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ABSTRACT

Automatic identification of posteroanterior
cephalometric landmarks using a novel deep learning

algorithm: a comparative study with human experts

Hwangyu Lee

The Graduate School, Yonsei University
Department of Dentistry

(Directed by Professor Young-Soo Jung)

This study aimed to propose a fully automatic posteroanterior (PA) cephalometric landmark
identification model using deep learning algorithms and compare its accuracy and reliability with
those of expert human examiners. In total, 1,032 PA cephalometric images were used for model
training and validation. Two human expert examiners independently and manually identified 19
landmarks on 82 test set images. Similarly, the constructed artificial intelligence (Al) algorithm

automatically identified the landmarks on the images. The mean radial error (MRE) and successful



detection rate (SDR) were calculated to evaluate the performance of the model. The performance of
the model was comparable with that of the examiners. The MRE of the model was 1.87 £ 1.53 mm,
and the SDR was 34.7%, 67.5%, and 91.5% within error ranges of <1.0, <2.0, and <4.0 mm,
respectively. The sphenoid points and mastoid processes had the lowest MRE and highest SDR in
auto-identification; the condyle points had the highest MRE and lowest SDR. Comparable with
human examiners, the fully automatic PA cephalometric landmark identification model showed
promising accuracy and reliability and can help clinicians perform cephalometric analysis more
efficiently while saving time and effort. Future advancements in Al could further improve the model

accuracy and efficiency.

Keywords: Artificial intelligence; Convolution neural network; Facial asymmetry; cephalometric

analysis; Resnet18; Resnet50



Automatic identification of posteroanterior
cephalometric landmarks using a novel deep learning

algorithm: a comparative study with human experts

Hwangyu Lee

The Graduate School, Yonsei University
Department of Dentistry

(Directed by Professor Young-Soo Jung)

l. Introduction

Cephalometric analysis is a fundamental diagnostic procedure that utilizes radiological landmarks
to measure various linear, angular, and proportional parameters on lateral and posteroanterior (PA)
cephalograms [1, 2], which offer valuable information for evaluating craniofacial structures, such as
growth assessment, orthodontic treatment planning, orthognathic surgery planning, and treatment
outcome assessment [3-5]. Nevertheless, manual diagnostic procedure is a demanding and time-

consuming task. Moreover, despite the essential role of landmark identification in cephalometric



analysis, intra- and inter-observer variability and a lack of reliability continue to pose a challenge [6,
7]. Since the accuracy of landmark identification determines the quality of diagnosis, inaccurate
identification of cephalometric landmarks can result in misguided planning of orthodontic therapy

and orthognathic surgery.

Therefore, there is a growing need to develop fully automated and reliable cephalometric landmark
identification methods that use artificial intelligence (AI) algorithms. Recent advances in Al
particularly in deep learning, have garnered considerable attention for its use in diagnostic imaging,
disease classification, and monitoring. In orthodontics, deep learning technologies have been

utilized for automated cephalometric landmark identification, among other applications [8, 9].

Since the 1990s, various studies have proposed fully automated cephalometric landmark
identification systems that utilize machine-learning techniques [10, 11]. However, their limited
accuracy has hindered their success. Recently, deep learning algorithms, such as convolutional
neural networks (CNNs), have been used increasingly to detect landmarks on lateral cephalograms
automatically [3, 12, 13]. These studies have reported that deep learning algorithms exhibit high
accuracy in detecting landmarks at shorter time, achieving precision levels within the range of 2.0
mm. Additionally, they have achieved successful detection rates (SDR), surpassing 70% and 90%
for the respective thresholds of 2 and 3 mm [4, 14-16]. However, most studies reporting the
development and evaluation of automated cephalometric identification algorithms primarily

focused on utilizing lateral cephalograms as their main target.

Although lateral cephalometric analysis is valuable in assessing anteroposterior and vertical issues,
it has limitations in evaluating skeletal asymmetry and dentofacial structures in the transverse plane.

The use of posteroanterior cephalogram holds significant value in the assessment of transverse



skeletal and dentoalveolar relationships, enabling the quantification of bilateral structural issues [17-
19]. It provides vital diagnostic information that is essential for evaluating patients who present with

functional, dentoalveolar, and/or facial asymmetries.

Nevertheless, since the impact of such analyses greatly depends on their accuracy, there are
limitations associated with the use of the PA cephalogram owing to errors in landmark identification.
There are two primary categories of cephalometric errors: "projection errors," which result from the
geometric aspects of the radiographic setup, and "identification errors," which occur owing to the
uncertainty in locating specific anatomical landmarks [20, 21]. The reliability and reproducibility of
identified landmarks are influenced by various factors, including image density, image sharpness,
anatomical complexity, and superimposition of anatomical structures [22-24]. Consequently, the
identification errors on PA cephalograms were higher than those of lateral cephalometric analysis
owing to their nature, which involves more superimposition of anatomical structures and variations
in head positioning [25]. Furthermore, the experience and predisposition of the examiner play a
significant role, deeper understanding of anatomy and familiarity with radiographic images can help

reduce intra- and inter-examiner errors [17, 26].

Considering the limitations and potential errors associated with manual landmark identification in
PA cephalograms, there is a growing need for automatic identification methods. The development
of automatic PA cephalogram identification systems can greatly enhance the accuracy and reliability
of the analysis, minimizing the risk of errors caused by human factors. Moreover, the
implementation of automatic PA cephalogram identification would not only expedite the analysis,
but also contribute to enhanced diagnostic capabilities and more effective treatment planning for
patients presenting with functional, dentoalveolar, and/or facial asymmetries. Therefore, this study

aimed to develop a fully automatic PA cephalometric landmark identification model using a deep



learning algorithm and compare its accuracy and reliability with the assessments made by expert

human examiners.



II. Materials and methods

1. Ethics approval

This study was approved by the Ethics Review Board of Yonsei University Dental Hospital
Institutional Review Board (approval number 2-2020-0005) and passed the exemption review of
informed consent on the use of patients’ cephalometric data. The requirement for written or verbal
informed consent was waived owing to the non-interventional retrospective study design, and all
cephalometric images were anonymized to ensure confidentiality. This study was performed in

accordance with the Declaration of Helsinki.

2. Dataset

A total 1,114 patients were selected for the present study. The inclusion criteria were as follows:
(1) patients aged between 18 and 39 years, with permanent dentition and complete facial growth,
and (2) those who underwent orthodontic therapy or orthognathic surgery between 2015 and 2021.
The exclusion criteria were as follows: (1) partial or total edentulism, and (2) a history of dentofacial
trauma, craniofacial syndromes, or systemic diseases. Thus, 1,114 PA cephalometric images taken

before treatment from the participants who met the inclusion criteria and were included in this study.

The PA cephalograms used in this study were acquired using a Rayscan machine (Ray Co. Ltd.,
Hwaseong, Korea) and collected from the picture archiving and communication system of the Yonsei
University Dental Hospital as JPEG files. The images had a resolution of 1930 x 2238 pixels and a
pixel spacing of 0.13 mm. Each pixel was represented by a single grayscale channel with values

ranging from 0-255.



The 1,114 PA cephalometric images included in the study were randomly divided into three sets:
803 images for training purposes, 229 for validation, and 82 for testing. The training and validation
sets were used exclusively during the model training phase, whereas the test set was used solely to

evaluate the reliability of the human examiners and the accuracy of the auto-identification model.

3. Landmark detection for model training

Actotal of 19 clinically important PA cephalometric landmarks used in routine dentofacial diagnosis
were selected. Table 1. and Figure 1. describe their definitions and positions. Two expert human
examiners, a board certificated oral and maxillofacial surgeon with subspeciality in dentofacial
deformity and an orthodontic specialist, independently and manually identified the landmarks on the

1,032 images used for model training and validation to obtain the ground truth.

During model training, the large size of the original image facilitates the creation of more feature
maps for learning; however, it is also associated with the disadvantages of GPU memory allocation
limitation and long computing time. Therefore, in the first step, the image was resized to 964 x 1119
pixels, which was %4 of the original size. It is important to retain the features of the widest possible
area to extract the approximate coordinates of the 19 landmarks. Thus, the x- and y-coordinates of
the 19 landmarks were extracted by locating the center of mass of each labeling point, which enabled

the construction of a coordinate landmark detection model.



Table 1. Definition of landmarks

No. Landmarks Definition

1 Crista galli (Cg) The most superior and anterior points on the median
ridge of bone that projects upward from the cribriform
plate of the ethmoid bone
The right intersection of sphenoid bone greater and lesser

2 Sphenoid point right (SphR) wing

3 Sphenoid point left (SphL) The left intersection of sphenoid bone greater and lesser

wing

4  Condyle point right (ConR) The most superior and the middle point on the contour of
the right condyle head

5  Condyle point left (ConL) The most superior and the middle point on the contour of

the left condyle head
6  Mastoid process right (MstR)  The most inferior point of right mastoid process
7  Mastoid process left (MstL) The most inferior point of left mastoid process

Center of the intersection of the nasal septum and the

8 Anterior nasal spine (ANS) 0o

9  Jugal point right (JugR) The right intersection of the tuberosity of maxilla and

zygomatic buttress

The left intersection of the tuberosity of maxilla and

10 Jugal point left (JugL) 2ygomatic buttress

11 Gonial point right (GoR) The most posterior inferior point of right mandibular
angle
12 Gonial point left (GoL) The most posterior inferior point of left mandibular angle



13

14

15

16

17

18

19

Menton (Me)

Upper dental midline (U1M)

Upper first molar cusp right
(U6MCR)

Upper first molar cusp left
(U6MCL)

Lower dental midline (L1M)

Lower first molar cusp right

(L6MCR)

Lower first molar cusp left

(L6MCL)

The most inferior point of symphysis of the mandible

The dental midline point of incisal edge of the maxillary

central incisor

The most lateral cusp point of the right maxillary first

molar crown

The most lateral cusp point of the left maxillary first

molar crown

The dental midline point of incisal edge of the

mandibular central incisor

The most lateral cusp point of the right mandibular first

molar crown

The most lateral cusp point of the left mandibular first

molar crown




Figure 1. Landmarks on the PA cephalometric radiograph

4. Convolution neural network model architecture and model training

A. Coarse training

The landmark detection framework operates through a two-step process, as shown in Figure 2. The

19 landmark positions were coarsely extracted, and the image was cropped to a certain size based



on these rough positions. Subsequently, the fine points were extracted from the cropped images. The

adoption of this two-step framework facilitated efficient learning and high accuracy.

ResNet 18 was used as the initial step to preserve the original features and expedite the learning
process while minimizing the computational complexity. ResNet 18 is a model that can solve the
gradient vanishing problem as the layer deepens through residual learning using skip connection,
and it is widely used in facial landmark detection tasks. ResNet 18 consists of 17 convolution layers
and a fully connected layer at the end. However, the first convolution layer was limited to a 7 x 7
kernel and max pooling to minimize the input size, whereas all subsequent layers were implemented
using a 3 x 3 kernel convolution layer. The final fully connected layer comprised 38 output features,
thereby enabling the derivation of the x- and y-coordinates of the 19 landmarks. Residual shortcut
connections were introduced between the two convolution layers to optimize the learning process,
as shown in Figure 2., where the solid line represents the input and output having the same dimension,

and the dotted line represents an increase in the dimension with zero padding and a stride of 2.

B. Data augmentation

An augmentation strategy randomly selected from a list of methods, including rotation, scale, flip,
and contrast, was applied to account for patients with tilted heads and asymmetric X-rays, as shown
in Figure 3. Wing loss was utilized as the loss function in the first step, which helped reduce an
excessive focus on outliers to find the approximate landmark positions. Wing loss is more resistant

to the impact of outliers than the mean squared error (MSE) loss function [27, 28].

10



ROI extraction

Step1: Resnet 18
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Figure 2. Schematic design of the two-step landmark detection framework. (Conv: convolution, FC: fully connected, ROI:
region of interest, CLAHE: Contrast Limited Adaptive Histogram Equalization).
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Rotate in CW Rotate in CCW Flip

One of
_—D . . . .
Scale in x-axis Scale in y-axis Contrast

Original Xray

Figure 3. Description of the augmentation policy (CW: clockwise, CCW:
counterclockwise).

C. Fine training

The original image was cropped to a size of 400 x 400 pixels and centered around the 19 landmark
positions obtained in the first step. Subsequently, contrast-limited adaptive histogram equalization
(CLAHE) was applied to the cropped images (Figure 4). CLAHE is a histogram-flattening method
that enhances the contrast of the radiographs, thereby enabling clear visualization of the bone, soft
tissue, and background regions [29]. The application of CLAHE is known to enhance image quality
and has gained widespread usage in deep learning model studies that utilize medical images [30].
ResNet 50 architecture was used in this second step. It is similar to ResNet 18 but with deeper

networks, and it comprises 49 convolution layers and a fully connected layer at the end. The final

12



fully connected layer was designed with two output features to derive the x- and y-coordinates of
one landmark. To optimize learning, residual shortcut connections were applied to three convolution
layers with kernel sizes of 1 x 1 and 3 x 3. The 1 x 1 convolution layers were responsible for
dimensionality reduction and restoration, whereas the 3 x 3 layer functioned as a bottleneck with

smaller input/output dimensions. MSE loss was utilized as the loss function for the second step.

The two-step models were initialized with a learning rate of 0.01 during model training, which was
then decayed by a factor of 0.5 every 30 epochs. An Adam optimizer with a batch size of 64 was
used for 400 epochs. All procedures were conducted using the PyTorch framework running on an

NVIDIA Quadro RTX8000 GPU.

P2: (x2,y2)

CLAH
P1ROI ! Resnet 50
P1: (x1 y1)
- gﬁ -

P3 ROI {jﬁ!

v

> P3:(x3,y3)

g
P19 ROI
Cropped ROI

Figure 4. Schematic description of fine training and application of CLAHE
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5. Test set and model evaluation

Two human expert examiners specializing in oral and maxillofacial surgery and orthodontics
manually identified 19 cephalometric landmarks on 82 images that constituted the test set. The mean
radial error (MRE) and standard deviation (SD) were calculated to evaluate the inter-examiner
reliability, and the intra-class correlation coefficient (ICC) values were computed to assess the
degree of reliability between the two human experts. The mean values of the x- and y-coordinates

determined by the two examiners were used as the gold standard for subsequent analysis.

Automatic detection of 82 test set images was completed using the constructed Al algorithm, and
the MRE and success detection rate (SDR) with error ranges of <1.0, <2.0, and <4.0 mm for all
landmarks were calculated to evaluate the performance of the proposed model. All calculations were

performed in Microsoft Excel using the following formulae:

Radial error (R)= VAx2 + Ay? (mm)

N p.
MRE = E—‘:A; Ri (mm)

Number of accurate identifications
SDR = x 100 %

Number of total identifications

14



I11. Results

1. Inter-examiner reliability

Table 2 presents the MRE and ICC values for each of the 19 landmarks detected by the human
examiners that were defined as the gold standard points. The average MRE for all landmarks was
1.68+1.85 mm. The ICC values for all landmarks were above 0.7, except for the y-coordinate of the
upper dental midline (U1M), indicating high reliability between the two examiners. The lower ICC
value for the y-coordinate of the U1M may be attributed to the detection tendency of the two human

examiners, which is relatively less relevant to transverse evaluation.

2. Mean radial error between gold standard and automatic identification

Examples of the 19 landmarks were visually represented on a PA cephalometric image to facilitate
comparison between the landmarks detected by the human examiners (gold standard) and those by

the automatic identification algorithm (Figure 5).

Table 3 presents the MRE and SD for the 19 landmarks identified by the human examiners (the
gold standard) and the automatic identification algorithm. The landmarks with the lowest MRE were
SphR (1.12 mm), SphL (1.10 mm), and MstR (1.10 mm), whereas those with the highest MRE were

ConR (3.47 mm) and ConL (3.16 mm). The average MRE was 1.87+1.53 mm.

15



Table 2. The Mean radial error (MRE) and inter-examiner reliability of two human
examiners.

Mean radial error[mm] Interclass correlation coefficient value
landmarks Mean SD x-coordinates y-coordinates
Cg 3.53 2.65 0.983 0.783
SphR 0.94 0.75 0.989 0.986
SphL 1.17 0.92 0.982 0.979
ConR 3.61 2.34 0.886 0.771
ConL 3.95 2.56 0.859 0.725
MstR 0.85 0.60 0.991 0.988
MstL 0.81 0.75 0.991 0.987
ANS 0.89 0.68 0.994 0.986
JugR 1.42 1.42 0.987 0.953
JugL 1.11 1.16 0.993 0.968
GoR 1.68 1.73 0.983 0.952
GoL 1.60 1.37 0.980 0.969
Me 1.46 1.23 0.957 0.995
UM 2.32 11.21 0.710 0.531
U6MCR 1.61 1.08 0.966 0.970
U6MCL 1.41 1.13 0.973 0.977
LIM 1.13 1.35 0.958 0.993
L6MCR 1.13 1.04 0.973 0.987
L6MCL 1.21 1.20 0.971 0.985
Average 1.68 1.85 - -

16



Figure 5. Examples of superimposed gold standard (blue dot) and auto-identified (red
dot) landmarks on PA cephalometric image (a—f). The best result was obtained with an
average MRE of 1.06 mm (a), and the worst result with an average MRE of 4.02 mm (b)

17



Table 3. The Mean radial error (MRE) between gold standard and automatic identification
using the Al algorithm.

Mean radial error [mm]

landmarks Mean SD
Cg 2.57 1.63
SphR 1.12 0.97
SphL 1.10 0.67
ConR 3.47 2.09
ConL 3.16 1.88
MstR 1.10 1.16
MstL 1.95 1.28
ANS 1.83 1.29
JugR 1.91 1.59
JuglL 1.70 1.24
GoR 1.70 1.34
GoL 1.49 1.20
Me 2.17 1.77
UM 2.19 5.54
U6MCR 1.55 0.99
U6MCL 1.43 0.78
L1M 2.50 1.83
L6MCR 1.33 0.98
L6MCL 1.18 0.76
Average 1.87 1.53

18



3. Success detection rate of automatic identification

Table 4. shows the SDR of the landmarks within the error ranges of <1.0, <2.0, and <4.0 mm. The
average SDR was 34.7%, 67.5%, and 91.5% within the ranges of 1.0, 2.0, and 4.0 mm, respectively.
The automatic identification algorithm showed a high accuracy (> 80%) within a range of 2.0 mm
for SphR and SphL (89.0%), MstR and L6MCL (87.8%), and U6MCL and L6MCR (81.7%). In

contrast, ConR (25.6%) and ConL (32.9%) had the lowest SDR values.

4. Error pattern of human examiners and automatic identification

The horizontal and vertical error patterns between the two human examiners and the automatic

identification of each landmark are illustrated in Figure 6.

19



Table 4. The success detection rate (SDR) of auto identification using the Al algorithm.

Success detection rate [%]

landmarks  <1.0 [mm] <2.0 [mm] <4.0 [mm]

Cg 14.6 451 79.3
SphR 53.7 89.0 98.8
SphL 51.2 89.0 100.0
ConR 6.1 25.6 73.2
ConL 12.2 32.9 69.5
MstR 65.9 87.8 98.8
MstL 19.5 57.3 93.9
ANS 29.3 61.0 93.9
JugR 36.6 61.0 92.7
JuglL 29.3 68.3 91.5
GoR 39.0 70.7 93.9
GoL 43.9 75.6 97.6
Me 26.8 67.1 85.4
UIM 50.0 72.0 92.7
U6MCR 35.4 74.4 97.6
U6MCL 30.5 81.7 100.0

LM 20.7 53.7 81.7
L6MCR 46.3 81.7 98.8
L6MCL 47.6 87.8 100.0
Average 34.7 67.5 91.5

20
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Figure 6. Scatter plots with 95% confidence ellipses for the landmark detection errors of
the human examiners and automatic identification.
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IV. Discussion

This study proposed a fully automated deep learning model for identifying PA cephalometric

landmarks and compared its accuracy with that of two expert human examiners.

Numerous previous studies have introduced algorithms for the automated identification of lateral
cephalograms as well as methods for evaluating their accuracy [3, 8, 9]. Conversely. A recent
systematic review and meta-analysis reported Al agreement rates of 79% and 90% for the thresholds
of 2 and 3 mm, respectively, with a mean divergence of 2.05 compared to manual landmarking [15].
Another study showed that most studies did not exceed a 2-mm prediction error threshold in mean

and that the mean proportion of landmarks detected within this 2-mm threshold was 80% [16].

However, only a limited number of studies have used deep learning algorithms to automate
identification in PA cephalograms [31]. Although lateral cephalometric analysis is a basic tool for
diagnosis in orthodontics, PA cephalometric analysis is essential for evaluating skeletal asymmetry
and providing dentofacial structural information in the transverse plane [17-19]. Owing to its
anatomical orientation, PA cephalometry inevitably causes greater overlap and superimposition of
the skeletal structures and dentition than lateral cephalometry. These overlapped images reduce the
accuracy and reliability of landmark identification, resulting in identification that highly depends on

the examiner's experience and subjectivity [26, 32, 33].

The present study aimed to develop a fully automatic PA cephalometric landmark identification
system using a two-step landmark detection framework. In the first step, ResNet 18 was used to
detect the region of interest by roughly extracting 19 landmark positions. Random augmentation and
loss functions were used to improve performance. In the second step, ResNet 50 architecture was

used to extract fine points from the cropped image. Then, CLAHE was applied to the cropped images

22



for clear visualization of the bone, soft tissue, and the background regions.

The inference time and accuracy according to number of ResNet layers during the coarse training
step are listed on Table 5. Deeper networks can extract more complex and abstract features.
However, such complex feature extraction comes at the cost of increased computational burden,
resulting in longer inference times. Similarly, as shown in the Table 5., as the layer depth
increased, the computing time also increased. Although ResNet34 demonstrated approximately a
19% improvement in average accuracy for landmark detection compared to ResNet 18, its
inference time was approximately 40% slower. Therefore, we opted to use ResNet18 for the coarse

training stage.

Table 5. Inference time and accuracy according to the number of ResNet layers.

Model Average computing time [s] Average radial error [mm]
ResNet 18 0.005573844 4.262201158
ResNet 34 0.009241667 3.583836895
ResNet 50 0.012178767 7.023593526

ResNet 152 0.034862056 7.182261526
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To evaluate the performance of the proposed model, manual identification of the 19 landmarks was
performed independently by two human examiners on 1,032 images used for model training and
validation. Furthermore, the landmarks were identified manually by two expert human examiners
and automatically by the developed Al algorithm on 82 test set images. The MRE and SDR between

gold standard and auto detected point were calculated from the results of the test sets.

Although every cephalometric landmark has its own definition, its identification is subjective and
dependent on the experience and judgment of the examiner [17, 26]. Even highly educated experts
may hold different opinions regarding the ideal location, indicating the absence of an 'absolute gold
standard' reference point. To address this limitation, we employed a method where the arithmetical
mean point for each landmark was calculated by averaging the X and Y coordinates detected by two
human expert examiners. The inter-examiner reliability was previously established using an
assessment of the ICC. Although this mean point may not precisely align with the specific definition

of a particular landmark, it can be regarded the closest approximation to the gold standard point.

The SphR, SphL, and MstR had the lowest MRE, whereas the condyle points had the highest MRE.
The average MRE value was 1.87 mm, which falls within the clinically acceptable range of previous
studies that considered an MRE of up to 2.0 mm as acceptable [3, 8, 34]. In terms of the SDR, auto-
identification demonstrated a high accuracy at the sphenoid points and the mastoid process across

all error ranges. Conversely, the lowest SDR was observed at the condyle points.

The tendency of these results could be related to the degree of overlap of the anatomical structures.
Auto-identification showed low MRE and high SDR values for the sphenoid points and mastoid
processes, respectively, which have relatively little anatomical overlap. Conversely, auto-

identification exhibited high MRE and low SDR values for the condyle points, which overlap with
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the maxilla and zygomatic arch, respectively, consistent with the inter-examiner evaluation. These
results align with those of prior studies on auto-identification on PA cephalograms, which reported
relatively significant errors in identifying the landmarks located within the frontozygomatic suture,

zygomatic process, and condyles owing to an overlap of the anatomical structures [35, 36].

The precision of auto-identification of the landmarks located on the teeth, which was anticipated
to have low accuracy owing to the overlap of adjacent teeth and the presence of orthodontic brackets
and prosthesis, produced favorable results, with an MRE within 2.0 mm. This finding suggest that

auto-identification can be utilized for precise evaluation of asymmetry using the dentition.

The scatterplots of the landmark detection errors showed a characteristic distribution within the co-
ordinate system, as shown in Figure 6. For instance, Menton (Me) distinctively oriented horizontally,
whereas Crista galli(Cg) oriented more in a vertical direction, which reflects the tendency of
detection errors of each landmarks and corresponding to the differences observed between the two

examiners.
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V. Conclusion

This study presented a novel approach for the fully automatic identification of PA cephalometric
landmarks using a deep learning algorithm. The accuracy and reliability of the proposed model were
evaluated by comparison with those of expert human examiners. Our results showed that the
accuracy and reliability of the constructed Al model are comparable to those of human experts.
These findings suggest that with advances in Al, automatic PA cephalometric landmark
identification can significantly improve the efficiency and accuracy of cephalometric analysis while

reducing the time and effort required.
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