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ABSTRACT

Development and validation of a prediction model using sella magnetic
resonance imaging-based radiomics and clinical parameters for

diagnosis of growth hormone deficiency and idiopathic short stature

For differential diagnosis of growth hormone deficiency (GHD) and idiopathic short stature (ISS),
growth hormone provocation test is the gold standard test, but it is very invasive and has limited
validity and reproducibility. Thus, investigations on prediction model for differential diagnosis of
GHD and ISS are required.

Radiomics, a method of extracting various features using mathematical algorithm, can find
molecular profile and disease characteristics which cannot be detected by human eye. Based on
concept of information in biomedical images which reflects underlying pathophysiology, radiomics
converts digital medical images into mineable high-dimensional data. However, investigations on
pituitary gland using radiomics in children are limited.

Therefore, we aim to develop a machine learning-based prediction model for diagnosis of GHD
and ISS using radiomics including sella magentic resonance imaging (MRI) and clinical parameters
and validate the prediction model with external validation.

A total of 293 children with normal sella MRI findings in the training set and 47 children in the
test set from different hospitals were enrolled. A total of 186 radiomic features were extracted from
the pituitary glands for both the T2-weighted and contrast-enhanced T1-image. The clinical
parameters included auxological data, insulin-like growth factor-1 (IGF-I), and bone age. The
XGBoost algorithm was used to train the prediction models. Internal validation was conducted using
five-fold cross-validation on the training set, and external validation was conducted on the test set.
Model performance was assessed by plotting the area under the receiver operating characteristic
curve (AUC). The mean absolute Shapley values were computed to quantify the impact of each

parameter.



The AUCs of the clinical, radiomics, and combined models were 0.684, 0.691, and 0.830,
respectively, in the external validation. Among the clinical parameters, the major contributing
factors to prediction were body mass index standard deviation score (SDS), chronological age—bone
age, weight SDS, growth velocity, and IGF-I SDS in the clinical model. Among the radiomics
features, Inverse Variance from T2 Weighted image and Energy from contrast-enhanced T1-image
were the major factors contributing to the radiomics model. In the combined model, radiomic
features added incremental value to the prediction.

In conclusion, this study underscores the potential of radiomics-based diagnostic models to
overcome the limitations of conventional modalities for diagnosis of GHD and ISS. These findings
substantiate the pivotal roles of radiomics and machine learning in pediatrics into new enhanced

diagnostics.

Key words : growth hormone deficiency, idiopathic short stature, machine learning, radiomics



1. INTRODUCTION

Short stature is defined as a height less than the third percentile or more than two standard
deviations below the average height for those of the same age, sex, and ethnicity. In children, short
stature is related to medical problems and lifestyle including exercise and diet as well as
psychosocial performance.'* Short stature is usually a normal variation among the population,
Negative stereotypes related to short stature is prevalent although children with chief complaint of
short stature is within normal range, which may lead to psychosocial problems.** Among etiologies
of short stature, growth hormone (GH) deficiency (GHD) and idiopathic short stature (ISS) account
for the most common causes.? GH, a peptide hormone secreted from pituitary gland, stimulates
linear bone growth and cell reproduction, and GHD is defined as a condition induced by insufficient
secretion of GH.'* Whereas, ISS is defined as short stature without evidence of systemic, endocrine,
nutritional, or chromosomal abnormalities.'*

For the diagnosis of GHD, meticulous evaluation, including the measurement of anthropometric
data, bone age, insulin-like growth factor I (IGF-I), and GH provocation tests, is required, among
which the GH provocation test is considered the gold standard.>® GHD can be diagnosed in children
with short stature who show insufficient GH levels after at least two GH provocation tests. However,
the GH provocation test is extremely invasive and burdensome to patients and requires
hospitalization and multiple blood samplings; therefore, investigations on noninvasive screening
methods to replace GH provocation test are required.’

Etiologies of GHD include pathological causes such as brain tumor and hypoxic brain damage;
therefore, sella magnetic resonance imaging (MRI) is required for the evaluation of GHD.? Several
studies investigated difference of pituitary volume in sella MRI according to etiologies of short
stature, and Kessler et al. reported that pituitary volume is different between children with GHD and
ISS and increases with increase in age.5!!

Meanwhile, artificial intelligence (Al) is increasingly being utilized as a novel approach in research
and diagnosis involving medical imaging. In the landscape of medical imaging, the journey of Al
began in 1955 with John McCarthy's definition that every aspect of learning or any other feature of
intelligence can in principle be so precisely described that a machine can be made to simulate it.!?
This vision gave rise to supervised machine learning, the cornerstone of the radiological Al, where

algorithms are trained to recognize pathologies such as tumors in computed tomography (CT) or



MRI scans based on gold standard markers.!>!* These algorithms refine their diagnostic prowess by
learning from numerous cases and then applying this knowledge to identify these markers in new
test cohort with unseen images.

However, classical Al in imaging analysis has limitations.' Information in the diagnostic process
remains hidden within the computational black box as well as just a simple answer such as presence
of a lesion is provided. Thus, radiomics a method of extracting various features using mathematical
algorithms, emerges as a revolutionary technique addressing these shortcomings by offering a
quantitative image analysis framework.!>!> Radiomics can be used to determine molecular profiles
and disease characteristics that cannot be detected by the human eye.!*!® Based on the concept of
information in biomedical images that reflects the underlying pathophysiology, radiomics converts
digital medical images into mineable high-dimensional data.'* New imaging biomarkers generated
by radiomics can be integrated with clinical data such as genetic information, and overcome

limitation of predicting diseases with clinical parameters. !>
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Figure 1. Development Al in radiology and radiomics

Abbreviation: Al, artificial intelligence.



Al imaging analysis has been investigated also in pediatrics.'® In a systematic review, 5 of 6 studies
showed that Al was superior to human experts for diagnosis of tumor.!” Our previous study
demonstrated the program developed using Al showed a high level of precision in determining bone
age and final adult height for Korean youths.!® However, investigations and applications on Al
imaging analysis in children and adolescents are still limited compared to that in adult. Moreover,
although quantitative analyses of medical images have been performed in adults because numerous
radiomic features can be extracted and analyzed using radiomics, investigations of the pituitary
gland using radiomics in children are limited.'%!-2

Notably, clinical parameters associated with GHD diagnosis have been investigated in several
studies that included anthropometric data, such as height and body mass index (BMI), and laboratory
tests such as IGF-1.2!** However, literature regarding prediction models for the differential diagnosis
of GHD and ISS in children are currently lacking, especially regarding prediction models using both
radiomics and clinical parameters.

Therefore, this study aimed to develop a machine-learning-based prediction model for the
diagnosis of GHD and ISS using radiomics and clinical parameters. Our objectives were to (1)
extract radiomic features using T2-weighted image (T2WI) and contrast enhanced T1-weighted
image (T1C) in sella MRI; (2) develop a prediction model using radiomic features and clinical
parameters; (3) compare predictability among the models using radiomics, clinical parameters, and
both parameters; (4) estimate the accuracy of the predictive models with external validation; and (5)
evaluate the contribution of each clinical parameter and radiomic feature from the prediction models.
To achieve this goal, we investigated the following contents: (1) baseline characteristics of the
participants; (2) ROC curve analyses of clinical, radiomics, and combined models; and (3) Shapley

value of clinical parameters and radiomic features

2. MATERIALS AND METHODS
2.1.Study population (Figure 2)

To develop the prediction model for diagnosis of GHD and ISS, electronic records of children aged
18 years or younger with short stature who underwent GH provocation test and sella MRI between
March 2011 and July 2020 were extracted from the Severance Clinical Research Analysis Portal of

Severance Hospital. Among these participants, subjects with endocrinological or systemic pathology



such as skeletal dysplasia, small for gestational age, genetic disease including chromosomal
abnormality, Russel-Silver syndrome, and Prader-Willi syndrome, and chronic disease including
cancer, congenital heart disease, and systemic lupus erythematosus and/or those with pituitary lesion
including tumor and empty sella were excluded for the final derivation set. For external validation
set, electronic records of children aged 18 years or younger with short stature who underwent GH
provocation test and sella MRI between September 2020 and November 2022 were extracted from
the Severance Clinical Research Analysis Portal of Yongin Severance Hospital. Exclusion criteria
for final external validation set was same with those for derivation set. Finally, a total of 293 children
and adolescents with sella MRI in the training set and 47 children and adolescents in the test set

were enrolled.
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Figure 2. Study flow.

* Endocrinological or systemic pathology: hypopituitarism, adrenal insufficiency, hyperthyroidism
or hypothyroidism except euthyroid state, skeletal dysplasia, small for gestational age, genetic
disease including chromosomal abnormalities, Russel-Silver syndrome, Prader-Willi syndrome, and
chronic diseases including cancer, including a history of brain irradiation, congenital heart disease,
and systemic lupus erythematosus.

**Pituitary lesion: pituitary tumor and/or empty sella

Abbreviation: EHR; electronic health record, GH; growth hormone, MRI; magnetic resonance

imaging, GHD; growth hormone deficiency, ISS; idiopathic short stature.



2.2. Definition of GHD and ISS

GHD was defined as follows: (1) height below the third percentile for age, sex, and race based on
the 2017 Korean National Growth Charts;? (2) peak GH level below 10 ng/mL after stimulation in
two types of GH provocation tests using insulin, arginine, and/or L-dopa; and (3) children without
genetic, endocrine, or systemic abnormalities.?2

Among the participants with GHD, severe GHD was defined as follows: (1) height below the third
percentile for age, sex, and race based on the 2017 Korean National Growth Charts;® (2) peak GH
level below 5 ng/mL after stimulation in two types of GH provocation tests using insulin, arginine,
and/or L-dopa; and (3) children without genetic, endocrine, or systemic abnormalities.?’

ISS was defined as height below the third percentile for individuals of the same age, sex, and race,

with no other identifiable causes, including genetic, endocrine, or systemic pathologies.?252

2.3. Clinical parameters

Height was recorded with an accuracy of 0.1 cm, whereas body weight was measured using an
electronic load with a precision of 0.01 kg. BMI was calculated by dividing body weight in
kilograms by the square of height in meters (kg/m?). Height, weight, and BMI were expressed as
standard deviation scores (SDS) using the 2017 Korean National Growth Charts.?® Children were
categorized based on their BMI into three groups: normal (<85th percentile), overweight (85th—95th
percentile), or obese (>95th percentile). Mid-parental height (MPH) was determined by calculating
the average height of the parents and adjusting it by subtracting 6.5 cm for girls and adding 6.5 cm
for boys. Puberty was considered at any pubertal development with Tanner stage > 2.282°

Growth hormone (GH) and insulin-like growth factor | (IGF- 1) levels were determined using a
chemiluminescence immunoassay using a LIAISON® XL immunoassay system (DiaSorin, S.p.A.,
Saluggia, Italy) using the human GH (hGH) reagent traceable to World Health Organization (WHO)
2nd International Standard 97/574 and the IGF-I reagent traceable to WHO 1st International
Standard IGF-1 National Institute for Biological Standards and Control (NIBSC) code 02/254,
respectively, in Severance Hospital. IGF binding protein 3 (IGFBP-3) was determined by an
immunoradiometric assay using the IGFBP-3 immunoradiometric assay reagent (Immunodiagnostic
Systems, UK).

In Yongin Severance Hospital, GH, IGF-1, and IGFBP-3 levels were determined using a

electrochemiluminescence immunoassay on cobas® e801 immunoassay system (Roche Diagnostics



GmbH, Mannheim, Germany). GH was determined using Elecsys hGH reagent traceable to the
international reference preparations, NIBSC code 98/574, at Seoul Clinical Laboratories, as a send-
out test for the patients. Serum levels of IGF-I and IGFBP-3 were determined using the Elecsys IGF-
1 reagent standardized against WHO 02/254 internal standards and Elecsys IGFBP-3 reagent
standardized against IDS iSYS® IGFBP-3, respectively.

SDS values of IGF-I and IGF binding protein 3 (IGFBP-3) were calculated based on reference data
for the Korean population.®® Bone age was assessed according to the Greulich-Pyle method by
experienced pediatric endocrinologists.* In addition, we calculated chronological age-bone age
(CA-BA).

2.4.  Image acquisition
A. The training set:

The participants were scanned using various 3.0 T magnetic resonance imaging (MRI) units
(Achieva; Philips Medical Systems, Amsterdam, the Netherlands). Coronal view of T2-weighted
image (T2WI) and contrast-enhanced T1-weighted image (T1C) which are the most informative
representative series in sella MRI were included in the imaging protocols. The sequence parameters
of the T2WI and T1C were as following: TR/TE=2129/90 ms; slice thickness=1.0 mm; intersection
gap=0 mm; field of view (FOV)=36x24 cm; flip angle = 90; pixel spacing=0.188x0.188 mm; and
TR/TE = 2000/10 ms; slice thickness=1.2 mm; intersection gap = 0 mm; FOV= 32 x 24 cm; flip
angle = 90; and pixel spacing = 0.391 x 0.391 mm.

B. The test set:

MRI data were acquired using a 3T MRI scanner (Ingenia Elition X or Ingenia CX, Philips
Healthcare, Best, the Netherlands) with a 32-channel head coil. The imaging protocols included
coronal view of T2-weighted image (T2W1) and contrast-enhanced T1-weighted image (T1C) which
is representative series in sella MRI. The sequence parameters of the T2WI and T1C are as following:
TR/TE=2132/80 ms; slice thickness=1.5 mm; spacing between slices=1.5 mm; FOV=20x20 cm;
flip angle = 90; pixel spacing=0.391x0.391 mm and TR/TE = 608/12 ms; slice thickness=1.5 mm;
spacing between slices=1.5 mm; FOV= 20 x 20 cm; flip angle = 90; pixel spacing = 0.391 x 0.391

mm, respectively.



2.5. Image processing and radiomics feature extraction

The T2WI and T1C from the sella MRI were examined, and the entire pituitary gland was identified
within the region of interest. The outermost borderline of the sliced pituitary gland was outlined.

Following the conversion of the T2WI and T1C from the sella MRI, which were in Digital Imaging
and Communication in Medicine format, into NIfT1 files, the images were resampled to a resolution
of 1x1x1 mm. In addition, N4 bias correction was used for a correction of low-frequency intensity
non-uniformity.3? The images were performed by a radiologist with a 10-year experience, who was
unaware of the participants' clinical information. An open-source software (Medical Image
Processing, Analysis, and Visualization; Center for Information Technology, National Institutes of
Health, Bethesda, MD, USA) was used for the analysis. Region of the interest of the pituitary gland
in each image slice was obtained semi-automatically using edge detection, signal intensity
thresholding, and region growing. To ensure the reliability of the segmentation, another radiologist
with 10 years of experience independently conducted the segmentation of 10% of the final images
selected from the dataset, which were chosen randomly. The Dice coefficient was calculated to
assess the agreement between the segmentation masks generated by the two radiologists. Next,
Pyradiomics 2.1.0 (http://www.radiomics.io/pyradiomics.html) was used for extraction of the
radiomic feature with 128 fixed bin counts.® Finally, we extracted 14 shape, 18 first-order, 24 gray-
level co-occurrence matrix (GLCM), 16 gray-level run length matrix (GLRLM), 16 gray-level size
zone matrix (GLSZM), and 5 neighborhood gray tone difference matrix (NGTDM) from the region
of interests on pituitary gland. In total, 186 radiomic features were extracted from T2WI and T1C,

respectively.

2.6. Machine learning and statistical analysis (Figure 3)

We trained and compared three models that classified GHD and ISS according to the following
parameters: radiomic features, clinical parameters, and both of these parameters. This
comprehensive approach aimed to assess the combined predictive ability of radiomics and clinical
parameters for diagnosis.®* For training of the models, The XGBoost algorithm was performed.
XGBoost is an ensemble of decision trees with high predictive and explanatory ability.% In particular,
XGBoost can learn datasets with missing values. Bayesian optimization was used for optimizing the
XGBoost. We performed internal validation using repeated fivefold cross-validation. The evaluation

metrics used were accuracy, sensitivity, specificity, precision, and area under the receiver operating

10



characteristic (ROC) curve (AUC). The bootstrap method was used for the pairwise comparison of
the AUC, and the prediction models were externally validated using the Yongin Severance Hospital
dataset. All analyses were performed using Python 3.9. Statistically significance was defined as p

value less than 0.05.

11
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Figure 3. Machine learning pipeline.
Abbreviation: T1C; contrast-enhanced T1-weighted image, T2WI; T2-weighted image, ROC;

receiver operating characteristics, SHAP; Shapley additive explanations.
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2.7. Interpretation of the model wusing Shapley Additive
exPlanations (SHAP)

SHAP was used for evaluation and interpretation the significance of the clinical parameter and
radiomic parameters from the prediction models.3” Contribution of the features was measured with
SHAP, called the Shapley value, to the prediction of GHD. This analysis allowed us to visualize and
understand the significance of each feature in contributing to the performance of the model. This
study used three perspectives to interpret the models: feature importance plots, dot summary plots,
and waterfall plots. Importance was calculated by averaging the Shapley values per feature. The dot
summary plot is a scatter plot of the feature importance based on the magnitude of each feature value.
The waterfall plot shows the impact of the features on the machine learning models for each case.
This study sampled true-positive and true-negative cases for GHD classification and examined a

machine learning model using waterfall plots.

3. RESULTS

3.1. Baseline characteristics of the subjects according to the

etiology of short stature (Table 1)

BMI and the proportions of underweight, overweight, and obese participants were higher in
participants with GHD than in those with ISS. IGF-I and IGF-I SDS were lower in participants with
GHD than in those with ISS, whereas CA—BA was higher in those with GHD.

Table 1. Baseline characteristics of the subjects according to etiology of short stature

GHD (n = 248) ISS (n=96) p-value
Sex (male) 150 (60.5) 53 (55.2) 0.365
Age, year 7.24 £2.81 7.21+2.73 0.917
Height, cm 112.53 + 14.88 111.68 +14.34 0.630
Height SDS -2.54+0.56 -2.67+£0.67 0.075
Weight, kg 20.94 +7.73 19.37+£6.17 0.071
Weight SDS -2.10+2.31 -2.42+1.02 0.197

13



BMI, kg/m? 16.06 = 2.50 15.16 £ 1.72 0.001
BMI SDS -0.73 £2.53 -1.05 +1.00 0.221
BMI percentile 0.023
underweight 189 (76.2) 69 (71.9)
normal 40 (16.1) 24 (25.0)
overweight 11 (4.4) 2 2.1
obesity 8(3.2) 1(1.0)

Growth velocity, cm/year 444 +1.63 421+1.56 0.252
Pubertal status 0.294
prepuberty 213 (85.9) 78 (81.2)

puberty 35(14.1) 18 (18.8)
MPH SDS -0.09 = 0.08 -0.09 £ 0.09 0.510
MPH SDS - Height SDS 2.63 £0.57 2.76 £0.67 0.080
IGF-I, ng/mL 137.55 + 58.38 153.58 £70.16 0.030
IGF-1 SDS -0.79 + 0.63 -0.69+£0.71 0.015
IGFBP-3, ng/mL 2344.02 + 1127.25 2199.60:% 0.317
786.76
IGFBP-3 SDS 0.82+0.83 0.68+0.76 0.001
Bone age, year 6.69 £2.76 6.72+2.72 0.941
CA-BA, year 0.61 £0.95 0.34£0.97 0.031

Categorical variables are shown as numbers (percentages) and continuous variables are shown as
mean + standard deviation. P-values for categorical variables are determined using chi-square tests
and for continuous data are determined using independent t-tests.

Abbreviation: GHD; growth hormone deficiency, ISS; idiopathic short stature, SDS; standard
deviation score, BMI; body mass index, MPH; mid-parental height, IGF-I; insulin-like growth factor
I, IGFBP-3; insulin-like growth factor binding protein-3, CA—BA; chronological age—bone age.

3.2. Baseline characteristics of the training set and the test set

(Table 2)

Regarding the baseline characteristics of the participants in the training and test sets, the

14



proportions of boys, underweight, prepuberty, and ISS were higher in the training set than in the test
set. Age, height, MPH SDS, and BA were higher in the test set than in the training set, whereas the
MPH SDS height, SDS, and CA—BA were higher in the training set. In the training set, the proportion
of GHD, ISS, and severe GHD were 69.6%, 30.4%, and 34.3%, respectively. In the test set, the

corresponding values were 87.5%, 12.5%, and 45.8%, respectively.

Table 2. Baseline characteristics of the training set and the test set

Training set Test set p-value
(n=296) (n=48)
Sex (male) 182 (61.5) 27 (56.2) 0.020
Age, year 7.04 +2.81 8.44 +2.31 0.001
Height, cm 110.55 £ 15.50 121.18 £13.55 <0.001
Height SDS 2.77+£2.18 -2.15+£0.53 0.053
Weight, kg -2.77+£2.18 -2.15+£0.53 0.053
Weight SDS -2.26+2.23 -1.56 £0.75 0.032
BMI, kg/m? 15.68 +2.30 16.57 £2.46 0.080
BMI SDS -0.87 £2.34 -0.49+£1.05 0.110
BMI percentile 0.033
underweight 60 (20.3) 4 (8.3)
normal 217 (73.3) 39 (81.2)
overweight 11 (3.7) 2(4.2)
obesity 8(2.7) 3(6.2)

Growth velocity, cm/year 437+1.57 440+ 1.87 0.100
Pubertal status 0.046
prepuberty 255 (86.1) 36 (75.0)

puberty 41 (13.9) 12 (25.0)
MPH SDS -0.04 £ 0.09 -0.03 £0.10 0.040
MPH SDS - Height SDS 2.74 +0.58 2.21+0.54 <0.001
IGF-I, ng/mL 140.27 £ 62.56 153.32 £59.26 0.186
IGF-1 SDS -0.74 £ 0.69 -0.87 £0.36 0.207
IGFBP-3, ng/mL 1987.94 + 718.58 4171.04 + <0.001
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741.61

IGFBP-3 SDS 249+ 1.15 0.51+0.09 <0.001
Bone age, year 6.43 +2.67 8.23 +£2.69 <0.001
CA-BA, year 0.58+0.95 0.26 +0.98 0.040
Diagnosis 0.010
GHD 206 (69.6) 42 (87.5)
ISS 90 (30.4) 6 (12.5)
Severe GHD 72 (24.3) 22 (45.8) <0.001

Categorical variables are shown as numbers (percentages) and continuous variables are shown as
mean + standard deviation. P-values for categorical variables are determined using chi-square tests
and for continuous data are determined using independent t-tests.

Abbreviation: SDS; standard deviation score, BMI; body mass index, MPH; mid-parental height,
IGF-I; insulin-like growth factor I, IGFBP-3; insulin-like growth factor binding protein-3, CA-BA;
chronological age—bone age, GHD; growth hormone deficiency, ISS; idiopathic short stature.

3.3.  ROC curve analyses of clinical, radiomics, and combined

models (Table 3, 4, and 5 and Figure 4 and 5)

Table 3 and Figure 4 and 5 summarize the results of the ROC curve analyses and present the AUCs
with corresponding 95% confidence intervals (Cls) for GHD prediction using the clinical, radiomics,
and combined models. Among the clinical parameters, age, sex, height SDS, weight SDS, BMI SDS,
growth velocity, pubertal state, MPH SDS, MPH SDS — height SDS, IGF-1 SDS, and CA-BA were
assessed using clinical and combined models. IGFBP-3 was excluded from the parameters because
the value was substantially different between the two centers owing to different assays and reagents.
The accuracy and AUC (95% CI) of the clinical model were 0.717 and 0.690 (0.628-0.753) and
0.702 and 0.684 (0.590—-0.778) for internal and external validation, respectively. In the radiomics
model, the corresponding values were 0.668 and 0.674 (0.609-0.738) for internal validation and
0.698 and 0.691 (0.620-0.762) for external validation. In the combined model, the corresponding
values were 0.817 and 0.835 (0.776—0.896) for internal validation and 0.813 and 0.830 (0.741-0.919)

for external validation.
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Table 3. AUCs of each model for predicting GHD

Accuracy  Sensitivity  Specificity  Precision AUC

(95% CI)
Clinical Internal 0.717 0.738 0.667 0.838 0.690
model validation (0.628-
0.753)
External 0.702 0.707 0.667 0.936 0.684
validation (0.590-
0.778)
Radiomics Internal 0.678 0.691 0.685 0.578 0.674
model validation (0.609-
0.738)
External 0.698 0.643 0.667 0.831 0.691
validation (0.620-
0.762)
Combined Internal 0.817 0.857 0.722 0.878 0.835
model validation (0.776-
0.896)
External 0.813 0.810 0.833 0.971 0.830
validation (0741_
0.919)

P-values are determined using ROC curve for AUC.
Abbreviation: AUC; area under the receiver operating characteristics curve, GHD; growth hormone

deficiency, CI; confidence interval, ROC; receiver operating characteristics.
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Figure 4. ROC curves from the clinical model, radiomics model, and combined model for

internal validation.

Abbreviation: AUC; area under the receiver operating characteristics curve, ROC; receiver operating

characteristics.
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Figure 5. ROC curves from the clinical model, radiomics model, and combined model for

external validation.

Abbreviation: AUC; area under the receiver operating characteristics curve, ROC; receiver operating

characteristics.
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In the pairwise comparison among the prediction models for GHD, the combined model
outperformed both the clinical and radiomics models in internal validation (combined model vs.
clinical model, p = 0.012; combined model vs. radiomic model, p = 0.026) and external validation
(combined model vs. clinical model, p = 0.034; combined model vs. radiomic model, p = 0.019)

(Table 4). The AUC were not statistically different between the clinical and radiomic models.

Table 4. Comparison of AUCs of prediction models for GHD

Clinical model Radiomics model Combined model
Internal validation
Clinical model Reference 0.208 0.012
Radiomics model 0.208 Reference 0.026
Combined model 0.012 0.026 Reference
External validation
Clinical model Reference 0.284 0.034
Radiomics model 0.284 Reference 0.019
Combined model 0.034 0.019 Reference

The bootstrap method was used to perform pairwise comparisons between AUCs for the variables.
Abbreviation: AUC; area under the receiver operating characteristics curve, GHD; growth hormone

deficiency.

Table 5 summarizes the results of the ROC curve analyses and present the AUCs with
corresponding 95% confidence intervals (CIs) for severe GHD prediction using the clinical,
radiomics, and combined models.

The accuracy and AUC (95% CI) of the clinical model were 0.629 and 0.650 (0.592—-0.708) and
0.634 and 0.651 (0.597-0.705) for internal and external validation, respectively. In the radiomics
model, the corresponding values were 0.640 and 0.655 (0.598-0.713) for internal validation and
0.630 and 0.648 (0.598-0.698) for external validation. In the combined model, the corresponding
values were 0.651 and 0.665 (0.604—0.725) for internal validation and 0.645 and 0.672 (0.613-0.731)

for external validation.
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Table 5. AUCs of each model for predicting severe GHD

Accuracy  Sensitivity ~ Specificity Precision AUC

(95% CI)
Clinical Internal 0.629 0.642 0.591 0.827 0.650
model validation (0.592—
0.708)
External 0.634 0.625 0.678 0.688 0.651
validation (0.597-
0.705)
Radiomics Internal 0.640 0.657 0.591 0.830 0.655
model validation (0.598—
0.713)
External 0.630 0.615 0.670 0.667 0.648
validation (0.598—
0.698)
Combined Internal 0.651 0.672 0.591 0.833 0.665
model validation (0.604—
0.725)
External 0.645 0.621 0.701 0.700 0.672
validation (0.613-
0.731)

P-value determined using ROC curve for AUC.
Abbreviation: AUC; area under the receiver operating characteristics curve, GHD; growth hormone

deficiency, CI; confidence interval, ROC; receiver operating characteristics.
In the pairwise comparison among the prediction models for severe GHD, the combined model

outperformed the clinical model in internal validation (combined model vs. clinical model, p = 0.045)

(Table 6). In external validation, the combined model outperformed both the clinical and radiomics
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models in internal validation (combined model vs. clinical model, p = 0.031; combined model vs.
radiomic model, p = 0.048). The AUC were not statistically different between the clinical and

radiomic models.

Table 6. Comparison of AUCs of prediction models for severe GHD

Clinical model Radiomics model Combined model
Internal validation
Clinical model Reference 0.201 0.045
Radiomics model 0.201 Reference 0.076
Combined model 0.045 0.076 Reference
External validation
Clinical model Reference 0.312 0.031
Radiomics model 0.312 Reference 0.048
Combined model 0.031 0.048 Reference

The bootstrap method was used to perform pairwise comparisons between AUCs for the variables.
Abbreviation: AUC; area under the receiver operating characteristics curve, GHD: growth hormone

deficiency.

3.4. Shapley value of clinical parameters and radiomic features

(Figure 6-13)

We computed the mean absolute Shapley values for all clinical variables and radiomic features to
illustrate their contribution in the predictive models for external validation. Among the clinical
parameters, the SHAP value of BMI SDS was the highest, followed by those of CA—BA, weight
SDS, growth velocity, IGF-I SDS, MPH SDS, and height SDS (Figure 6). Among the radiomics
features, the SHAP value of Inverse Variance from T2WI (GLCM) was the highest, followed by
Energy from T1C (first order) and Sum Entropy from T2WI (GLCM) (Figure 7). In the combined
model, the SHAP value of CA-BA was the highest, followed by weighted SDS, Maximum
Probability from T2WI (GLCM), and Run Length Nonuniformity Normalized from T2WI (GLRLM)
(Figure 8).
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Figure 6. Mean absolute SHAP values for feature importance in the clinical model for
diagnosis of GHD from external validation.

Abbreviation: BMI; body mass index, SDS; standard deviation score, CA—BA; chronological age—
bone age, IGF-I; insulin-like growth factor I, MPH; mid-parental height, SHAP; Shapley additive

explanations, GHD; growth hormone deficiency.
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Figure 7. Mean absolute SHAP values for feature importance in the radiomics model for
diagnosis of GHD from external validation.

Abbreviation: GLCM; gray-level co-occurrence matrix, GLSZM; gray-level size zone matrix,
GLRLM; gray-level run length matrix, NGTDM; neighborhood gray tone difference matrix, SHAP;
Shapley additive explanations, GHD; growth hormone deficiency.
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Figure 8. Mean absolute SHAP values for feature importance in the combined model for
diagnosis of GHD from external validation.

Abbreviation: CA-BA; chronological age—bone age, SDS; standard deviation score, GLCM; gray-
level co-occurrence matrix, GLRLM; gray-level run length matrix, GLSZM; gray-level size zone
matrix, NGTDM; neighborhood gray tone difference matrix, MPH; mid-parental height, SHAP;
Shapley additive explanations, GHD; growth hormone deficiency.

25



Analysis of the dot summary plots revealed that high CA-BA values and low value of IGF-1 SDS
values influenced the prediction of GHD in the clinical model (Figure 9). In the radiomics model,
high value of Inverse Variance from T2WI (GLCM) influenced the prediction of the ISS, and low
values of Sum Entropy from T2WI (GLCM) and Small Area Low Gray Level Emphasis from T2WI
(GLSZM) influenced the prediction of GHD (Figurel0). In the combined model, low values of the
CA-BA influenced the prediction of GHD, whereas weight SDS, Maximum Probability from T2WI
(GLCM), and Run Length NonUniformity Normalized from T2WI (GLRLM) contributed highly to
the model (Figure 11).
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Figure 9. Dot summary plot with mean absolute SHAP value for contribution of the variables
in the clinical model in external validation.

The darkness on the plot represent whether a parameter had a high or low value within the patient
dataset. The horizontal position on the plot indicates whether that value had a greater or lesser impact
on the prediction.

Abbreviation: BMI; body mass index, SDS; standard deviation score, CA—BA; chronological age—
bone age, IGF-I; insulin-like growth factor I, MPH; mid-parental height, SHAP; Shapley additive

explanations.
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Figure 10. Dot summary plot with mean absolute SHAP value for contribution of the variables
in the radiomics model in external validation.

The darkness on the plot represent whether a parameter had a high or low value within the patient
dataset. The horizontal position on the plot indicates whether that value had a greater or lesser impact
on the prediction.

Abbreviation: GLCM; gray-level co-occurrence matrix, GLSZM; gray-level size zone matrix,

GLRLM; gray-level run length matrix, SHAP; Shapley additive explanations.
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Figure 11. Dot summary plot with mean absolute SHAP value for contribution of the variables
in the combined model in external validation.

The darkness on the plot represent whether a parameter had a high or low value within the patient
dataset. The horizontal position on the plot indicates whether that value had a greater or lesser impact
on the prediction.

Abbreviation: CA-BA; chronological age—bone age, SDS; standard deviation score, GLCM; gray-
level co-occurrence matrix, GLRLM; gray-level run length matrix, GLSZM; gray-level size zone

matrix, NGTDM; neighborhood gray tone difference matrix, SHAP; Shapley additive explanations.
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By conducting SHAP analysis, waterfall plots were generated for each patient, and an example of
such a waterfall plot using the clinical model is shown in Figure 12. The clinical model predicted
the participant with ISS as ISS. In this case, the contribution of the CA-BA was the highest, followed
by the BMI SDS and IGF-I SDS. Figure 13 shows a waterfall plot in which the combined model
predicts a participant with GHD as having GHD. In this case, contribution of Joint Entropy from
T2WI (GLCM) was the highest and those of interquartile Range from T1C (first order) was followed.
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Figure 12. Representative waterfall plot of the clinical model case.
Abbreviation: CA-BA; chronological age-bone age, BMI; body mass index, SDS; standard
deviation score, IGF-I; insulin-like growth factor I, MPH; mid-parental height.
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Figure 13. Representative waterfall plot of the combined model case.
Abbreviation: CA-BA; chronological age—bone age, GLSZM; gray-level size zone matrix, GLCM,;

gray-level co-occurrence matrix, BMI; body mass index; SDS; standard deviation score.
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4. DISCUSSION

We demonstrated that the combined model using both clinical parameters and radiomics features
accurately predicted GHD. The combined model was superior to the clinical and radiomics models.
Among the clinical parameters, the BMI SDS, CA-BA, weight SDS, and growth velocity were the
major contributing factors to the clinical model. Among the radiomics features, Inverse Variance
from T2WI and Energy from T1C were the major factors contributing to the radiomics model. In the
combined model, CA-BA, weighted SDS, Maximum Probability from T2WI, and Run Length
Nonuniformity Normalized from T2WI were the major contributing factors.

Owing to the invasiveness and limitations of the GH provocation test, some studies have
investigated prediction models using clinical parameters for GHD diagnosis. A single-center study
from Argentina assessed clinical parameters including pituitary abnormalities, such as pituitary
dysgenesis, midline abnormalities, and pituitary hormone deficiencies, in children and developed a
GHD prediction model using a decision tree with internal validation only.?® The sensitivity,
specificity, and accuracy of the validation model were 55.6%, 99.2%, and 89.4%, respectively. A
study from China developed a predictive model of GHD and ISS using clinical parameters, including
IGF-1 and IGFBP-3, and MRI texture.®® The AUC of the clinical and MRI texture predictive models
were 0.607 and 0.852, respectively, although validation was not performed. Aim of our study was
developing a clinical model for diagnosing GHD in children without pituitary abnormalities,
systemic pathology, or endocrinological pathology, excluding GHD and ISS. We assessed various
clinical parameters that can be easily obtained in local clinics and developed a machine learning
model with external validation; the results were significant. Therefore, this model can be used to
assess the etiology of short stature in real-world clinical settings.

To date, investigations of radiomics models for assessing children with short stature have been
limited. Our previous study analyzed T2-weighted sella MRI images of children with short stature
and developed a radiomics-based model for differentiation of GHD and 1SS with internal validation,
in which the AUC and accuracy were 0.705 and 70.6%, respectively.*® In our study, the accuracy
and AUC of the radiomics model were 0.698 and 0.691, respectively, for external validation. To
improve the predictability of radiomics and clinical models, we combined both parameters using a
machine learning classifier, XGBoost, to build the prediction models in this study. XGBoost is well-
known for handling numerous features for model development with good performance, which is

suitable for radiomics studies.®®#0 The pure radiomics model did not yield high predictive

33



performance in external validation; however, the combined clinical and radiomics model could
accurately predict GHD with an AUC of 0.830 in external validation. Furthermore, the combined
clinical and radiomics model yielded superior predictive performance compared with the clinical
model. The added value of radiomics for predicting GHD was validated using an independent test
set. Therefore, we believe that radiomics may have a predictive potential for differentiating between
GHD and ISS.

To interpret the selected radiomic features and clinical parameters, we performed SHAP analysis.
SHAP analysis enables quantification of the impact of radiomic features and clinical parameters on
the prediction of GHD. SHAP estimates the importance value for each feature in the built model and
facilitates informed clinical decision-making. We provided several SHAP plots to visualize the
power of each selected feature on global (in the overall study population) and local (one patient)
levels. This provides an intuitive visualization of how clinical and radiomic features contribute to
the prediction of GHD. In both the radiomics and combined models, we found that the radiomic
features extracted from both T1C and T2WI contributed to the prediction. Texture features and first-
order features were used in the radiomics model. In the combined model, texture features were used
for prediction. Shape features, including volume, were not used for the prediction, which is
consistent with the fact that distinguishing GHD from ISS based on simple pituitary gland volume
alone was not successful in previous studies. The Maximum Probability feature, a GLCM feature,
was the most powerful predictor of GHD among the radiomic features, followed by the Run Length
Non Uniformity Normalized, a GLRLM feature. GLCM measures the spatial distribution of gray-
level intensities within an image, which is a biomarker for heterogeneity.!® Particularly, as the
Maximum Probability indicates occurrences of the most predominant pair of neighboring intensity
values,?? it may capture the different intensities of the pituitary gland between GHD and ISS, which
cannot be detected by visual comparison. The GLRLM quantifies the gray-level runs, which are
defined as the length of the number of pixels, of consecutive pixels that have the same gray-level
value. A Run Length Non-Uniformity Normalized, one of GLRLM features, assess the homogeneity
of run lengths, where higher similarity suggested by a lower value in run lengths throughout the
image.*> As higher values of Run Length Non-Uniformity Normalized showed significant
association with GHD in our study, we can infer that more heterogeneous pituitary gland can be
observed in GHD than in ISS.

Among the clinical parameters, BMI SDS, CA-BA, weight SDS, growth velocity, IGF-I SDS,
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MPH SDS, and height SDS were the major contributing factors to the prediction model for GHD in
our study. This result is consistent with those of previous studies. The clinical parameters related to
the diagnosis of GHD have been investigated in several studies. IGF-1, a metabolic product
influenced by GH, is synthesized in the liver and is mainly regulated by GH.*' Thus, serum IGF-1
levels reflect the endogenous production of GH with minimal diurnal variation and have been
considered as one of useful screening tests for GHD due to their diagnostic potential since 1982. In
a meta-analysis, AUC of IGF-1 for diagnosis of GHD was 0.78.4? A retrospective study reported that
height velocity and IGF-1 could be used for screening of GHD.* A cohort study reported that BMI
was negatively related with peak GH level on GH provocation test??. In addition, pubertal
development is delayed in children with GHD which is related to bone age delay.*** In a cohort
study, bone age was more delayed in children with GHD compared to those with ISS.2° In another
cohort study, MPH was different according to etiologies of short stature.> Summary Statement of the
Growth Hormone Research Society recommends to consider height SDS and height velocity when
deciding whether to perform GH provocation test or not!.

Our study has some limitations. Firstly, this study was limited to a single ethnicity with a
retrospective design. Secondly, we could not consider IGFBP-3 because the values from both centers
were significantly different owing to the different methods and reagents used. Thirdly, a genetic
evaluation was not performed. Fourthly, the hypothalamus was not included in this analysis because
sella MRI focus on pituitary glands. As the MRI protocol centers the field of view on the
sella/suprasellar area, T2WI often fail to include the entire hypothalamus. In addition, the pituitary
gland has relatively clear anatomical boundaries, making segmentation an easy task. However, the
hypothalamus lacks clear anatomical boundaries, leading to difficulties in setting the region of
interest. Consequently, the segmentation process itself is likely to be biased. MRI is still burdensome
for children although it is less burdensome and GH provocation test which require multiple sampling
and hospitalization. As sella MRI is performed for patients who has endocrinological problem,
further studies investigate radiomics using various protocol of brain MRI is required for increment
of practical value of radiomics for prediction of GHD and ISS.

However, this study is the first study which developed a prediction model for GHD using both
clinical parameters including anthropometric data, laboratory test, and bone age and radiomics

features. Moreover, we validated predictability of the model with external validation.
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5. CONCLUSION

In conclusion, our research strongly emphasizes the potential of combining radiomics-based
diagnostic models with clinical parameters for differentiation between GHD and ISS in children.
This study meticulously analyzed both T2WI and T1C in sella MRI, alongside a comprehensive
range of clinical parameters such as pubertal status and bone age, and scrutinized the individual
contributions of these parameters to the predictive model. Our model combining both radiomics and
clinical parameters can accurately predict GHD from ISS, which was also proved in the external
validation, therefore proved its predictive potential. Subsequently, we may expect an individualized
treatment strategy with our radiomics model combined with machine learning. Further studies with
larger samples including various ethnicity and various brain MRI series are required to overcome
limitation of our study. In addition, we hope to develop a robust model using genetic information as

well as radiomics and clinical parameters to replace GH provocation test in the future.
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