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ABSTRACT 
The gut microbiome alteration in colorectal cancer,  

compared by pre and postoperative change 
 

Yoon Dae Han 
 

Department of Medicine 
The Graduate School, Yonsei University  

 
(Directed by Professor Byung Soh Min) 

 
 
 

Colorectal cancer (CRC) is one of the leading causes of cancer-associated mortality 

worldwidely. Emerging evidence has shown that intestinal dysbiosis is closely associated 

with CRC incidence rates. Certain colon microbes in the typical colon flora may influence 

the microenvironment, creating a favorable environment for cancer development. However, 

gut microbiota dysbiosis remains poorly understood. 

This study aimed to clarify how gut microbiota changes affect the development and 

progression of CRC. The differences in colon microbiome composition was compared 

between serial changes in each CRC patient by analyzing preoperative and postoperative 

stool.  

Human fecal samples were collected preoperatively and 3−6 months postoperatively 

from 40 CRC patients who underwent curative surgery at Severance Hospital. Whole-

genome shotgun sequencing (WGS) was performed on microbial genomic DNA extracted 

from fecal samples. Operational taxonomic units (OTUs), alpha diversity, beta diversity, 

and bacterial communities were evaluated at genus and species levels in human fecal 

samples before and after surgery. Principal coordinate analysis (PCoA) and Differential 

abundance analysis (DA) were also performed. Furthemore, KEGG enrichment analysis of 

differentially expressed genes (DEGs) was performed to evaluate immunoglobulin A (IgA) 

protease status from RNA sequencing data.  
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This study shows microbiome differences between pre- and post-operative status in 

human fecal samples. Alpha diversity and OTUS were significantly decreased in post-

operative samples compared with the levels in pre-operative samples (p<0.05). Between 

pre-operative and post-operative samples, there was a significant difference in terms of β-

diversity (p =0.006) in the genus level. In prticular, greater changes in alpha diversity were 

observed in strains with fewer antibiotic resistance gene (ARG) than in strains with many 

ARG. PCoA and DA also showed pre-operative and post-operative microbiome 

componenet differences. Fusobacterium, Prevotella, and Peptostreptococcus in the genus 

level were abundant before surgery, whereas Sellimonas intestinalis was highly observed 

after surgery. Most of the strains with high copy numbers of the IgA protease gene were 

known pathogen strians such as Escheria, Rothia, Salmonella, Haemophius, and 

Helicobacter. 

 This study draws an initial point that gut microbiota imbalance is a risk factor of 

CRC. Fusobacterium, Prevotella seem to be related to CRC, and the degree of inclusion of 

ARG or IgA protease also appears to affect changes in microbiome composition. Gut 

microbiota change may provide a new therapeutic avenue for CRC patients. 

                                                                   
Keywords: Microbiota, Gut microbiome, Colorectal cancer
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I. INTRODUCTION 

 Colorectal cancer (CRC) is still one of the leading causes of cancer-associated 

mortality 1. To prevent CRC, many studies are being held, however, as genetic syndromes 

account for a minority of cases of CRC, controlling environmental or lifestyle risk factors 

such as obesity and diet modification are focused on nowadays 2,3. The colon is the most 

heavily colonized section of the digestive tract, and it has been estimated that this organ 

contains approximately 70% of the estimated human microbiome.  Dietary habits and 

lifestyle are known risk factors in CRC, and they may also modulate gut microbiota.  Thus, 

a possible hypothesis is that certain colonic microbes or alteration of the typical resident 

colonic flora may influence to microenvironment that is favorable to cancer development 

4. Recently, a growing number of studies reported specific alterations in the gut microbiome 

associated with CRC and explored its value for CRC screening. For details, F. nuleatum 

and B.fragilis are the most representative microbiome related to a negative impact on 

survival outcomes 5. In the long run, a better knowledge of the relationships between the 

microbiota and the origin and progression of CRC may open novel opportunities for the 

development of therapies targeting the microbiome.  In this regard, the development and 
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use of prebiotics, probiotics, specific antibiotics, phage therapies, or the transplantation of 

whole microbiomes may bring new tools for the prevention and treatment of CRC 6.  

 Thus, by detecting certain specific microbiomes, screening CRC may be easier, 

and if CRC is detected in an earlier stage, the treatment will have a higher success rate. The 

current study will analyze serial colonic microbiome composition change in each CRC 

patient by analyzing pre- and post-operative stool. These changes will be compared with 

clinicopathological findings to figure out how they affect CRC development and its 

progression.  
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II. MATERIALS AND METHODS 

 
1. Sample collection 

Human fecal samples were collected from 40 colorectal cancer patients at baseline 

(before the surgery within 1 week) and 3 or 6 months after surgery. All stool samples were 

collected more than 35 g were placed in cryotubes and stored at −80 °C.  

Formalin-fixed paraffin embedded (FFPE) tissues were obtained from from the 

Severance Tissue Bank, in the form of 4 μm thick sections on slides. Total RNA from FFPE 

tisseus was used for RNA sequencing.  

This study was approved by Yonsei University Health System (IRB: 4-2019-0676). 

 

2. Microbial DNA extraction and whole genome shotgun sequencing (WGS) 

Microbial DNA was extracted using the PowerSoil DNA Isolation Kit PowerSoil DNA 

Isolation Kit (Qiagen, Valencia, CA, USA, Cat no. 12888-100) following the 

manufacturer’s instructions. DNA samples were quantified using a Qubit 3.0 fluorometer 

(Thermo Fisher Scientific, Waltham, MA, USA). DNA samples were stored at −80 °C until 

further processing.  

Shotgun metagenomic paired-end libraries was constructed from 50 ng of pure DNA. 

The indexed libraries were sequenced using 2 × 150 bp paired-end kit on the Illumina 

Novaseq platform (Illumina, San Diego, CA, USA). The amount of raw sequencing data 

was 6 Gb for pre- and post-surgical stool samples of CRC patients. Microbial population 

analysis workflow is illustrated in Figure 1. 
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3. RNA sequencing 

RNA was extracted from FFPE unstained slides using SureSelectXT RNA Direct 

Library Preparation kit (Agilent Technologies, Inc., Santa Clara, CA, USA). following 

manufacturer's protocols. Libeary quality was confirmed using an Agilent 2200 Tapestation 

system with the High Sensitivity D1000 screen tapes (Agilent Technologies, Inc., Santa 

Clara, CA, USA). The indexed libraries were then sequenced using Illumina NovaSeq 

(Illumina, Inc., San Diego, CA, USA) 

 

4. Bioinformatics analysis 

All RNA sequencing datasets was aligned to the human genome reference (GRCh38). 

Differentially Expressed Genes (DEG) and the Gene Ontology (GO) was identified from 

RNA sequencing data. For quality control of data, Knead Data software was used on the 

Fastq raw data based on Trimmomatic and Bowtie2 de-hosting 7. Taxonomic profiling of 

the sequenced samples was analyzed using MetaPhlAn2 (version 2.6.0) 8. Each sample will 

be run through the metaphlan.py script to generate the kingdom-specific taxonomic profile 

per sample, using the flag to generate relative abundances and estimated read counts. 

Functional profiling of the microbial community was evaluated using HUMAnN2 (version 

0.11.1) 9. Outputs was normalized to relative abundances and finally, merged into 

individual tables for all samples. All data was visualized using both Graphpad Prism 8 

software (GraphPad Software Inc., San Diego, CA, USA) and Rstudio software version 

2023.09.1+494.pro2 (RStudio, Boston, MA, USA).   
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5. Statistical analysis 

For the statistical analysis of the bacterial abundance data, compositional data analysis 

methods will be used. Features with a false discovery rate (FDR) of less than 10% will be 

considered significant. Statistical analysis was carried out by using Graphpad Prism 8 

software (GraphPad Software Inc., San Diego, CA, USA). All data are presented as the 

means ± standard deviation (SD). A P-value < 0.05 is considered significant. 
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Figure 1 Study design and experimental protocol 
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 Figure 2 Microbial population analysis workflow 
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III. RESULTS 

1. Patient characteristics  

Patient characteristics are summarized in Table 1. A total of 40 patients were included, 

and their fecal samples were collected before and after surgery. Their median age was 60 

years. As for staging, 17.5% (n = 7) of patients were classified as stage I, 42.5% (n = 17) 

as stage II, 37.5% (n = 15) as stage III, and 2.5% (n = 1) as stage IV. Cohort was comprised 

of left-sided colon cancers (72.5%; n= 29) and microsatellite stable cancers (100%). Of the 

40 patients with CRC, mutations in KRAS were found in 35% (n = 14), in NRAS in 2.5% 

(n = 1), and in BRAF in 2.5% (n = 1). The carcinoembryonic antigen (CEA) level decreased 

from 4.52 ng/mL to 1.83 ng/mL after surgery.  
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Table 1. Patient characteristics 

Characteristics n = 40 (%) 
Sex   

Male 23 (57.5) 
Female  17 (42.5) 

Median age (year) 60  
Location of tumor    
 Right side 11 (27.5) 
 Left side  29 (72.5) 
Differentiation   
 Well differentiated 2 (5.0) 
 Moderately differentiated  38 (95.0) 
Stage    
   I 7 (17.5) 
   II 17 (42.5) 
   III 15 (37.5) 
   IV 1 (2.5) 
Tumor size (cm) 3.5 ± 1.87  
MSI   
   MSS 40 (100) 
KRAS mutation   
   Wild-type  26 (65.0) 
   Mutation  14 (35.0) 
NRAS mutation   
   Wild-type  39 (97.5) 
   Mutation  1 (2.5) 
BRAF mutation   
   Wild-type  39 (97.5) 
   Mutation  1 (2.5) 

BMI (kg/㎡) 24.75 ± 3.45  

CEA (ng/mL)   
Pre-operative  4.52 ± 2.61  
Post-operative  1.83 ± 2.49  

Abbreviation: MSI; Microsatellite instability, MSS; Microsatellite stability, BMI; Body 

mass index, CEA; Carcinoembryonic antigen,  
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2. Diversity analysis  

In order to identify potential differences within-sample diversity, known as alpha-

diversity was calculated. Alpha diversity, which characterizes diversity at a local scale, 

delineates the species richness within a functional community. In the species levels, 

measures of richness and Shannon alpha diversity exhibited significant decreases in post-

operative samples (Figure 3A). In the richness of the genus level, there was a significant 

decrease in post-operative samples compared to the pre-operative samples (Figure 3B).  

The beta diversity which is known as between-sample diversity. To evaluate 

microbiota changes in pre- and post-operative samples, beta diversity was analyzed by 

conducting principal coordinate analysis (PCoA). When using Bray-Curtis dissimilarity 

and Weighted unifrac for group comparison (Figure 3C), no differences of bacterial 

communities were observed between pre- and post-operative samples in the species level. 

Aitchison dissimilarity matrix was higher in post-operative samples than pre-operative 

sample (Figure 3D, p = 0.002). On the contrary, the Bray-Curtis dissimilarity in the genus 

level was lower than in post-operative samples than pre-operative sample, as shown Figure 

3E. 
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Figure 3 Diversity analysis in genus and species level before and after surgery  

(A) Alpha diversity in terms of OTUs in the genus and species levels, (B) Alpha diversity 

in terms of Shannon in the genus and species levels. Group differences in β-diversity at the 

genus and species levels; (C) Bray-Curtis and unifrac in the species level, (D) Aitchison 

and unifrac in the species level, and (E) Bray-Curtis and unifrac in the genus level  
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3. Antibiotic resistance gene (ARG) analysis 

Alpha diversity at the species level was re-classified by Antibiotic Resistance Gene 

(ARG) status. Distribution of ARG is shown in Figure 4A. Species that have more than 4 

ARG were categorized as “High ARG species” while those with less than 4 ARG were 

considered as “Low ARG species”. Results shows that high variations in OUTs among 

"Low ARG species," while demonstrating comparatively lower alpha diversity differences 

in "High ARG species" (Figure 4B). When examining Shannon in the species level, a 

significant difference in low ARG abundance between post-operative samples compared to 

pre-operative samples were also found. (p = 0.016). 
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(A) 

 

(B) 

 

Figure 4 Antibiotic resistance gene (ARG) analysis 

(A) Distribution of ARG core genes, (B) Alpha diversity in terms of OTUs and Shannon 

in the species levels based on ARG status. 
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4. Differential abundance analysis  

Differential abundance analysis (DA) aims to find the differences in the abundance of 

each taxon between two classes of subjects, assigning a significance value to each 

comparison. Various perspectives were explored using Analysis and Comparison of Maps 

(ANCOM-BC), MaAsLin2, and LinDa tools. As shown in Figure 5A, species differed 

significantly in abundance on a log2 fold change scale between pre- and post-operative 

samples were analyzed. In intra-cross-validation using species-level taxonomic relative 

abundances, area under the curve (AUC) score was 0.858 (Figure 5B). Next, the 

metagenomic classification was conducted by SIAMCAT (Statistical Inference of 

Associations between Microbial Communities And host phenoTypes). Of these, metabolic 

features that were significantly different between pre- and post-operative samples are 

represented in Figure 5C. Prevotella, Porphyromonas, and Fusobacterium were the most 

abundant species present in pre-operative samples compared to post-operative samples. 

Lactiplantibacillus, Entreocloster, Enterobacter, and Lawsonibacter were more common 

in post-operative samples (Figure 5D). Through this analysis, the majority of taxa that 

were abundant before surgery were verified as being associated with CRC. 
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Figure 5 Differential microbiota and metabolic features between pre- with CR and 

post-operative samples 

(A) Differential abundance of microbial composition (log2 fold change), (B) random forest 

machine learning classification model of pre-operative vs post-operative using all 

microbiome species, (C) heatmap of the number of taxonomic biomarkers identified from 

species profiles, (D) cladogram of the hierarchy among discriminative taxa in the species. 
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5. Functional profiling  

Functional profiling is also used to predict and interpretate microbiome. After 

preprocessing WGS read data, alignment is performed to the gene sequence or protein 

sequence. Then, functional analysis was conducted through the previous known database 

of each protein or genes. Genes matched with KEGG genes and KEGG orthology (KO) 

were calculated. The volcano plot showed that there was significant change the function of 

microbial communities between pre-operative and post-operative samples (Figure 6A). 

Result shows immunoglobulin A (IgA)-specific serine endopeptidase (ko:K01347) is 

abundant in pre-operative samples (Figure 6B). Yonsei IgA difference was calculated by 

subtracting the post-IgA count from the pre-IgA counts. Most of samples showed a lot of 

IgA protease in pre-surgery rather than post-surgery (Figure 6C). IgA is an antibody that 

plays a role in immune function of mucus membranes and it is reported that patients with 

IgA deficiency can have an increased risk of cancer. 10-12 IgA protease has a function of 

IgA-specific serine endopeptidase, which is to degrade IgA antibodies, and it plays a crucial 

part of the immune system's defense against pathogens.13 Figure 6D shows that genus each 

species is located in. It shows the average copy number of the IgA protease gene of the 

species belonging to the genus in descending order. There were many well-known 

pathogens such as Rothia, Salmonella, Haemaphilus, Helicobacter and Escheria which 

Escherichia..Coli belongs. In genus level, preoperative microbiome difference between 

clinical factors (Table 2-4) and microbiome difference between preoperative and 

postoperative in general is shown. (Table 5). P-value < 0.05 was considered as significant 
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difference. In species level, preoperative microbiome difference between clinical factors 

(Table 6-8) and microbiome difference between preoperative and postoperative in general 

is shown. (Table 9). As the number of species compared was too large, only top 30 were 

tabulated in general. p-value < 0.05 was considered as significant difference. 
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Figure 6 Identification of biomarkers for CRC-associated stool samples  

(A) The volcano plots of KEGG Orthology (KO) differed in abundance between pre- and 

post-operative samples, (B) Box plots of IgA protease level between pre- and post-

operative samples in human feces, (C) Density of IgA protease in each sample, (D) 

Distribution of genus abundances according to average copy number of IgA protease gene.  
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Table 2. Pre-operative microbiome difference by sex in the genus level 

Bacteria (genus level) 
Female Male 

P value 
  

(n=17) (n=23)   

CAG.177 0.1 ± 0.2 0.4 ± 0.6 0.01   
QALS01 0.0 ± 0.0 0.1 ± 0.2 0.041   

Alistipes 5.5 ± 5.4 2.4 ± 3.0 0.045   
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Table 3. Pre-operative microbiome difference by tumor stage in the genus level 

Bacteria (genus level) 
Stages I-II Stages III-IV 

P value 
(n=24) (n=16) 

BX7                       0.0 ±  0.0  0.0 ±  0.0 0.007 

Harryflintia              0.0 ±  0.0  0.0 ±  0.0 0.01 

Cloacibacillus            0.0 ±  0.0  0.0 ±  0.0 0.034 

Bilophila                 0.3 ±  0.4  0.6 ±  0.5 0.045 

HGM12998                  0.0 ±  0.0  0.0 ±  0.0 0.045 

UBA7067                   0.0 ±  0.0  0.0 ±  0.0 0.046 
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Table 4. Pre-operative microbiome difference by tumor sideness in the genus level 

Bacteria (genus level) 
Left-sided Right-sided 

P value 
(n=29) (n=11) 

Sutterella 0.4 ± 0.4 1.0 ± 0.8 0.039 
Mitsuokella 0.1 ± 0.3 0.0 ± 0.0 0.044 
Faecalibacillus 0.1 ± 0.2 0.2 ± 0.2 0.048 
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Table 5. Pre-operative and post-operative microbiome difference in the genus level 

Bacteria (genus level) 
Pre-operative feces Post-operative feces 

P value 
(n=40) (n=40) 

Anaerotignum 0.2 ± 0.3 0.1 ± 0.1 0.001 
Prevotella 14.9 ± 18.9 3.8 ± 9.1 0.001 
Enterocloster 7.4 ± 7.3 14.1 ± 11.1 0.002 
Lawsonibacter 0.1 ± 0.1 0.4 ± 0.6 0.003 
Fusobacterium 0.1 ± 0.1 0.0 ± 0.1 0.003 
Veillonella 1.7 ± 2.0 3.8 ± 4.2 0.006 
Firm.11 0.1 ± 0.1 0.0 ± 0.0 0.008 
Porphyromonas 0.7 ± 1.5 0.0 ± 0.2 0.009 
CAG.110 1.0 ± 1.6 0.4 ± 0.6 0.013 
Lactiplantibacilus 0.2 ± 0.3 0.8 ± 1.5 0.018 
UBA7182 0.1 ± 0.1 0.1 ± 0.1 0.022 
Agathobacter 2.4 ± 3.6 4.7 ± 5.5 0.034 
CAG.460 0.1 ± 0.4 0.0 ± 0.1 0.044 
Enterobacter  0.0 ± 0.1 0.2 ± 0.6 0.047 
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Table 6. Pre-operative microbiome difference by sex in the species level 

Bacteria (species level) 
Female Male 

P value 
   

(n=17) (n=23)    

Butyricimonas.virosa.HRGMv2_0181                    0.0119 ± 0.0219 0.0856 ± 0.1017 0.002    
CAG.170.sp900549635.HRGMv2_2926                     0.0291 ± 0.0460 0.1400 ± 0.1686 0.006    
Desulfovibrio.sp900540515.HRGMv2_1733               0.0000 ± 0.0001 0.0150 ± 0.0249 0.009   
Streptococcus.mitis_BB.HRGMv2_2537                  0.0000 ± 0.0000 0.0002 ± 0.0002 0.018   
Streptococcus.pseudopneumoniae_O.HRGMv2_253
4        0.0001 ± 0.0001 0.0004 ± 0.0005 0.021   
Neisseria.macacae.HRGMv2_0602                       0.0000 ± 0.0001 0.0002 ± 0.0003 0.022   
CAG.83.sp000435975.HRGMv2_2816                      0.0025 ± 0.0050 0.0487 ± 0.0953 0.03   
UMGS1826.sp900555435.HRGMv2_2859                    0.0019 ± 0.0037 0.0105 ± 0.0176 0.032   
Unknown_0061.HRGMv2_0061                            0.0001 ± 0.0001 0.0004 ± 0.0007 0.032   
Enterocloster.sp000155435.HRGMv2_2275               0.0000 ± 0.0001 0.0008 ± 0.0016 0.036   
OF09.33XD.sp003481995.HRGMv2_2187                   0.0016 ± 0.0018 0.0006 ± 0.0005 0.036   
Allisonella.histaminiformans.HRGMv2_3689            0.0050 ± 0.0144 0.0210 ± 0.0311 0.037   
CAG.110.sp003525905.HRGMv2_2702                     0.0466 ± 0.0583 0.1198 ± 0.1492 0.04   
Parabacteroides.faecis.HRGMv2_0421                  0.0000 ± 0.0000 0.0003 ± 0.0007 0.042   
Collinsella.aerofaciens_G.HRGMv2_0889               0.0015 ± 0.0023 0.0090 ± 0.0168 0.043   
Desulfovibrio.desulfuricans_A.HRGMv2_1731           0.0001 ± 0.0004 0.0009 ± 0.0017 0.045   
Parabacteroides.timonensis.HRGMv2_0448              0.0000 ± 0.0000 0.0001 ± 0.0003 0.047   
Abiotrophia.defectiva.HRGMv2_4356                   0.0000 ± 0.0000 0.0001 ± 0.0001 0.049   
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Table 7. Pre-operative microbiome difference by tumor stage 

Bacteria (species level) 
Stages I-II Stages III-IV 

P value 
   

(n=24) (n=16)    

Lachnospira.rogosae_A.HRGMv2_2061                   0.6873 ± 0.7833 0.1207 ± 0.2527 0.003    
BX7.sp014384765.HRGMv2_4513                         0.0021 ± 0.0031 0.0001 ± 0.0003 0.007    
Harryflintia.acetispora.HRGMv2_3067                 0.0040 ± 0.0066 0.0003 ± 0.0007 0.01   
Unknown_0890.HRGMv2_0890                            0.0035 ± 0.0058 0.0002 ± 0.0004 0.011   
Acutalibacter.sp900548545.HRGMv2_2908               0.0007 ± 0.0012 0.0001 ± 0.0002 0.013   
Anaerotruncus.rubiinfantis.HRGMv2_3065              0.0030 ± 0.0037 0.0008 ± 0.0017 0.015   
Collinsella.sp900546115.HRGMv2_1060                 0.0001 ± 0.0002 0.0000 ± 0.0001 0.021   
QAKL01.sp003343815.HRGMv2_3224                      0.0208 ± 0.0377 0.0020 ± 0.0036 0.023   
Unknown_0876.HRGMv2_0876                            0.0017 ± 0.0027 0.0003 ± 0.0005 0.023   
Anaerotruncus.sp014385085.HRGMv2_4517               0.0027 ± 0.0044 0.0005 ± 0.0011 0.025   
AF33.28.sp003477885.HRGMv2_2364                     0.0007 ± 0.0014 0.0001 ± 0.0003 0.03   
Bilophila.wadsworthia.HRGMv2_1721                   0.2954 ± 0.3196 0.5586 ± 0.4439 0.035   
HGM13006.sp900756575.HRGMv2_3115                    0.0004 ± 0.0006 0.0001 ± 0.0001 0.041   
Haemophilus_D.sp900755445.HRGMv2_1753               0.0188 ± 0.0276 0.0061 ± 0.0078 0.042   
Unknown_4408.HRGMv2_4408                            0.0023 ± 0.0047 0.0002 ± 0.0006 0.042   
UBA866.sp900543295.HRGMv2_3103                      0.0040 ± 0.0054 0.0014 ± 0.0023 0.043   
HGM12998.sp900756495.HRGMv2_4503                    0.0035 ± 0.0061 0.0007 ± 0.0016 0.044   
Lachnospira.sp900545725.HRGMv2_2106                 0.0205 ± 0.0452 0.0009 ± 0.0030 0.044   
Agathobacter.sp900548765.HRGMv2_2343                0.0001 ± 0.0001 0.0000 ± 0.0000 0.045   
Ruthenibacterium.sp900546885.HRGMv2_2819            0.0104 ± 0.0234 0.0003 ± 0.0004 0.045   
Unknown_4456.HRGMv2_4456                            0.0002 ± 0.0004 0.0000 ± 0.0000 0.047   
Unknown_3279.HRGMv2_3279                            0.0001 ± 0.0003 0.0000 ± 0.0000 0.048   
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Table 8. Preoperative microbiome difference by tumor sideness in the species level 

Bacteria (species level) 
Left-sided Right-sided 

P value 
   

(n=29) (n=11)    

Neisseria.macacae.HRGMv2_0602                       0.0001 ± 0.0002 0.0000 ± 0.0000 0.003    
Gemella.sanguinis.HRGMv2_4720                       0.0004 ± 0.0007 0.0001 ± 0.0001 0.007    
Streptococcus.mitis_BB.HRGMv2_2537                  0.0001 ± 0.0002 0.0000 ± 0.0000 0.007   
Lachnoanaerobaculum.orale.HRGMv2_2332               0.0001 ± 0.0001 0.0000 ± 0.0000 0.008   
Unknown_2091.HRGMv2_2091                            0.0069 ± 0.0111 0.0009 ± 0.0010 0.008   
Harryflintia.acetispora.HRGMv2_3067                 0.0034 ± 0.0062 0.0004 ± 0.0008 0.016   
NSJ.63.sp014384805.HRGMv2_0817                      0.0019 ± 0.0030 0.0004 ± 0.0005 0.019   
CAG.103.sp000432375.HRGMv2_2709                     0.0891 ± 0.1672 0.0117 ± 0.0157 0.02   
Enterocloster.asparagiformis.HRGMv2_2357            0.0015 ± 0.0020 0.0005 ± 0.0008 0.02   
Prevotella.hominis.HRGMv2_0281                      0.0053 ± 0.0107 0.0004 ± 0.0006 0.02   
Unknown_1432.HRGMv2_1432                            0.0001 ± 0.0002 0.0000 ± 0.0000 0.022   
Unknown_4620.HRGMv2_4620                            0.0174 ± 0.0310 0.0031 ± 0.0049 0.022   
Unknown_4528.HRGMv2_4528                            0.0054 ± 0.0081 0.0016 ± 0.0021 0.023   
SFEL01.sp004557245.HRGMv2_0681                      0.2488 ± 0.4868 0.0276 ± 0.0760 0.024   
Collinsella.sp003459245.HRGMv2_1609                 0.0012 ± 0.0028 0.0000 ± 0.0000 0.025   
UBA6984.sp003258725.HRGMv2_2017                     0.0001 ± 0.0002 0.0000 ± 0.0000 0.031   
Acutalibacter.sp900543555.HRGMv2_2880               0.0003 ± 0.0006 0.0001 ± 0.0001 0.032   
Veillonella.tobetsuensis.HRGMv2_3727                0.0073 ± 0.0165 0.0004 ± 0.0012 0.033   
Anaerofustis.stercorihominis.HRGMv2_1940            0.0002 ± 0.0005 0.0000 ± 0.0000 0.035   
Dysosmobacter.welbionis.HRGMv2_2665                 0.1610 ± 0.2112 0.0621 ± 0.0756 0.035   
Gordonibacter.pamelaeae.HRGMv2_0859                 0.0057 ± 0.0123 0.0006 ± 0.0010 0.035   
Unknown_4534.HRGMv2_4534                            0.0011 ± 0.0022 0.0001 ± 0.0004 0.035   
Unknown_4316.HRGMv2_4316                            0.0030 ± 0.0067 0.0002 ± 0.0006 0.037   
Porphyromonas.uenonis.HRGMv2_0200                   0.0008 ± 0.0020 0.0000 ± 0.0000 0.038   
Lawsonibacter.sp000177015.HRGMv2_3112               0.0016 ± 0.0029 0.0004 ± 0.0006 0.039   
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Mitsuokella.jalaludinii.HRGMv2_3483                 0.1474 ± 0.3509 0.0057 ± 0.0187 0.039   
NSJ.61.sp003433845.HRGMv2_1907                      0.0008 ± 0.0016 0.0001 ± 0.0002 0.039   
Gemmiger.sp900540775.HRGMv2_2675                    0.0066 ± 0.0123 0.0016 ± 0.0016 0.04   
Collinsella.aerofaciens_J.HRGMv2_0933               0.0007 ± 0.0015 0.0001 ± 0.0003 0.041   
CAG.568.sp000434395.HRGMv2_3437                     0.0085 ± 0.0185 0.0011 ± 0.0017 0.042   
Faecalibacterium.prausnitzii_D.HRGMv2_2772          0.6752 ± 0.7502 0.3125 ± 0.3396 0.043   
Unknown_4075.HRGMv2_4075                            0.0001 ± 0.0002 0.0000 ± 0.0000 0.043   
Unknown_4468.HRGMv2_4468                            0.0009 ± 0.0023 0.0000 ± 0.0001 0.044   
Unknown_4540.HRGMv2_4540                            0.0003 ± 0.0005 0.0000 ± 0.0001 0.045   
Parabacteroides.sp900548175.HRGMv2_0341             0.0002 ± 0.0005 0.0000 ± 0.0000 0.046   
Unknown_3184.HRGMv2_3184                            0.0072 ± 0.0180 0.0002 ± 0.0005 0.046   
Butyricicoccus.sp900547195.HRGMv2_3157              0.0004 ± 0.0010 0.0000 ± 0.0000 0.047   
Aggregatibacter.segnis.HRGMv2_1846                  0.0041 ± 0.0097 0.0003 ± 0.0007 0.048   
Enterocloster.sp005845215.HRGMv2_2277               0.0009 ± 0.0022 0.0000 ± 0.0001 0.048   
Rothia.mucilaginosa_B.HRGMv2_0069                   0.0002 ± 0.0002 0.0000 ± 0.0001 0.048   
Unknown_0876.HRGMv2_0876                            0.0014 ± 0.0025 0.0003 ± 0.0008 0.048   
Blautia_A.wexlerae.HRGMv2_2177                      0.0005 ± 0.0010 0.0001 ± 0.0002 0.049   
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Table 9. Pre-operative and post-operative microbiome difference in the species level 

Bacteria (species level) 
Pre-operative 

feces 
Post-operative 

feces P value 
   

(n=40) (n=40)    

Anaerotignum.faecicola.HRGMv2_2051                  0.0742 ± 0.1163 0.2916 ± 0.3654 0.001    
Sellimonas intestinalis.HRGMv2_2362                     0.0006 ± 0.0015 0.0092 ± 0.0156 0.001    
UBA7160.sp902363665.HRGMv2_2131                     0.0008 ± 0.0018 0.0051 ± 0.0085 0.003   
UBA9502.sp003506385.HRGMv2_2363                     0.0019 ± 0.0062 0.0151 ± 0.0258 0.003   
Mediterraneibacter.faecis.HRGMv2_2189               0.0564 ± 0.1177 0.2967 ± 0.4820 0.004   
OF09.33XD.sp003481995.HRGMv2_2187                   0.0028 ± 0.0037 0.0010 ± 0.0013 0.004   
Unknown_3192.HRGMv2_3192                            0.0019 ± 0.0058 0.0154 ± 0.0277 0.004   
CAG.110.sp900549705.HRGMv2_2988                     0.0014 ± 0.0048 0.0606 ± 0.1247 0.005   
Lawsonibacter.asaccharolyticus.HRGMv2_2924          0.1444 ± 0.1884 0.0519 ± 0.0560 0.005   
UMGS1312.sp900550625.HRGMv2_2825                    0.0005 ± 0.0017 0.0157 ± 0.0323 0.005   
Unknown_2371.HRGMv2_2371                            0.0037 ± 0.0061 0.0116 ± 0.0161 0.005   
Coprococcus_A.catus.HRGMv2_2085                     0.0094 ± 0.0180 0.0264 ± 0.0331 0.006   
Firm.11.sp900548145.HRGMv2_0735                     0.0042 ± 0.0176 0.0580 ± 0.1162 0.006   
Lawsonibacter.sp900066645.HRGMv2_3063               0.0609 ± 0.0905 0.0186 ± 0.0268 0.007   
UMGS1375.sp900066615.HRGMv2_2053                    0.0309 ± 0.0935 0.1751 ± 0.3065 0.007   
Blautia_A.sp003477525.HRGMv2_4259                   0.0005 ± 0.0015 0.0019 ± 0.0030 0.009   
CAG.110.sp900540635.HRGMv2_2716                     0.0019 ± 0.0054 0.1048 ± 0.2349 0.009   
Prevotella.sp900557255.HRGMv2_0179                  2.0792 ± 6.8464 8.7693 ± 14.3880 0.01   
SFFH01.sp900548125.HRGMv2_0668                      0.0039 ± 0.0089 0.0153 ± 0.0258 0.01   
CAG.170.sp900545925.HRGMv2_2783                     0.0074 ± 0.0151 0.0659 ± 0.1378 0.011   
Dialister.sp900541485.HRGMv2_3746                   0.0001 ± 0.0001 0.0003 ± 0.0006 0.013   
ER4.sp000765235.HRGMv2_2744                         0.6320 ± 1.1473 1.4059 ± 1.5424 0.013   
CAG.127.sp900319515.HRGMv2_2056                     0.7452 ± 1.4703 0.1447 ± 0.2689 0.015   
Gemmiger.sp900540775.HRGMv2_2675                    0.0009 ± 0.0020 0.0052 ± 0.0107 0.015   
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QAKL01.sp003343815.HRGMv2_3224                      0.0009 ± 0.0032 0.0133 ± 0.0305 0.015   
UBA644.sp900547165.HRGMv2_2837                      0.0010 ± 0.0046 0.0102 ± 0.0223 0.015   
UMGS1826.sp900555435.HRGMv2_2859                    0.0011 ± 0.0029 0.0069 ± 0.0141 0.015   
Anaerosacchariphilus.sp900066385.HRGMv2_23
28        0.0049 ± 0.0096 0.0127 ± 0.0173 0.016   
HGM13006.sp900757695.HRGMv2_2721                    0.0010 ± 0.0023 0.0038 ± 0.0068 0.016   
Lachnospira.sp000437735.HRGMv2_2105                 1.0454 ± 2.1997 0.1635 ± 0.3145 0.016   
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IV. DISCUSSION 

 In this study, pre and postoperative stool microbiome of CRC patients showed its 

composition difference. There are few studies comparing preoperative and postoperative 

fecal microbiome from CRC patients. 14,15 Results from this study shows microbial 

taxonomic compositions and diversities of gut microbiota in post-surgery CRC patients 

were significantly different from pre-surgery CRC patients, which is similar with other 

study.15 Cong Je et al reported that Proteobacteria, which is normally contained a minor 

portion in human gut microbiome has been increased in post-surgery, and in contrast, 

phylum Fusobacteria were more increased in pre-surgery.15 Huo et al also reported that at 

the phylum level, the relative abundance of Fusobacteria at adjacent tumor sites is much 

higher in patients with CRC recurrence than that in patients without CRC recurrence.16 

Here, it was also able to confirm, as Fusobacterium, Anaerotignum , Prevotella, and 

Porphyromonas were ranked at the top in pre-surgery weigh. Preoperative difference 

seemed more important compared to postoperative difference, as they may more focused 

in recovering microbiome balance for bowel homeostasis. Clinical factors compared 

preoperative and postoperative microbiome in genus level, is shown in table 2-5. 

 Fusobacterium is the most famous known and studied microbiome, considered as 

CRC related facter. 17-19 Dysbiosis, with subsequent bacterial invasion, causes 

inflammation and inflammation causes cancer through a pro-inflammatory 

microenvironment that subsequently becomes a tumor microenvironment (TME), which 

downregulates the adaptive anti-tumor immune response and accelerates the CRC 
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progression. 20 Among several Fusobacterium spp, F. nucleatum is now considered a 

cancer-leading bacteria given its ability to stimulate oncogenic pathways through its 

proteins.  

 Anaerotignum and Prevotella, two strains were also identified as the strains with 

the greatest difference before and after surgery. Anaerotignum is assigned to Clostridium 

cluster XIVb belonging to the family Lachnospiraceae, proposed by Ueki et al. 21 It 

contains anaerobic, chemoorganotrophic, and fermentative bacteria that produce short 

chain fatty acids, including acetate, propionate, and butyrate.22 Some studies report 

Clostridium septicum, Clostridium difficile are bacteria that are suspected to be related with 

colorectal cancer. 23,24 Prevotella seems overrepresented in adenocarcinoma compared to 

polyps, and also related to metastasis combined with Fusobacterium nucleatum.25 However, 

Prevotella itself is still in controversy. Huh et al insisted that high abundance of Prevotella 

indicates lower risk of CRC progression and decease. 26 Moreover, Porphyromonas is also 

observed as oral bacteria related to periodontitis 27 and such genus are all known with pro-

inflammatory, immunosuppressive, and tissue-invasive properties characters which may 

promote carcinogenesis. 28 Nagy et al. detected significantly higher levels of 

Porphyromonas spp. and Fusobacterium spp. in oral squamous cell carcinoma compared 

to adjacent healthy mucosa. 29 

 In contrast, Enterobacter, Lactiplantibacilus, Lawsonibacter, Enterocloster, 

Veillonella were abundant in post-surgery. Enterobacter is gram negative, opportunistic, 

and important nosocomial pathogens that exist in many infections such as urinary tract 
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infections, bacteremia, pneumonia, meningitis. Dilsad et al noted that Enterobacter showed 

significantly increased cell viability and proliferation, while decreasing the apoptosis of the 

cell lines tested, thus could be a factor for initiation and progression for colon cancer. 30 

Lactiplantibacilus strains are shown to inhibit colon cancer cell proliferation as function of 

its butyrogenic capability31 and inhibit the growth of Fusobacterium nucleatum.32 

Enterocloster and Lawsonibacter are not well known for correlation with CRC yet, and 

Veillonella is known to be related to chemotherapeutic agent resistance.  

By the difference of sideness, Sutterella, Mitsuokella, and Faecalibacillus showed 

abundance difference. Sutterella is gram-negative, anaerobic, non-spore forming bacteria 

found in human feces, and also main abundance in cecal content of rats which may be 

related to hind gut. 33 This study also reported Sutterella strain abundance in Rt.sided colon. 

Mitsuokella which is found more in Lt. sided, is more studied to depression or mood 

disorder. 34 Most of genus detected by tumor stage differentiation were not known well. 

BX7, Harryflintia, Cloacibacillus and Bilophila are some noted strains, however, its 

relation with CRC should be more studied.  

 Overall, well-known strains were discovered, however, Sellimonas intestinalis 

was one of the species that differed the most in this study. Sellimonas intestinalis was 

ranked at the high in post-surgery weigh and its prevalence has increased more than around 

50%. This species was not well studied previously, however, it is known to help recovery 

after dysbiosis event.35 In particular case of Sellimonas intestinalis, several genes 

associated with antibiotic resistance were found, so ability to carry antibiotic resistance 



３８ 

 

gene (ARG) could represent the basis for the survival of this species. The role of this species 

as a biomarker of homeostasis gut recovery, after presentation and restoration of 

homeostasis after dysbiosis could be expected.  

 This also helps explain changes in composition of the microbiome after surgery. 

This study shows definite alpha diversity difference, which means pre-surgery and post-

surgery microbiome composition is different. Such bacterial difference may not be 

understandable, as surgeon only resects 10-20cm of bowel length. Under the assumption 

that strains that increase after surgery would have ARG, the result confirmed that high 

ARG species had less alpha diversity change compared to low ARG, in figure 6. Only the 

species with the most ARGS more than 4, which were the top 25% group confirmed by 

distribution plot were defined as high ARG species. Thus, for example, Enterobacter 

strains, even it is more related to CRC related one, were observed abundant in post-surgery 

as it has high antibiotic resistance.                                                                                                           

 By functional profiling, it appeared that postoperative stool microbiome of CRC 

patients revealed decreased Immunoglobin A (IgA) protease coding genes. IgA is an 

antibody that plays a crucial role in immune function of mucus membrane and it is reported 

that they participate in regulating gut commensal microbiome.36,37 IgA protease is a serine 

endopeptidase to degrade IgA antibody. 36 The volcano plot shown above is the result of 

Kegg ortholog (KO) analysis, that IgA protease shows lowest p-value among pre abundant 

KO. To figure out if such species are pathogenic or not, copy number of its genus level was 

checked. Most of them were opportunistic pathogen such as Escherichia, Rothia, 
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Aggregatibacter. Therefore, these results showed that the number of pathogens were 

significantly reduced after surgery.   

 Unlike previous other study 15, to exclude bowel preparation effect and to compare 

stool within normalized life, stool was gathered after 3 to 6 months of post-surgery. This 

study confirmed that strains with ARG and decreased IgA coding genes remain for long 

time after surgery. Under the assumption that patient completely returned to normal diet, it 

appears that above strain can be studied as a factor related to the prognosis of colon cancer 
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V. CONCLUSION 

Pre-surgery and post-surgery stool microbiome composition changes are significant. 

These changes may be due to strain characteristics such as antibiotic resistance genes and 

potential of IgA protease. Considering these factors, likewise species or genus will be more 

focused. With these clues, candidate for prognosis biomarker of colonic microbiome will 

more gained. 
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Supplementary Figure 1 Differential abundance (DA) analysis 

(A) ANCOM- BC analysis, (B) LinDA analysis and (C) Maaslin2 analysis in the genus and 

species levels.  
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Supplementary Figure 2 cladogram of the hierarchy among discriminative taxa in the genus 
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Supplementary Figure 3 Pre-and post-operative difference in the species level 
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대장암 환자의 수술 전후에 따른 장내 미생물 변화 
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배경: 대장암은 암 관련 사망의 주요 원인 중 하나이다. 최근에 대장암과 
관련된 여러 위험 인자 중 장내 미생물은 대장암 주변 미세환경과 관련되어 
주목받고 있다. 특정 장내 미생물이나 전형적으로 장내에 상주하는 미생물의 
변화가 대장암 발병에 영향을 미칠 수 있다는 것이다. 그러나 아직 장내 
미생물 군의 군집 조성 및 불균형에 대해 알려진 것이 많지는 않다. 이에 본 
연구에서 수술 전후 대변을 통해 장내 미생물의 구성 변화를 분석하여, 
이러한 변화가 대장암의 발달 및 진행에 어떠한 영향을 미칠 수 있는지 
알아보고자 하였다.  
방법: 수술 전후 대장암의 장내 미생물의 구성 변화를 확인하기 위해 총 
40명의 대장암 환자에 있어서 수술 전과 수술 후 3-6개월 사이에 각각 대변을 
수집하였다. 대변 샘플에서 장내 미생물 DNA를 추출하고 메타샷건 시퀀싱을 
시행하였고, 미생물의 속 및 종 수준에서 이러한 분류학적 프로파일링을 
수행한 후, 이를 토대로 조작분류단위 (Operational taxonomic units, OTUS), 알파 
및 베타 다양성 분석, principal coordinate analysis (PCoA) 분석 및 differential 
abundance 분석으로 생물정보학적 분석을 시행하였다. 또한 immunoglobulin A 
(IgA) 단백효소분해제 항독소 여부를 확인하는 기능적 분석을 추가하였다. 
결과: 속과 종 수준 모두에서 수술 후 알파 다양성과 OTUS가 감소하였으나 
(p<0.05), 베타 다양성은 속 수준에서만 그 차이가 확연하였다. 특히, 항생제 
내성 유전자가 적은 균주에서 많은 균주에 비해 알파 다양성의 변화가 많이 
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관찰되었다. PCoA 분석에서도 속과 종 수준 모두에서 수술 전후의 장내 
미생물 군집 구성 변화가 관찰되었다. 속 수준에서 Fusobacterium, Prevotella 
Peptostreptococcus 등이 높게 검출되었고, 종 수준에서는 Sellimonas intestinalis가 
수술 후 가장 많이 증가한 균주로 보고되었다. IgA 단백효소분해제 유전자의 
copy 숫자가 높은 균주들은 대부분 Escheria나 Rothia, Salmonella, Haemophilus, 
Helicobacter처럼 병원체 균주로 알려진 것들이었다.  
결론: 대장암의 수술 전후 장내 미생물의 구성 및 농도의 차이는 대장암과 
연관성이 있다고 추정된다. 특히 Fusobacterium이나 Prevotella 등이 대장암과 
관련이 있다고 보이며, 항생제 내성균 유전자나 IgA 단백효소분해제 포함 
정도가 또한 군집 구성의 변화에 영향을 미치는 것으로 보인다. 앞으로 
장내미생물의 변화에 대한 분석은 대장암 환자의 새로운 치료의 기점으로서 
중요한 역할을 할 수 있을 것으로 보인다.   
                                                                   
핵심되는 말: 마이크로바이옴, 장내미생물, 대장암 
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