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ABSTRACT 

 

Automatic identification of posteroanterior 

cephalometric landmarks using a novel deep learning 

algorithm: a comparative study with human experts 

 

Hwangyu Lee 

 

The Graduate School, Yonsei University 

Department of Dentistry 

(Directed by Professor Young-Soo Jung) 

 

This study aimed to propose a fully automatic posteroanterior (PA) cephalometric landmark 

identification model using deep learning algorithms and compare its accuracy and reliability with 

those of expert human examiners. In total, 1,032 PA cephalometric images were used for model 

training and validation. Two human expert examiners independently and manually identified 19 

landmarks on 82 test set images. Similarly, the constructed artificial intelligence (AI) algorithm 

automatically identified the landmarks on the images. The mean radial error (MRE) and successful 
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detection rate (SDR) were calculated to evaluate the performance of the model. The performance of 

the model was comparable with that of the examiners. The MRE of the model was 1.87 ± 1.53 mm, 

and the SDR was 34.7%, 67.5%, and 91.5% within error ranges of <1.0, <2.0, and <4.0 mm, 

respectively. The sphenoid points and mastoid processes had the lowest MRE and highest SDR in 

auto-identification; the condyle points had the highest MRE and lowest SDR. Comparable with 

human examiners, the fully automatic PA cephalometric landmark identification model showed 

promising accuracy and reliability and can help clinicians perform cephalometric analysis more 

efficiently while saving time and effort. Future advancements in AI could further improve the model 

accuracy and efficiency. 

 

 

 

 

 

 

 

 

 

Keywords: Artificial intelligence; Convolution neural network; Facial asymmetry; cephalometric 

analysis; Resnet18; Resnet50
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I. Introduction 

Cephalometric analysis is a fundamental diagnostic procedure that utilizes radiological landmarks 

to measure various linear, angular, and proportional parameters on lateral and posteroanterior (PA) 

cephalograms [1, 2], which offer valuable information for evaluating craniofacial structures, such as 

growth assessment, orthodontic treatment planning, orthognathic surgery planning, and treatment 

outcome assessment [3-5]. Nevertheless, manual diagnostic procedure is a demanding and time-

consuming task. Moreover, despite the essential role of landmark identification in cephalometric 
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analysis, intra- and inter-observer variability and a lack of reliability continue to pose a challenge [6, 

7]. Since the accuracy of landmark identification determines the quality of diagnosis, inaccurate 

identification of cephalometric landmarks can result in misguided planning of orthodontic therapy 

and orthognathic surgery. 

Therefore, there is a growing need to develop fully automated and reliable cephalometric landmark 

identification methods that use artificial intelligence (AI) algorithms. Recent advances in AI, 

particularly in deep learning, have garnered considerable attention for its use in diagnostic imaging, 

disease classification, and monitoring. In orthodontics, deep learning technologies have been 

utilized for automated cephalometric landmark identification, among other applications [8, 9]. 

Since the 1990s, various studies have proposed fully automated cephalometric landmark 

identification systems that utilize machine-learning techniques [10, 11]. However, their limited 

accuracy has hindered their success. Recently, deep learning algorithms, such as convolutional 

neural networks (CNNs), have been used increasingly to detect landmarks on lateral cephalograms 

automatically [3, 12, 13]. These studies have reported that deep learning algorithms exhibit high 

accuracy in detecting landmarks at shorter time, achieving precision levels within the range of 2.0 

mm. Additionally, they have achieved successful detection rates (SDR), surpassing 70% and 90% 

for the respective thresholds of 2 and 3 mm [4, 14-16]. However, most studies reporting the 

development and evaluation of automated cephalometric identification algorithms primarily 

focused on utilizing lateral cephalograms as their main target. 

Although lateral cephalometric analysis is valuable in assessing anteroposterior and vertical issues, 

it has limitations in evaluating skeletal asymmetry and dentofacial structures in the transverse plane. 

The use of posteroanterior cephalogram holds significant value in the assessment of transverse 
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skeletal and dentoalveolar relationships, enabling the quantification of bilateral structural issues [17-

19]. It provides vital diagnostic information that is essential for evaluating patients who present with 

functional, dentoalveolar, and/or facial asymmetries. 

Nevertheless, since the impact of such analyses greatly depends on their accuracy, there are 

limitations associated with the use of the PA cephalogram owing to errors in landmark identification. 

There are two primary categories of cephalometric errors: "projection errors," which result from the 

geometric aspects of the radiographic setup, and "identification errors," which occur owing to the 

uncertainty in locating specific anatomical landmarks [20, 21]. The reliability and reproducibility of 

identified landmarks are influenced by various factors, including image density, image sharpness, 

anatomical complexity, and superimposition of anatomical structures [22-24]. Consequently, the 

identification errors on PA cephalograms were higher than those of lateral cephalometric analysis 

owing to their nature, which involves more superimposition of anatomical structures and variations 

in head positioning [25]. Furthermore, the experience and predisposition of the examiner play a 

significant role, deeper understanding of anatomy and familiarity with radiographic images can help 

reduce intra- and inter-examiner errors [17, 26]. 

Considering the limitations and potential errors associated with manual landmark identification in 

PA cephalograms, there is a growing need for automatic identification methods. The development 

of automatic PA cephalogram identification systems can greatly enhance the accuracy and reliability 

of the analysis, minimizing the risk of errors caused by human factors. Moreover, the 

implementation of automatic PA cephalogram identification would not only expedite the analysis, 

but also contribute to enhanced diagnostic capabilities and more effective treatment planning for 

patients presenting with functional, dentoalveolar, and/or facial asymmetries. Therefore, this study 

aimed to develop a fully automatic PA cephalometric landmark identification model using a deep 
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learning algorithm and compare its accuracy and reliability with the assessments made by expert 

human examiners.  
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II. Materials and methods 

 

1. Ethics approval 

This study was approved by the Ethics Review Board of Yonsei University Dental Hospital 

Institutional Review Board (approval number 2-2020-0005) and passed the exemption review of 

informed consent on the use of patients’ cephalometric data. The requirement for written or verbal 

informed consent was waived owing to the non-interventional retrospective study design, and all 

cephalometric images were anonymized to ensure confidentiality. This study was performed in 

accordance with the Declaration of Helsinki. 

 

2. Dataset 

A total 1,114 patients were selected for the present study. The inclusion criteria were as follows: 

(1) patients aged between 18 and 39 years, with permanent dentition and complete facial growth, 

and (2) those who underwent orthodontic therapy or orthognathic surgery between 2015 and 2021. 

The exclusion criteria were as follows: (1) partial or total edentulism, and (2) a history of dentofacial 

trauma, craniofacial syndromes, or systemic diseases. Thus, 1,114 PA cephalometric images taken 

before treatment from the participants who met the inclusion criteria and were included in this study. 

The PA cephalograms used in this study were acquired using a Rayscan machine (Ray Co. Ltd., 

Hwaseong, Korea) and collected from the picture archiving and communication system of the Yonsei 

University Dental Hospital as JPEG files. The images had a resolution of 1930 × 2238 pixels and a 

pixel spacing of 0.13 mm. Each pixel was represented by a single grayscale channel with values 

ranging from 0–255. 
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The 1,114 PA cephalometric images included in the study were randomly divided into three sets: 

803 images for training purposes, 229 for validation, and 82 for testing. The training and validation 

sets were used exclusively during the model training phase, whereas the test set was used solely to 

evaluate the reliability of the human examiners and the accuracy of the auto-identification model. 

 

3. Landmark detection for model training 

A total of 19 clinically important PA cephalometric landmarks used in routine dentofacial diagnosis 

were selected. Table 1. and Figure 1. describe their definitions and positions. Two expert human 

examiners, a board certificated oral and maxillofacial surgeon with subspeciality in dentofacial 

deformity and an orthodontic specialist, independently and manually identified the landmarks on the 

1,032 images used for model training and validation to obtain the ground truth. 

During model training, the large size of the original image facilitates the creation of more feature 

maps for learning; however, it is also associated with the disadvantages of GPU memory allocation 

limitation and long computing time. Therefore, in the first step, the image was resized to 964 × 1119 

pixels, which was ¼th of the original size. It is important to retain the features of the widest possible 

area to extract the approximate coordinates of the 19 landmarks. Thus, the x- and y-coordinates of 

the 19 landmarks were extracted by locating the center of mass of each labeling point, which enabled 

the construction of a coordinate landmark detection model.  
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Table 1. Definition of landmarks 

No. Landmarks Definition 

1 Crista galli (Cg) The most superior and anterior points on the median 

ridge of bone that projects upward from the cribriform 

plate of the ethmoid bone 

2 Sphenoid point right (SphR) 

The right intersection of sphenoid bone greater and lesser 

wing 

3 Sphenoid point left (SphL) The left intersection of sphenoid bone greater and lesser 

wing 

4 Condyle point right (ConR) The most superior and the middle point on the contour of 

the right condyle head 

5 Condyle point left (ConL) The most superior and the middle point on the contour of 

the left condyle head 

6 Mastoid process right (MstR) The most inferior point of right mastoid process 

7 Mastoid process left (MstL) The most inferior point of left mastoid process 

8 Anterior nasal spine (ANS) 

Center of the intersection of the nasal septum and the 

palate 

9 Jugal point right (JugR) The right intersection of the tuberosity of maxilla and 

zygomatic buttress 

10 Jugal point left (JugL) 

The left intersection of the tuberosity of maxilla and 

zygomatic buttress 

11 Gonial point right (GoR) The most posterior inferior point of right mandibular 

angle 

12 Gonial point left (GoL) The most posterior inferior point of left mandibular angle 
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13 Menton (Me) The most inferior point of symphysis of the mandible 

14 Upper dental midline (U1M) The dental midline point of incisal edge of the maxillary 

central incisor 

15 Upper first molar cusp right 

(U6MCR) 

The most lateral cusp point of the right maxillary first 

molar crown 

16 Upper first molar cusp left 

(U6MCL) 

The most lateral cusp point of the left maxillary first 

molar crown 

17 Lower dental midline (L1M) The dental midline point of incisal edge of the 

mandibular central incisor 

18 Lower first molar cusp right 

(L6MCR) 

The most lateral cusp point of the right mandibular first 

molar crown 

19 Lower first molar cusp left 

(L6MCL) 

The most lateral cusp point of the left mandibular first 

molar crown 
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Figure 1. Landmarks on the PA cephalometric radiograph 

 

4. Convolution neural network model architecture and model training 

A. Coarse training 

The landmark detection framework operates through a two-step process, as shown in Figure 2. The 

19 landmark positions were coarsely extracted, and the image was cropped to a certain size based 
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on these rough positions. Subsequently, the fine points were extracted from the cropped images. The 

adoption of this two-step framework facilitated efficient learning and high accuracy. 

ResNet 18 was used as the initial step to preserve the original features and expedite the learning 

process while minimizing the computational complexity. ResNet 18 is a model that can solve the 

gradient vanishing problem as the layer deepens through residual learning using skip connection, 

and it is widely used in facial landmark detection tasks. ResNet 18 consists of 17 convolution layers 

and a fully connected layer at the end. However, the first convolution layer was limited to a 7 × 7 

kernel and max pooling to minimize the input size, whereas all subsequent layers were implemented 

using a 3 × 3 kernel convolution layer. The final fully connected layer comprised 38 output features, 

thereby enabling the derivation of the x- and y-coordinates of the 19 landmarks. Residual shortcut 

connections were introduced between the two convolution layers to optimize the learning process, 

as shown in Figure 2., where the solid line represents the input and output having the same dimension, 

and the dotted line represents an increase in the dimension with zero padding and a stride of 2.  

 

B. Data augmentation 

An augmentation strategy randomly selected from a list of methods, including rotation, scale, flip, 

and contrast, was applied to account for patients with tilted heads and asymmetric X-rays, as shown 

in Figure 3. Wing loss was utilized as the loss function in the first step, which helped reduce an 

excessive focus on outliers to find the approximate landmark positions. Wing loss is more resistant 

to the impact of outliers than the mean squared error (MSE) loss function [27, 28]. 
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Figure 2. Schematic design of the two-step landmark detection framework. (Conv: convolution, FC: fully connected, ROI: 

region of interest, CLAHE: Contrast Limited Adaptive Histogram Equalization).  
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Figure 3. Description of the augmentation policy (CW: clockwise, CCW: 

counterclockwise).  

 

C. Fine training 

The original image was cropped to a size of 400 × 400 pixels and centered around the 19 landmark 

positions obtained in the first step. Subsequently, contrast-limited adaptive histogram equalization 

(CLAHE) was applied to the cropped images (Figure 4). CLAHE is a histogram-flattening method 

that enhances the contrast of the radiographs, thereby enabling clear visualization of the bone, soft 

tissue, and background regions [29]. The application of CLAHE is known to enhance image quality 

and has gained widespread usage in deep learning model studies that utilize medical images [30]. 

ResNet 50 architecture was used in this second step. It is similar to ResNet 18 but with deeper 

networks, and it comprises 49 convolution layers and a fully connected layer at the end. The final 
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fully connected layer was designed with two output features to derive the x- and y-coordinates of 

one landmark. To optimize learning, residual shortcut connections were applied to three convolution 

layers with kernel sizes of 1 × 1 and 3 × 3. The 1 × 1 convolution layers were responsible for 

dimensionality reduction and restoration, whereas the 3 × 3 layer functioned as a bottleneck with 

smaller input/output dimensions. MSE loss was utilized as the loss function for the second step. 

The two-step models were initialized with a learning rate of 0.01 during model training, which was 

then decayed by a factor of 0.5 every 30 epochs. An Adam optimizer with a batch size of 64 was 

used for 400 epochs. All procedures were conducted using the PyTorch framework running on an 

NVIDIA Quadro RTX8000 GPU. 

 

 

Figure 4. Schematic description of fine training and application of CLAHE  
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5. Test set and model evaluation 

Two human expert examiners specializing in oral and maxillofacial surgery and orthodontics 

manually identified 19 cephalometric landmarks on 82 images that constituted the test set. The mean 

radial error (MRE) and standard deviation (SD) were calculated to evaluate the inter-examiner 

reliability, and the intra-class correlation coefficient (ICC) values were computed to assess the 

degree of reliability between the two human experts. The mean values of the x- and y-coordinates 

determined by the two examiners were used as the gold standard for subsequent analysis. 

Automatic detection of 82 test set images was completed using the constructed AI algorithm, and 

the MRE and success detection rate (SDR) with error ranges of <1.0, <2.0, and <4.0 mm for all 

landmarks were calculated to evaluate the performance of the proposed model. All calculations were 

performed in Microsoft Excel using the following formulae: 

 

Radial error (R)= √Δ𝑥2 + ∆𝑦2 (mm) 

MRE = 
∑ 𝑅𝑖

𝑁
𝑖=1

𝑁
 (mm) 

SDR = 
Number of accurate identification𝑠

Number of total identification𝑠
 x 100 %   
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III. Results 

 

1. Inter-examiner reliability 

Table 2 presents the MRE and ICC values for each of the 19 landmarks detected by the human 

examiners that were defined as the gold standard points. The average MRE for all landmarks was 

1.68±1.85 mm. The ICC values for all landmarks were above 0.7, except for the y-coordinate of the 

upper dental midline (U1M), indicating high reliability between the two examiners. The lower ICC 

value for the y-coordinate of the U1M may be attributed to the detection tendency of the two human 

examiners, which is relatively less relevant to transverse evaluation. 

 

2. Mean radial error between gold standard and automatic identification 

Examples of the 19 landmarks were visually represented on a PA cephalometric image to facilitate 

comparison between the landmarks detected by the human examiners (gold standard) and those by 

the automatic identification algorithm (Figure 5). 

Table 3 presents the MRE and SD for the 19 landmarks identified by the human examiners (the 

gold standard) and the automatic identification algorithm. The landmarks with the lowest MRE were 

SphR (1.12 mm), SphL (1.10 mm), and MstR (1.10 mm), whereas those with the highest MRE were 

ConR (3.47 mm) and ConL (3.16 mm). The average MRE was 1.87±1.53 mm. 
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Table 2. The Mean radial error (MRE) and inter-examiner reliability of two human 

examiners. 

 
 

Mean radial error[mm] Interclass correlation coefficient value 

landmarks Mean SD x-coordinates y-coordinates 

Cg 3.53 2.65 0.983 0.783 

SphR 0.94 0.75 0.989 0.986 

SphL 1.17 0.92 0.982 0.979 

ConR 3.61 2.34 0.886 0.771 

ConL 3.95 2.56 0.859 0.725 

MstR 0.85 0.60 0.991 0.988 

MstL 0.81 0.75 0.991 0.987 

ANS 0.89 0.68 0.994 0.986 

JugR 1.42 1.42 0.987 0.953 

JugL 1.11 1.16 0.993 0.968 

GoR 1.68 1.73 0.983 0.952 

GoL 1.60 1.37 0.980 0.969 

Me 1.46 1.23 0.957 0.995 

U1M 2.32 11.21 0.710 0.531 

U6MCR 1.61 1.08 0.966 0.970 

U6MCL 1.41 1.13 0.973 0.977 

L1M 1.13 1.35 0.958 0.993 

L6MCR 1.13 1.04 0.973 0.987 

L6MCL 1.21 1.20 0.971 0.985 

Average 1.68 1.85 - - 
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Figure 5. Examples of superimposed gold standard (blue dot) and auto-identified (red 

dot) landmarks on PA cephalometric image (a–f). The best result was obtained with an 

average MRE of 1.06 mm (a), and the worst result with an average MRE of 4.02 mm (b) 
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Table 3. The Mean radial error (MRE) between gold standard and automatic identification 

using the AI algorithm. 

 

 
Mean radial error [mm] 

landmarks Mean SD 

Cg 2.57 1.63 

SphR 1.12 0.97 

SphL 1.10 0.67 

ConR 3.47 2.09 

ConL 3.16 1.88 

MstR 1.10 1.16 

MstL 1.95 1.28 

ANS 1.83 1.29 

JugR 1.91 1.59 

JugL 1.70 1.24 

GoR 1.70 1.34 

GoL 1.49 1.20 

Me 2.17 1.77 

U1M 2.19 5.54 

U6MCR 1.55 0.99 

U6MCL 1.43 0.78 

L1M 2.50 1.83 

L6MCR 1.33 0.98 

L6MCL 1.18 0.76 

Average 1.87 1.53 
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3. Success detection rate of automatic identification 

Table 4. shows the SDR of the landmarks within the error ranges of <1.0, <2.0, and <4.0 mm. The 

average SDR was 34.7%, 67.5%, and 91.5% within the ranges of 1.0, 2.0, and 4.0 mm, respectively. 

The automatic identification algorithm showed a high accuracy (> 80%) within a range of 2.0 mm 

for SphR and SphL (89.0%), MstR and L6MCL (87.8%), and U6MCL and L6MCR (81.7%). In 

contrast, ConR (25.6%) and ConL (32.9%) had the lowest SDR values. 

 

4.  Error pattern of human examiners and automatic identification 

The horizontal and vertical error patterns between the two human examiners and the automatic 

identification of each landmark are illustrated in Figure 6. 
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Table 4. The success detection rate (SDR) of auto identification using the AI algorithm. 

 

 
Success detection rate [%] 

landmarks <1.0 [mm] <2.0 [mm] <4.0 [mm] 

Cg 14.6 45.1 79.3 

SphR 53.7 89.0 98.8 

SphL 51.2 89.0 100.0 

ConR 6.1 25.6 73.2 

ConL 12.2 32.9 69.5 

MstR 65.9 87.8 98.8 

MstL 19.5 57.3 93.9 

ANS 29.3 61.0 93.9 

JugR 36.6 61.0 92.7 

JugL 29.3 68.3 91.5 

GoR 39.0 70.7 93.9 

GoL 43.9 75.6 97.6 

Me 26.8 67.1 85.4 

U1M 50.0 72.0 92.7 

U6MCR 35.4 74.4 97.6 

U6MCL 30.5 81.7 100.0 

L1M 20.7 53.7 81.7 

L6MCR 46.3 81.7 98.8 

L6MCL 47.6 87.8 100.0 

Average 34.7 67.5 91.5 
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Figure 6. Scatter plots with 95% confidence ellipses for the landmark detection errors of 

the human examiners and automatic identification.  
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IV. Discussion 

 

This study proposed a fully automated deep learning model for identifying PA cephalometric 

landmarks and compared its accuracy with that of two expert human examiners. 

Numerous previous studies have introduced algorithms for the automated identification of lateral 

cephalograms as well as methods for evaluating their accuracy [3, 8, 9]. Conversely. A recent 

systematic review and meta-analysis reported AI agreement rates of 79% and 90% for the thresholds 

of 2 and 3 mm, respectively, with a mean divergence of 2.05 compared to manual landmarking [15]. 

Another study showed that most studies did not exceed a 2-mm prediction error threshold in mean 

and that the mean proportion of landmarks detected within this 2-mm threshold was 80% [16]. 

However, only a limited number of studies have used deep learning algorithms to automate 

identification in PA cephalograms [31]. Although lateral cephalometric analysis is a basic tool for 

diagnosis in orthodontics, PA cephalometric analysis is essential for evaluating skeletal asymmetry 

and providing dentofacial structural information in the transverse plane [17-19]. Owing to its 

anatomical orientation, PA cephalometry inevitably causes greater overlap and superimposition of 

the skeletal structures and dentition than lateral cephalometry. These overlapped images reduce the 

accuracy and reliability of landmark identification, resulting in identification that highly depends on 

the examiner's experience and subjectivity [26, 32, 33]. 

The present study aimed to develop a fully automatic PA cephalometric landmark identification 

system using a two-step landmark detection framework. In the first step, ResNet 18 was used to 

detect the region of interest by roughly extracting 19 landmark positions. Random augmentation and 

loss functions were used to improve performance. In the second step, ResNet 50 architecture was 

used to extract fine points from the cropped image. Then, CLAHE was applied to the cropped images 
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for clear visualization of the bone, soft tissue, and the background regions. 

The inference time and accuracy according to number of ResNet layers during the coarse training 

step are listed on Table 5. Deeper networks can extract more complex and abstract features. 

However, such complex feature extraction comes at the cost of increased computational burden, 

resulting in longer inference times. Similarly, as shown in the Table 5., as the layer depth 

increased, the computing time also increased. Although ResNet34 demonstrated approximately a 

19% improvement in average accuracy for landmark detection compared to ResNet 18, its 

inference time was approximately 40% slower. Therefore, we opted to use ResNet18 for the coarse 

training stage. 

 

 

Table 5. Inference time and accuracy according to the number of ResNet layers. 

Model Average computing time [s] Average radial error [mm] 

ResNet 18 0.005573844 4.262201158 

ResNet 34 0.009241667 3.583836895 

ResNet 50 0.012178767 7.023593526 

ResNet 152 0.034862056 7.182261526 
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To evaluate the performance of the proposed model, manual identification of the 19 landmarks was 

performed independently by two human examiners on 1,032 images used for model training and 

validation. Furthermore, the landmarks were identified manually by two expert human examiners 

and automatically by the developed AI algorithm on 82 test set images. The MRE and SDR between 

gold standard and auto detected point were calculated from the results of the test sets. 

Although every cephalometric landmark has its own definition, its identification is subjective and 

dependent on the experience and judgment of the examiner [17, 26]. Even highly educated experts 

may hold different opinions regarding the ideal location, indicating the absence of an 'absolute gold 

standard' reference point. To address this limitation, we employed a method where the arithmetical 

mean point for each landmark was calculated by averaging the X and Y coordinates detected by two 

human expert examiners. The inter-examiner reliability was previously established using an 

assessment of the ICC. Although this mean point may not precisely align with the specific definition 

of a particular landmark, it can be regarded the closest approximation to the gold standard point. 

The SphR, SphL, and MstR had the lowest MRE, whereas the condyle points had the highest MRE. 

The average MRE value was 1.87 mm, which falls within the clinically acceptable range of previous 

studies that considered an MRE of up to 2.0 mm as acceptable [3, 8, 34]. In terms of the SDR, auto-

identification demonstrated a high accuracy at the sphenoid points and the mastoid process across 

all error ranges. Conversely, the lowest SDR was observed at the condyle points. 

The tendency of these results could be related to the degree of overlap of the anatomical structures. 

Auto-identification showed low MRE and high SDR values for the sphenoid points and mastoid 

processes, respectively, which have relatively little anatomical overlap. Conversely, auto-

identification exhibited high MRE and low SDR values for the condyle points, which overlap with 
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the maxilla and zygomatic arch, respectively, consistent with the inter-examiner evaluation. These 

results align with those of prior studies on auto-identification on PA cephalograms, which reported 

relatively significant errors in identifying the landmarks located within the frontozygomatic suture, 

zygomatic process, and condyles owing to an overlap of the anatomical structures [35, 36]. 

The precision of auto-identification of the landmarks located on the teeth, which was anticipated 

to have low accuracy owing to the overlap of adjacent teeth and the presence of orthodontic brackets 

and prosthesis, produced favorable results, with an MRE within 2.0 mm. This finding suggest that 

auto-identification can be utilized for precise evaluation of asymmetry using the dentition.  

The scatterplots of the landmark detection errors showed a characteristic distribution within the co-

ordinate system, as shown in Figure 6. For instance, Menton (Me) distinctively oriented horizontally, 

whereas Crista galli(Cg) oriented more in a vertical direction, which reflects the tendency of 

detection errors of each landmarks and corresponding to the differences observed between the two 

examiners.  
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V. Conclusion 

 

This study presented a novel approach for the fully automatic identification of PA cephalometric 

landmarks using a deep learning algorithm. The accuracy and reliability of the proposed model were 

evaluated by comparison with those of expert human examiners. Our results showed that the 

accuracy and reliability of the constructed AI model are comparable to those of human experts. 

These findings suggest that with advances in AI, automatic PA cephalometric landmark 

identification can significantly improve the efficiency and accuracy of cephalometric analysis while 

reducing the time and effort required. 
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국문요약 

 

딥러닝 알고리즘을 이용한 자동화 정모 

두부방사선사진 계측점 탐지 모형의 개발: 

전문의와의 비교분석 연구 

 

(지도교수: 정 영 수) 

연세대학교 대학원 치의학과 

이 환 규 

 

본 연구의 목적은 딥러닝 알고리즘을 이용하여 자동화 정모 두부방사선사진 계측점 

탐지 모델을 설계하고, 인간 전문가와의 비교를 통해 그 정확성과 신뢰성을 평가하기 

위함이다. 

Resnet18 과 Resnet50 로 구성된 두 단계의 딥러닝 알고리즘 모델을 설계하였으며, 

19 개의 정모 두부방사선사진 계측점을 정의하였다. 두 명의 인간 전문가에 의해 
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19 개의 계측점이 탐지된 총 1,032 개의 정모 두부방사선 사진이 인공지능 탐지 

모형의 훈련 및 유효성 검사에 사용되었다. 82 개의 시험 세트 이미지에 대하여 두 

명의 전문의가 각각 19 개의 계측점을 수동 식별하였으며, 설계된 인공지능 

탐지모형을 이용한 계측 결과와 평균 반경 오차 (Mean Radial Error) 및 성공 

감지율(Success Detection Rate) 계산을 통해 정확성과 신뢰성을 평가하였다.  

인공지능 계측점 탐지 모형의 평균 반경 오차는 1.87 ± 1.53mm 이었으며 성공 

감지율은 오차 범위 <1.0, <2.0 및 <4.0mm 인 경우에 각각 34.7%, 67.5% 및 

91.5%였다. 인공지능 모형에서 sphenoid 점과 mastoid process 점이 가장 낮은 평균 

반경 오차와 가장 높은 성공 감지율을 보인 반면, condyle point 에서 가장 높은 평균 

반경 오차와 가장 낮은 성공 감지율 결과를 보였다. 

본 연구를 통해 딥러닝 알고리즘을 이용한 자동화 정모 두부 방사선사진 계측점 

탐지 모형이 유망한 정확성과 신뢰성을 보여주며, 추후 상용화를 통해 임상가의 

시간과 노력을 줄여 줌과 동시에 악안면영역의 교정학적 분석을 효과적으로 

수행하는데 도움이 될 수 있음을 시사한다. 

 

 

 

 

 

핵심이 되는 말: 인공지능, 딥러닝, 합성곱 신경망, 안면 비대칭, 정모 두부방사선사진 
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