively, in the external validation. Among the clinical parameters, the major contributing 

factors to prediction were body mass index standard deviation score (SDS), chronological age‒bone 

age, weight SDS, growth velocity, and IGF-I SDS in the clinical model. Among the radiomics 

features, Inverse Variance from T2 Weighted image and Energy from contrast-enhanced T1-image 

were the major factors contributing to the radiomics model. In the combined model, radiomic 

features added incremental value to the prediction.   

In conclusion, this study underscores the potential of radiomics-based diagnostic models to 

overcome the limitations of conventional modalities for diagnosis of GHD and ISS. These findings 

substantiate the pivotal roles of radiomics and machine learning in pediatrics into new enhanced 

diagnostics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                   

Key words : growth hormone deficiency, idiopathic short stature, machine learning, radiomics
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1. INTRODUCTION 

Short stature is defined as a height less than the third percentile or more than two standard 

deviations below the average height for those of the same age, sex, and ethnicity. In children, short 

stature is related to medical problems and lifestyle including exercise and diet as well as 

psychosocial performance.1-3 Short stature is usually a normal variation among the population, 

Negative stereotypes related to short stature is prevalent although children with chief complaint of 

short stature is within normal range, which may lead to psychosocial problems.3,4 Among etiologies 

of short stature, growth hormone (GH) deficiency (GHD) and idiopathic short stature (ISS) account 

for the most common causes.2 GH, a peptide hormone secreted from pituitary gland, stimulates 

linear bone growth and cell reproduction, and GHD is defined as a condition induced by insufficient 

secretion of GH.1,4 Whereas, ISS is defined as short stature without evidence of systemic, endocrine, 

nutritional, or chromosomal abnormalities.1,4 

For the diagnosis of GHD, meticulous evaluation, including the measurement of anthropometric 

data, bone age, insulin-like growth factor I (IGF-I), and GH provocation tests, is required, among 

which the GH provocation test is considered the gold standard.5,6 GHD can be diagnosed in children 

with short stature who show insufficient GH levels after at least two GH provocation tests. However, 

the GH provocation test is extremely invasive and burdensome to patients and requires 

hospitalization and multiple blood samplings; therefore, investigations on noninvasive screening 

methods to replace GH provocation test are required.7 

Etiologies of GHD include pathological causes such as brain tumor and hypoxic brain damage; 

therefore, sella magnetic resonance imaging (MRI) is required for the evaluation of GHD.2 Several 

studies investigated difference of pituitary volume in sella MRI according to etiologies of short 

stature, and Kessler et al. reported that pituitary volume is different between children with GHD and 

ISS and increases with increase in age.8-11 

Meanwhile, artificial intelligence (AI) is increasingly being utilized as a novel approach in research 

and diagnosis involving medical imaging. In the landscape of medical imaging, the journey of AI 

began in 1955 with John McCarthy's definition that every aspect of learning or any other feature of 

intelligence can in principle be so precisely described that a machine can be made to simulate it.12 

This vision gave rise to supervised machine learning, the cornerstone of the radiological AI, where 

algorithms are trained to recognize pathologies such as tumors in computed tomography (CT) or 
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MRI scans based on gold standard markers.12,13 These algorithms refine their diagnostic prowess by 

learning from numerous cases and then applying this knowledge to identify these markers in new 

test cohort with unseen images. 

However, classical AI in imaging analysis has limitations.14 Information in the diagnostic process 

remains hidden within the computational black box as well as just a simple answer such as presence 

of a lesion is provided. Thus, radiomics a method of extracting various features using mathematical 

algorithms, emerges as a revolutionary technique addressing these shortcomings by offering a 

quantitative image analysis framework.13,15 Radiomics can be used to determine molecular profiles 

and disease characteristics that cannot be detected by the human eye.14,16 Based on the concept of 

information in biomedical images that reflects the underlying pathophysiology, radiomics converts 

digital medical images into mineable high-dimensional data.14 New imaging biomarkers generated 

by radiomics can be integrated with clinical data such as genetic information, and overcome 

limitation of predicting diseases with clinical parameters.15 
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Figure 1. Development AI in radiology and radiomics 

Abbreviation: AI, artificial intelligence. 
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AI imaging analysis has been investigated also in pediatrics.13 In a systematic review, 5 of 6 studies 

showed that AI was superior to human experts for diagnosis of tumor.17 Our previous study 

demonstrated the program developed using AI showed a high level of precision in determining bone 

age and final adult height for Korean youths.18 However, investigations and applications on AI 

imaging analysis in children and adolescents are still limited compared to that in adult. Moreover, 

although quantitative analyses of medical images have been performed in adults because numerous 

radiomic features can be extracted and analyzed using radiomics, investigations of the pituitary 

gland using radiomics in children are limited.14,19,20  

Notably, clinical parameters associated with GHD diagnosis have been investigated in several 

studies that included anthropometric data, such as height and body mass index (BMI), and laboratory 

tests such as IGF-Ⅰ.21-24 However, literature regarding prediction models for the differential diagnosis 

of GHD and ISS in children are currently lacking, especially regarding prediction models using both 

radiomics and clinical parameters. 

Therefore, this study aimed to develop a machine-learning-based prediction model for the 

diagnosis of GHD and ISS using radiomics and clinical parameters. Our objectives were to (1) 

extract radiomic features using T2-weighted image (T2WI) and contrast enhanced T1-weighted 

image (T1C) in sella MRI; (2) develop a prediction model using radiomic features and clinical 

parameters; (3) compare predictability among the models using radiomics, clinical parameters, and 

both parameters; (4) estimate the accuracy of the predictive models with external validation; and (5) 

evaluate the contribution of each clinical parameter and radiomic feature from the prediction models. 

To achieve this goal, we investigated the following contents: (1) baseline characteristics of the 

participants; (2) ROC curve analyses of clinical, radiomics, and combined models; and (3) Shapley 

value of clinical parameters and radiomic features 

 

2. MATERIALS AND METHODS 

2.1. Study population (Figure 2) 

To develop the prediction model for diagnosis of GHD and ISS, electronic records of children aged 

18 years or younger with short stature who underwent GH provocation test and sella MRI between 

March 2011 and July 2020 were extracted from the Severance Clinical Research Analysis Portal of 

Severance Hospital. Among these participants, subjects with endocrinological or systemic pathology 
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such as skeletal dysplasia, small for gestational age, genetic disease including chromosomal 

abnormality, Russel-Silver syndrome, and Prader-Willi syndrome, and chronic disease including 

cancer, congenital heart disease, and systemic lupus erythematosus and/or those with pituitary lesion 

including tumor and empty sella were excluded for the final derivation set. For external validation 

set, electronic records of children aged 18 years or younger with short stature who underwent GH 

provocation test and sella MRI between September 2020 and November 2022 were extracted from 

the Severance Clinical Research Analysis Portal of Yongin Severance Hospital. Exclusion criteria 

for final external validation set was same with those for derivation set. Finally, a total of 293 children 

and adolescents with sella MRI in the training set and 47 children and adolescents in the test set 

were enrolled. 
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Figure 2. Study flow. 

* Endocrinological or systemic pathology: hypopituitarism, adrenal insufficiency, hyperthyroidism 

or hypothyroidism except euthyroid state, skeletal dysplasia, small for gestational age, genetic 

disease including chromosomal abnormalities, Russel-Silver syndrome, Prader-Willi syndrome, and 

chronic diseases including cancer, including a history of brain irradiation, congenital heart disease, 

and systemic lupus erythematosus. 

**Pituitary lesion: pituitary tumor and/or empty sella 

Abbreviation: EHR; electronic health record, GH; growth hormone, MRI; magnetic resonance 

imaging, GHD; growth hormone deficiency, ISS; idiopathic short stature. 
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2.2. Definition of GHD and ISS 

GHD was defined as follows: (1) height below the third percentile for age, sex, and race based on 

the 2017 Korean National Growth Charts;25 (2) peak GH level below 10 ng/mL after stimulation in 

two types of GH provocation tests using insulin, arginine, and/or L-dopa; and (3) children without 

genetic, endocrine, or systemic abnormalities.2,26 

Among the participants with GHD, severe GHD was defined as follows: (1) height below the third 

percentile for age, sex, and race based on the 2017 Korean National Growth Charts;25 (2) peak GH 

level below 5 ng/mL after stimulation in two types of GH provocation tests using insulin, arginine, 

and/or L-dopa; and (3) children without genetic, endocrine, or systemic abnormalities.27 

ISS was defined as height below the third percentile for individuals of the same age, sex, and race, 

with no other identifiable causes, including genetic, endocrine, or systemic pathologies.2,25,26 

 

2.3. Clinical parameters  

Height was recorded with an accuracy of 0.1 cm, whereas body weight was measured using an 

electronic load with a precision of 0.01 kg. BMI was calculated by dividing body weight in 

kilograms by the square of height in meters (kg/m2). Height, weight, and BMI were expressed as 

standard deviation scores (SDS) using the 2017 Korean National Growth Charts.25 Children were 

categorized based on their BMI into three groups: normal (<85th percentile), overweight (85th–95th 

percentile), or obese (≥95th percentile). Mid-parental height (MPH) was determined by calculating 

the average height of the parents and adjusting it by subtracting 6.5 cm for girls and adding 6.5 cm 

for boys. Puberty was considered at any pubertal development with Tanner stage ≥ 2.28,29 

Growth hormone (GH) and insulin-like growth factor I (IGF- I) levels were determined using a 

chemiluminescence immunoassay using a LIAISON®  XL immunoassay system (DiaSorin, S.p.A., 

Saluggia, Italy) using the human GH (hGH) reagent traceable to World Health Organization (WHO) 

2nd International Standard 97/574 and the IGF-I reagent traceable to WHO 1st International 

Standard IGF-1 National Institute for Biological Standards and Control (NIBSC) code 02/254, 

respectively, in Severance Hospital. IGF binding protein 3 (IGFBP-3) was determined by an 

immunoradiometric assay using the IGFBP-3 immunoradiometric assay reagent (Immunodiagnostic 

Systems, UK).  

In Yongin Severance Hospital, GH, IGF-I, and IGFBP-3 levels were determined using a 

electrochemiluminescence immunoassay on cobas®  e801 immunoassay system (Roche Diagnostics 
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GmbH, Mannheim, Germany). GH was determined using Elecsys hGH reagent traceable to the 

international reference preparations, NIBSC code 98/574, at Seoul Clinical Laboratories, as a send-

out test for the patients. Serum levels of IGF-Ⅰ and IGFBP-3 were determined using the Elecsys IGF-

1 reagent standardized against WHO 02/254 internal standards and Elecsys IGFBP-3 reagent 

standardized against IDS iSYS®  IGFBP-3, respectively. 

SDS values of IGF-Ⅰ and IGF binding protein 3 (IGFBP-3) were calculated based on reference data 

for the Korean population.30 Bone age was assessed according to the Greulich-Pyle method by 

experienced pediatric endocrinologists.31 In addition, we calculated chronological age‒bone age 

(CA‒BA). 

 

2.4. Image acquisition 

A. The training set: 

The participants were scanned using various 3.0 T magnetic resonance imaging (MRI) units 

(Achieva; Philips Medical Systems, Amsterdam, the Netherlands). Coronal view of T2-weighted 

image (T2WI) and contrast-enhanced T1-weighted image (T1C) which are the most informative 

representative series in sella MRI were included in the imaging protocols. The sequence parameters 

of the T2WI and T1C were as following: TR/TE=2129/90 ms; slice thickness=1.0 mm; intersection 

gap=0 mm; field of view (FOV)=36×24 cm; flip angle = 90; pixel spacing=0.188×0.188 mm; and 

TR/TE = 2000/10 ms; slice thickness=1.2 mm; intersection gap = 0 mm; FOV= 32 × 24 cm; flip 

angle = 90; and pixel spacing = 0.391 × 0.391 mm.  

 

B. The test set: 

MRI data were acquired using a 3T MRI scanner (Ingenia Elition X or Ingenia CX, Philips 

Healthcare, Best, the Netherlands) with a 32-channel head coil. The imaging protocols included 

coronal view of T2-weighted image (T2WI) and contrast-enhanced T1-weighted image (T1C) which 

is representative series in sella MRI. The sequence parameters of the T2WI and T1C are as following: 

TR/TE=2132/80 ms; slice thickness=1.5 mm; spacing between slices=1.5 mm; FOV=20×20 cm; 

flip angle = 90; pixel spacing=0.391×0.391 mm and TR/TE = 608/12 ms; slice thickness=1.5 mm; 

spacing between slices=1.5 mm; FOV= 20 x 20 cm; flip angle = 90; pixel spacing = 0.391 x 0.391 

mm, respectively. 
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2.5. Image processing and radiomics feature extraction 

The T2WI and T1C from the sella MRI were examined, and the entire pituitary gland was identified 

within the region of interest. The outermost borderline of the sliced pituitary gland was outlined. 

Following the conversion of the T2WI and T1C from the sella MRI, which were in Digital Imaging 

and Communication in Medicine format, into NIfTI files, the images were resampled to a resolution 

of 1×1×1 mm. In addition, N4 bias correction was used for a correction of low-frequency intensity 

non-uniformity.32 The images were performed by a radiologist with a 10-year experience, who was 

unaware of the participants' clinical information. An open-source software (Medical Image 

Processing, Analysis, and Visualization; Center for Information Technology, National Institutes of 

Health, Bethesda, MD, USA) was used for the analysis. Region of the interest of the pituitary gland 

in each image slice was obtained semi-automatically using edge detection, signal intensity 

thresholding, and region growing. To ensure the reliability of the segmentation, another radiologist 

with 10 years of experience independently conducted the segmentation of 10% of the final images 

selected from the dataset, which were chosen randomly. The Dice coefficient was calculated to 

assess the agreement between the segmentation masks generated by the two radiologists. Next, 

Pyradiomics 2.1.0 (http://www.radiomics.io/pyradiomics.html) was used for extraction of the 

radiomic feature with 128 fixed bin counts.33 Finally, we extracted 14 shape, 18 first-order, 24 gray-

level co-occurrence matrix (GLCM), 16 gray-level run length matrix (GLRLM), 16 gray-level size 

zone matrix (GLSZM), and 5 neighborhood gray tone difference matrix (NGTDM) from the region 

of interests on pituitary gland. In total, 186 radiomic features were extracted from T2WI and T1C, 

respectively. 

 

2.6. Machine learning and statistical analysis (Figure 3) 

We trained and compared three models that classified GHD and ISS according to the following 

parameters: radiomic features, clinical parameters, and both of these parameters. This 

comprehensive approach aimed to assess the combined predictive ability of radiomics and clinical 

parameters for diagnosis.34,35 For training of the models, The XGBoost algorithm was performed. 

XGBoost is an ensemble of decision trees with high predictive and explanatory ability.36 In particular, 

XGBoost can learn datasets with missing values. Bayesian optimization was used for optimizing the 

XGBoost. We performed internal validation using repeated fivefold cross-validation. The evaluation 

metrics used were accuracy, sensitivity, specificity, precision, and area under the receiver operating 
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characteristic (ROC) curve (AUC). The bootstrap method was used for the pairwise comparison of 

the AUC, and the prediction models were externally validated using the Yongin Severance Hospital 

dataset. All analyses were performed using Python 3.9. Statistically significance was defined as p 

value less than 0.05. 
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Figure 3. Machine learning pipeline. 

Abbreviation: T1C; contrast-enhanced T1-weighted image, T2WI; T2-weighted image, ROC; 

receiver operating characteristics, SHAP; Shapley additive explanations. 

 

 

 

 

 

 



１３ 

 

2.7. Interpretation of the model using Shapley Additive 

exPlanations (SHAP)  

SHAP was used for evaluation and interpretation the significance of the clinical parameter and 

radiomic parameters from the prediction models.37 Contribution of the features was measured with 

SHAP, called the Shapley value, to the prediction of GHD. This analysis allowed us to visualize and 

understand the significance of each feature in contributing to the performance of the model. This 

study used three perspectives to interpret the models: feature importance plots, dot summary plots, 

and waterfall plots. Importance was calculated by averaging the Shapley values per feature. The dot 

summary plot is a scatter plot of the feature importance based on the magnitude of each feature value. 

The waterfall plot shows the impact of the features on the machine learning models for each case. 

This study sampled true-positive and true-negative cases for GHD classification and examined a 

machine learning model using waterfall plots. 

 

3. RESULTS 

3.1. Baseline characteristics of the subjects according to the 

etiology of short stature (Table 1) 

BMI and the proportions of underweight, overweight, and obese participants were higher in 

participants with GHD than in those with ISS. IGF-Ⅰ and IGF-Ⅰ SDS were lower in participants with 

GHD than in those with ISS, whereas CA‒BA was higher in those with GHD. 

 

Table 1. Baseline characteristics of the subjects according to etiology of short stature 

 GHD (n = 248) ISS (n = 96) p-value 

Sex (male) 150 (60.5) 53 (55.2) 0.365 

Age, year 7.24 ± 2.81 7.21 ± 2.73 0.917 

Height, cm 112.53 ± 14.88 111.68 ± 14.34 0.630 

Height SDS -2.54 ± 0.56 -2.67 ± 0.67 0.075 

Weight, kg 20.94 ± 7.73 19.37 ± 6.17 0.071 

Weight SDS -2.10 ± 2.31 -2.42 ± 1.02 0.197 
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Categorical variables are shown as numbers (percentages) and continuous variables are shown as 

mean ± standard deviation. P-values for categorical variables are determined using chi-square tests 

and for continuous data are determined using independent t-tests. 

Abbreviation: GHD; growth hormone deficiency, ISS; idiopathic short stature, SDS; standard 

deviation score, BMI; body mass index, MPH; mid-parental height, IGF-Ⅰ; insulin-like growth factor 

Ⅰ, IGFBP-3; insulin-like growth factor binding protein-3, CA‒BA; chronological age‒bone age. 

 

3.2. Baseline characteristics of the training set and the test set 

(Table 2) 

 Regarding the baseline characteristics of the participants in the training and test sets, the 

BMI, kg/m2 16.06 ± 2.50 15.16 ± 1.72 0.001 

BMI SDS -0.73 ± 2.53 -1.05 ± 1.00 0.221 

BMI percentile   0.023 

underweight 189 (76.2) 69 (71.9)  

normal 40 (16.1) 24 (25.0)  

overweight 11 (4.4) 2 (2.1)  

obesity 8 (3.2) 1 (1.0)  

Growth velocity, cm/year 4.44 ± 1.63 4.21 ± 1.56 0.252 

Pubertal status   0.294 

prepuberty 213 (85.9) 78 (81.2)  

puberty 35 (14.1) 18 (18.8)  

MPH SDS -0.09 ± 0.08 -0.09 ± 0.09 0.510 

MPH SDS - Height SDS 2.63 ± 0.57 2.76 ± 0.67 0.080 

IGF-Ⅰ, ng/mL 137.55 ± 58.38 153.58 ± 70.16 0.030 

IGF-Ⅰ SDS -0.79 ± 0.63 -0.69 ± 0.71 0.015 

IGFBP-3, ng/mL 2344.02 ± 1127.25 
2159.60 ± 

786.76 
0.317 

IGFBP-3 SDS 0.82 ± 0.83 0.68 ± 0.76 0.001 

Bone age, year 6.69 ± 2.76 6.72 ± 2.72 0.941 

CA‒BA, year 0.61 ± 0.95 0.34 ± 0.97 0.031 
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proportions of boys, underweight, prepuberty, and ISS were higher in the training set than in the test 

set. Age, height, MPH SDS, and BA were higher in the test set than in the training set, whereas the 

MPH SDS height, SDS, and CA‒BA were higher in the training set. In the training set, the proportion 

of GHD, ISS, and severe GHD were 69.6%, 30.4%, and 34.3%, respectively. In the test set, the 

corresponding values were 87.5%, 12.5%, and 45.8%, respectively. 

 

Table 2. Baseline characteristics of the training set and the test set 

 Training set  

(n = 296) 

Test set  

(n = 48) 

p-value 

Sex (male) 182 (61.5) 27 (56.2) 0.020 

Age, year 7.04 ± 2.81 8.44 ± 2.31 0.001 

Height, cm 110.55 ± 15.50 121.18 ± 13.55 <0.001 

Height SDS -2.77 ± 2.18 -2.15 ± 0.53 0.053 

Weight, kg -2.77 ± 2.18 -2.15 ± 0.53 0.053 

Weight SDS -2.26 ± 2.23 -1.56 ± 0.75 0.032 

BMI, kg/m2 15.68 ± 2.30 16.57 ± 2.46 0.080 

BMI SDS -0.87 ± 2.34 -0.49 ± 1.05 0.110 

BMI percentile   0.033 

underweight 60 (20.3) 4 (8.3)  

normal 217 (73.3) 39 (81.2)  

overweight 11 (3.7) 2 (4.2)  

obesity 8 (2.7) 3 (6.2)  

Growth velocity, cm/year 4.37 ± 1.57 4.40 ± 1.87 0.100 

Pubertal status   0.046 

prepuberty 255 (86.1) 36 (75.0)  

puberty 41 (13.9) 12 (25.0)  

MPH SDS -0.04 ± 0.09 -0.03 ± 0.10 0.040 

MPH SDS - Height SDS 2.74 ± 0.58 2.21 ± 0.54 <0.001 

IGF-Ⅰ, ng/mL 140.27 ± 62.56 153.32 ± 59.26 0.186 

IGF-Ⅰ SDS -0.74 ± 0.69 -0.87 ± 0.36 0.207 

IGFBP-3, ng/mL 1987.94 ± 718.58 4171.04 ± <0.001 
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Categorical variables are shown as numbers (percentages) and continuous variables are shown as 

mean ± standard deviation. P-values for categorical variables are determined using chi-square tests 

and for continuous data are determined using independent t-tests. 

Abbreviation: SDS; standard deviation score, BMI; body mass index, MPH; mid-parental height, 

IGF-Ⅰ; insulin-like growth factor Ⅰ, IGFBP-3; insulin-like growth factor binding protein-3, CA‒BA; 

chronological age‒bone age, GHD; growth hormone deficiency, ISS; idiopathic short stature. 

 

3.3. ROC curve analyses of clinical, radiomics, and combined 

models (Table 3, 4, and 5 and Figure 4 and 5) 

Table 3 and Figure 4 and 5 summarize the results of the ROC curve analyses and present the AUCs 

with corresponding 95% confidence intervals (CIs) for GHD prediction using the clinical, radiomics, 

and combined models. Among the clinical parameters, age, sex, height SDS, weight SDS, BMI SDS, 

growth velocity, pubertal state, MPH SDS, MPH SDS – height SDS, IGF-I SDS, and CA‒BA were 

assessed using clinical and combined models. IGFBP-3 was excluded from the parameters because 

the value was substantially different between the two centers owing to different assays and reagents. 

 The accuracy and AUC (95% CI) of the clinical model were 0.717 and 0.690 (0.628–0.753) and 

0.702 and 0.684 (0.590–0.778) for internal and external validation, respectively. In the radiomics 

model, the corresponding values were 0.668 and 0.674 (0.609–0.738) for internal validation and 

0.698 and 0.691 (0.620–0.762) for external validation. In the combined model, the corresponding 

values were 0.817 and 0.835 (0.776–0.896) for internal validation and 0.813 and 0.830 (0.741–0.919) 

for external validation. 

 

741.61 

IGFBP-3 SDS 2.49 ± 1.15 0.51 ± 0.09 <0.001 

Bone age, year 6.43 ± 2.67 8.23 ± 2.69 <0.001 

CA‒BA, year 0.58 ± 0.95 0.26 ± 0.98 0.040 

Diagnosis   0.010 

GHD 206 (69.6) 42 (87.5)  

ISS 90 (30.4) 6 (12.5)  

Severe GHD 72 (24.3) 22 (45.8) <0.001 
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Table 3. AUCs of each model for predicting GHD 

P-values are determined using ROC curve for AUC. 

Abbreviation: AUC; area under the receiver operating characteristics curve, GHD; growth hormone 

deficiency, CI; confidence interval, ROC; receiver operating characteristics. 

 

 

  Accuracy Sensitivity Specificity Precision AUC 

(95% CI) 

Clinical 

model 

Internal 

validation 

0.717 0.738 0.667 0.838 0.690 

(0.628–

0.753) 

 External 

validation 

0.702 0.707 0.667 0.936 0.684 

(0.590–

0.778) 

Radiomics 

model 

Internal 

validation 

0.678 0.691 0.685 0.578 0.674 

(0.609–

0.738) 

 External 

validation 

0.698 0.643 0.667 0.831 0.691 

(0.620–

0.762) 

Combined 

model 

Internal 

validation 

0.817 0.857 0.722 0.878 0.835 

(0.776–

0.896) 

 External 

validation 

0.813 0.810 0.833 0.971 0.830 

(0.741–

0.919) 
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Figure 4. ROC curves from the clinical model, radiomics model, and combined model for 

internal validation. 

Abbreviation: AUC; area under the receiver operating characteristics curve, ROC; receiver operating 

characteristics. 
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Figure 5. ROC curves from the clinical model, radiomics model, and combined model for 

external validation. 

Abbreviation: AUC; area under the receiver operating characteristics curve, ROC; receiver operating 

characteristics. 
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In the pairwise comparison among the prediction models for GHD, the combined model 

outperformed both the clinical and radiomics models in internal validation (combined model vs. 

clinical model, p = 0.012; combined model vs. radiomic model, p = 0.026) and external validation 

(combined model vs. clinical model, p = 0.034; combined model vs. radiomic model, p = 0.019) 

(Table 4). The AUC were not statistically different between the clinical and radiomic models. 

 

Table 4. Comparison of AUCs of prediction models for GHD 

The bootstrap method was used to perform pairwise comparisons between AUCs for the variables. 

Abbreviation: AUC; area under the receiver operating characteristics curve, GHD; growth hormone 

deficiency. 

 

Table 5 summarizes the results of the ROC curve analyses and present the AUCs with 

corresponding 95% confidence intervals (CIs) for severe GHD prediction using the clinical, 

radiomics, and combined models. 

The accuracy and AUC (95% CI) of the clinical model were 0.629 and 0.650 (0.592–0.708) and 

0.634 and 0.651 (0.597–0.705) for internal and external validation, respectively. In the radiomics 

model, the corresponding values were 0.640 and 0.655 (0.598–0.713) for internal validation and 

0.630 and 0.648 (0.598–0.698) for external validation. In the combined model, the corresponding 

values were 0.651 and 0.665 (0.604–0.725) for internal validation and 0.645 and 0.672 (0.613–0.731) 

for external validation. 

 

 Clinical model Radiomics model Combined model 

Internal validation    

Clinical model Reference 0.208 0.012 

Radiomics model 0.208 Reference 0.026 

Combined model 0.012 0.026 Reference 

External validation    

Clinical model Reference 0.284 0.034 

Radiomics model 0.284 Reference 0.019 

Combined model 0.034 0.019 Reference 
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Table 5. AUCs of each model for predicting severe GHD 

P-value determined using ROC curve for AUC. 

Abbreviation: AUC; area under the receiver operating characteristics curve, GHD; growth hormone 

deficiency, CI; confidence interval, ROC; receiver operating characteristics. 

 

In the pairwise comparison among the prediction models for severe GHD, the combined model 

outperformed the clinical model in internal validation (combined model vs. clinical model, p = 0.045) 

(Table 6). In external validation, the combined model outperformed both the clinical and radiomics 

  Accuracy Sensitivity Specificity Precision AUC 

(95% CI) 

Clinical 

model 

Internal 

validation 

0.629 0.642 0.591 0.827 0.650 

(0.592–

0.708) 

 External 

validation 

0.634 0.625 0.678 0.688 0.651 

(0.597–

0.705) 

Radiomics 

model 

Internal 

validation 

0.640 0.657 0.591 0.830 0.655 

(0.598–

0.713) 

 External 

validation 

0.630 0.615 0.670 0.667 0.648 

(0.598–

0.698) 

Combined 

model 

Internal 

validation 

0.651 0.672 0.591 0.833 0.665 

(0.604–

0.725) 

 External 

validation 

0.645 0.621 0.701 0.700 0.672 

(0.613–

0.731) 
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models in internal validation (combined model vs. clinical model, p = 0.031; combined model vs. 

radiomic model, p = 0.048). The AUC were not statistically different between the clinical and 

radiomic models. 

 

Table 6. Comparison of AUCs of prediction models for severe GHD 

The bootstrap method was used to perform pairwise comparisons between AUCs for the variables. 

Abbreviation: AUC; area under the receiver operating characteristics curve, GHD: growth hormone 

deficiency. 

 

3.4. Shapley value of clinical parameters and radiomic features 

(Figure 6‒13) 

We computed the mean absolute Shapley values for all clinical variables and radiomic features to 

illustrate their contribution in the predictive models for external validation. Among the clinical 

parameters, the SHAP value of BMI SDS was the highest, followed by those of CA–BA, weight 

SDS, growth velocity, IGF-I SDS, MPH SDS, and height SDS (Figure 6). Among the radiomics 

features, the SHAP value of Inverse Variance from T2WI (GLCM) was the highest, followed by 

Energy from T1C (first order) and Sum Entropy from T2WI (GLCM) (Figure 7). In the combined 

model, the SHAP value of CA-BA was the highest, followed by weighted SDS, Maximum 

Probability from T2WI (GLCM), and Run Length Nonuniformity Normalized from T2WI (GLRLM) 

(Figure 8). 

 

 Clinical model Radiomics model Combined model 

Internal validation    

Clinical model Reference 0.201 0.045 

Radiomics model 0.201 Reference 0.076 

Combined model 0.045 0.076 Reference 

External validation    

Clinical model Reference 0.312 0.031 

Radiomics model 0.312 Reference 0.048 

Combined model 0.031 0.048 Reference 
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Figure 6. Mean absolute SHAP values for feature importance in the clinical model for 

diagnosis of GHD from external validation. 

Abbreviation: BMI; body mass index, SDS; standard deviation score, CA‒BA; chronological age‒

bone age, IGF-Ⅰ; insulin-like growth factor I, MPH; mid-parental height, SHAP; Shapley additive 

explanations, GHD; growth hormone deficiency. 
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Figure 7. Mean absolute SHAP values for feature importance in the radiomics model for 

diagnosis of GHD from external validation. 

Abbreviation: GLCM; gray-level co-occurrence matrix, GLSZM; gray-level size zone matrix, 

GLRLM; gray-level run length matrix, NGTDM; neighborhood gray tone difference matrix, SHAP; 

Shapley additive explanations, GHD; growth hormone deficiency. 
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Figure 8. Mean absolute SHAP values for feature importance in the combined model for 

diagnosis of GHD from external validation. 

Abbreviation: CA‒BA; chronological age‒bone age, SDS; standard deviation score, GLCM; gray-

level co-occurrence matrix, GLRLM; gray-level run length matrix, GLSZM; gray-level size zone 

matrix, NGTDM; neighborhood gray tone difference matrix, MPH; mid-parental height, SHAP; 

Shapley additive explanations, GHD; growth hormone deficiency. 
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Analysis of the dot summary plots revealed that high CA‒BA values and low value of IGF-Ⅰ SDS 

values influenced the prediction of GHD in the clinical model (Figure 9). In the radiomics model, 

high value of Inverse Variance from T2WI (GLCM) influenced the prediction of the ISS, and low 

values of Sum Entropy from T2WI (GLCM) and Small Area Low Gray Level Emphasis from T2WI 

(GLSZM) influenced the prediction of GHD (Figure10). In the combined model, low values of the 

CA-BA influenced the prediction of GHD, whereas weight SDS, Maximum Probability from T2WI 

(GLCM), and Run Length NonUniformity Normalized from T2WI (GLRLM) contributed highly to 

the model (Figure 11).  
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Figure 9. Dot summary plot with mean absolute SHAP value for contribution of the variables 

in the clinical model in external validation. 

The darkness on the plot represent whether a parameter had a high or low value within the patient 

dataset. The horizontal position on the plot indicates whether that value had a greater or lesser impact 

on the prediction.  

Abbreviation: BMI; body mass index, SDS; standard deviation score, CA‒BA; chronological age‒

bone age, IGF-Ⅰ; insulin-like growth factor Ⅰ, MPH; mid-parental height, SHAP; Shapley additive 

explanations. 
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Figure 10. Dot summary plot with mean absolute SHAP value for contribution of the variables 

in the radiomics model in external validation. 

The darkness on the plot represent whether a parameter had a high or low value within the patient 

dataset. The horizontal position on the plot indicates whether that value had a greater or lesser impact 

on the prediction.  

Abbreviation: GLCM; gray-level co-occurrence matrix, GLSZM; gray-level size zone matrix, 

GLRLM; gray-level run length matrix, SHAP; Shapley additive explanations. 
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Figure 11. Dot summary plot with mean absolute SHAP value for contribution of the variables 

in the combined model in external validation. 

The darkness on the plot represent whether a parameter had a high or low value within the patient 

dataset. The horizontal position on the plot indicates whether that value had a greater or lesser impact 

on the prediction.  

Abbreviation: CA‒BA; chronological age‒bone age, SDS; standard deviation score, GLCM; gray-

level co-occurrence matrix, GLRLM; gray-level run length matrix, GLSZM; gray-level size zone 

matrix, NGTDM; neighborhood gray tone difference matrix, SHAP; Shapley additive explanations. 
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By conducting SHAP analysis, waterfall plots were generated for each patient, and an example of 

such a waterfall plot using the clinical model is shown in Figure 12. The clinical model predicted 

the participant with ISS as ISS. In this case, the contribution of the CA‒BA was the highest, followed 

by the BMI SDS and IGF-I SDS. Figure 13 shows a waterfall plot in which the combined model 

predicts a participant with GHD as having GHD. In this case, contribution of Joint Entropy from 

T2WI (GLCM) was the highest and those of interquartile Range from T1C (first order) was followed. 

 

 

 

 

 

 

 

 

 

 

 



３１ 

 

 

Figure 12. Representative waterfall plot of the clinical model case. 

Abbreviation: CA‒BA; chronological age‒bone age, BMI; body mass index, SDS; standard 

deviation score, IGF-Ⅰ; insulin-like growth factor Ⅰ, MPH; mid-parental height. 
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Figure 13. Representative waterfall plot of the combined model case. 

Abbreviation: CA‒BA; chronological age‒bone age, GLSZM; gray-level size zone matrix, GLCM; 

gray-level co-occurrence matrix, BMI; body mass index; SDS; standard deviation score. 
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4. DISCUSSION 

 We demonstrated that the combined model using both clinical parameters and radiomics features 

accurately predicted GHD. The combined model was superior to the clinical and radiomics models. 

Among the clinical parameters, the BMI SDS, CA‒BA, weight SDS, and growth velocity were the 

major contributing factors to the clinical model. Among the radiomics features, Inverse Variance 

from T2WI and Energy from T1C were the major factors contributing to the radiomics model. In the 

combined model, CA‒BA, weighted SDS, Maximum Probability from T2WI, and Run Length 

Nonuniformity Normalized from T2WI were the major contributing factors. 

Owing to the invasiveness and limitations of the GH provocation test, some studies have 

investigated prediction models using clinical parameters for GHD diagnosis. A single-center study 

from Argentina assessed clinical parameters including pituitary abnormalities, such as pituitary 

dysgenesis, midline abnormalities, and pituitary hormone deficiencies, in children and developed a 

GHD prediction model using a decision tree with internal validation only.23 The sensitivity, 

specificity, and accuracy of the validation model were 55.6%, 99.2%, and 89.4%, respectively. A 

study from China developed a predictive model of GHD and ISS using clinical parameters, including 

IGF-1 and IGFBP-3, and MRI texture.38 The AUC of the clinical and MRI texture predictive models 

were 0.607 and 0.852, respectively, although validation was not performed. Aim of our study was 

developing a clinical model for diagnosing GHD in children without pituitary abnormalities, 

systemic pathology, or endocrinological pathology, excluding GHD and ISS. We assessed various 

clinical parameters that can be easily obtained in local clinics and developed a machine learning 

model with external validation; the results were significant. Therefore, this model can be used to 

assess the etiology of short stature in real-world clinical settings.  

To date, investigations of radiomics models for assessing children with short stature have been 

limited. Our previous study analyzed T2-weighted sella MRI images of children with short stature 

and developed a radiomics-based model for differentiation of GHD and ISS with internal validation, 

in which the AUC and accuracy were 0.705 and 70.6%, respectively.16 In our study, the accuracy 

and AUC of the radiomics model were 0.698 and 0.691, respectively, for external validation. To 

improve the predictability of radiomics and clinical models, we combined both parameters using a 

machine learning classifier, XGBoost, to build the prediction models in this study. XGBoost is well-

known for handling numerous features for model development with good performance, which is 

suitable for radiomics studies.39,40 The pure radiomics model did not yield high predictive 
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performance in external validation; however, the combined clinical and radiomics model could 

accurately predict GHD with an AUC of 0.830 in external validation. Furthermore, the combined 

clinical and radiomics model yielded superior predictive performance compared with the clinical 

model. The added value of radiomics for predicting GHD was validated using an independent test 

set. Therefore, we believe that radiomics may have a predictive potential for differentiating between 

GHD and ISS.  

To interpret the selected radiomic features and clinical parameters, we performed SHAP analysis. 

SHAP analysis enables quantification of the impact of radiomic features and clinical parameters on 

the prediction of GHD. SHAP estimates the importance value for each feature in the built model and 

facilitates informed clinical decision-making. We provided several SHAP plots to visualize the 

power of each selected feature on global (in the overall study population) and local (one patient) 

levels. This provides an intuitive visualization of how clinical and radiomic features contribute to 

the prediction of GHD. In both the radiomics and combined models, we found that the radiomic 

features extracted from both T1C and T2WI contributed to the prediction. Texture features and first-

order features were used in the radiomics model. In the combined model, texture features were used 

for prediction. Shape features, including volume, were not used for the prediction, which is 

consistent with the fact that distinguishing GHD from ISS based on simple pituitary gland volume 

alone was not successful in previous studies. The Maximum Probability feature, a GLCM feature, 

was the most powerful predictor of GHD among the radiomic features, followed by the Run Length 

Non Uniformity Normalized, a GLRLM feature. GLCM measures the spatial distribution of gray-

level intensities within an image, which is a biomarker for heterogeneity.15 Particularly, as the 

Maximum Probability indicates occurrences of the most predominant pair of neighboring intensity 

values,33 it may capture the different intensities of the pituitary gland between GHD and ISS, which 

cannot be detected by visual comparison. The GLRLM quantifies the gray-level runs, which are 

defined as the length of the number of pixels, of consecutive pixels that have the same gray-level 

value. A Run Length Non-Uniformity Normalized, one of GLRLM features, assess the homogeneity 

of run lengths, where higher similarity suggested by a lower value in run lengths throughout the 

image.33 As higher values of Run Length Non-Uniformity Normalized showed significant 

association with GHD in our study, we can infer that more heterogeneous pituitary gland can be 

observed in GHD than in ISS.  

Among the clinical parameters, BMI SDS, CA‒BA, weight SDS, growth velocity, IGF-I SDS, 
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MPH SDS, and height SDS were the major contributing factors to the prediction model for GHD in 

our study. This result is consistent with those of previous studies. The clinical parameters related to 

the diagnosis of GHD have been investigated in several studies. IGF-1, a metabolic product 

influenced by GH, is synthesized in the liver and is mainly regulated by GH.41 Thus, serum IGF-1 

levels reflect the endogenous production of GH with minimal diurnal variation and have been 

considered as one of useful screening tests for GHD due to their diagnostic potential since 1982. In 

a meta-analysis, AUC of IGF-1 for diagnosis of GHD was 0.78.42 A retrospective study reported that 

height velocity and IGF-1 could be used for screening of GHD.43 A cohort study reported that BMI 

was negatively related with peak GH level on GH provocation test22. In addition, pubertal 

development is delayed in children with GHD which is related to bone age delay.44,45 In a cohort 

study, bone age was more delayed in children with GHD compared to those with ISS.26 In another 

cohort study, MPH was different according to etiologies of short stature.2 Summary Statement of the 

Growth Hormone Research Society recommends to consider height SDS and height velocity when 

deciding whether to perform GH provocation test or not1.  

Our study has some limitations. Firstly, this study was limited to a single ethnicity with a 

retrospective design. Secondly, we could not consider IGFBP-3 because the values from both centers 

were significantly different owing to the different methods and reagents used. Thirdly, a genetic 

evaluation was not performed. Fourthly, the hypothalamus was not included in this analysis because 

sella MRI focus on pituitary glands. As the MRI protocol centers the field of view on the 

sella/suprasellar area, T2WI often fail to include the entire hypothalamus. In addition, the pituitary 

gland has relatively clear anatomical boundaries, making segmentation an easy task. However, the 

hypothalamus lacks clear anatomical boundaries, leading to difficulties in setting the region of 

interest. Consequently, the segmentation process itself is likely to be biased. MRI is still burdensome 

for children although it is less burdensome and GH provocation test which require multiple sampling 

and hospitalization. As sella MRI is performed for patients who has endocrinological problem, 

further studies investigate radiomics using various protocol of brain MRI is required for increment 

of practical value of radiomics for prediction of GHD and ISS. 

However, this study is the first study which developed a prediction model for GHD using both 

clinical parameters including anthropometric data, laboratory test, and bone age and radiomics 

features. Moreover, we validated predictability of the model with external validation.  
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5. CONCLUSION 

In conclusion, our research strongly emphasizes the potential of combining radiomics-based 

diagnostic models with clinical parameters for differentiation between GHD and ISS in children. 

This study meticulously analyzed both T2WI and T1C in sella MRI, alongside a comprehensive 

range of clinical parameters such as pubertal status and bone age, and scrutinized the individual 

contributions of these parameters to the predictive model. Our model combining both radiomics and 

clinical parameters can accurately predict GHD from ISS, which was also proved in the external 

validation, therefore proved its predictive potential. Subsequently, we may expect an individualized 

treatment strategy with our radiomics model combined with machine learning. Further studies with 

larger samples including various ethnicity and various brain MRI series are required to overcome 

limitation of our study. In addition, we hope to develop a robust model using genetic information as 

well as radiomics and clinical parameters to replace GH provocation test in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



３７ 

 

REFERENCES 

1. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency 

in childhood and adolescence: summary statement of the GH Research Society. GH 

Research Society. J Clin Endocrinol Metab 2000;85:3990-3. 

2. Song KC, Jin SL, Kwon AR, Chae HW, Ahn JM, Kim DH, et al. Etiologies and 

characteristics of children with chief complaint of short stature. Ann Pediatr Endocrinol 

Metab 2015;20:34-9. 

3. Song K, Lee J, Lee S, Jeon S, Lee HS, Kim HS, et al. Height and subjective body image 

are associated with suicide ideation among Korean adolescents. Front Psychiatry 

2023;14:1172940. 

4. Voss LD. Short normal stature and psychosocial disadvantage: a critical review of the 

evidence. J Pediatr Endocrinol Metab 2001;14:701-11. 

5. Hanew K, Utsumi A. The role of endogenous GHRH in arginine-, insulin-, clonidine- and 

l-dopa-induced GH release in normal subjects. Eur J Endocrinol 2002;146:197-202. 

6. Martha PM, Jr., Gorman KM, Blizzard RM, Rogol AD, Veldhuis JD. Endogenous growth 

hormone secretion and clearance rates in normal boys, as determined by deconvolution 

analysis: relationship to age, pubertal status, and body mass. J Clin Endocrinol Metab 

1992;74:336-44. 

7. Bidlingmaier M. Problems with GH assays and strategies toward standardization. Eur J 

Endocrinol 2008;159 Suppl 1:S41-4. 

8. Ariza Jiménez AB, Martínez Aedo Ollero MJ, López Siguero JP. Differences between 

patients with isolated GH deficiency based on findings in brain magnetic resonance 

imaging. Endocrinol Diabetes Nutr (Engl Ed) 2020;67:78-88. 

9. Kessler M, Tenner M, Frey M, Noto R. Pituitary volume in children with growth hormone 

deficiency, idiopathic short stature and controls. J Pediatr Endocrinol Metab 2016;29:1195-

200. 

10. Nagel BH, Palmbach M, Petersen D, Ranke MB. Magnetic resonance images of 91 children 

with different causes of short stature: pituitary size reflects growth hormone secretion. Eur 

J Pediatr 1997;156:758-63. 

11. Oh JS, Sohn B, Choi Y, Song K, Suh J, Kwon A, et al. The influence of pituitary volume 



３８ 

 

on the growth response in growth hormone-treated children with growth hormone 

deficiency and idiopathic short stature. Ann Pediatr Endocrinol Metab 2023; 

doi:10.6065/apem.2346052.026. 

12. Wagner MW, Bilbily A, Beheshti M, Shammas A, Vali R. Artificial intelligence and 

radiomics in pediatric molecular imaging. Methods 2021;188:37-43. 

13. Madhogarhia R, Haldar D, Bagheri S, Familiar A, Anderson H, Arif S, et al. Radiomics and 

radiogenomics in pediatric neuro-oncology: A review. Neurooncol Adv 2022;4:vdac083. 

14. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are 

Data. Radiology 2016;278:563-77. 

15. Parekh V, Jacobs MA. Radiomics: a new application from established techniques. Expert 

Rev Precis Med Drug Dev 2016;1:207-26. 

16. Lee T, Song K, Sohn B, Eom J, Ahn SS, Kim HS, et al. A Radiomics-Based Model with 

the Potential to Differentiate Growth Hormone Deficiency and Idiopathic Short Stature on 

Sella MRI. Yonsei Med J 2022;63:856-63. 

17. Huang J, Shlobin NA, Lam SK, DeCuypere M. Artificial Intelligence Applications in 

Pediatric Brain Tumor Imaging: A Systematic Review. World Neurosurg 2022;157:99-105. 

18. Suh J, Heo J, Kim SJ, Park S, Jung MK, Choi HS, et al. Bone Age Estimation and Prediction 

of Final Adult Height Using Deep Learning. Yonsei Med J 2023;64:679-86. 

19. Rui W, Wu Y, Ma Z, Wang Y, Wang Y, Xu X, et al. MR textural analysis on contrast 

enhanced 3D-SPACE images in assessment of consistency of pituitary macroadenoma. Eur 

J Radiol 2019;110:219-24. 

20. Zhang Y, Chen C, Tian Z, Cheng Y, Xu J. Differentiation of Pituitary Adenoma from Rathke 

Cleft Cyst: Combining MR Image Features with Texture Features. Contrast Media Mol 

Imaging 2019;2019:6584636. 

21. Stanley T. Diagnosis of growth hormone deficiency in childhood. Curr Opin Endocrinol 

Diabetes Obes 2012;19:47-52. 

22. Yang A, Cho SY, Kwak MJ, Kim SJ, Park SW, Jin DK, et al. Impact of BMI on peak growth 

hormone responses to provocative tests and therapeutic outcome in children with growth 

hormone deficiency. Sci Rep 2019;9:16181. 

23. Clément F, Grinspon RP, Yankelevich D, Martín Benítez S, De La Ossa Salgado MC, 

Ropelato MG, et al. Development and Validation of a Prediction Rule for Growth Hormone 



３９ 

 

Deficiency Without Need for Pharmacological Stimulation Tests in Children With Risk 

Factors. Front Endocrinol (Lausanne) 2020;11:624684. 

24. Song K, Jung MK, Oh JS, Kim SJ, Choi HS, Lee M, et al. Comparison of growth response 

and adverse reaction according to growth hormone dosing strategy for children with short 

stature: LG Growth Study. Growth Horm IGF Res 2023;69-70:101531. 

25. Kim JH, Yun S, Hwang SS, Shim JO, Chae HW, Lee YJ, et al. The 2017 Korean National 

Growth Charts for children and adolescents: development, improvement, and prospects. 

Korean J Pediatr 2018;61:135-49. 

26. Yoon JY, Cheon CK, Lee JH, Kwak MJ, Kim HJ, Kim YJ, et al. Response to growth 

hormone according to provocation test results in idiopathic short stature and idiopathic 

growth hormone deficiency. Ann Pediatr Endocrinol Metab 2022;27:37-43. 

27. Ranke MB, Lindberg A. Observed and predicted growth responses in prepubertal children 

with growth disorders: guidance of growth hormone treatment by empirical variables. J 

Clin Endocrinol Metab 2010;95:1229-37. 

28. Huynh QTV, Ho BT, Le NQK, Trinh TH, Lam LHT, Nguyen NTK, et al. Pathological brain 

lesions in girls with central precocious puberty at initial diagnosis in Southern Vietnam. 

Ann Pediatr Endocrinol Metab 2022;27:105-12. 

29. Chotipakornkul N, Onsoi W, Numsriskulrat N, Aroonparkmongkol S, Supornsilchai V, 

Srilanchakon K. The utilization of basal luteinizing hormone in combination with the basal 

luteinizing hormone and follicle-stimulating hormone ratio as a diagnostic tool for central 

precocious puberty in girls. Ann Pediatr Endocrinol Metab 2023;28:138-43. 

30. Hyun SE, Lee BC, Suh BK, Chung SC, Ko CW, Kim HS, et al. Reference values for serum 

levels of insulin-like growth factor-I and insulin-like growth factor binding protein-3 in 

Korean children and adolescents. Clin Biochem 2012;45:16-21. 

31. Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist: 

Stanford university press; 1959. 

32. Avants B, Tustison N, Song G. Advanced Normalization Tools (ANTS) Insight J. 2009: 1–

35. 

33. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. 

Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 

2017;77:e104-e7. 



４０ 

 

34. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal 

Statistical Society: Series B (Methodological) 1996;58:267-88. 

35. Du N, Song L, Gomez-Rodriguez M, Zha H. Scalable Influence Estimation in Continuous-

Time Diffusion Networks. Adv Neural Inf Process Syst 2013;26:3147-55. 

36. Chen T, Guestrin C. Xgboost: A scalable tree boosting system.  Proceedings of the 22nd 

acm sigkdd international conference on knowledge discovery and data mining; 2016. 

p.785-94. 

37. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural 

Inf Process Syst 2017;30. 

38. Cong M, Qiu S, Li R, Sun H, Cong L, Hou Z. Development of a predictive model of growth 

hormone deficiency and idiopathic short stature in children. Exp Ther Med 2021;21:494. 

39. Nazari M, Shiri I, Zaidi H. Radiomics-based machine learning model to predict risk of 

death within 5-years in clear cell renal cell carcinoma patients. Comput Biol Med 

2021;129:104135. 

40. Wang X, You X, Zhang L, Huang D, Aramini B, Shabaturov L, et al. A radiomics model 

combined with XGBoost may improve the accuracy of distinguishing between mediastinal 

cysts and tumors: a multicenter validation analysis. Ann Transl Med 2021;9:1737. 

41. Hadjadj S, Faure-Gerard C, Ragot S, Millet C, Duengler F, Torremocha F, et al. Diagnostic 

strategy for growth hormone deficiency: relevance of IGF-1 determination as a screening 

test. Ann Endocrinol (Paris) 2007;68:449-55. 

42. Shen Y, Zhang J, Zhao Y, Yan Y, Liu Y, Cai J. Diagnostic value of serum IGF-1 and IGFBP-

3 in growth hormone deficiency: a systematic review with meta-analysis. Eur J Pediatr 

2015;174:419-27. 

43. Lemaire P, Brauner N, Hammer P, Trivin C, Souberbielle JC, Brauner R. Improved 

screening for growth hormone deficiency using logical analysis data. Med Sci Monit 

2009;15:Mt5-10. 

44. Zadik Z, Chalew S, Zung A, Landau H, Leiberman E, Koren R, et al. Effect of long-term 

growth hormone therapy on bone age and pubertal maturation in boys with and without 

classic growth hormone deficiency. J Pediatr 1994;125:189-95. 

45. Rhie YJ, Yoo JH, Choi JH, Chae HW, Kim JH, Chung S, et al. Long-term safety and 

effectiveness of growth hormone therapy in Korean children with growth disorders: 5-year 



４１ 

 

results of LG Growth Study. PLoS One 2019;14:e0216927. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



４２ 

 

ABSTRACT (IN KOREAN) 

 

Sella 자기공명영상 기반 라디오믹스 및 임상적 지표를 이용한 

성장호르몬결핍증 과 특발성 저신장의 진단 모델 개발 및 검증 

 

 

성장호르몬 결핍증과 특발성 저신장의 감별 진단을 위한 검사로 성장호르몬 유발 

검사가 gold standard로 알려져 있지만 매우 침습적이며 타당성과 재현성의 한계점을 

가지고 있다. 따라서, 성장호르몬 결핍증과 특발성 저신장의 감별진단을 위한 예측 

모델에 대한 연구가 필요한 실정이다. 라디오믹스는 수학적 알고리즘을 사용하여 

다양한 기능을 추출하는 방법으로, 인간 눈으로 감지할 수 없는 분자 프로필과 질병 

특성을 찾을 수 있다. 생체 의학 이미지의 정보 개념을 기반으로, 라디오믹스는 

디지털 의료 이미지를 추출 가능한 고차원 데이터로 변환한다. 그러나 아직 소아 

뇌하수체에 대한 라디오믹스 연구는 제한적이다. 따라서 우리는 sella 자기 공명 

영상 및 임상 변수를 포함한 라디오믹스를 사용한 성장호르몬 결핍증 및 특발성 

저신장 진단의 머신 러닝 기반 예측 모델을 개발하고 외부 검증을 통해 이 모델의 

타당성을 검증하고자 했다.  

독립된 병원에서 정상 sella 자기공명영상 결과를 가진 소아 293명으로 구성된 

training set와 47명의 test set로 연구를 진행했다. Sella 자기공명영상에서는 T2 

weighted image 및 contrast-enhanced T1-image의 뇌하수체에서 총 186개의 

라디오믹스 변수를 추출했다. 임상 변수에는 계측 지표, insulin-like growth factor-

I (IGF-I) 및 골 연령이 포함되었다. XGBoost 알고리즘을 사용하여 예측 모델을 

훈련시켰다. Internal validation은 training set에서 five-fold cross 

validation으로 수행했고, external validation은 test set에서 수행했다. 모델의 

성능은 area under the receiver operating characteristic curve (AUC)을 통해 

평가했다. 각 변수의 영향을 정량화하기 위해 mean absolute Shapley values을 

계산하였다.  
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External validation에서 임상, 라디오믹스 및 병합 모델의 AUC는 각각 0.684, 

0.691 및 0.830이었다. 임상 모델에서 예측에 대한 주요 기여 요인은 체질량 지수 

표준 편차, 역연령과 골 연령의 차이, 체중 표준 편차, 성장 속도 및 IGF-I 표준 

편차였다. 라디오믹스 중에서는 T2 weighted image의 Inverse Variance 및 contrast-

enhanced T1-image의 energy가 라디오믹스 모델에 기여하는 주요 요인이었다. 병합 

모델에서는 라디오믹스 기능이 예측력을 강화했다.  

이 연구는 성장호르몬 결핍증과 특발성 저신장의 전통적인 진단 기법의 한계를 

극복하기 위한 라디오믹스 기반 진단 모델의 잠재력을 보여주었다. 이러한 결과는 

소아과학에서 라디오믹스와 머신 러닝의 중요한 역할을 입증하며 이를 이용한 새로운 

진단 기법 발전의 가능성을 뒷받침한다. 
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