

Comparison of permutation tests for difference in two Restricted Means Survival Time

Bomi Kim

The Graduate School Yonsei University Department of Biostatistics and Computing

Comparison of permutation tests for difference in two Restricted Means Survival Time

A Master's Thesis Submitted to the Department of Biostatistics and Computing and the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Master of Science

Bomi Kim

December 2023

This certifies that the master's thesis of *Bomi Kim* is approved.

ChungMo Nam: Thesis Supervisor

Inkyung Jung: Thesis Committee Member #1

YunHo Roh: Thesis Committee Member #2

The Graduate School Yonsei University December 2023

Contents

1.	Intro	duction
2.	Meth	od4
	2.1	Notations ······ 4
	2.2	Horiguchi and Uno, 2020 5
	2.3	Ditzhaus et al., 2021 ····· 9
3.	Simu	lation ······12
	3.1	Data generation 12
	3.2	Simulation setting
	3.3	Simulation result ······18
4.	Appli	ication ······30
5.	Conc	lusion ······34
Ref	erence	
국된	문요약	

List of Tables

Table 1. Data generation setting 15
Table 2. Type1 error of the studentized and unstudentized permutation method in small
sample size ·····21
Table 3. Type1 error of the studentized and unstudentized permutation method in small
sample size
Table 4. Type1 error of the studentized and unstudentized permutation method in small
sample size
Table 5. Type1 error of the studentized permutation method with Clayton copula in small
sample size ······24
Table 6. Type1 error of the studentized permutation method with Gumbel copula in small
sample size
Table 7. Type1 error of the studentized permutation method with Clayton copula on
$\tau = 15$
Table 8. Type1 error of the studentized permutation method with Gumbel copula on
$\tau = 15$
Table 9. Type1 error of the studentized permutation method with Clayton copula ······28

Table 10. Type1 error of the studentized permutation method with Gumbel copula 29
Table 11. P-value of the studentized and unstudentized permutation method for the
radiotherapy (Group, arm=0) alone and a combination of radiotherapy and chemotherapy
(Group, arm=1) in head and neck cancer study
Appendix table 1. Type1 error of the permutation method and asymptotic test for equal
censoring distribution in small sample size
Appendix Table 2. Type1 error of the permutation method and asymptotic test for unequal
survival distribution in small sample size
Appendix Table 3. Type1 error of the permutation method and asymptotic test for equal
censoring distribution 41
Appendix Table 4. Type1 error of the permutation method and asymptotic test for unequal
survival distribution
Appendix Table 5-a. Type1 error of the studentized permutation method with Clayton
copula in small sample size
Appendix Table 5-b. Type1 error of the studentized permutation method with Clayton
copula in small sample size
Appendix Table 5-c. Type1 error of the studentized permutation method with Clayton
copula in small sample size

Appendix Table 6-a. Type1 error of the studentized permutation method with Gumbel
copula in small sample size
Appendix Table 6-b. Type1 error of the studentized permutation method with Gumbel
copula in small sample size
Appendix Table 6-c. Type1 error of the studentized permutation method with Gumbel
copula in small sample size
Appendix Table 7-a. Type1 error of the studentized permutation method with Clayton
copula on $\tau = 15 \cdots 54$
Appendix Table 7-b. Type1 error of the studentized permutation method with Clayton
copula on $\tau = 15$
Appendix Table 7-c. Type1 error of the studentized permutation method with Clayton
copula on $\tau = 15$
Appendix Table 8-a. Type1 error of the studentized permutation method with Gumbel
copula on $\tau = 15$
Appendix Table 8-b. Type1 error of the studentized permutation method with Gumbel
copula on $\tau = 15$
Appendix Table 8-c. Type1 error of the studentized permutation method with Gumbel
copula on $\tau = 15 \cdots 61$

Appendix Table 9-a. Type1 error of the studentized permutation method with Clayton
copula ·····62
Appendix Table 9-b. Type1 error of the studentized permutation method with Clayton
copula ······63
Appendix Table 9-c. Type1 error of the studentized permutation method with Clayton
copula ······65
Appendix Table 10-a. Type1 error of the studentized permutation method with Gumbel
copula ······66
Appendix Table 10-b. Type1 error of the studentized permutation method with Gumbel
Appendix Table 10-b. Type1 error of the studentized permutation method with Gumbel copula
Appendix Table 10-b. Type1 error of the studentized permutation method with Gumbel copula

List of Figures

Figure 1. Figure 1. Kaplan-Meier curves for the radiotherapy alone (Group, arm=0) and a combination of radiotherapy and chemotherapy (Group, arm=1) in head and neck cancer

Abstract

Comparison of permutation tests for difference in two Restricted Means Survival Time

Survival analysis assumes proportional hazards to compare survival functions between groups. However, these assumptions may not apply to real-world data, so the restricted mean survival time (RMST) is adopted as an alternative.

In this paper, we compare methods suitable for small sample sizes through simulation using the permutation method. We also consider the dependency between survival and censoring distributions using the Clayton and Gumbel copula functions.

We interpret that the studentized approach provides better control of type I error when the censoring distribution is different between the two groups. However, if there is a dependency between the survival and censoring distributions and the censoring distributions of the two groups are different, a studentized permutation shows that the type I error increases.

Key words : Restricted mean survival time, Studentized Permutation, Copula

1. Introduction

In survival analysis, when the proportional hazards assumption holds true, the log-rank test and proportional hazards model are used to compare the survival functions between groups. However, in actual survival data, the proportional hazards assumption may not hold. In such cases, it is easier to use methods that do not require model assumptions. Restricted mean survival time (RMST) can be used as an alternative (Royston and Parmar, 2011; 2013).

Restricted mean survival time represents the expected value of the minimum survival time until the occurrence of the event of interest and a pre-specified time point called the τ . It is expressed as the area under the survival curve from time point 0 to the τ . RMST is easy to interpret clinically and can be used even when the proportional hazards assumption is not satisfied (Chen et al., 2001; Royston and Parmar, 2011; 2013; Zhao et al., 2016).

If the survival curves of two groups cross, it may be difficult to ascertain significant differences between the groups using the log-rank test. However, comparing the RMSTs of the two groups allows for a valid interpretation. Furthermore, it has higher statistical power compared to the log-rank test and proportional hazards model (Tian et al., 2016).

However, applying RMST based on the characteristics observed in asymptotic tests with sufficiently large sample sizes may be challenging in small clinical trials. Additionally, if the last observed event time is shorter than the pre-specified time point when calculating

RMST, an error may occur, preventing the comparison of the difference in RMST between groups.

To address such issues, permutation methods have been used, allowing for a more accurate comparison of time-to-event outcomes in small randomized trials (Horiguchi et al., 2020). The five permutation methods involve permuting data, excluding instances where the last observed time point occurs before the pre-specified time point. The first method may be computationally time-consuming due to the exclusion process. The second method involves extending based on survival probability at the last observation time, and the third method calculates the area under the survival curve from time 0 to the last observed time. The fourth method averages RMST obtained from the second and third methods, while the last method fits a Weibull distribution to calculate RMST. However, these methods assume equal distributions between groups. In real survival distributions differ between groups, RMST is compared using permutation methods under the assumption of equal RMST. Moreover, to address differing censoring distributions between groups, the studentized permutation method is employed (Dizhaus et al., 2021).

This paper primarily focuses on comparing the RMST of two groups using permutation methods, which are commonly used to address distributional assumptions in cases of small sample sizes where the distribution is challenging. The paper aims to apply two permutation methods to five RMST calculation methods under the assumption of independence between survival and censoring distributions. Additionally, it investigates how these methods are

applied when survival and censoring distributions are dependent, utilizing Copula functions. Furthermore, the paper examines differences between the asymptotic method and permutation method in cases with sufficiently large sample sizes.

The structure of this paper is as follows. Section 2 explains the two permutation methods: Horiguchi and Uno (2020) and Ditzhaus et al. (2021). In Section 3, various other simulations are performed, such as when the survival distribution and censoring distribution of each group are different and when there is a dependency between the two distributions. In Section 4, the results are compared when applying the actual PBC data. Finally, Section 5 concludes the paper and discusses the implications of this study.

2. Method

2.1 Notations

Assume that there are n_i subjects. For $j = 1, \dots, n_i$, T_{ij} denotes the survival time for the *j*th subject and in the *i*th group, and C_{ij} is the censoring time. We observe (X_{ij}, δ_{ij}) , where the observed event time is denoted $X_{ij} = \min(T_{ij}, C_{ij})$ and $\delta_{ij} =$ $I(X_{ij} = C_{ij})$ serves as the censoring indicator. The τ is a pre-specified time point, as a truncation time point.

The Restricted Mean Survival Time (RMST) is calculated as the expected value of the minimum between τ and X_{ij} . It represents the area under the survival function from time 0 to τ , which can be expressed as

$$\mu_{i} = E\{\min(X_{i}, \tau)\} = \int_{0}^{\tau} S_{i}(t) dt \quad (i = 1, 2),$$

where i indicates each group 1 and 2.

The difference in RMSTs between the two groups up to τ is denoted as $D(\tau)$ and is calculated as

$$D(\tau) = \int_0^\tau \{S_2(t) - S_1(t)\}dt$$

Under the null hypothesis H_0 : $\mu_1 = \mu_2$, we conduct a test for $D(\tau) = 0$.

2.2 Horiguchi and Uno (2020)

The comparison between groups is conducted based on the RMSTs of the two groups. The difference in RMST, $D(\tau)$, is proposed as a measure to assess the survival benefit of the treatment. Here, $\hat{D}(\tau)$ is an estimator based on non-parametric estimation, defined as

$$\widehat{D}(\tau) = \int_0^\tau \{\widehat{S_2}(t) - \widehat{S_1}(t)\} dt$$

where $\widehat{S}_1(t)$ and $\widehat{S}_2(t)$ represent the Kaplan-Meier estimators for the survival functions of groups 1 and 2, respectively.

Let $A_i(t)$ be the cumulative hazard function for T_i and let $\pi_i(t) = Pr\{min(T_i, C_i) \ge t\}$. $\widehat{A}_i(\cdot)$ represents the Nelson-Aalen estimator, and $\widehat{p}_i = \frac{n_i}{n}$ denotes the fraction of the sample size n_i in group *i*. This estimator converges to a zero-mean Gaussian process, $Q(\tau) = \sqrt{n}\{\widehat{D}(\tau) - D(\tau)\}$, when the sample size is sufficiently large, and the associated variance function is as follows.

$$\sigma^{2}(\tau) = \int_{0}^{\tau} \left\{ \int_{v}^{\tau} S_{1}(t) dt \right\}^{2} \frac{dA_{1}(v)}{p_{1}\pi_{1}(v)} + \int_{0}^{\tau} \left\{ \int_{v}^{\tau} S_{2}(t) dt \right\}^{2} \frac{dA_{2}(v)}{p_{2}\pi_{2}(v)}.$$

Therefore, the variance estimator based on the Nelson-Aalen estimator is as follows.

$$\hat{\sigma}_A^2(\tau) = \int_0^\tau \left\{ \int_v^\tau \widehat{S}_1(t) \, dt \right\}^2 \frac{d\widehat{A}_1(v)}{\widehat{p}_1\widehat{\pi}_1(v)} + \int_0^\tau \left\{ \int_v^\tau \widehat{S}_2(t) \, dt \right\}^2 \frac{d\widehat{A}_2(v)}{\widehat{p}_2\widehat{\pi}_2(v)}$$

The variance estimator based on Greenwood's formula for the variance of the Kaplan-Meier estimator is given by

$$\hat{\sigma}_{B}^{2}(\tau) = n \left[\sum_{t_{1k}} \left\{ \int_{t_{1k}}^{\tau} \widehat{S}_{1}(u) \, du \right\}^{2} \frac{d_{1k}}{Y_{1k}(Y_{1k} - d_{1k})} + \sum_{t_{2k}} \left\{ \int_{t_{2k}}^{\tau} \widehat{S}_{2}(u) \, du \right\}^{2} \frac{d_{2k}}{Y_{2k}(Y_{2k} - d_{2k})} \right]$$

In this case, t_{ik} represents the distinct failure time points in group *i* that are smaller than τ , and d_{ik} , Y_{ik} denote the number of observed events and the number of subjects at risk at t_{ik} respectively.

Therefore, the variance estimator based on the Nelson-Aalen estimator can be expressed as:

$$\hat{\sigma}_{A}^{2}(\tau) = n \left[\sum_{t_{1k}} \left\{ \int_{t_{1k}}^{\tau} \widehat{S}_{1}(u) \, du \right\}^{2} \frac{d_{1k}}{Y_{1k}^{2}} + \sum_{t_{2k}} \left\{ \int_{t_{2k}}^{\tau} \widehat{S}_{2}(u) \, du \right\}^{2} \frac{d_{2k}}{Y_{2k}^{2}} \right]$$

When using the asymptotic Z-test to compare the difference in RMST, the test statistic $Z(\tau)$ is represented as $Z(\tau) = \frac{\sqrt{n}\hat{D}(\tau)}{\hat{\sigma}} \sim N(0,1)$, where $\hat{\sigma}^2(\tau)$ can be either $\hat{\sigma}_A^2(\tau)$ or $\hat{\sigma}_B^2(\tau)$. This asymptotic test follows a standard normal distribution, denoted as $Z(\tau) \sim N(0,1)$. It should be noted that while the asymptotic test provides similar results to the permutation test for large sample sizes, it poses an issue of increased type I error rates for small sample sizes.

The permutation method is carried out through the following steps:

Firstly, Z and z are calculated as the test statistics and observed data, respectively. Next, under the assumption of no difference between groups under the null hypothesis, the observed data is randomly shuffled, and the test statistics are recalculated. This shuffling process is repeated M times to obtain the reference distribution $\{Z_1^*, \dots, Z_M^*\}$. Finally, the p-value is obtained by comparing the test statistic z with the reference distribution.

When defining the RMST difference obtained through permutation as follows:

$$\left\{\widehat{D}^{(m)}(\tau) = \int_0^\tau \left\{\widehat{S}_2^{(m)}(t) - \widehat{S}_1^{(m)}(t)\right\} dt \; ; \; m = 1, \; \cdots, \; M\right\}$$

Therefore, Horiguchi and Uno (2020) proposed the following five methods due to the numerical issues that arise when the last observed time point appears before τ , which is more likely to occur with small sample sizes.

Method1: Ignoring the inestimable cases

- Simply ignoring the cases that we cannot calculate $\widehat{D}^{(m)}(\tau)$
- It may take a long computing time to obtain the M realizations for some observed data

Method2: Extending the survival curves to τ

- Extending the survival curve to τ , both $\hat{S}_2^{(m)}(u)$ and $\hat{S}_1^{(m)}(u)$
- · This method is overestimating the RMST value

Method3: Switching the last censored observation to the event observation

- Switching the last censored observation to event when the survival function at $\boldsymbol{\tau}$

Method4: Averaging RMSTs derived from Methods 2 and 3

• Combination of Method 2 and 3

Method5: Fitting a Weibull distribution to each inestimable case

- Survival function of either group cannot be defined in the permutations
- $\hat{S}_1^{(m)}(u)$ cannot be defined with the *m*th permutation data, we fit the data with a Weibull distribution model

2.3 Ditzhaus et al. (2021)

Ditzhaus et al. (2021) proposed the studentized permutation test to compare two restricted mean survival time (RMST) in a randomized trial with small sample sizes. This method was introduced to relax the general assumption that, under the null hypothesis H_0 : $\mu_1 = \mu_2$, the censoring distribution should be equal when permuted, as it may differ. This approach aims to address a limitation of classic permutation test, where the groups to be compared need to be exchangeable data.

$$\widehat{D}(\tau) = \int_0^\tau \left\{ \widehat{S_2}(t) - \widehat{S_1}(t) \right\} dt$$

The estimator $\hat{S}_{l}(t)$ compares based on the normal approximation using the Kaplan-Meier estimator.

Under the assumption that $\frac{n_i}{n} \to p_i \in (0,1)$ as $n \to \infty$, this have

$$\sqrt{n}\{(\hat{\mu}_1 - \hat{\mu}_2) - (\mu_1 - \mu_2)\} \xrightarrow{d} Z \sim N(0, \sigma^2), \ \sigma^2 = \sigma_1^2 + \sigma_2^2.$$

Additionally, the asymptotic variance of $\sqrt{n}(\hat{\mu}_i - \mu_i)$ is σ_i^2 .

 $A_i = -\log(S_i)$ represents the cumulative hazard rate function, and $\Delta A_i(x)$ is the x increment. Furthermore, $\Delta A_i(x) = A_i(x) - A_i(x)$, $G_{i_-}(t) = P(C_{i_1} \ge t)$ are examples of the left-continuous forms of G_i, S_i and A_i , respectively denoted by G_{i_-}, S_{i_-} and A_{i_-} . These values obtained as the Kaplan-Meier and Nelson-Aalen estimators, respectively.

$$\hat{\sigma}_{i}^{2} = \frac{n}{n_{i}} \int_{0}^{\tau} \left\{ \int_{x}^{\tau} \hat{S}_{i}(t) dt \right\}^{2} \frac{1}{\{1 - \Delta \hat{A}_{i}(x)\} \hat{S}_{i} \hat{G}_{i}} d\hat{A}_{i}(x).$$

$$\hat{S}_{i} \hat{G}_{i} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} 1\{X_{ij} \ge t\} = \frac{1}{n_{i}} Y_{i}(t), \ \hat{A}(t) = \sum_{k:t_{k} \le t} \frac{\Delta N(t_{k})}{Y(t_{k})} = \int_{0}^{t} Y(s)^{-1} dN(s) \ (t \ge 0)$$
is expressed where $N_{i}(t)$ is the number of observed events up until t in group i a

0) is expressed, where $N_i(t)$ is the number of observed events up until t in group i, and $Y_i(t)$ is the number of individuals under risk just before t in group i. So $N(t) = N_1(t) + N_2(t), Y(t) = Y_1(t) + Y_2(t)$.

When each value is substituted and simplified, the formula for the variance estimation can be expressed as follows:

$$\hat{\sigma}_{i}^{2} = \frac{n}{n_{i}} \int_{0}^{\tau} \left\{ \int_{x}^{\tau} \hat{S}_{i}(t) dt \right\}^{2} \frac{1}{\{1 - \Delta \hat{A}_{i}(x)\} \frac{1}{n_{i}} Y_{i}(t)} d\hat{A}_{i}(x)$$
$$= n \sum_{t_{k} \le t} \left\{ \int_{x}^{\tau} \hat{S}_{i}(t) dt \right\}^{2} \frac{1}{\{1 - \Delta \hat{A}_{i}(x)\} Y_{i}(t)}$$

For the hypothesis test of H_0 : $\mu_1 = \mu_2$, we obtain the value $\varphi = 1\left\{\frac{\sqrt{n}|\hat{\mu}_1 - \hat{\mu}_2|}{\sigma} > Z_{\frac{1-\alpha}{2}}\right\}$. If the sample size is small, there is an issue of inflated type I error.

To address this issue, permutation tests are used, which are relatively robust assuming the same survival and censoring distributions. However, since it is difficult for actual data to satisfy this assumption, a studentized permutation is proposed.

Theorem 1: The given data converges to a central normal distribution constrained by the following variance.

$$\sigma_{perm}^{2} = \frac{1}{\kappa_{1}\kappa_{2}} \int_{0}^{\tau} \left\{ \int_{x}^{\tau} S(t) dt \right\}^{2} \frac{1}{\{1 - \Delta A(x)\}y(t)} dA(x)$$

Then,

$$\sup_{t\in\mathbb{R}} \left| P\{\sqrt{n}(\hat{\mu}_1^{\pi} - \hat{\mu}_2^{\pi}) \le t \, \big| (X, \delta)\} - \Phi\left(\frac{t}{\sigma_{perm}}\right) \right| \stackrel{P}{\to} 0 \ as \ n \to \infty$$

When the survival distributions of the two groups are the equal, and the censoring distributions are also the equal, $\sigma^2 = \sigma_1^2 + \sigma_2^2$ and σ_{perm}^2 coincide. If the censoring distribution assumptions of the two groups differ, the variance of the permutation statistic will be different. To address this, the original test statistic is augmented with an estimator of the variance from the permutated data. The superscript π denotes the mean and standard deviation for each permutation in the permuted data.

Theorem 2: The studentized permutation statistic, $\sqrt{n}(\hat{\mu}_1^{\pi} - \hat{\mu}_2^{\pi})/\hat{\sigma}^{\pi}$, converges to a standard normal distribution.

$$\sup_{t \in \mathbb{R}} \left| P\left\{ \frac{\sqrt{n}(\hat{\mu}_1^{\pi} - \hat{\mu}_2^{\pi})}{\hat{\sigma}^{\pi}} \le t \left| (X, \delta) \right\} - \Phi(t) \right| \stackrel{P}{\to} 0 \text{ as } n \to \infty$$

In theorem 2, $\hat{\sigma}^{\pi}$ refers to the standard deviation calculated from permutated data.

3. Simulation

3.1 Data generation

Survival time is generated using Exponential, Weibull, Log-normal distributions. The survival distribution is as follows

• Exponential distribution : $f(x) = \lambda exp(-\lambda x)$

$$T_i \sim S_i = exp(-\lambda x), \quad (i = 1, 2)$$

• Weibull distribution : $f(x) = \alpha \lambda x^{\alpha-1} exp(-\lambda x^{\alpha})$, $(\lambda = \left(\frac{1}{\sigma}\right)^{\alpha}, \sigma \text{ is scale})$

$$T_i \sim S_i = exp\left(-\left(\frac{x}{\sigma}\right)^{\alpha}\right), \quad (i = 1, 2)$$

• Log-normal distribution : $f(x) = \frac{\exp\left[-\frac{1}{2}(\frac{\ln x - \mu}{\sigma})^2\right]}{x(2\pi)^{1/2}\sigma}$

$$T_i \sim S_i = 1 - \Phi\left[\frac{\ln x - \mu}{\sigma}\right], \quad (i = 1, 2)$$

The censoring distribution is created from Weibull, Uniform distribution. The observed event time is T and C is the censoring variable. Then $X_{ij} = \min(T_{ij}, C_{ij})$ is the observed event time, and $\delta_{ij} = I(X_{ij} = C_{ij})$ is censoring indicator. i is the group

indicator, so individuals were randomly assigned to either the treatment or control group.

3.2 Simulation setting

When the survival and censoring distributions are independent, scenarios 1, 2, and 3 assume equal survival distributions in each group, while scenarios 4, 5, and 6 involve unequal survival distributions. The censoring distribution is represented in three cases, where the first case entails different censoring distributions in each group (Weibull (3, 18), Weibull (0.5, 40)), and the second and third cases assume the same censoring distribution for each group (case 2: Uniform (0, 25), case 3: Weibull (3, 15)).

For a sample size where the sum of the two groups' sample sizes is 30, we set $n_1=12$, 15, 18, and $n_2=18$, 15, 12 for each. Additionally, we multiply each group size by 10. The pre-specified time point, denoted as τ (>0), is set to 10.

Moreover, a permutation test is conducted under the following conditions:

First, if the maximum observation time in each group is greater than τ or if an event occurs at the maximum observation time point in either group. Second, if the larger of the maximum observation times in the two groups is greater than τ . Both of these conditions must be satisfied to proceed with the simulation for RMST.

All scenarios operate under the assumption of the null hypothesis,

$$H_0: \quad \mu_1 = \mu_2$$

being true.

Each scenario has the following survival distributions:

Table 1. Data	generation	setting
---------------	------------	---------

Survival distribution	• Scenario 1 $T_{.j} \sim Exp(0.2)$
(equal distribution in	• Scenario 2 $T_{.j} \sim Weibull(3,8)$
each group)	• Scenario 3 $T_{.j} \sim log - normal(2, 0.25)$
	• Scenario 4 $T_{1j} \sim Exp(0.2)$
	$T_{2j} \sim piece - wise Exp$
Survival distribution	Hazard function $\alpha_2 = 0.5I(t \le \lambda_4) + 0.05I(t > \lambda_4)$
(unequal distribution in	• Scenario 5 $T_{1j} \sim Weibull(3,8)$
each group)	$T_{2j} \sim Weibull(shape, 14)$
	• Scenario 6 $T_{1j} \sim Weibull(3,8)$
	$T_{2j} \sim Weibull(1.5, scale)$
<i>n</i> ₁ , <i>n</i> ₂	(12, 18), (15, 15), (18, 12)
$n_1, n_2 \times 10$	(120, 180), (150, 150), (180, 120)

In scenarios 4, 5, and 6, the parameter values of group 2's survival distribution are estimated based on the value when the difference between the RMSTs of the two groups is

0. Using the equation $D(\tau) = \int_0^{\tau} \{S_2(t) - S_1(t)\} dt = 0$, we find that for scenario 4, λ_4 is 1.50, for scenario 5, the shape is 0.91, and for scenario 6, the scale is 9.86.

Furthermore, in all scenarios, we assume that the survival distribution and censoring distribution in each group are not independent. In this case, we utilize Kendall's tau, a statistic that represents the dependency between the two distributions in the Archimedean copula, to estimate the parameters of the copula function and conduct simulations for cases where the survival distributions are not independent. We use the Gumbel copula and Clayton copula, and each copula's generator function and parameter estimation are expressed as follows:

• Gumbel copula:

$$C_{\theta}(u_{1,}u_{2,}) = \exp\left\{-\left[(-\ln u_{1})^{\theta} + (-\ln u_{2})^{\theta}\right]^{1/\theta}\right\} \quad 0 \le u_{1,}u_{2,} \le 1$$
$$\tau_{\theta} = \frac{\theta - 1}{\theta}$$

Clayton copula:

$$C_{\theta}(u_{1,}u_{2,}) = (u_{1}^{-\theta} + u_{2}^{-\theta} - 1)^{1/\theta}$$
$$\tau_{\theta} = \frac{\theta}{\theta + 2}$$

Using the copula R package, we set θ to 2 and generate data that considers the dependency between the two distributions. In all simulations, the RMST is calculated using

the survRM2perm R package. The permutation method employs five approaches provided by the rmst2perm function in this package: Method 1: Ignoring the inestimable cases, Method 2: Extending the survival curves to τ , Method 3: Switching the last censored observation to the event observation, Method 4: Averaging RMSTs derived from Methods 2 and 3, Method 5: Fitting a Weibull distribution to each inestimable case. The simulations are conducted 1000 iterations, and within each iteration, permutations are performed 2000 times.

3.3 Simulation result

Survival distributions in each scenario are denoted from S1 to S6, and the results for censoring cases are represented as C1 to C3. The pre-specified time point, τ , is set to 10.

The permutation method involves randomly shuffling observations of both groups to generate new samples and relies on the assumption that the distributions of the two groups are equal. However, if the censoring distributions differ, the assumption of distributional similarity in permutation may not hold. In such cases, the studentized permutation method, which allows for maintaining distributional characteristics between groups while conducting tests, may be more suitable.

Under the assumption that the survival distribution and censoring distribution are independent, it can be observed that the type 1 error increases in the asymptotic method when the sample size is small (Appendix Table 1, 2). Table 2 shows the type 1 error in scenarios S1-S3, where the survival distributions of each group are equal but the censoring distributions differ (C1). In this case, when the sample sizes of the two groups are different, it can be interpreted that studentized permutation better controls the type 1 error compared to permutation. Additionally, even when the sample sizes of two groups differ, the use of the studentized statistic in the studentized permutation method results in less sensitivity to differences in sample sizes between groups.

In the case where the survival distributions of the two groups are different, a test was conducted under the null hypothesis that the RMST values of the two groups are equal.

Table 3 shows the type 1 error when the survival distributions differ, regardless of the characteristics of the censoring distribution. Overall, the interpretation is that the studentized permutation method is more suitable. Moreover, in cases of a small sample size, differences between the two permutation methods can be observed, with Method 2 showing a tendency to be overestimated and Method 3 being underestimated. When the sample size is small, situations where the last observed time point appears before τ , making it challenging to calculate RMST, are more likely to occur. In such cases, the issue is directly addressed through permutation, potentially influencing the outcomes.

In Table 4, the type 1 error is presented for scenarios where the sample size is increased by a factor of 10. When the sample size becomes sufficiently large, the trends observed in scenarios with different sample sizes, as shown in Table 2, diminish. This case occurs irrespective of the characteristics of survival and censoring distributions, and the differences between permutation methods diminish, favoring asymptotic results (see Appendix Table 3 and 4).

In cases where the survival distribution and censoring distribution are dependent, simulations are conducted using the Clayton and Gumbel copula functions to determine the dependency between each distribution. The results for each copula function can be observed in Table 5 and 6. Irrespective of the similarity in survival distributions between groups. In such cases, even with a small sample size, there tends to be a reduced difference between methods observed in scenarios where survival and censoring distributions are independent. This tendency is influenced by the τ value, and therefore, the results are

compared by adjusting the τ value for each scenario. When increasing the τ value to 15, there is a more frequent occurrence of cases where the last observed time point is earlier than τ . This leads to variations in type 1 error among methods, as shown in Table 7 and 8. As the sample size increases, it is anticipated that asymptotic methods, akin to scenarios where survival distribution and censoring distribution are independent, would be more suitable. The actual results also suggest that these methods effectively control type 1 error compared to permutation methods (see Table 9 and 10). The hypothesis testing is conducted under the null hypothesis that the restricted mean survival time (RMST) is equal for the two groups. This implies that, even if the survival distribution of the two groups differs, the RMST may still be equal. Regardless of the distribution between groups, using copula function, when there is a difference in censoring distribution between groups, using copula functions to derive marginal distributions can result in significant variations. In such cases, there is a potential for an increase in type 1 errors.

Consoring	Sumiral	comulo aizo	Asymp Method		nod 1 Method 2		Method 3		Method 4		Method 5		
Censoring	Survival	sample size	Nelson-Aalen	Stud	Un	Stud	Un	Stud	Un	Stud	Un	Stud	Un
		12, 18	0.102	0.042	0.039	0.045	0.041	0.040	0.039	0.043	0.039	0.042	0.041
	S1 S2	15, 15	0.101	0.042	0.056	0.042	0.057	0.041	0.057	0.041	0.057	0.041	0.057
		18, 12	0.100	0.064	0.060	0.064	0.057	0.063	0.055	0.064	0.057	0.063	0.056
-		12, 18	0.094	0.044	0.055	0.044	0.055	0.044	0.054	0.044	0.055	0.044	0.055
C1		15, 15	0.101	0.064	0.063	0.066	0.063	0.066	0.063	0.066	0.063	0.066	0.063
		18, 12	0.097	0.055	0.065	0.054	0.065	0.054	0.065	0.054	0.065	0.055	0.065
-		12, 18	0.102	0.047	0.039	0.047	0.039	0.045	0.039	0.046	0.039	0.046	0.039
	S3	15, 15	0.073	0.044	0.049	0.044	0.050	0.043	0.050	0.043	0.050	0.043	0.050
		18, 12	0.100	0.075	0.070	0.074	0.069	0.074	0.067	0.074	0.069	0.074	0.069

Table 2. Type1 error of the studentized and unstudentized permutation method in small sample size

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S2, Survival distribution in both groups follow Weibull(3, 8); S3, Survival distribution in both groups follow log-normal(2, 0.25); C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); Asymp, asymptotic test; Stud, studentized permutation method; Un, unstudentized permutation method

Survival		sample	Asymp	Met	hod 1	Met	hod 2	Met	hod 3	Met	hod 4	Met	hod 5
	Censoring	size	Nelson- Aalen	Stud	Un								
		12, 18	0.081	0.045	0.040	0.043	0.040	0.041	0.037	0.042	0.039	0.042	0.039
	C1	15, 15	0.093	0.071	0.062	0.068	0.061	0.068	0.060	0.068	0.060	0.068	0.060
		18, 12	0.115	0.063	0.090	0.062	0.089	0.059	0.087	0.061	0.088	0.061	0.088
	-	12, 18	0.087	0.043	0.041	0.043	0.036	0.039	0.035	0.041	0.036	0.042	0.035
S4	C2	15, 15	0.093	0.044	0.054	0.040	0.049	0.038	0.047	0.040	0.048	0.041	0.048
		18, 12	0.102	0.055	0.065	0.050	0.064	0.047	0.062	0.049	0.064	0.050	0.064
		12, 18	0.086	0.042	0.045	0.041	0.044	0.041	0.043	0.041	0.043	0.041	0.043
	C3	15, 15	0.096	0.054	0.063	0.052	0.063	0.051	0.063	0.051	0.063	0.051	0.063
		18, 12	0.073	0.071	0.050	0.068	0.049	0.067	0.048	0.067	0.048	0.067	0.049

Table 3. Type1 error of the studentized and unstudentized permutation method in small sample size

Abbreviations: S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); C2, Censoring distribution in both groups follow Uniform(0, 25); C3, Censoring distribution in both groups follow Weibull(3, 15); Asymp, asymptotic test; Stud, studentized permutation method; Un, unstudentized permutation method

Concoring		. , sample	Asymp	Met	hod 1	Met	hod 2	Met	hod 3	Met	hod 4	Met	hod 5
Censoring	Survival	size	Nelson- Aalen	Stud	Un								
		120, 180	0.050	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043
	S1 S2	150, 150	0.056	0.043	0.059	0.043	0.059	0.043	0.059	0.043	0.059	0.043	0.059
		180, 120	0.055	0.045	0.056	0.045	0.056	0.045	0.056	0.045	0.056	0.045	0.056
-		120, 180	0.060	0.037	0.056	0.037	0.056	0.037	0.056	0.037	0.056	0.037	0.056
C1		150, 150	0.054	0.040	0.055	0.040	0.055	0.040	0.055	0.040	0.055	0.040	0.055
		180, 120	0.055	0.071	0.062	0.071	0.062	0.071	0.062	0.071	0.062	0.071	0.062
-		120, 180	0.053	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046
	S3	150, 150	0.055	0.063	0.050	0.063	0.050	0.063	0.050	0.063	0.050	0.063	0.050
		180, 120	0.052	0.058	0.064	0.058	0.064	0.058	0.064	0.058	0.064	0.058	0.064

Table 4. Type1 error of the studentized and unstudentized permutation method

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S2, Survival distribution in both groups follow Weibull(3, 8); S3, Survival distribution in both groups follow log-normal(2, 0.25); C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); Asymp, asymptotic test; Stud, studentized permutation method; Un, unstudentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
				12, 18	0.198	0.197	0.197	0.197	0.197
			S2	15, 15	0.186	0.186	0.186	0.186	0.186
		C1		18, 12	0.150	0.150	0.150	0.150	0.150
		CI	S5	12, 18	0.218	0.218	0.218	0.218	0.218
				15, 15	0.239	0.239	0.239	0.239	0.239
Classican	0.5			18, 12	0.282	0.282	0.282	0.282	0.282
Clayton	0.5		S2	12, 18	0.036	0.036	0.036	0.036	0.036
				15, 15	0.048	0.048	0.048	0.048	0.048
		C2		18, 12	0.060	0.060	0.060	0.060	0.060
		C3		12, 18	0.046	0.046	0.046	0.046	0.046
			S5	15, 15	0.047	0.047	0.047	0.047	0.047
				18, 12	0.074	0.074	0.074	0.074	0.074

Table 5. Type1 error of the studentized permutation method with Clayton copula in small sample size

Abbreviations: S2, Survival distribution in both groups follow Weibull(3, 8); S5, Survival distribution in each groups follow Weibull(0.91, 14); C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); C3, Censoring distribution in both groups follow Weibull(3, 15); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
				12, 18	0.118	0.118	0.118	0.118	0.118
			S2	15, 15	0.128	0.128	0.128	0.128	0.128
		C1		18, 12	0.096	0.096	0.096	0.096	0.096
		CI	S5	12, 18	0.119	0.119	0.119	0.119	0.119
				15, 15	0.140	0.140	0.140	0.140	0.140
Court al	0.5			18, 12	0.135	0.135	0.135	0.135	0.135
Gumbel	0.5		S2	12, 18	0.046	0.046	0.046	0.046	0.046
				15, 15	0.045	0.045	0.045	0.045	0.045
		C^{2}		18, 12	0.054	0.054	0.053	0.053	0.053
		03		12, 18	0.038	0.038	0.038	0.038	0.038
			S5	15, 15	0.054	0.053	0.053	0.053	0.053
				18, 12	0.068	0.067	0.067	0.067	0.067

Table 6. Type1 error of the studentized permutation method with Gumbel copula in small sample size

Abbreviations: S2, Survival distribution in both groups follow Weibull(3, 8); S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); C1, Censoring distribution in each group follow Weibull(3, 18), Weibull(0.5, 40); C3, Censoring distribution in both groups follow Weibull(3, 15); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
Clayton	0.5	C1	S2	12, 18	0.147	0.148	0.147	0.147	0.147
				15, 15	0.190	0.191	0.191	0.191	0.191
				18, 12	0.164	0.165	0.165	0.165	0.165
			S5	12, 18	0.607	0.603	0.600	0.602	0.602
				15, 15	0.654	0.654	0.653	0.654	0.653
				18, 12	0.671	0.672	0.671	0.671	0.671
		C3	S2	12, 18	0.053	0.054	0.053	0.054	0.053
				15, 15	0.052	0.053	0.052	0.053	0.052
				18, 12	0.044	0.046	0.045	0.046	0.046
			S5	12, 18	0.163	0.156	0.154	0.156	0.155
				15, 15	0.232	0.226	0.223	0.224	0.226
				18, 12	0.273	0.281	0.275	0.277	0.279

Table 7. Type1 error of the studentized permutation method with Clayton copula on $\tau = 15$

Abbreviations: S2, Survival distribution in both groups follow Weibull(3, 8); S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); C1, Censoring distribution in each group follow Weibull(3, 18), Weibull(0.5, 40); C3, Censoring distribution in both groups follow Weibull(3, 15); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
				12, 18	0.099	0.099	0.099	0.099	0.099
			S2	15, 15	0.149	0.149	0.148	0.148	0.148
		C1		18, 12	0.118	0.118	0.118	0.118	0.118
		CI		12, 18	0.391	0.389	0.387	0.388	0.389
			S5	15, 15	0.466	0.465	0.463	0.463	0.465
C 1 1	0.5			18, 12	0.538	0.538	0.538	0.538	0.538
Gumbel	0.5			12, 18	0.053	0.053	0.052	0.052	0.052
			S2	15, 15	0.053	0.053	0.053	0.053	0.053
		C 2		18, 12	0.054	0.054	0.054	0.054	0.054
		03		12, 18	0.167	0.161	0.160	0.160	0.161
			S5	15, 15	0.226	0.221	0.220	0.220	0.219
				18, 12	0.258	0.258	0.255	0.257	0.257

Table 8. Type1 error of the studentized permutation method with Gumbel copula on $\tau = 15$

Abbreviations: S2, Survival distribution in both groups follow Weibull(3, 8); S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); C1, Censoring distribution in each group follow Weibull(3, 18), Weibull(0.5, 40); C3, Censoring distribution in both groups follow Weibull(3, 15); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	asymptotic	Method 1	Method 2	Method 3	Method 4	Method 5
				120, 180	0.955	0.955	0.955	0.955	0.955	0.955
			S2	150, 150	0.964	0.965	0.965	0.965	0.965	0.965
		C1		180, 120	0.973	0.952	0.952	0.952	0.952	0.952
		CI		120, 180	0.951	0.961	0.961	0.961	0.961	0.961
			S5	150, 150	0.960	0.960	0.960	0.960	0.960	0.960
Classification	0.5			180, 120	0.921	0.954	0.954	0.954	0.954	0.954
Clayton	0.3			120, 180	0.059	0.054	0.054	0.054	0.054	0.054
			S2	150, 150	0.065	0.053	0.053	0.053	0.053	0.053
		\mathbf{C}^{2}		180, 120	0.050	0.053	0.053	0.053	0.053	0.053
		C3		120, 180	0.043	0.032	0.032	0.032	0.032	0.032
			S5	150, 150	0.055	0.061	0.061	0.061	0.061	0.061
				180, 120	0.058	0.068	0.068	0.068	0.068	0.068

Table 9. Type1 error of the studentized permutation method with Clayton copula

Abbreviations: S2, Survival distribution in both groups follow Weibull(3, 8); S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); C1, Censoring distribution in each group follow Weibull(3, 18), Weibull(0.5, 40); C3, Censoring distribution in both groups follow Weibull(3, 15); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	asymptotic	Method 1	Method 2	Method 3	Method 4	Method 5
				120, 180	0.727	0.712	0.712	0.712	0.712	0.712
			S2	150, 150	0.745	0.737	0.737	0.737	0.737	0.737
		C1		180, 120	0.729	0.731	0.731	0.731	0.731	0.731
		CI		120, 180	0.594	0.546	0.546	0.546	0.546	0.546
			S5	150, 150	0.589	0.591	0.591	0.591	0.591	0.591
Course 1	0.5			180, 120	0.541	0.594	0.594	0.594	0.594	0.594
Gumbel	0.3			120, 180	0.043	0.056	0.056	0.056	0.056	0.056
			S2	150, 150	0.051	0.058	0.058	0.058	0.058	0.058
		C 2		180, 120	0.040	0.050	0.050	0.050	0.050	0.050
		0.5		120, 180	0.064	0.035	0.035	0.035	0.035	0.035
			S5	150, 150	0.052	0.042	0.042	0.042	0.042	0.042
				180, 120	0.049	0.055	0.055	0.055	0.055	0.055

Table 10. Type1 error of the studentized permutation method with Gumbel copula

Abbreviations: S2, Survival distribution in both groups follow Weibull(3, 8); S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); C1, Censoring distribution in each group follow Weibull(3, 18), Weibull(0.5, 40); C3, Censoring distribution in both groups follow Weibull(3, 15); Method, studentized permutation method

4. Application

In this section, we apply the previously introduced method to real data from a study on head and neck cancer. The data come from a randomized clinical trial conducted by the Northern California Oncology Group (NCOG). The aim of the study was to investigate the combined effects of radiation therapy and chemotherapy on stage III or IV inoperative head and neck cancer. A total of 104 patients were randomly assigned, with 51 receiving only radiation therapy and 45 receiving a combination of radiation therapy and chemotherapy.

We aim to compare the restricted mean survival time (RMST) between the two groups using both studentized and unstudentized permutation methods. Figure 1 shows the Kaplan-Meier curves for each group, with a maximum observation time of 47 months for group 0 (only radiation therapy) and 77 months for group 1 (a combination of radiation and chemotherapy). The crossing of the two survival curves indicates a departure from the proportional hazards assumption. Therefore, comparing the survival functions of the two groups using RMST becomes meaningful.

Table 11 presents the results of RMST for the reconstructed data at $\tau = 25, 30, 35, 40, 46, 47$, utilizing five methods including the asymptotic test with Nelson-Aalen estimator and studentized and unstudentized permutations. In cases where τ closely resembles the last observed time point ($\tau = 46, 47$), a problem arises where it is not possible to calculate RMST. This situation occurred in approximately 0.15% to 0.35% of the 2000 repetitions, requiring the application of the permutation method. Additionally,

during these instances, Method 1 consistently yields the smallest p-value, while Methods 2-5 provide identical p-values for each permutation (range: 0.045-0.051). Although the difference between studentized and unstudentized methods is not substantial, the studentized method tends to produce slightly smaller p-values. For smaller values of τ ($\tau = 25, 30, 35, 40$), there is no discernible difference in p-values between methods, and overall, the p-values from the asymptotic test are smaller.

The permutation method introduced earlier appears to be more advantageous in cases of small sample sizes. However, with a total of 104 participants in this dataset, relying on the results of the permutation method over asymptotic methods may pose challenges. Moreover, if the sample sizes of the two groups differ, the studentized method seems less influenced by the difference in sample sizes. Nevertheless, in this case, even though the sample sizes of the two groups are not equal, the ratio between them does not differ significantly, resulting in relatively similar outcomes between the studentized and unstudentized methods.

Figure 1. Kaplan-Meier curves for the radiotherapy alone (Group, arm=0) and a combination of radiotherapy and chemotherapy (Group, arm=1) in head and neck cancer study

						,			e			
sample		Asymp	Metł	nod 1	Meth	nod 2	Meth	nod 3	Meth	nod 4	Meth	nod 5
size	τ	Nelson- Aalen	Stud	Un								
	25	0.050	0.062	0.052	0.062	0.052	0.062	0.052	0.062	0.052	0.062	0.052
	30	0.047	0.056	0.055	0.056	0.055	0.056	0.055	0.056	0.055	0.056	0.055
51 45	35	0.050	0.061	0.060	0.061	0.060	0.061	0.060	0.061	0.060	0.061	0.060
51,45	40	0.045	0.058	0.054	0.058	0.054	0.058	0.054	0.058	0.054	0.058	0.054
	46	0.036	0.044	0.049	0.045	0.050	0.045	0.050	0.045	0.050	0.045	0.050
	47	0.035	0.044	0.050	0.046	0.051	0.046	0.051	0.046	0.051	0.046	0.051

Table 11. P-values based on the studentized and unstudentized permutation method for the radiotherapy alone (Group, arm=0) and a combination of radiotherapy and chemotherapy (Group, arm=1) in head and neck cancer study

Abbreviations: sample size, (Group, arm=0) = 51, (Group, arm=1) = 45; Asymp, asymptotic test; Stud, studentized permutation method; Un, unstudentized permutation method

5. Conclusion

In this paper, we introduced the application of permutation methods to address issues that may arise due to small sample sizes when using restricted mean survival time (RMST) for comparing survival functions between groups. The approach by Horiguchi and Uno (2020) employs permutation methods to calculate RMST and make comparisons, specifically addressing issues that arise when the pre-specified time point τ is larger than the maximum observed time. The method proposed by Ditzhaus et al. (2021) recognizes that in real survival data, the assumption of identical distributions between groups, a common consideration in conventional permutation methods, may not hold true. To accommodate potential differences in the distributions between groups, they suggest a studentized permutation method. It's important to note that the study assumes independence between all survival and censoring distributions. To evaluate the performance of both methods under the assumption of dependence between distributions and as the sample size increased, simulations were conducted.

In the simulation, scenarios were set up with both equal and unequal survival distributions between groups, considering cases where censoring distributions were either equal or unequal. The simulations were performed by incorporating the dependence between the two distributions using copula functions. For cases with unequal and small sample sizes in each group, there was a tendency for type 1 error to increase in the asymptotic test, and the studentized method was interpreted as more advantageous than

unstudentized method. Among the five methods, Method 2 (Extending the survival curves to τ) tended to overestimate, while Method 3 (Switching the last censored observation to the event observation) tended to underestimate. When the sample size was increased by a factor 10 and the same simulation process was conducted, there was minimal difference between studentized and unstudentized methods, and no significant differences were observed among the five methods. In this case, the asymptotic test was considered more suitable.

In utilizing the copula and employing the studentized method, it is observed that the type 1 error increases regardless of the difference in survival distributions for each group when the characteristics of censoring distributions differ. The asymptotic test, considered advantageous when increasing the sample size, also exhibits an increase in type 1 error when the censoring distributions differ. Furthermore, there is no significant difference among the five methods. This can be interpreted as an effect influenced by the τ value, and when the initially determined τ was increased to 15 for simulation, it showed a similar trend to the characteristics observed when survival and censoring distributions are independent.

In reviewing the simulation results and the application to real data, it is challenging to determine which method is more suitable. Due to its sensitivity to sample size, this method may be suitable for application in small clinical trials. However, determining its superiority over the asymptotic test becomes challenging as the sample size increases. Additionally, attention should be given not only to the characteristics of survival distributions between

the two groups but also to differences in censoring distribution. Particularly when modeling dependence using copula functions, it is crucial to consider variations in censoring distribution. Further research is needed to compare RMST in situations characterized by these conditions.

Appendix

Appendix Table 1. Type1 error of the permutation method and asymptotic test for equal censoring distribution in small sample size

Suminal	Concorino	comulo sizo	Asymp	Met	hod 1	Met	hod 2	Met	hod 3	Met	hod 4	Meth	nod 5
Survival	Censoring	sample size	Nelson-Aalen	Stud	Un								
		12, 18	0.101	0.043	0.041	0.043	0.042	0.041	0.041	0.042	0.042	0.042	0.042
	C2	15, 15	0.096	0.048	0.055	0.049	0.052	0.048	0.050	0.048	0.052	0.048	0.052
S1		18, 12	0.117	0.053	0.070	0.053	0.068	0.050	0.067	0.052	0.068	0.052	0.068
		12, 18	0.093	0.048	0.051	0.049	0.048	0.047	0.048	0.049	0.048	0.049	0.048
	C3	15, 15	0.085	0.046	0.045	0.047	0.046	0.047	0.044	0.047	0.045	0.047	0.046
		18, 12	0.096	0.038	0.052	0.039	0.054	0.038	0.052	0.039	0.052	0.039	0.054
		12, 18	0.098	0.032	0.051	0.031	0.052	0.031	0.050	0.031	0.050	0.031	0.050
S2	C2	15, 15	0.092	0.060	0.057	0.059	0.058	0.058	0.056	0.058	0.058	0.059	0.056
		18, 12	0.103	0.048	0.054	0.044	0.056	0.042	0.055	0.044	0.056	0.044	0.056

		12, 18	0.081	0.054	0.039	0.054	0.039	0.053	0.038	0.053	0.038	0.053	0.038
	C3	15, 15	0.088	0.047	0.062	0.046	0.059	0.046	0.058	0.046	0.058	0.046	0.058
		18, 12	0.087	0.056	0.040	0.056	0.041	0.054	0.041	0.055	0.041	0.056	0.041
		12, 18	0.112	0.045	0.055	0.047	0.056	0.045	0.056	0.046	0.056	0.047	0.056
	C2	15, 15	0.105	0.061	0.058	0.061	0.059	0.061	0.058	0.061	0.059	0.061	0.058
52		18, 12	0.085	0.048	0.045	0.048	0.045	0.046	0.044	0.048	0.045	0.046	0.044
55		12, 18	0.084	0.058	0.043	0.058	0.044	0.058	0.044	0.058	0.044	0.057	0.044
	C3	15, 15	0.094	0.048	0.055	0.050	0.054	0.050	0.053	0.050	0.053	0.050	0.053
		18, 12	0.094	0.040	0.051	0.042	0.051	0.042	0.051	0.042	0.051	0.042	0.051

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S2, Survival distribution in both groups follow Weibull(3, 8); S3, Survival distribution in both groups follow log-normal(2, 0.25); C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); C2, Censoring distribution in both groups follow Uniform(0, 25); C3, Censoring distribution in both groups follow Weibull(3, 15); Asymp, asymptotic test; Stud, studentized permutation method; Un, unstudentized permutation method

		· •	*			· •							
Suminol	Consoring	comple size	Asymp	Meth	hod 1	Met	thod 2	Met	hod 3	Met	hod 4	Met	hod 5
Survival	Censoring	sample size	Nelson-Aalen	Stud	Un	Stud	Un	Stud	Un	Stud	Un	Stud	Un
		12, 18	0.093	0.034	0.037	0.033	0.037	0.033	0.037	0.033	0.037	0.033	0.037
	C1	15, 15	0.097	0.052	0.071	0.052	0.071	0.052	0.071	0.052	0.071	0.052	0.071
		18, 12	0.087	0.099	0.075	0.098	0.076	0.098	0.075	0.098	0.076	0.098	0.075
		12, 18	0.092	0.034	0.030	0.034	0.030	0.034	0.030	0.034	0.030	0.035	0.030
S5	C2	15, 15	0.091	0.046	0.050	0.045	0.050	0.045	0.050	0.045	0.050	0.045	0.049
		18, 12	0.092	0.048	0.066	0.046	0.064	0.046	0.062	0.046	0.062	0.047	0.062
		12, 18	0.074	0.036	0.031	0.036	0.031	0.036	0.031	0.036	0.031	0.036	0.031
	C3	15, 15	0.084	0.054	0.055	0.054	0.055	0.054	0.055	0.054	0.055	0.053	0.055
		18, 12	0.107	0.077	0.088	0.075	0.087	0.074	0.087	0.075	0.087	0.074	0.087
		12, 18	0.090	0.037	0.040	0.036	0.039	0.036	0.039	0.036	0.039	0.037	0.039
S 6	C1	15, 15	0.112	0.056	0.083	0.056	0.082	0.056	0.082	0.056	0.082	0.056	0.082
		18, 12	0.126	0.095	0.098	0.094	0.096	0.092	0.095	0.093	0.096	0.094	0.096

Appendix Table 2. Type1 error of the permutation method and asymptotic test for unequal survival distribution in small sample size

	12, 18	0.090	0.030	0.035	0.031	0.035	0.030	0.034	0.031	0.035	0.031	0.034
C2	15, 15	0.100	0.039	0.049	0.039	0.047	0.038	0.046	0.039	0.046	0.039	0.045
	18, 12	0.103	0.061	0.069	0.061	0.070	0.059	0.067	0.060	0.070	0.060	0.069
	12, 18	0.085	0.053	0.043	0.052	0.044	0.052	0.044	0.052	0.044	0.051	0.044
C3	15, 15	0.088	0.050	0.054	0.049	0.053	0.049	0.053	0.049	0.053	0.049	0.053
	18, 12	0.082	0.071	0.061	0.069	0.061	0.068	0.061	0.068	0.061	0.069	0.061

Abbreviations: S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); C2, Censoring distribution in both groups follow Uniform(0, 25); C3, Censoring distribution in both groups follow Weibull(3, 15); Asymp, asymptotic test; Stud, studentized permutation method; Un, unstudentized permutation method

Suminal	Consoning	comulo sizo	Asymp	Met	hod 1	Met	hod 2	Met	hod 3	Met	hod 4	Met	hod 5
Survival	Censoring	sample size	Nelson-Aalen	Stud	Un								
		120, 180	0.061	0.052	0.059	0.052	0.059	0.052	0.059	0.052	0.059	0.052	0.059
	C2	150, 150	0.055	0.041	0.049	0.041	0.049	0.041	0.049	0.041	0.049	0.041	0.049
C 1		180, 120	0.051	0.071	0.048	0.071	0.048	0.071	0.048	0.071	0.048	0.071	0.048
51		120, 180	0.041	0.047	0.039	0.047	0.039	0.047	0.039	0.047	0.039	0.047	0.039
	C3	150, 150	0.052	0.040	0.049	0.040	0.049	0.040	0.049	0.040	0.049	0.040	0.049
		180, 120	0.047	0.048	0.043	0.048	0.043	0.048	0.043	0.048	0.043	0.048	0.043
		120, 180	0.054	0.047	0.052	0.047	0.052	0.047	0.052	0.047	0.052	0.047	0.052
	C2	150, 150	0.053	0.065	0.051	0.065	0.051	0.065	0.051	0.065	0.051	0.065	0.051
52		180, 120	0.046	0.044	0.040	0.044	0.040	0.044	0.040	0.044	0.040	0.044	0.040
52		120, 180	0.057	0.066	0.053	0.066	0.053	0.066	0.053	0.066	0.053	0.066	0.053
	C3	150, 150	0.051	0.047	0.049	0.047	0.049	0.047	0.049	0.047	0.049	0.047	0.049
		180, 120	0.043	0.046	0.041	0.046	0.041	0.046	0.041	0.046	0.041	0.046	0.041
S3	C2	120, 180	0.035	0.051	0.032	0.051	0.032	0.051	0.032	0.051	0.032	0.051	0.032

Appendix Table 3. Type1 error of the permutation method and asymptotic test for equal censoring distribution

	150, 150	0.053	0.062	0.049	0.062	0.049	0.062	0.049	0.062	0.049	0.062	0.049
	180, 120	0.055	0.060	0.054	0.060	0.054	0.060	0.054	0.060	0.054	0.060	0.054
	120, 180	0.051	0.044	0.047	0.044	0.047	0.044	0.047	0.044	0.047	0.044	0.047
C3	150, 150	0.045	0.044	0.041	0.044	0.041	0.044	0.041	0.044	0.041	0.044	0.041
	180, 120	0.062	0.052	0.059	0.052	0.059	0.052	0.059	0.052	0.059	0.052	0.059

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S2, Survival distribution in both groups follow Weibull(3, 8); S3, Survival distribution in both groups follow log-normal(2, 0.25); C2, Censoring distribution in both groups follow Uniform(0, 25); C3, Censoring distribution in both groups follow Weibull(3, 15); Asymp, asymptotic test; Stud, studentized permutation method; Un, unstudentized permutation method

Suminal	Concorino	comulo sizo	Asymp	Met	hod 1	Met	hod 2	Met	hod 3	Met	hod 4	Met	hod 5
Survival	Censoring	sample size	Nelson-Aalen	Stud	Un								
		120, 180	0.058	0.056	0.048	0.056	0.048	0.056	0.048	0.056	0.048	0.056	0.048
	C1	150, 150	0.043	0.054	0.047	0.054	0.047	0.054	0.047	0.054	0.047	0.054	0.047
		180, 120	0.065	0.075	0.082	0.075	0.082	0.075	0.082	0.075	0.082	0.075	0.082
		120, 180	0.060	0.037	0.043	0.037	0.043	0.037	0.043	0.037	0.043	0.037	0.043
S4	C2	150, 150	0.068	0.051	0.064	0.051	0.064	0.051	0.064	0.051	0.064	0.051	0.064
		180, 120	0.060	0.058	0.067	0.058	0.067	0.058	0.067	0.058	0.067	0.058	0.067
		120, 180	0.060	0.036	0.045	0.036	0.045	0.036	0.045	0.036	0.045	0.036	0.045
	C3	150, 150	0.063	0.049	0.062	0.049	0.062	0.049	0.062	0.049	0.062	0.049	0.062
		180, 120	0.053	0.061	0.058	0.061	0.058	0.061	0.058	0.061	0.058	0.061	0.058
		120, 180	0.045	0.027	0.033	0.027	0.033	0.027	0.033	0.027	0.033	0.027	0.033
S5	C1	150, 150	0.066	0.055	0.074	0.055	0.074	0.055	0.074	0.055	0.074	0.055	0.740
		180, 120	0.070	0.095	0.108	0.095	0.108	0.095	0.108	0.095	0.108	0.095	0.108

Appendix Table 4. Type1 error of the permutation method and asymptotic test for unequal survival distribution

		120, 180	0.056	0.042	0.033	0.042	0.033	0.042	0.033	0.042	0.033	0.042	0.033
	C2	150, 150	0.059	0.052	0.050	0.052	0.050	0.052	0.050	0.052	0.050	0.052	0.050
		180, 120	0.067	0.063	0.086	0.063	0.086	0.063	0.086	0.063	0.086	0.063	0.086
		120, 180	0.052	0.025	0.032	0.025	0.032	0.025	0.032	0.025	0.032	0.025	0.032
	C3	150, 150	0.064	0.048	0.060	0.048	0.060	0.048	0.060	0.048	0.060	0.048	0.060
		180, 120	0.061	0.065	0.083	0.065	0.083	0.065	0.083	0.065	0.083	0.065	0.083
		120, 180	0.053	0.051	0.040	0.051	0.040	0.051	0.040	0.051	0.040	0.051	0.040
	C1	150, 150	0.042	0.061	0.052	0.061	0.052	0.061	0.052	0.061	0.052	0.061	0.052
		180, 120	0.051	0.092	0.084	0.092	0.084	0.092	0.084	0.092	0.084	0.092	0.084
		120, 180	0.055	0.038	0.039	0.038	0.039	0.038	0.039	0.038	0.039	0.038	0.039
S 6	C2	150, 150	0.056	0.055	0.052	0.055	0.052	0.055	0.052	0.055	0.052	0.055	0.052
		180, 120	0.045	0.060	0.053	0.060	0.053	0.060	0.053	0.060	0.053	0.060	0.053
_		120, 180	0.061	0.044	0.041	0.044	0.041	0.044	0.041	0.044	0.041	0.044	0.041
	C3	150, 150	0.060	0.058	0.057	0.058	0.057	0.058	0.057	0.058	0.057	0.058	0.057
		180, 120	0.048	0.067	0.055	0.067	0.055	0.067	0.055	0.067	0.055	0.067	0.055

Abbreviations: S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); C2, Censoring distribution in both groups follow Uniform(0, 25); C3, Censoring distribution in both groups follow Weibull(3, 15); Asymp, asymptotic test; Stud, studentized permutation method; Un, unstudentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
				12, 18	0.067	0.067	0.067	0.067	0.067
			S 1	15, 15	0.073	0.072	0.072	0.072	0.072
				18, 12	0.071	0.072	0.072	0.072	0.072
				12, 18	0.161	0.161	0.161	0.161	0.161
			S 3	15, 15	0.186	0.186	0.186	0.186	0.186
Claster	0.5	C1		18, 12	0.166	0.166	0.166	0.166	0.166
Clayton			S4	12, 18	0.060	0.060	0.059	0.060	0.060
				15, 15	0.043	0.043	0.043	0.043	0.043
				18, 12	0.064	0.064	0.063	0.064	0.064
				12, 18	0.228	0.227	0.226	0.226	0.226
			S6	15, 15	0.267	0.266	0.266	0.266	0.266
				18, 12	0.292	0.291	0.291	0.291	0.291

Appendix Table 5-a. Type1 error of the studentized permutation method with Clayton copula in small sample size

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
				12, 18	0.061	0.060	0.060	0.060	0.060
			S 1	15, 15	0.048	0.048	0.048	0.048	0.048
				18, 12	0.041	0.040	0.040	0.040	0.040
				12, 18	0.048	0.048	0.048	0.048	0.048
			S2	15, 15	0.060	0.060	0.060	0.060	0.060
<u>C1</u>	0.5	C2 ·		18, 12	0.046	0.046	0.046	0.046	0.046
Clayton			S3	12, 18	0.040	0.040	0.040	0.040	0.040
				15, 15	0.060	0.060	0.060	0.060	0.060
				18, 12	0.039	0.038	0.038	0.038	0.038
				12, 18	0.052	0.052	0.052	0.052	0.052
			S4	15, 15	0.047	0.044	0.044	0.044	0.044
				18, 12	0.056	0.056	0.056	0.056	0.056

Appendix Table 5-b. Type1 error of the studentized permutation method with Clayton copula in small sample size

	12, 18	0.036	0.036	0.036	0.036	0.036
S5	15, 15	0.065	0.065	0.065	0.065	0.065
	18, 12	0.096	0.094	0.094	0.094	0.091
	12, 18	0.050	0.049	0.048	0.048	0.048
S6	15, 15	0.046	0.046	0.045	0.046	0.045
	18, 12	0.071	0.071	0.070	0.071	0.071

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S2, Survival distribution in both groups follow Weibull(3, 8); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C2, Censoring distribution in both groups follow Uniform(0, 25); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
				12, 18	0.038	0.038	0.038	0.038	0.038
			S1	15, 15	0.048	0.048	0.048	0.048	0.048
				18, 12	0.058	0.058	0.058	0.058	0.058
				12, 18	0.048	0.048	0.048	0.048	0.048
			S3	15, 15	0.047	0.048	0.048	0.048	0.048
	0.5	C3		18, 12	0.054	0.052	0.052	0.052	0.052
Clayton			S4	12, 18	0.037	0.037	0.037	0.037	0.037
				15, 15	0.047	0.047	0.047	0.047	0.047
				18, 12	0.065	0.065	0.065	0.065	0.065
				12, 18	0.030	0.029	0.029	0.029	0.029
			S 6	15, 15	0.057	0.057	0.056	0.056	0.056
				18, 12	0.081	0.081	0.081	0.081	0.081

Appendix Table 5-c. Type1 error of the studentized permutation method with Clayton copula in small sample size

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C3, Censoring distribution in both groups follow Weibull(3, 15); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
				12, 18	0.049	0.049	0.049	0.049	0.049
			S1	15, 15	0.068	0.068	0.068	0.068	0.068
				18, 12	0.055	0.055	0.055	0.055	0.055
				12, 18	0.109	0.108	0.108	0.108	0.108
			S3	15, 15	0.114	0.114	0.114	0.114	0.114
Countral	0.5	C1		18, 12	0.131	0.131	0.129	0.131	0.131
Gumbel			S4	12, 18	0.051	0.049	0.049	0.049	0.049
				15, 15	0.066	0.066	0.066	0.066	0.066
				18, 12	0.100	0.100	0.099	0.100	0.100
				12, 18	0.111	0.111	0.111	0.111	0.111
			S6	15, 15	0.155	0.155	0.155	0.155	0.155
				18, 12	0.183	0.183	0.183	0.183	0.183

Appendix Table 6-a. Type1 error of the studentized permutation method with Gumbel copula in small sample size

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
				12, 18	0.060	0.060	0.060	0.060	0.060
			S1	15, 15	0.051	0.049	0.049	0.049	0.049
		-		18, 12	0.037	0.037	0.037	0.037	0.037
				12, 18	0.045	0.045	0.045	0.045	0.045
			S2	15, 15	0.061	0.060	0.060	0.060	0.060
Cymrhal	0.5	C2 ·		18, 12	0.039	0.039	0.039	0.039	0.039
Guinder			S3	12, 18	0.046	0.046	0.046	0.046	0.046
				15, 15	0.051	0.051	0.051	0.051	0.051
				18, 12	0.051	0.051	0.051	0.051	0.051
				12, 18	0.033	0.033	0.033	0.033	0.033
			S4	15, 15	0.048	0.047	0.047	0.047	0.047
				18, 12	0.070	0.067	0.065	0.066	0.066

Appendix Table 6-b. Type1 error of the studentized permutation method with Gumbel copula in small sample size

	12, 18	0.041	0.041	0.041	0.041	0.041
S5	15, 15	0.059	0.059	0.059	0.059	0.059
	18, 12	0.060	0.060	0.060	0.060	0.060
	12, 18	0.039	0.039	0.039	0.039	0.039
S6	15, 15	0.055	0.055	0.055	0.055	0.055
	18, 12	0.069	0.069	0.069	0.069	0.068

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S2, Survival distribution in both groups follow Weibull(3, 8); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C2, Censoring distribution in both groups follow Uniform(0, 25); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
				12, 18	0.067	0.066	0.065	0.065	0.065
			S 1	15, 15	0.049	0.049	0.049	0.049	0.049
				18, 12	0.043	0.043	0.043	0.043	0.043
				12, 18	0.054	0.054	0.054	0.054	0.054
			S3	15, 15	0.039	0.038	0.038	0.038	0.038
Cound at	0.5	C3		18, 12	0.053	0.053	0.053	0.053	0.053
Gumbel			S4	12, 18	0.036	0.036	0.036	0.036	0.036
				15, 15	0.050	0.050	0.050	0.050	0.050
				18, 12	0.065	0.065	0.065	0.065	0.065
				12, 18	0.049	0.049	0.049	0.049	0.049
			S6	15, 15	0.058	0.058	0.058	0.058	0.058
				18, 12	0.064	0.064	0.064	0.064	0.064

Appendix Table 6-c. Type1 error of the studentized permutation method with Gumbel copula in small sample size

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C3, Censoring distribution in both groups follow Weibull(3, 15); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
				12, 18	0.072	0.073	0.072	0.072	0.072
			S1	15, 15	0.060	0.062	0.062	0.062	0.062
				18, 12	0.075	0.076	0.076	0.076	0.076
				12, 18	0.158	0.158	0.157	0.158	0.157
			S3	15, 15	0.157	0.157	0.157	0.157	0.157
Classica	0.5	C1		18, 12	0.186	0.187	0.185	0.186	0.185
Clayton			S4	12, 18	0.082	0.080	0.079	0.079	0.081
				15, 15	0.109	0.107	0.106	0.106	0.107
				18, 12	0.129	0.127	0.127	0.127	0.127
				12, 18	0.474	0.476	0.471	0.475	0.473
			S 6	15, 15	0.552	0.552	0.550	0.552	0.551
				18, 12	0.608	0.612	0.611	0.611	0.611

Appendix Table 7-a. Type1 error of the studentized permutation method with Clayton copula on $\tau = 15$

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
				12, 18	0.050	0.052	0.052	0.052	0.052
			S1	15, 15	0.040	0.044	0.043	0.044	0.045
				18, 12	0.049	0.054	0.051	0.053	0.051
				12, 18	0.057	0.058	0.058	0.058	0.058
			S2	15, 15	0.049	0.050	0.050	0.050	0.050
Clayton	0.5	C2		18, 12	0.049	0.054	0.051	0.053	0.051
			S3	12, 18	0.048	0.050	0.049	0.049	0.049
				15, 15	0.053	0.056	0.056	0.056	0.056
				18, 12	0.056	0.056	0.055	0.056	0.055
				12, 18	0.048	0.051	0.047	0.049	0.049
			S4	15, 15	0.066	0.065	0.062	0.064	0.064
				18, 12	0.102	0.096	0.093	0.093	0.095

Appendix Table 7-b. Type1 error of the studentized permutation method with Clayton copula on $\tau = 15$

	12, 18	0.096	0.095	0.094	0.094	0.094	
S5	15, 15	0.144	0.136	0.135	0.136	0.136	
	18, 12	0.209	0.211	0.207	0.209	0.208	
	12, 18	0.080	0.081	0.078	0.080	0.079	
S6	15, 15	0.106	0.111	0.110	0.111	0.111	
	18, 12	0.148	0.159	0.156	0.159	0.159	

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S2, Survival distribution in both groups follow Weibull(3, 8); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C2, Censoring distribution in both groups follow Uniform(0, 25); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
				12, 18	0.043	0.046	0.046	0.046	0.046
			S1	15, 15	0.049	0.056	0.054	0.056	0.056
				18, 12	0.044	0.052	0.050	0.050	0.052
				12, 18	0.059	0.061	0.059	0.061	0.059
			S3	15, 15	0.054	0.057	0.057	0.057	0.057
Classic	0.5	C3		18, 12	0.055	0.055	0.055	0.055	0.055
Clayton			S4	12, 18	0.056	0.053	0.052	0.052	0.053
				15, 15	0.073	0.068	0.067	0.068	0.068
				18, 12	0.097	0.101	0.095	0.097	0.099
				12, 18	0.091	0.091	0.089	0.090	0.091
			S6	15, 15	0.132	0.129	0.127	0.128	0.128
				18, 12	0.182	0.175	0.173	0.173	0.173

Appendix Table 7-c. Type1 error of the studentized permutation method with Clayton copula on $\tau = 15$

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C3, Censoring distribution in both groups follow Weibull(3, 15); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
			S 1	12, 18	0.077	0.077	0.077	0.077	0.077
				15, 15	0.072	0.072	0.072	0.072	0.072
				18, 12	0.060	0.060 0.060	0.060	0.060	0.060
				12, 18	0.094	0.095	0.095	0.095	0.095
			S3	15, 15	0.124	0.124	0.124	0.124	0.124
	0.5	C1		18, 12	0.132	0.132	0.132	0.132	0.132
Gumbel	0.5	CI		12, 18	0.066	0.066	0.065	0.066	0.066
			S4	15, 15	0.127	0.127	0.127	0.127	0.127
				18, 12	0.156	0.156	0.154	0.155	0.155
				12, 18	0.319	0.319 0.318	0.318	0.318	0.318
			S6	15, 15	0.406	0.407	0.407	0.407	0.406
				18, 12	0.465	0.467	0.466	0.466	0.466

Appendix Table 8-a. Type1 error of the studentized permutation method with Gumbel copula on $\tau = 15$

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
			S1	12, 18	0.049	0.050	0.050	0.050	0.050
				15, 15	0.038	0.038	0.038	0.038	0.038
				18, 12	0.048	0.048	0.047	0.048	0.047
				12, 18	0.050	0.050	0.050	0.050	0.050
			S2	15, 15	0.051 0.052	0.052	0.051	0.051	0.051
Gumbal	0.5	C		18, 12	0.048	0.048	0.047	0.048	0.047
Guinder	0.5	02		12, 18	0.048	0.048	0.048	0.048	0.048
		S3	S3	15, 15	0.044	0.043	0.042	0.043	0.042
				18, 12	0.040	0.040	0.040	0.040	0.040
				12, 18	0.048	0.047 0.046	0.047	0.046	
			S4	15, 15	0.061	0.059	0.056	0.058	0.058
				18, 12	0.087	0.086	0.086	0.086	0.086

Appendix Table 8-b. Type1 error of the studentized permutation method with Gumbel copula on $\tau = 15$

	12, 18	0.151	0.150	0.148	0.149	0.149
S5	15, 15	0.193	0.188	0.179	0.184	0.183
	18, 12	0.225	0.226	0.217	0.222	0.223
	12, 18	0.084	0.082	0.080	0.081	0.081
S 6	15, 15	0.119	0.120	0.120	0.120	0.120
	18, 12	0.167	0.168	0.164	0.167	0.166

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S2, Survival distribution in both groups follow Weibull(3, 8); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C2, Censoring distribution in both groups follow Uniform(0, 25); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	Method 1	Method 2	Method 3	Method 4	Method 5
			S 1	12, 18	0.046	0.047	0.047	0.047	0.047
				15, 15	0.047	0.047	0.047	0.047	0.047
				18, 12	0.051	0.051	0.050	0.051	0.050
				12, 18	0.054	0.054	0.054 0.054 0.041 0.041	0.054	0.054
			S3	15, 15	0.041	0.042		0.041	0.041
	0.5	C 2		18, 12	0.049	0.050 0.048	0.048	0.048	0.048
Gumbel	0.5	C3		12, 18	0.045	0.044	0.044	0.044	0.045
			S4	15, 15	0.068	0.065	0.065	0.057 0.047 0.050 0.051 0.054 0.054 0.041 0.041 0.048 0.048 0.044 0.044 0.065 0.065 0.081 0.083 0.079 0.079	0.065
				18, 12	0.081	0.083	0.081	0.083	0.083
				12, 18	0.085	0.080	0.079	0.079	0.079
			S 6	15, 15	0.138	0.139	0.136	0.137	0.136
				18, 12	0.160	0.162	0.160	0.162	0.161

Appendix Table 8-c. Type1 error of the studentized permutation method with Gumbel copula on $\tau = 15$

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C3, Censoring distribution in both groups follow Weibull(3, 15); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	asymptotic	Method 1	Method 2	Method 3	Method 4	Method 5					
		C1		120, 180	0.340	0.303	0.303	0.303	0.303	0.303					
			S 1	150, 150	0.309	0.306	0.306	0.306	0.306	0.306					
				180, 120	0.302	0.331	0.331	0.331	0.331	0.331					
			S3	120, 180	0.929	0.930	0.930	0.930	0.930	0.930					
	0.5			150, 150	0.909	0.944	0.944	0.944	0.944	0.944					
Claster				180, 120	0.920	0.901	0.901	0.901	0.901	0.901					
Clayton			S4	120, 180	0.128	0.093	0.093	0.093	0.093	0.093					
				150, 150	0.126	0.099	0.099	0.099	0.099	0.099					
				180, 120	0.119	0.137	0.137	0.137	0.137	0.137					
				120, 180	0.987	0.985	0.985	0.985	0.985	0.985					
			S 6	150, 150	0.983	0.980	0.980	0.980	0.980	0.980					
												180, 120	0.977	0.983	0.983

Appendix Table 9-a. Type1 error of the studentized permutation method with Clayton copula

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	asymptotic	Method 1	Method 2	Method 3	Method 4	Method 5
			S1	120, 180	0.046	0.061	0.061	0.061	0.061	0.061
				150, 150	0.047	0.059	0.059	0.059	0.059	0.059
				180, 120	0.055	0.055	0.055	0.055	0.055	0.055
			S2	120, 180	0.048	0.044	0.044	0.044	0.044	0.044
				150, 150	0.052	0.044	0.044	0.044	0.044	0.044
Classian	0.5	C		180, 120 0.050 0.047 0.047 0.	0.047	0.047	0.047			
Clayton	0.5	C2		120, 180	0.052	0.045	0.045	0.045	0.045	0.045
			S3	150, 150	0.053	0.037	0.037	0.037	0.037	0.037
				180, 120	0.061	0.046	0.046	0.046	0.046	0.046
				120, 180	0.050	0.044	0.044	0.044	0.044	0.044
			S4	150, 150	0.050	0.057	0.057	0.057	0.057	0.057
				180, 120	0.056	0.069	0.069	0.069	0.069	0.069

Appendix Table 9-b. Type1 error of the studentized permutation method with Clayton copula

		120, 180	0.291	0.181	0.181	0.181	0.181	0.181
	S5	150, 150	0.264	0.228	0.228	0.228	0.228	0.228
		180, 120	0.252	0.275	0.275	0.275	0.275	0.275
_		120, 180	0.063	0.047	0.047	0.047	0.047	0.047
	S6	150, 150	0.057	0.066	0.066	0.066	0.066	0.066
		180, 120	0.068	0.085	0.085	0.085	0.085	0.085

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S2, Survival distribution in both groups follow Weibull(3, 8); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C2, Censoring distribution in both groups follow Uniform(0, 25); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	asymptotic	Method 1	Method 2	Method 3	Method 4	Method 5
				120, 180	0.056	0.049	0.049	0.049	0.049	0.049
			S 1	150, 150	0.035	0.055	0.055	0.0550.0550.0450.045	0.055	0.055
				180, 120	0.061	0.045	0.045		0.045	0.045
			120, 180 0.061 0.053 0.053 S3 150, 150 0.039 0.052 0.052 180, 120 0.053 0.055 0.055 120, 180 0.053 0.046 0.046 S4 150, 150 0.059 0.044 0.044	120, 180	0.061	0.053	0.053	0.053	0.053	0.053
				150, 150	0.039	0.052	0.052	0.052	0.052	0.052
Claster	0.5	\mathbf{C}^{2}		0.055	0.055	0.055				
Clayton		03		0.046	0.046	0.046	0.046	0.046		
				150, 150	0.059	0.044	0.044	0.044	0.044	0.044
				180, 120	0.065	0.072	0.072	0.072	0.072	0.072
				120, 180	0.051	0.033	0.033	0.033	0.033	0.033
			S6	150, 150	0.060	0.041	0.041	0.041	0.041	0.041
				180, 120	0.054	0.078	0.078	0.078	0.078	0.078

Appendix Table 9-c. Type1 error of the studentized permutation method with Clayton copula

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C3, Censoring distribution in both groups follow Weibull(3, 15); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	asymptotic	Method 1	Method 2	Method 3	Method 4	Method 5
				120, 180	0.269	0.234	0.234	0.234	0.234	0.234
			S 1	150, 150	0.251	0.231	0.231	0.231	0.231	0.231
				180, 120	0.224	0.239	0.239	0.239	0.239	0.239
		-	S3	120, 180	0.763	0.739	0.739	0.739	0.739	0.739
	0.5			150, 150	0.762	0.760	0.760	0.760	0.760	0.760
Countral				180, 120	0.718	0.748	0.748	0.748	0.748	0.748
Gumbel	0.3	CI	S4	120, 180	0.149	0.101	0.101	0.101	0.101	0.101
				150, 150	0.171	0.144	0.144	0.144	0.144	0.144
				180, 120	0.131	0.142	0.142	0.142	0.142	0.142
				120, 180	0.741	0.686	0.686	0.686	0.686	0.686
			S6	150, 150	0.722	0.743	0.743	0.743	0.743	0.743
				180, 120	0.682	0.734	0.734	0.734	0.734	0.734

Appendix Table 10-a. Type1 error of the studentized permutation method with Gumbel copula

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C1, Censoring distribution in each group follow Weibull(3,18), Weibull(0.5, 40); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	asymptotic	Method 1	Method 2	Method 3	Method 4	Method 5
				120, 180	0.055	0.048	0.048	0.048	0.048	0.048
			S1	150, 150	0.057	0.055	0.055	0.055	0.055	0.055
				180, 120	0.053	0.050	0.050	0.050	0.050	0.050
			S2	120, 180	0.055	0.039	0.039	0.039	0.039	0.039
				150, 150	0.047	0.047	0.047	0.047	0.047	0.047
Cumhal	0.5	\mathbf{C}^{2}		180, 120	0.054	0.054 0.052 0.052 0.0	0.052	0.052	0.052	
Gumbel	0.5	C2		120, 180	0.053 0.055 0.055 0.	0.055	0.055	0.055		
			S3	150, 150	0.064	0.050	0.050	0.050	0.050	0.050
				180, 120	0.050	0.049	0.049	0.049	0.049	0.049
				120, 180	0.057	0.044	0.044	0.044	0.044	0.044
			S4	150, 150	0.044	0.060	0.060	0.060	0.060	0.060
				180, 120	0.075	0.076	0.076	0.076	0.076	0.076

Appendix Table 10-b. Type1 error of the studentized permutation method with Gumbel copula

		120, 180	0.085	0.041	0.041	0.041	0.041	0.041	
	S5	150, 150	0.057	0.055	0.055	0.055	0.055	0.055	
		180, 120	0.072	0.080	0.080	0.080	0.080	0.080	
_		120, 180	0.056	0.038	0.038	0.038	0.038	0.038	
	S6	150, 150	0.050	0.042	0.042	0.042	0.042	0.042	
		180, 120	0.059	0.046	0.046	0.046	0.046	0.046	

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S2, Survival distribution in both groups follow Weibull(3, 8); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S5, Survival distribution in each groups follow Weibull(3, 8), Weibull(0.91, 14); S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C2, Censoring distribution in both groups follow Uniform(0, 25); Method, studentized permutation method

Copula	Kendall's tau	Censoring	Survival	sample size	asymptotic	Method 1	Method 2	Method 3	Method 4	Method 5
				120, 180	0.060	0.056	0.056	0.056	0.056	0.056
			S 1	150, 150	0.047	0.052	0.052	0.052	0.052	0.052
				180, 120	0.058	0.048	0.048	0.048	0.048	0.048
				120, 180	0.054	0.041	0.041	0.041	0.041	0.041
			S3	150, 150	0.060	0.055	0.055	0.055	0.055	0.055
Countral	0.5	C3		180, 120	0.047	0.054	0.054	0.054	0.054	0.054
Gumbel				120, 180	0.075	0.041	0.041	0.041	0.041	0.041
			S4	150, 150	0.047	0.045	0.045	0.045	0.045	0.045
				180, 120	0.055	0.060	0.060	0.060	0.060	0.060
				120, 180	0.065	0.040	0.040	0.040	0.040	0.040
			S6	150, 150	0.046	0.043	0.043	0.043	0.043	0.043
				180, 120	0.045	0.050	0.050	0.050	0.050	0.050

Appendix Table 10-c. Type1 error of the studentized permutation method with Gumbel copula

Abbreviations: S1, Survival distribution in both groups follow Exp(0.2); S3, Survival distribution in both groups follow log-normal(2, 0.25); S4, Survival distribution in each groups follow Exp(0.2), piece-wise Exp; S6, Survival distribution in each groups follow Weibull(3, 8), Weibull(1.5, 9.86); C3, Censoring distribution in both groups follow Weibull(3, 15); Method, studentized permutation method

References

Horiguchi, Miki, and Hajime Uno. "On permutation tests for comparing restricted mean survival time with small sample from randomized trials." Statistics in Medicine 39.20 (2020): 2655-2670.

Ditzhaus, Marc, Menggang Yu, and Jin Xu. "Studentized permutation method for comparing restricted mean survival times with small sample from randomized trials." arXiv preprint arXiv:2102.10186 (2021).

Royston, Patrick, and Mahesh KB Parmar. "The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt." Statistics in medicine 30.19 (2011): 2409-2421.

Royston, Patrick, and Mahesh KB Parmar. "Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome." BMC medical research methodology 13.1 (2013): 1-15.

Kaplan, Edward L., and Paul Meier. "Nonparametric estimation from incomplete observations." Journal of the American statistical association 53.282 (1958): 457-481.

Chen, Pei-Yun, and Anastasios A. Tsiatis. "Causal inference on the difference of the restricted mean lifetime between two groups." Biometrics 57.4 (2001): 1030-1038.

Zhao, Lihui, et al. "On the restricted mean survival time curve in survival analysis." Biometrics 72.1 (2016): 215-221.

Tian, Lu, et al. "Efficiency of two sample tests via the restricted mean survival time for analyzing event time observations." Biometrics 74.2 (2018): 694-702.

Janssen, Arnold, and Thorsten Pauls. "A Monte Carlo comparison of studentized bootstrap and permutation tests for heteroscedastic two-sample problems." Computational Statistics 20 (2005): 369-383.

Yan, Jun. "Enjoy the joy of copulas: with a package copula." Journal of Statistical Software 21 (2007): 1-21.

KARAKAŞ, Ayşe Metin, and Mine DOĞAN. "Archimedean Copula Parameter Estimation with Kendall Distribution Function." Journal of the Institute of Science and Technology 7.3 (2017): 187-198.

국문요약

두 제한된 평균 생존 시간 차이에 대한

순열 검정 비교

생존 분석에서는 그룹 간의 생존 함수를 비교하기 위해 비례 위험을 가정한 다. 그러나 이러한 가정은 실제 데이터에는 적용되지 않을 수 있으므로 제한 된 평균 생존 시간(RMST)이 대안으로 채택된다. 본 논문에서는 순열 방법을 이용한 시뮬레이션을 통해 작은 표본 크기에 적합한 방법을 비교한다. 또한 Clayton 및 Gumbel copula 함수를 사용하여 생존 분포와 검열 분포 간의 종속 성을 고려한다. 검열 분포가 두 그룹 간에 다를 때, 스튜던트화 순열 접근 방 식이 제 1종 오류를 더 잘 컨트롤 한다고 해석한다. 그러나 생존 분포와 검열 분포의 종속성이 존재하고 두 그룹의 검열 분포가 다른 경우, 스튜던트화 순 열에서는 제1종 오류가 증가한다는 것을 볼 수 있다.

핵심되는 말: 제한된 평균 생존 시간(RMST), 스튜던트화 순열, Copoula