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ABSTRACT 

 

Unveiling the Prognostic Significance of Protein Expression in 

Advanced High-grade Serous Ovarian Cancer: A Comparative Study 

between Long-Term Survivors and Early Mortal Patients 

 

 

 

 

High-grade serous ovarian cancer (HGSOC), despite its high lethality, lacks reliable biomarkers 

for predicting poor prognosis, and limited progression has been made in personalized treatment. 

Targeted therapy based on genetic profile has not met expectations, as genomic alterations alone do 

not exclusively determine cancer cell phenotypes. Protein expression critically influences cellular 

processes. Recognizing proteomic alterations is even more crucial. This study proposes a novel 

technique, utilizing statistical deviation and machine-learning to select protein factors determining 

ovarian cancer prognosis.  

 In advanced HGSOC, divided into two groups with very good (n=24) and poor prognoses (n=23), 

proteins were extracted from fresh frozen tissue and subjected to proximity extension assay (PEA). 

We explored a novel approach called artificial intelligence (AI)-based machine learning to identify 

key proteins that could distinguish between groups with good and poor prognoses. By developing a 

model, we found that high levels of NPTN and PPM1A indicated a poor prognosis group, 

demonstrating remarkably high efficacy (Precision 0.857, Recall 0.818, F1-score 0.893). After IHC 

of NPTN and PPM1A in a tissue microarray (TMA), survival analysis showed that survival 

decreased when the expression was high..In vitro experiments with NPTN and PPM1A knockdown 

showed reduced cell proliferation, migration, and invasion. Our results suggest that it is feasible to 

select factors with significant differences between prognostic groups, particularly those that are 

amenable to clustering based on identified proteins. The research highlights the potential of 

proteomic markers to guide personalized therapeutic strategies to improve patient outcomes. 

 

Keywords: high-grade serous ovarian cancer, machine-learning, prognosis, proteomics, proximity 

extension assay  
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1. INTRODUCTION 

 

Cancer is the most prevalent genetic disease resulting from genetic mutations or chromosomal 

disorders1,2. The genomic instability in cancer cells causes abnormalities in cellular processes, which 

leads to unrestrained cancer cell growth3. Scientists have therefore sought to discover biomarkers 

for cancer using genome-based approaches such as next-generation sequencing technologies4. 

Large-scale DNA sequencing efforts have led to advances in the development of targeted therapies 

based on the genomic profile of cancers5. Nevertheless, targeted therapy based on genomics has not 

been as successful as expected, largely due to the emergence of drug resistance6. Genomic variation 

is not the only determinant of cancer cell phenotype. The intricate process of alternative splicing 

enables genes to generate diverse proteins with different sequences and functions. In addition, post-

translational modifications and interactions with other proteins contribute to the formation of mature 

proteins and complexes that play critical roles in various cellular activities. As a downstream 

consequence of gene regulation, alterations in protein expression and activity play a key role in 

shaping the phenotype of cancer cells2. Therefore, in the realm of targeted therapy, the quantification 

of proteomic alterations is crucial. Epithelial ovarian cancer (EOC) represents the majority, 

accounting for 85-90% of all ovarian cancers. EOC is further classified into five subtypes: serous 

(the most common subtype with 70% of cases), endometrioid, clear cell, mucinous, Brenner, and 

undifferentiated tumors7-9. There is also a dualistic model of EOC classification based on clinical 

and genetic profiles. Type I tumors are low-grade serous, endometrioid, clear cell, mucinous, and 

Brenner tumors. They are commonly associated with somatic mutations in BRAF, KRAS, PIK3CA, 

and PTEN, and are generally indolent and poorly responsive to chemotherapy10,11. In comparison, 

type II tumors, which include high-grade serous, high-grade endometrioid, carcinosarcoma, and 

undifferentiated carcinoma, are clinically aggressive with late presentation12,13. Genomic instability 

and mutations in TP53 (96%) and BRCA1/2 (22%) are common features of HGSOC, which is the 

most common type of EOC, the leading cause of death in EOC, and the most extensively studied to 

date14. Patients with HGSOC have the worst outcome, with a 5-year survival rate of less than 

40%15,16. Proteomic markers that can predict the progression and prognosis of HGSOC may become 

novel therapeutic targets for HGSOC and play an important role in personalized treatment. Therefore, 

we aimed to identify key proteins that can predict prognosis by proteomic analysis of advanced 

HGSOC. 
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2. MATERIALS AND METHODS 

2.1. Proteomic analysis  

2.1.1. Selection of frozen tissue 

We used fresh-frozen primary ovarian cancer specimens obtained intraoperatively and stored in 

the Korea Gynecologic Cancer Bank (KGCB) for study purposes. We identified patients who 

fulfilled the following inclusion criteria: (1) 18 years of age or older, (2) diagnosed with HGSOC 

between January 2007 and January 2022, and (3) advanced stage. The International Federation of 

Gynecology and Obstetrics (FIGO) stage III is more than, and (4) willing to donate biospecimens 

and provide written informed consent. We excluded patients with recurrent ovarian cancer, patients 

who received chemotherapy including neoadjuvant chemotherapy (NAC), patients with insufficient 

clinical data or lost to follow-up, and patients with severe comorbidities.  

 2.1.2. Group curation 

We identified a good prognosis group and a poor prognosis group in the patient population. We 

defined the good prognosis group as follows. 1] Relapse after 2 years and no further progression for 

the next 5 years 2] No progression for 5 years after the first treatment. The poor prognosis group 

was defined as 1] Expired within 2 years of starting treatment, 2] Relapsed within 1 year of starting 

treatment and expired within 3 years, and 3] Refractory and resistant and expired within 3 years. 

The good prognosis group had a total of 24 organizations and the poor prognosis group had a total 

of 23 organizations. The normal tissue was obtained from the fallopian tubes of 6 patients 

undergoing surgery for benign conditions. 

2.1.3. PEA (Proximity extension assay) 

 2.1.3.1. Protein extraction from fresh frozen tissue 

The tissue, freshly collected and promptly snap-frozen on dry ice, was carefully excised with a 

scalpel while maintaining the frozen state. Subsequently, the tissue sample was transferred into a 

beads tube placed on ice. The homogenizer tube was filled with lysis T-PERTM buffer comprising 

50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, and 0.1% Sodium 

deoxycholate, supplemented with protease inhibitors. The sample was homogenized using a 

FastPrep-24TM classic homogenizer for 20 seconds and then placed on ice for 5 minutes. This 

homogenization and centrifugation process was repeated more than four times. Subsequently, the 

supernatant was collected, and centrifugation was performed at 14,000 rpm for 10 minutes at 4°C to 
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achieve centrifugal separation. Protein concentration was determined using bovine serum albumin 

(BSA), and samples were adjusted to a consistent concentration accordingly (0.5µg/µL). 

Subsequently, the samples underwent analysis using the Olink Explore Oncology II at the DNAlink 

Lab in Seoul, Korea. 

2.1.3.2. Protein measurements 

Olink's PEA Explore technology employs antibody pairs with DNA oligonucleotide reporter 

molecules, binding to targets in proximity to generate double-stranded DNA amplicons. We used 

Olink's Oncology II panel, which consists of 386 antibodies that are associated with oncology. 

Following the initial immune reaction, amplicons were extended and amplified, incorporating 

individual sample index sequences in a subsequent step. The prepared libraries were pooled and 

sequenced using an Illumina NovaSeq 6000 instrument for analysis. Raw BCL files were converted 

into count files and further processed into normalized protein expression (NPX) values using a 

manufacturer-specified quality control and normalization method, wherein NPX values on a log2 

scale reflect protein concentration doubling per unit increase. These NPX values underwent initial 

manufacturer-performed QC and were subsequently preprocessed using Olink Wizard for GENEX 

software at the Clinical Biomarker Facility for subsequent analyses17. 

2.1.4. Data analysis and statistical   

2.1.4.1. Machine learning based analysis 

We aim to analyze the relationship between ovarian cancer prognosis in patients and associated 

protein factors that have been collected in the field. We prioritized proper data pre-processing to 

achieve clean data for analysis (Fig. 1 A). We divided the patients into distinct groups and applied a 

normalization and visualization process to check for the presence of outliers in the dataset (Fig.1 B 

(a)). Consequently, we identified these data as outliers and removed them to achieve a clean dataset, 

as illustrated in Fig. 1 B (b). Following the pre-processing scheme, descriptive statistics are used to 

describe the clinicopathological characteristics of the study population. In the clustering and trend 

analysis parts, we check whether the distribution of patients according to protein factor forms a 

certain clustering or tendency. The k-means clustering technique is used as a method to analyze the 

clustering of such data. The relationship between proteins and groups is also analyzed using 

regression techniques. Based on these methods, we select the most important factors that could 

identify the patient's prognosis. 
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Figure 1. System model for analyzing the relationship between patient prognosis and proteins 

A. Schematic for identifying candidate proteins. B. (a) Visualization of data without removing 

outliers. (b) Visualization of data with removing outliers. We used visualization to remove outliers, 

as their presence greatly affects the accuracy of data analysis.  
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2.1.4.2. Statistical analysis 

Student's t-test, Mann-Whitney U test, Pearson's chi-square test, and Fisher's exact test were used 

for statistical analysis of patient clinical characteristics and proteomic results. The Mann-Whitney 

U test was used for IHC scoring data. Analysis of Kaplan-Meier survival curves was performed and 

statistical significance was calculated using the log-rank test. These analyses were performed using 

SPSS software (version 27.0, SPSS Inc., Chicago, IL, USA), R, and GraphPad Prism 10.0 software. 

All statistical tests were two-tailed and considered statistically significant if the p-value was less 

than 0.05. 

 

2.2. In vitro functional assay  

2.2.1. Cell Culture 

Five immortalized human ovarian surface epithelial cells were used, which were described 

previously18. These cells were grown in DMEM containing 10% FBS with 1% penicillin/ 

streptomycin and cultured at 37°C in 5% CO2. A total of six serous-type ovarian cancer cell lines 

were used, all of which were obtained from the Korean cell line bank (Republic of Korea). SKOV3, 

PE01, and OVCAR3 cells were cultured at 37°C in 5% CO2 containing RPMI 1640 (Corning; 10-

041-CV, NY, USA), 10% fetal bovine serum (FBS; Gibco, #12483-020, Thermo Fisher Scientific 

Inc., NY, USA) and 1% penicillin/streptomycin (Gibco, #15140, Thermo Fisher Scientific Inc., NY, 

USA). CAOV3, OVCA429, and SNU119 cells were grown in Dulbecco's modified Eagles medium 

(DMEM) (Corning; 10-013-CV, NY, USA) containing 10% FBS with 50 U/mL penicillin and 50 

µg/mL streptomycin. The cultured cells were sustained in a humidified, 5% CO2 atmosphere at 37°C. 

Regular authentication of all cell lines was performed by monitoring their morphology. 

2.2.2. siRNA Transfection 

NPTN (#27020-1), PPM1A (#5494-1), and negative control (#SN-1003) knockdown were 

conducted using predesigned siRNA sequences purchased from Bioneer (Daejeon, Republic of 

Korea). Cells were seeded one day before siRNA transfection in 60 mm dish and were allowed to 

grow up to 60~70% confluency. On the day of siRNA transfection, cells were transfected with 

siRNA in Opti-MEM (Gibco, #31985-070, Thermo Fisher Scientific Inc., NY, USA), using 

Lipofectamine RNAiMax reagent (Invitrogen, #13778-075, Thermo Fisher Scientific Inc., NY, USA) 

according to the manufacturer’s instructions. Transfection efficiencies were analyzed 48 h post-
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transfection. 

2.2.3. RNA extraction and quantitative real-time PCR 

Total RNA was obtained using the RNeasy plus mini kit (Qiagen, Hilden, Germany), and cDNA 

was synthesized using the C1000 Thermal Cycler (BIO-RAD, Hercules, California, USA) according 

to the manufacturer’s instructions. The beta-actin was used an internal control. Quantitative PCR 

was performed and analyzed using the StepOnePlus real-time PCR system (Thermo Fisher Scientific, 

NY, USA). The primers used real-time PCR were as follows: for NPTN, forward 5’-

GCTCCTAAAGCAAACGCCACCA-3’ and reverse 5’-TCTT GCGCCATATCCAGTCTGG-3’; for 

ADAMTS15, forward 5’-TCTTGCGCCATA TCCAGTCTGG-3’ and reverse 5’-GGGAGCCAAG 

AACTGAGCAT-3’; for PPM1A, forward 5’-ATGCACCCAAAGTATCGCCA-3’ and reverse 5’-

GGCTGGGGATGTTCTC ACTC-3’; for RANGAP1, forward 5’-GGTGGTCTCTGCCTTCCTAA 

AG-3’ and reverse 5’-CGAGGAGTTGAAAGCCTTCTGC-3’; for METAP2 5’-TGGTGTATTTCC 

CAAAGGACA-3’ and reverse 5’-TGTCATCCCAGGCTTGA TCC-3’; for β-actin, forward 5’-

CTCGCCTTTGCCGATCC-3’and reverse 5’-GGGGTACTTCA GGGTGAGG A-3’.  

2.2.4. Cell proliferation assay 

Cells stably transfected with either siRNA or negative control were seeded into 6-well plates at a 

density of 1x104 cells per well and cultured for 7 days. Subsequently, the cells were fixed using a 

solution consisting of 10% acetic acid and 10% methanol for 10 min, followed by staining with 0.5% 

crystal violet for 1 hour. After staining, photographs were taken, and the cells were extracted using 

a 2% SDS solution. The crystal violet extracted from the cells was then quantified by measuring the 

absorbance at 595 nm using the VERSA MaxTM spectrophotometer. Additionally, the number of 

colonies containing more than 50 cells was enumerated using a digital microscope using a ZEN3.3 

blue edition (Carl Zeiss, Thornwood, NY, USA). All experiments were performed in triplicate. 

2.2.5. Boyden chamber invasion assay 

To study cell invasion, 48-well micro chemotaxis chambers (Neuro Probe, Gaithersburg, MD, USA) 

were used. Culture medium containing 10% FBS was applied to the lower chambers, which were 

then coated with Matrigel (BD Biosciences, San Jose, CA, USA) coated membranes with 8 μm pores. 

At 48 hour after transfection, siRNA-transfected cells (1 × 105 cells/56μl medium without FBS) were 

added to upper chambers. The membranes were fixed and stained with a Diff-quick solution 

(Sysmex, Kobe, Japan) after 24 hour. Non-invading cells were scraped from the top of the membrane 

and invading cells were counted under a digital microscope using a ZEN3.3 blue edition (Carl Zeiss, 
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Thornwood, NY, USA).Each experiment was repeated three times.   

2.2.6. Transwell migration assay  

SKOV3 cells transfected with 100 nM, 200 nM of NPTN and PPM1A, and negative control was 

seeded at 2x104 cells/200 μl in FBS-free media in the upper chamber, and 500 μl of media containing 

10% FBS in the lower chamber. The chambers were incubated at 37°C for 48 h. At the end of 

incubation, cells on the upper side of the membrane were wiped off with a cotton swab. Cells under 

the membrane were fixed with 4% PFS and stained with 0.05% crystal violet. Images were taken on 

a ZEN3.3 microscope and analyzed using NIH Image J software. 

2.2.7. Western blot 

For cell lysate preparation, cells were washed with ice-cold phosphate-buffered saline (PBS) and 

lysed in ice-cold RIPA buffer (Thermo Fisher Scientific, NY, USA) with the addition of protease 

inhibitor (Sigma) and phosphatase inhibitor (Sigma). Cell lysate protein quantification was 

performed using BCA reagent (Thermo Fisher Scientific).  

Briefly, 30 μg of protein sample was mixed with an equal volume of 2× Laemilli buffer and boiled 

at 95°C for 10 minutes. Lysates were separated by 10% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). Sample volumes containing 10 µg of protein were separated by 10% 

SDS-PAGE and transferred to PVDF membranes (Millipore, #IPVH00010, Sigma-Aldrich, St. 

Louis, Missouri, USA). After blocking non-specific binding with 5% non-fat milk for 1 hour at 25°C, 

the membranes were incubated overnight at 4°C with primary antibodies: anti-PPMIA (CST3549S, 

Cell Signaling, rabbit monoclonal Ab. 1:200) and anti-NPTN (TA504319, Origene, mouse 

monoclonal Ab. 1:100). After washing with TBST (Tris Buffered Saline with 0.1% Tween-20, 

#9997s; Cell Signaling Technology, Inc., Danvers, MA, USA), the membranes were incubated with 

HRP and developed with enhanced. Optical densities were analyzed using Amersham™ 

ImageQuant™ 800 (Cytiva, Marlborough, MA, USA). β-Actin was used as a loading control. 

  

2.3. Validation via Immunohistochemistry (IHC) 

2.3.1. Tissue Microarray (TMA) construction 

2.3.1.1. Clinical specimens 

We obtained the specimens from patients who underwent primary surgery at the Gangnam 

Severance Hospital between 2004 and 2021, and some of the samples were obtained from the KGCB 
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as part of the Bio and Medical. FIGO classification was applied for tumor staging, and clinical 

information, including surgical procedure, survival time, survival status, and age, was collected by 

reviewing the patient's medical records. Patients' response to therapy was determined by computed 

tomography using the Response Evaluation Criteria in Solid Tumors (RECIST; version 1.1). Tumor 

grade and cell type were assessed by reviewing pathology reports, and two gynecological 

pathologists histologically examined all tumor samples. All biological samples were collected after 

informed consent was provided by the participants. 

2.3.1.2. TMA 

Formalin-fixed paraffin-embedded (FFPE) tumor tissue blocks serve as the basis for generating 

TMA. Expert evaluation by an institutional pathologist of full-face H&E-stained sections identifies 

and defines representative tumor regions. Subsequently, these identified areas are used to construct 

TMA blocks. The TMA blocks were cut to 5-μm thickness with a rotary microtome and comprised 

1 mm tissue cores, ensuring a significant proportion of tumor cells. 

2.3.2. Immunohistochemistry (IHC) 

2.3.2.1.IHC 

IHC was carried out using TMA. Sections were deparaffinized and rehydrated through graded 

ethanol. The sections were exposed to 3% H2O2 solution in methanol for 30 minutes to quench 

endogenous peroxidase activity. Heat-induced antigen retrieval was then conducted by incubating 

the sections in target retrieval buffer at pH 6.0 (Dako, Carpinteria, CA, USA) using a steam pressure 

cooker (Pascal; Dako) for 20 min, and the slides were stained with anti-PPMIA (CST3549S, cell 

signaling, rabbit monoclonal Ab 1:200), anti-NPTN (TA 504319, Origene, mouse monoclonal Ab. 

1:100), EnVision+ Dual Link System HRP (Dako) and DAB+ (3, 30 -diaminobenzidine; Dako) were 

subsequently used to visualize the antigen-antibody reactions. Following dehydration and 

counterstaining with hematoxylin, the slides were embedded in Faramount Aqueous Mounting 

Medium (Dako). Appropriate positive and negative controls were added.  

2.3.2.2. Evaluation of immunohistochemical staining                                                                                                                                                                                                                                                                                                                                                                                                                           

The stained tissue microarray sections were scanned with a high-resolution optical scanner 

(NanoZoomer 2.0 HT; Hamamatsu Photonic K.K., Hamamatsu City, Japan) at 20× objective 

magnification (0.5-mm resolution). The scanned sections were analyzed using VIS Image Analysis 

Software, version 4.5.1.324 (Visiopharm, Hørsholm, Denmark). For IHC scoring, the number of 

cells with positive cytoplasmic staining was counted and ranged from 0 to 100. 
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3. RESULTS 

3.1. Protein expression profiling via PEA 

Proteins were extracted from tissues of 24 patients with good prognoses and 23 patients with poor 

prognoses. Additionally, protein extraction was performed on fallopian tube tissue samples from 6 

patients diagnosed with benign diseases. Table 1 presents the clinical characteristics of the samples. 

Analysis revealed a higher percentage of nulliparity and postoperative residual tissue exceeding 1 

cm in patients with poor prognoses, while other characteristics showed no significant differences. 

When examining the PEA results, of the eight candidates with significantly differential expression 

between the groups, the top five, ADAMTS15, NPTN, PPM1A, METAP2, and RANGAP1, were 

more highly expressed in the poor prognosis group, while CD38 was more highly expressed in the 

good prognosis group (Fig. 2 A). We examined protein expression in other subgroups such as 

recurrence, stage, CA125 expression, progression-free survival (PFS), BRCA mutation, and overall 

survival (OS), but did not find any significant differences. (Fig. 2 B). Using the above five proteins, 

we examined their expression in three IHOSE cell lines (IHOSE79A, IHOSE1421, IHOSE85A) and 

five serous ovarian cancer cell lines (SKOV3, OVCAR3, OVCA429, PE01, SNU119) by real-time 

PCR. NPTN and METAP2 were significantly highly expressed in tumor cell lines (p=0.035, 

p=0.035). PPM1A and ADAMTS15 were more highly expressed in tumor cell lines, although not 

statistically significant (p=0.142, p=0.250). RANGAP1 expression was slightly higher in IHOSE 

cell lines, but not significant (p=0.571) (Fig. 2 C). 
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Table 1. Characteristics of patients 

  Good-prognosis (24) Poor-prognosis(23) p-Value 

Age         
 65≥ 19(79.2%) 19(28.6%) 0.529 
 65< 5(20.8%) 4(17.4%)  

Parity     

 nulliparity 0 (0 %) 5(21.7%) 0.02 
 multiparity 24(100%) 18(78.3%)  

Stage     

 stageIII 21(87.5%) 17(73.9%) 0.286 
 stage IV 3(12.5%) 6(26.1)  

Residual 

tumor 
    

 1cm < 17(70.8%) 8 (34.8%) 0.02 
 1cm ≥ 7(29.2%) 15(65.2%)  

BRCA 

mutation 
    

 BRACA(-/-) 6(60%) 11(73.3%)  0.27 
 BRCA1+ 3(30%) 1(6.7%)  

 BRCA2+ 1(10%) 3(20%)  

 NA 14 8  

CA125 

(U/ml) 
   1975.97 2466.63   0.688 

p-values were performed by unpaired t-test or Mann-Whitney 

NA, not applicable. 
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Figure 2. PEA results.  

A. Volcano plot of protein expression. Mean differences in NPX (poor-good) are shown on the x-

axis and p-values (-log10, two-sided Welch's t-test) on the y-axis. Light dot-line represents cut-offs 

for p-value and fold change. B. Heatmap of proteins. Protein expression was characterized by 

various subgroups such as overall survival, Progression-free survival, stage III or IV, ca125 level, 

BRCA mutation status, and recurrence status, but no meaningful classification was achieved. C. 

Determined mRNA expression by real-time PCR in three IHOSE cell lines and five epithelial 

ovarian cancer cell lines. Data are expressed as the mean ± standard error (S.E.). Mann–Whitney   

U test was performed. *p < 0.05  
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3.2. Key protein selection based on machine learning  

3.2.1. Select proteins with different features - proteins with low deviations 

Even though there are many different features in the subgroups, they are relatively small. 

Therefore, we decided to select features based on their standard deviation. The expression 

distribution of proteins with high variation shows that even within the same group of patients, the 

degree of expression is very different (Fig. 3 A (a)). On the other hand, the expression of the proteins 

with low deviation shows that the distribution of the proteins is similar in the patients (Fig. 3 A (b)). 

We, therefore, identified about 50 proteins with low deviations in each group and selected proteins 

that intersected, i.e., proteins with low deviations in both good and bad prognosis groups, as 

candidate proteins. 

3.2.2. k-means clustering using the elbow method.   

We utilize k-means clustering to analyze protein data, acknowledging that a narrow data 

distribution does not ensure effective clustering. To address this, we employ the elbow method to 

determine the optimal number of clusters (Fig. 3 B). Demonstrates this method, revealing a rapid 

decrease in the cost function around k=3, indicating its suitability for our dataset.  

3.2.3. Visualization model construction  

We designed a visualization model to discriminate between good and poor groups based on 

protein expression. Since it is not possible to create a visualization model with all proteins, we chose 

the above five proteins that had statistical significance and the proteins that clustered well in both 

groups with low deviation after data preprocessing as candidates. Each set of models was visualized 

using the K-means clustering method (via the elbow point method), and a heuristic approach was 

used to find meaningful results among their models (Fig. 3 D). 

3.2.4. NPTN and PPM1A are selected 

We determine that NPTN and PPM1A are major factors in determining the patient’s prognosis. 

In Fig. 3 C, we visualize the diagnostic status of each patient based on NPTN and PPM1A factors. 

In the heuristic approach, it is possible to determine that the condition of patients is good when the 

NPTN factor is less than 0 or the PPM1A factor is less than -0.2.  

3.2.5. Evaluation of the proposed scheme  

As shown in Table 2, selecting the proper factors allows us to classify two groups using a heuristic 

technique. Here, Precision, Recall, and F1-score are key metrics for evaluating the performance of 
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classification methods. Precision indicates the proportion of patients with a poor prognosis among 

all the patients predicted to have a poor prognosis. Recall refers to the proportion of patients 

predicted as having a poor prognosis among all the patients with an actual poor prognosis. The F1-

score represents the harmonic average of Precision and Recall, which refers to a statistical index 

used to evaluate the performance of the classification model. When each indicator is close to 1, it 

means that model classification accuracy and stability are high. This means that it is possible to 

derive meaningful classification results using only selected protein factors and thresholds on a given 

data set. 

Table 2. Performance analysis using heuristic techniques 

Index Value 

Precision 0.857 

Recall 0.818 

F1-score 0.837 

 

 

 

3.3. Knockdown NPTN and PPM1A reduced cell proliferation, 

migration, and invasion.  

NPTN and PPM1A, which were identified as candidate proteins, were expressed in 5 IHOSE and 

6 serous ovarian cancers by real-time PCR. We found that both proteins were increased in tumor 

cells and that their expression was increased in SKOV3 and OVCAR3. Cell experiments were 

conducted with these two types of cells. SKOV3 was transfected with siNPTN, and siPPM1A at 

100nM and 200nM, and negative control was also processed at 200nM. To ensure that NPTN and 

PPM1A were properly knocked down, we evaluated their efficiency by western blot and real-time 

PCR.  
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Figure 3. Adaptive model construction based on machine learning  

A. Validation of selected factors for the case of poor patients (a) Factors with high deviation values 

(b) Factors with low deviation values. B. Clustering results with different k values. Clustering results 

when k = 3. C. Visualizations model made with NPTN and PPM1A. D. Various visualization models. 
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In SKOV3 cells, the expression of siNPTN 100nM, siNPTN 200nM siPPM1A 100nM, and 

siPPM1A 200nM were all significantly decreased. (p=0.004, p=0.004, p=0.003, p=0.003). In 

OVCAR3 cells, siNPTN 200nM and siPPM1A 200nM significantly decreased expression (p=0.006, 

p=0.0001). Whereas siNPTN 100nM and siPPM1A 100nM decreased expression but were not 

statistically significant (p=0.421, p=0.23) (Fig. 4 A, B). 

To investigate the association with cell proliferation, which is associated with poor prognosis in 

cancer, OVCAR3 cells were transfected with siNPTN and siPPM1A and compared to negative 

control. siNPTN and siPPM1A both significantly decreased cell proliferation at 200nM (siNPTN 

200nM p=0.028, siPPM1A 200nM p=0.02). While at siNPTN 100nM the expression was reduced 

but not significant (p=0.213). At siPPM1A 100nM the expression was significantly reduced 

(P=0.027) (Fig. 4 C). 

Transwell migration experiments were performed with SKOV3 cells. SKOV3 was transfected 

with siNPTN, siPPM1A, and negative control. siNPTN significantly reduced migration at both 

100nM and 200nM (siNPTN 100nM p=0.0003, siNPTN200nM p=0.0007). siPPM1A significantly 

reduced migration at 200nM (siPPM1A 200nM p=0.015). Meanwhile, at 100nM of PPM1A, a slight 

decrease was visible but not significant (siPPM1A 100nM p=0.015) (Fig. 4 C). 

Invasion assay was performed in SKOV3 cells. After transfection with siNPTN, siPPM1A, and 

negative control, SKOV3 was used as before. siNPTN 200nM and siPPM1A 200nM both 

significantly reduced the invasion (siNPTN200nM p=0.005, siPPM1A 200nM p=0.008) (Fig. 4 D). 
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Figure 4. Validation by in-vitro analysis 
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A. Expression levels after transfection of the NPTN gene into the SKOV3 and OVCAR3 cell lines. 

mRNA expression was determined by real-time PCR. In SKOV3 cells, both 100nM and 200nM 

significantly decreased the expression. However, in OVCAR3, although both decreased expressions, 

the decrease in expression at 100nM was not significant. Data are expressed as the mean ± standard 

error (S.E.). Statistical significance was determined using the Mann-Whitney U test. *p=0.05, 

**p=0.01. Simultaneously, protein expressions were detected using immunoblotting with β-actinin 

as an internal loading control. B. PPM1A gene was knocked down in SKOV3 and OVCAR3, and 

the expression was significantly reduced at 100nM and 200nM in SKOV3 cells. On the other hand, 

in OVCAR3, it was significantly decreased at 200nM, but not at 100nM, but a decrease was 

confirmed. Data are expressed as the mean ± standard error (S.E.). Statistical significance was 

determined using the Mann-Whitney U test. *p=0.05, **p=0.01, ***p=0.001.  C. Cell proliferation 

assay of siNPTN, siPPM1A, siNegative control in OVCAR3. Data are expressed as the mean ± 

standard error (S.E.). Statistical significance was determined using the Mann-Whitney U test. 

*p=0.05. D. Transwell migration assay of siNPTN, siPPM1A, siNegative control in SKOV3. E. 

Boyden chamber invasion assay with siNPTN, siPPM1A, siNegative control in SKOV3. Data are 

expressed as the mean ± standard error (S.E.). Statistical significance was determined using the 

Mann-Whitney U test. *p=0.05, **p=0.001. 

 

3.4. NPTN and PPM1A in IHC 

3.4.1. NPTN, PPM1A expressed high in serous ovarian cancer. 

IHC was performed both on TMA samples from 91 patients with serous ovarian tumors and on 

TMA samples from 78 normal ovarian tissues. Tissues from patients used for proteomics were 

excluded. The association of NPTN and PPM1A expression with the characteristics of the group of 

patients with serous ovarian tumors was not significant (Table 3). NPTN was expressed in the 

cytoplasm, nucleus, and membrane, while PPM1A was expressed in the cytoplasm and nucleus (Fig. 

5 A). NPTN was significantly expressed in tumor tissues with a value of 8.823 in normal tissues and 

54.383 in serous ovarian cancer patients (p<0.0001), and PPM1A with a value of 3.54 in normal 

tissues and 77.824 in serous ovarian cancer patients (p<0.0001) (Fig. 5 B). 
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Table 3. Association of NPTN and PPM1A expression with patient clinical characteristics.  

P-values were performed by t-test or Mann-Whitney test. SD, standard deviation 

 

3.4.2. High expression of NPTN, and PPM1A are associated with poor prognosis 

We used a cut-off via the receiver operating characteristics (ROC) curve to divide the expression 

into two groups, high and low, and the survival between the two groups was determined by the 

Kaplan-Meier curve (Cut-off value of NPTN; 82.255, Cut-off value of PPM1A; 63.579). Survival 

analysis showed that NPTN had a higher mortality rate when its expression was significantly higher 

(p=0.03), and PPM1A also had a higher mortality rate when its expression was higher, although it 

was not statistically significant (p=0.17). When both NPTN and PPM1A were evaluated 

simultaneously, the survival curves of both low and high-expression groups showed that mortality 

was significantly higher in the high-expression group (p=0.025) (Fig.  5 C). The group with low 

NPTN and high PPM1A had worse survival than those with both, although this was not significant 

(Fig. 5 C). 

   
NPTN PPM1A 

   
No. 

IHC score p-
value 

No. 
IHC score p- 

value Variables Mean SD Mean SD 

All 
 

91    91    

Histology  serous 91    91    

Age 65> 67 56.118 32.347 0.637 68 78.254 23.2 0.762 
 

65≤ 23 52.393 32.983  23 67.552 23.289  

CA125 35U/ml< 11 48.148 37.619 0.416 11 78.955 26.021 0.863 
 

35U/ml≤ 78 56.666 31.577  79 77.652 22.998  

Stage I/II 17 46.15 38.961 0.515 17 74.509 29.601 0.204 
 

III/IV 73 57.266 30.559  74 78.585 21.516  

Grade well/moderate 42 50.423 29.132 0.195 42 72.967 25.211 0.063 
 

poor 48 59.317 34.721  49 81.987 20.486  

Chemo 

sensitivity  

Sensitive 
70 54.013 31.666 0.605 70 77.717 22.99 0.945 

  Resistant 17 58.5 33.381  17 77.278 25.82  
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Figure 5. Clinical validation using immunohistochemistry 

A. Immunohistochemistry staining of NPTN and PPM1A. (Magnification × 200; scale bar, 10μm) 

B. The expression of both NPTN and PPM1A was significantly increased in serous ovarian cancer 

tissues. Unpaired t-test was performed. -, ****. C. Kaplan–Meier curve according to NPTN and 

PPM1A expression in 91 patients. Determined the cut-off value using the Younden index on the 

ROC curve (Cut-off value of NPTN 82.255, Cut-off value of PPM1A; 63.579). For NPTN there are 

69 low and 22 high expression groups and for PPM1A there are 15 low and 76 high expression 

groups. Together, 15 are low in both, 54 are low in NPTN and high in PPM1A, and 22 are high in 

both. There were no cases with high PPM1A and low NPTN. Groups with low or high expression 

were compared. Statistical analysis was performed using the log‐rank test. 
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4. DISCUSSION 

Our study presents a novel approach in the realm of ovarian cancer prognosis by integrating 

PEA with machine learning analysis. This combination allowed us to delve deeper into the proteomic 

landscape of advanced HGSOC, to identify key proteins associated with prognosis. Our results 

underscore the significance of protein expression profiles in determining patient outcomes, shedding 

light on the limitations of solely relying on genomic alterations for prognostic predictions.  

Several biomarkers have been identified by proteomic analysis in ovarian cancer, currently 

recognized biomarkers such as CA125, HE4, and OVERA2. Numerous biomarkers associated with 

ovarian cancer have been identified through various biological approaches like proteomics, 

lipidomics, and genomics19. According to the National Cancer Institute's Early Detection Research 

Network (EDRN) website, there are currently 616 active clinical trials focusing on 232 biomarkers 

associated with ovarian cancer (https://edrn.nci.nih.gov/data-and-resources/biomarkers). Recently, 

efforts have been made to improve the sensitivity of ovarian cancer screening by interpreting the 

results in combination with CT or radiologic image20-22. However, the majority of these are focused 

on screening tests that can be used to identify patients with ovarian cancer in the general population 

at an early stage, as early detection of ovarian cancer is the most important step in improving patient 

outcomes23,24. In HGSOC, investigations into various biomarkers are predominantly focused on 

differential diagnosis25. However, there is a scarcity of biomarkers related to prognosis, particularly 

in advanced stage HGSOC. Kim et al. reported predictors of prognosis in HGSOC by label-free 

quantitative protein analysis, but there is a limitation that they only analyzed proteins from frozen 

tissues of 10 patients with PFS 18 and 10 patients with PFS less than or equal to 1826,27. We analyzed 

proteins by PEA of 386 cancer-related protein biomarkers provided by Olink Bioscience (Uppsala, 

Sweden), rather than by mass spectrometry, which is often used in novel proteomic studies28-30. 

Combining the sensitivity of PCR with the specificity of antibody-based detection methods, PEA 

technology is suitable for multiplex biomarker detection and high-throughput quantification31. PEA 

also has very high sensitivity, allowing the detection of low-abundance proteins17,32,33. This approach 

provided us with a nuanced understanding of the intricate molecular mechanisms underlying ovarian 

cancer progression, surpassing the conventional genomic profiling methods. Using machine learning 

algorithms, we were further able to distinguish subtle but crucial differences in protein expression 

profiles between groups of patients with very good and poor prognoses.  

 Notably, our analysis identified NPTN and PPM1A as potential prognostic markers for advanced 
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HGSOC. High expression levels of these proteins were strongly associated with poor prognosis, as 

corroborated by both clinical validation and in vitro experiments. Our findings suggest that these 

proteins could serve as reliable indicators of disease progression and could potentially guide 

personalized therapeutic interventions. 

NPTN, a glycoprotein of the immunoglobulin superfamily34, has limited research in tumors, 

particularly in ovarian cancer. Studies in breast cancer suggest that NPTN-βsubtype overexpression 

promotes tumor growth and angiogenesis, possibly through vascular endothelial growth factor 

induction under hypoxic conditions35. Its role in promoting metastasis has been observed in breast 

and lung cancers36,37, indicating its potential as a growth regulator in malignancies, likely through 

tumor microenvironmental signaling, though precise mechanisms remain unclear. 

PPM1A, a magnesium-dependent phosphatase, functions as a negative regulator in several 

signaling pathways. One notable signaling pathway it regulates is TGF-β38-41. It has been implicated 

as a tumor suppressor in breast, pancreatic, and renal cancer42-45. However, the function of TGF-β is 

inconsistent with the tumor microenvironment46, and the role of PPM1A may vary depending on the 

tumor type. There are currently no reports on PPM1A in ovarian cancer or ovarian cancer cell lines. 

Though our study presents promising results, several limitations warrant consideration. First, it is 

usually convenient to divide patients into groups for prognostic purposes and interpret the results 

using clear criteria of OS or PFS. However, we looked at three factors simultaneously: recurrence, 

progression, and overall survival. This is because there are many cases of chemoresistance, 

refractoriness, and recurrence in HGSOC16,47, so we looked at these three factors simultaneously 

rather than just PFS and OS, which is not enough to distinguish between those with good prognosis 

and those with poor prognosis. Secondly, there is the limitation of the small number of tissues.  

However, the number of tissues in our study is not small among studies that have included long-

term survivors of more than 10 years in experiments with chemotherapy-naive frozen tissues, and 

this is something that should be overcome in future collaborative studies with other institutions. 

Third, in the validation of our NPTN and PPM1A, we would like to see replication with PEA in 

other HGSOC patient populations. This would require a long time and high cost, which we have 

addressed by performing IHC on TMA from patients with serous ovarian cancer. IHC is less 

expensive and easier to use in the clinical setting than whole genome sequencing or RNA sequencing 

48,49 
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.5. CONCLUSION 

In conclusion, our study demonstrates the potential of integrating PEA with machine learning 

analysis as a robust strategy for identifying prognostic markers in ovarian cancer. The identification 

of NPTN and PPM1A as potential prognostic indicators highlights the importance of proteomic 

profiling in guiding individualized therapeutic strategies. Future translational efforts are warranted 

to harness the clinical utility of these findings and improve patient outcomes in advanced high-grade 

serous ovarian cancer. 
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ABSTRACT (IN KOREAN) 

 

진행된 고등급 장액성 난소암에서 단백질 분석을 통한 

예후 인자의 발굴: 장기 생존자와 조기 사망 환자 간의 

비교 연구 

 

 

고등급 장액성 난소암은 높은 치사율에도 불구하고 예후를 

예측할 수 있는 신뢰할 만한 바이오마커가 부족해 개인 맞춤형 

치료의 진전이 제한적이었다. 게놈을 기반으로 한 많은 연구가 

이어지고 있지만, 유전적 변형만으로는 암세포의 표현형을 결정하지 

못하고 직접적인 역할을 하며 암의 표현형을 결정하는 것은 결국 

단백질이기에 그 무엇보다도 단백질 발현을 확인하는 것이 더 

중요하다고 할 수 있다. 이 연구는 머신러닝을 활용하여 난소암 

예후를 결정하는 단백질 인자를 선별하는 새로운 기법을 제안했다.  

우리는 고등급 장액성 난소암 환자군들 중 예후가 매우 좋은 군과 

예후가 좋지 않은 군을 설정한 뒤, 진행성 고등급 장액성 난소암 

환자의 항암 전 신선 동결 조직을 예후가 좋은군 24개, 예후가 

안좋은 군 23개씩 확보하였다. 이들 조직에서 단백질을 추출한 뒤 

microarray 기법을 활용하여 단백질을 정량화 하는 Olink사의 

Proximity extension assay를 이용하여 단백질 분석을 하였다. 그리고 
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그 결과를 바탕으로 인공지능 기반 머신 러닝을 통하여 분석해 

두개의 군을 예측할 수 있는 모델을 만들었다. 그 결과 NPTN과 

PPM1A가 발현 량이 높을 때 예후가 나쁜 군과 좋은 군을 분류해서 

볼 수 있었고 그 모델의 성능은 Precision 0.857, Recall 0.818, F-1 score 

0.893로 훌륭했다.  

우리는 NPTN과 PPM1A를 장액성 난소암 환자의 조직 

마이크로어레이에서 면역 염색을 시행하였고, 발현량이 높을수록 

생존 지수가 낮아지는 결과를 확인하였다. 또한, NPTN과 PPM1A의 

발현을 감소시킨 세포를 가지고 세포 증식 실험, 세포 이동 실험, 

보이든 챔버 침투 실험을 시행하였다. 그 결과, 두개의 단백질이 

발현이 적을 때 증식, 이동, 침투가 감소됨을 확인하였다. 위의 

결과들을 통해 우리는 그룹 간에 유의미한 차이가 있는 인자, 특히 

단백질을 기반으로 클러스터링에 적합한 인자를 선별하는 것이 

가능하다는 것을 시사하였다. 이 연구는 환자 치료 결과를 개선하기 

위한 개인 맞춤형 치료의 발전에 있어 단백질 마커의 잠재적인 

가능성을 다시 한번 확인하게 해주었다. 
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