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ABSTRACT 

Predicting urinary stone composition in single-use flexible ureteroscopic 

images with a convolutional neural network. 

Kyung Tak Oh 
 

Department of Medicine 

The Graduate School, Yonsei University  
 

(Directed by Professor  Joo Yong Lee) 
 

 

Background and Objectives: Analysis of urine stone composition is one of the most 

important factors in urolithiasis treatment. This study investigated whether a convolutional 

neural network (CNN) can show decent results in predicting urinary stone composition 

even in single-use flexible ureterorenoscopic (fURS) images with relatively low resolution. 

 

Materials and Methods: This study retrospectively used surgical images from fURS 

lithotripsy performed by a single surgeon between January 2018 and December 2021. The 

ureterorenoscope was a single-use flexible ureteroscope (LithoVue, Boston Scientific). 

Among the images taken during surgery, a single image satisfying the inclusion and 

exclusion criteria was selected for each stone. Cases were divided into two groups 

according to whether they contained any calcium oxalate (Calcium group) or none (Non-

calcium group). From 506 total cases, 207 stone surface images were finally included in 

the study. In the CNN model, the transfer learning method using Resnet-18 as a pre-trained 

model was used, and only endoscopic digital images and stone classification data were 

input to achieve minimally supervised learning.  

 

Results: There were 175 cases in the Calcium group and 32 in the Non-calcium group. 

After training and validation, the model was tested using the test set, and the total accuracy 

was 81.8%. Recall and precision of the test results were 88.2% and 88.2% in the Calcium 

group and 60.0% and 60.0% in the Non-calcium group, respectively. The area under the 
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receiver operating characteristic curve of the model, which represents its classification 

performance, was 0.82.  

 

Conclusions: Single-use flexible ureteroscopes have financial benefits but low vision 

quality compared with reusable flexible ureteroscopes. As far as we know, this study is the 

first artificial intelligence study using single-use fURS images. It is meaningful that the 

CNN performed well even under these difficult conditions because these results can further 

expand the possibilities of CNN use 
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I. INTRODUCTION 

Analysis of urinary stone composition is one of the most important factors in the treatment 

of urolithiasis.1 In both intraoperative and postoperative management, the composition of 

urinary calculi plays an important role. For example, during opera-tions, in order to 

efficiently break the stone, it is important to properly select the laser energy and frequency 

according to the stone’s composition and size.2 When it comes to postoperative 

management, depending on the stone’s components, there are various diet control 

management strategies, behavioral therapies, and pharmacotherapies that optimize 

metabolic factors and reduce the urinary supersaturation of stone composition to lower 

the urinary calculi recurrence rate.3 

The methods of analyzing the composition of urinary calculi are optic polarizing 

microscopy, scanning electron microscopy, infrared spectroscopy, X-ray powder 

diffraction, elementary distribution analysis, and so on. Among these methods, Fourier 

transform infrared spectroscopy (FTIRS) is an efficient, reliable, accurate, and rapid 

method and, currently, one of the most widely used.4,5 However, it takes several weeks to 

receive FTIRS results, and no test can predict urinary stone composition intraoperatively 

or immediately after surgery. 

The field of artificial intelligence is developing dramatically, and neural networks are going 

beyond human recognition. Neural networks demonstrate excellent performance, 

particularly in handling large-scale data processing, complex pattern recognition, and 

achieving high accuracy and consistency. Recent studies have predicted urinary stone 
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components using neural networks and digital images. Kristian et al. reported favorable 

results in identifying kidney stone composition from digital photographs taken in vitro 

using a deep convolutional neural network (CNN).6 Furthermore, Estrade et al. showed 

decent results using intraoperative ureterorenoscopic (Olympus URF-V CCD sensor) 

digital images and endoscopic morphological criteria, which the authors proposed in a 

previous study.7,8 So far, studies for autonomic recognition have utilized high-quality 

images, and no existing studies have used single-use flexible ureteroscopic (fURS) 

images. We investigated whether a deep CNN can also show decent results in predicting 

urinary stone composition even in single-use fURS images with relatively low resolution. 

 

II. MATERIALS AND METHODS 

1. Study Design 

This study was approved by the Institutional Review Board of Severance Hospital, Yonsei 

University Health System (no. 4-2022-0797). We retrospectively used surgical videos of 

ureterorenoscopic lithotripsy performed by a single surgeon (JYL) between January 2018 

and December 2021. The ureterorenoscope used in this study was the LithoVue single-

use flexible ureteroscope (Boston Scientific, Boston, USA). From the photographs 

captured during surgery, one picture was chosen for each stone that met the pre-defined 

conditions. These images went through minimal image pre-processing to get rid of 

unnecessary blank spaces and trademarks. The results of the urinary calculi composition 

analysis were obtained through FTIRS and used to divide the photographs into two groups: 

the Calcium group and the Non-calcium group. The pre-processed images and the 

classified FTIRS results were used to train the CNN model. 

 

2. Image standardization and pre-processing 

fURS images are affected by various factors, such as who the surgeon was and what devices 

were used. Therefore, image standardization is one of the key factors for decent results in 

this research. Each picture should include the entire surface of the stone. A single image 
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was selected for each stone. Cases with poor visibility because of clots or debris and cases 

in which proper stone images could not be obtained due to video recording errors were 

excluded. Cases with multiple FTIRS values resulting from multi-location stones were 

excluded because there was no one-to-one match between the results and the stone. As a 

result, only cases that exactly matched the image and the stone composition analysis 

results were included in this study. Of the 506 total cases, 207 cases were finally included 

in this study. Regarding the bias due to differences in equipment, LithoVue has an 

advantage in that it has its own workstation platform. Reusable fURS cameras require 

separate workstations and light source equipment, and the choice of workstation can 

impact the quality of images. On the other hand, in LithoVue, it is possible to minimize 

the bias caused by the difference in additional equipment. 

Image pre-processing was minimized in this study. In the obtained images, black margins 

and trademarks were deleted. Other than that, no additional processes were applied. We 

did not marginate the stone, mark the renal calyx, or comment at all, even if a part of the 

guidewire was visible in the image. The whole inclusion and exclusion process and image 

pre-processing are shown in Figure 1. 
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Figure 1. (A) Inclusion and exclusion process and (B) image pre-processing. Image pre-

processing was minimized by erasing only the black margins and leaving the central 

image. Note that the guidewire is still visible in the final image. FTIR: Fourier transform 

infrared. 

 

3. Classification of the urinary calculi 

For each patient, the FTIRS results after surgery were collected. In this study, as a 

preliminary study of autonomic recognition, we tried to simplify the classification criteria 

given that the image quality was somewhat inferior because the images were taken 

retrospectively. Calcium oxalate is the most common component of urolithiasis. We 

hypothesized that the hardness of the stone may vary and that the cracking pattern of the 
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stone during laser fragmentation may be different depending on the presence or absence 

of calcium. The endoscopic morphology classification introduced by Estrade et al. in 

2021 noted a difference in morphology depending on the presence of calcium oxalate.8 

For these reasons, the FTIRS results were divided into two groups according to whether 

they contained any calcium oxalate (Calcium group) or none (Non-calcium group). There 

were 175 cases in the Calcium group and 32 cases in the Non-calcium group. 

 

4. Convolutional neural network model building 

CNNs were first introduced by Yann Lecun in 1989 and are now mainstream in neural 

network research using images.9 Images as input data are huge, and not all areas of the 

data are important for classification; instead, only a specific part of the data is important, 

and that feature may appear anywhere in the image. Therefore, in order to use image data, 

a means of filtering features from huge data is required. Because CNNs extract features 

from image data with convolution kernels, they have an advantage in processing image 

data. Transfer learning is a method that uses a model that has been pre-trained and verified 

with high-quality data, and it can efficiently perform learning tasks with small and 

relatively low-quality data.10 There are various pre-trained models. Of these, Resnet is 

currently one of the most widely used CNN structures. Resnet is a model that enables 

better network optimization through residual learning and shortcut connection.11 In this 

study, we chose the transfer learning method and Resnet-18 as the pre-trained model. By 

applying the well-trained network from Resnet-18 to the target domain, only the new 

classifier layers need to be trained instead of all layers. Therefore, an advantage of transfer 

learning is that it can efficiently perform learning with small and relatively low-quality 

data. The entire CNN model training structure is shown in Figure 2. 



６ 

 

  

Figure 2. Structure of the model used in this study. 

 

The whole dataset was divided into a train set, validation set, and test set. To solve the data 

imbalance problem between the Calcium group and the Non-calcium group, images from 

the Non-calcium group were augmented to achieve the same number of images as the 

Calcium group. Among the 207 images, 22 were first designated as the test set, then 

augmentation for the Non-calcium group was performed. Then, the remaining data were 

randomly divided into the train set and validation set in an 8:2 ratio, respectively. As a 

result, the training dataset included 163 images and the validation set included 22 images. 

In the train and validation sets, there were 141 and 17 images from the Calcium group 

and 22 and 5 images from the Non-calcium group, re-spectively. Because the data 

imbalance between these two groups could distort the training process of the model, we 

performed 3-fold data augmentation for the Calcium group and 8-fold augmentation for 

the Non-calcium group. An image rotation maneuver was used for the Calcium group, 

and both image rotation and image flipping maneuvers were used for the Non-calcium 

group. 

In one epoch of the training process, the model conducts model training with the train 
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dataset and then performs an intermediate test with the validation dataset to calculate the 

error before propagating it back to proceed with the next training. There were seven 

epochs in total. Following the training, the model performance was finally tested with the 

test data. The Adam optimizer was used to optimize the model. 

 

5. Localization heat maps 

After building the model and completing the training, we plotted localization heat maps to 

analyze which part of the image had a significant influence on the decision process of the 

model. The gradient-weighted class activation mapping (Grad-CAM) method was used.12 

Localization heat maps were made for a total of 22 test set images. We marginated the 

stone in the image and quantitatively analyzed it by comparing it with the distribution of 

the hot spots. The images were classified into two groups depending on whether the hot 

spots were more or less than 50% distributed within the stone. 

 

III. RESULTS 

1. Stone characteristics 

When the composition of urolithiasis was classified using the Mayo Clinic classification, 

there were 92 (44.4%) calcium oxalate stones, 83 (40.1%) struvite stones, 28 (13.5%) 

uric acid stones, and 4 (1.9%) calcium apatite stones. There were no cysteine or brushite 

stones.13 The Mayo Clinic classification and these results are shown in Table 1. The 

Korean stone composition analysis data presented in a previous study showed a 

distribution of 46.3% calcium oxalate stones, 29.6% struvite stones, 19.5% uric acid 

stones, 3.6% calcium apatite stones, 0.7% brushite stones, and 0.4% cysteine stones. 

Compared with these data, the proportions of calcium oxalate, struvite, and uric acid 

stones were similar, higher, and lower, respectively.14 These differences may be due to 

the fact that this study was conducted only on cases that had undergone surgery. 

 

Table 1. The composition of urolithiasis by Mayo Clinic classification 
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Stone composition Value 

Caclium oxalate 92 (44.4%) 

Struvite 83 (40.1%) 

Uric acid 28 (13.5%) 

Carbonate apatite 4 (1.9%) 

Total 207 

Data are shown as number (%). 

 

2. Performance of the neural network model 

After the training was complete, the total accuracy in the validation set was 89.0%, and 

recall and precision were 86.3% and 93.6% for the Calcium group and 92.5% and 84.1% 

for the Non-calcium group, respectively. After training and validation, the model was 

tested using the test set, and the total accuracy was 81.8%. Recall and precision of the test 

results were 88.2% and 88.2% in the Calcium group and 60.0% and 60.0% in the Non-

calcium group, respectively. The area under the ROC curve (AUC) of the model, which 

represents the classification performance of the model, was 0.82 (Figure 3). In general, if 

the AUC is 0.5 or less, the model is considered to have no discrimination capability. AUC 

values of 0.7–0.8 are “acceptable,” values of 0.8–0.9 are “excellent,” and values of 0.9 or 

higher imply “outstanding” model performance.15 Therefore, the model of this study can 

be considered to have excellent classification performance. 
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Figure 3. (A) Confusion matrix of the validation set; (B) confusion matrix of the test set; 

and (C) receiver operating characteristic (ROC) curve. Ca: Calcium group; NonCa: Non-

calcium group. 
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3. Localization heat maps 

In the localization heat maps (Figure 4), 17 (77.3%) images had hot spots located in the 

stone and five (22.7%) had hot spots outside of the stone. All five cases of hot spots 

outside the stone were in the Calcium group and correctly predicted by the model (true 

positive). Among the 18 images in the true positive group, 13 (72.2%) had a hot spot 

located in the stone and five (27.8%) did not.  

  

Figure 4. Localization heat maps. The black arrow indicates the case in which the hot spots 

are scattered on the outside of the stone. Of the 22 test images, 17 belonged to the Calcium 

group and five belonged to the Non-calcium group. There were five images with hot spots 

outside the stone, and all of these cases were in the Calcium group and true positive group. 
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IV. DISCUSSION 

The field of artificial intelligence is progressing rapidly. In the medical field, research on 

artificial intelligence is being actively conducted, and autonomic recognition of 

urolithiasis is an emerging topic. If autonomic recognition of urolithiasis is developed 

enough to be commercialized in the future, various aspects of the treatment guidelines for 

urolithiasis can be changed. For example, during ureteroscopic lithotripsy, the laser 

intensity can be pre-adjusted before laser firing by predicting the composition of the 

calculi immediately upon discovering the stone in the ureteroscopic endoscope. As a 

result, more efficient and faster lithotripsy may become possible. Also, because dietary 

changes and behavioral therapy can be applied immediately after surgery, various stone-

forming factors can be minimized. Through more elaborately planned prospective studies 

with more high-quality data, autonomic recognition of urolithiasis can become a reality. 

The treatment methods for urolithiasis are becoming increasingly diverse and advanced. 

For example, endoscopic combined intrarenal surgery, which combines percutaneous 

nephrolithotomy with retrograde ureteroscopy, is being widely used as it shows higher 

stone-free rates for complex stones compared with traditional percutaneous 

nephrolithotomy alone.16 Additionally, robotic stone surgery has gained attention as it 

reduces radiation exposure for the surgeon and assistant while achieving good treatment 

outcomes.17,18 If autonomic recognition technologies are combined, they could lead to 

even faster operations and better results. 

This is the first study to present a CNN model for autonomic recognition using single-use 

fURS images. The LithoVue single-use flexible ureteroscope has a CMOS image sensor, 

which is inferior in image quality and sensitivity to the CCD image sensor in the Olympus 

URF-V.19 However, it has several advantages. First, it is cost effective. Reusable flexible 

ureteroscopes cost more to purchase, repair, service, clean, and sterilize. By contrast, 

single-use flexible ureteroscopes have no maintenance-related costs other than purchase 

and storage costs.20 Second, they have less risk of contamination. Maintenance of reusable 

flexible ureteroscopes inevitably re-quires the use of high-level disinfection methods 
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because, if not properly sterilized, it can transmit infections.20 Because LithoVue is a 

single-use flexible ureteroscope, which does not have this problem, it has an advantage 

in terms of the risk of possible contamination. Third, single-use flexible ureteroscopes 

have an advantage in research using medical images. It is essential for researchers to 

consider variables that are changed by the different protocols or machines used in each 

hospital. However, LithoVue has its own workstation platform, and the monitor, light 

source, and image processing software are all mounted on a single mobile cart. Thus, 

there is no need to consider mechanical differences in research using LithoVue. Single-

use flexible ureteroscopes are currently used by many hospitals because state-of-the-art 

devices cannot be supplied in all institutions for economic reasons. It is significant that 

the accuracy of the CNN model can reach 86.0% even with single-use fURS images. 

In this study, transfer learning was chosen as a method of CNN model building. Transfer 

learning is a machine learning method that takes a pre-trained model as the starting point 

for a new target model. A pre-trained model is a model that has already been trained on 

a large number of high-quality images and whose performance has al-ready been verified. 

Transfer learning has the advantage of being able to create a model with good 

classification performance even with few and low-quality images. There-fore, transfer 

learning can be highly recommended to consider applying for studies of low-quality 

images and diseases with few cases due to low incidence rates. 

This study has another important implication in that it proceeded with minimal supervised 

learning. We only used images after minimal pre-processing and classification of the 

results of the urinary calculi component for model training. In this study, there was no 

need for the researchers to classify the morphology of the stone or to marginate any stone 

or other anatomical findings. As each image pixel is data in itself and the model interprets 

and learns patterns from the data through convolution, it is assumed that good results can 

be obtained even if the intervention of the researcher is minimized. 

We created localization heat maps, and the hot spots were located in the stone in 17 cases 

(77.3%). Among the 22 images, in 5 cases, the hot spot was located outside the stone. 
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This may suggest limitations in the model's generalization ability due to potential 

diversity inadequacy in the training data. Moreover, insufficient learning of diverse 

urinary stone locations and characteristics during training might have affected precise 

localization. Nevertheless, despite these challenges, in 17 out of 22 images (77.3%), the 

model successfully detected a hot spot directly over the stone. This result serves as 

significant evidence that the model focused on the stone itself rather than other structures 

within the image, such as renal parenchyma or guidewire, to predict the composition of 

the stone. However, in this study, there was no case in which the hot spot was outside of 

the stone in the Non-calcium group, and this seems to be because the number of cases 

was too small. 

Data imbalances are one of the most important issues in neural network research. It is ideal 

to have data in equal proportions for each group in machine learning re-search, but this 

balance is difficult to achieve in the real world. In this study, the Calcium group included 

175 cases, and the Non-calcium group included 32 cases. To overcome the data imbalance 

problem, we conducted image augmentation. Image augmentation was performed by 

image flipping and rotation maneuvers. In this study, the data imbalance problem was 

solved with a relatively simple method because the data were simply classified into two 

groups. However, complex classification is re-quired to enable autonomic recognition in 

the future, and the issue of data imbalance should be dealt with in greater detail. 

This study has several limitations. First, this study was retrospectively designed. The 

images used in this study were inevitably of a lower quality than those taken precisely in 

prospectively planned studies. Also, section images of urinary calculi were not included 

in this study. The composition of the surface and core can differ in urolithiasis.21 If section 

images are included in later research and images of better quality can be taken, more 

detailed predictions of composition can be possible and the performance of the neural 

network model can be dramatically improved. Second, the FTIRS results were subject to 

only binary classification, which divided them into the Calcium and Non-calcium groups. 

There are many different components of urolithiasis, including uric acid, struvite, brushite, 
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cysteine, and so on. In addition, the pathogenesis and etiology of urinary calculi 

formations differ by composition. To apply ap-propriate behavioral or dietary 

management strategies to patients in actual clinical practice, it is necessary to predict the 

detailed components. The finer the classification, the more complex artificial intelligence 

models are needed. With the development of artificial intelligence technology and further 

studies using high-quality data, it will be possible to solve this problem. Although this 

study has several limitations, it has significant meaning in the field of autonomic 

recognition of urolithiasis as it is the first study using single-use fURS images, and the 

CNN showed decent results even with a relatively small number of cases and low-quality 

images. 

 

V. CONCLUSION 

Single-use flexible ureteroscopes have financial benefits, but they have low vision quality 

compared with reusable flexible ureteroscopes. As far as we know, this study is the first 

artificial intelligence study using single-use fURS images. It is very meaningful that the 

performance of the CNN showed good results even under these difficult conditions in that 

it can further expand the possibilities of CNN use. If autonomic recognition of urinary 

stone composition during operations becomes possible in the future, the paradigm of 

urolithiasis management may change. 
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ABSTRACT(IN KOREAN) 

일회용 요관내시경 영상에서 Convolutional neural network를 이용한 

요로 결석 성분 예측 

<지도교수 이 주 용> 

 

연세대학교 대학원 의학과 

 

성    명  오 경 택 

 

 

서론: 요로결석의 성분 분석은 요로결석의 치료에서 가장 중요한 부분 중 하

나이다. 이 연구는 합성곱 신경망(Convolutional neural network)가 상대적으로 저

해상도인 일회용 신장요관내시경 영상에서도 요로결석의 성분을 예측하는 데 

있어서 좋은 결과를 보일 수 있을 지에 대하여 연구하였다. 

 

재료 및 방법: 본 연구에서는 2018년 1월부터 2021년 12월 까지 단일 수술자

에 의하여 시행된 연성신장요관내시경하 결석제거술 영상을 후향적으로 수집

하였다. 사용된 신장요관내시경은 일회용 신장요관내시경 (LithoVue, Boston 

Scientific) 이었다. 수술 중 촬영된 사진들 중, 하나의 결석마다 포함 및 제외 

기준을 만족하는 하나의 사진이 선택되었다. 연구대상은 그들의 결석 성분이 

칼슘옥살산을 포함하느냐 (Calcium group), 그렇지 않느냐 (Non-calcium group)에 

따라 두 그룹으로 나누었다. 전체 연구 대상 506개 중, 207개의 결석 표면 사

진이 최종적으로 연구에 포함되었다. 신경망 모델에서, 사전학습된 모델 (pre-

trained model)은 Resnet-18을 사용하여 전이학습 (transfer learning)방법이 사용되

었고, 결석의 디지털 사진과 결석 성분 분석 분류값만을 삽입하여 최소감독하

학습(minimal invasive learning)이 되도록 하였다.    
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결과: 총 207개의 사진들은 Calcium group으로 175개, Non-calcium group으로 32

개로 나뉘었다. 학습(training) 및 검증(validation)이 끝난 후, 모델은 test set으로 

시험되었고, 전체 정확도는 81.8% 였다. Calcium group에서 재현율과 정밀도는 

각각 88.2% 와 88.2% 였고, Non-calcium group에서는 60.0% 와 60.0% 였다. 모

델의 분류 성능을 나타내는 Area under the receiver operating characterisctic curve 

(AUROC)는 0.82 였다.  

 

결론: 일회용 신장요관내시경은 경제적인 장점이 있으나 재사용 신장요관내시

경에 비하여 해상도가 떨어지는 단점이 있다. 우리가 알기로는, 현재까지 본 

연구는 일회용 신장요관내시경 영상으로 시행된 첫 인공지능 연구이다. 합성

곱 신경망이 이런 어려운 환경에서도 좋은 결과를 낼 수 있다는 것은 합성곱 

신경망의 적용 범위를 넓힐 수 있다는 가능성을 제시한다는 점에서 중요한 의

미를 가진다.    

 

 

 

 

 

 

 

                                                                   

핵심되는 말: 인공지능; 신경망; 컴퓨터; 요관경; 요로결석 
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