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ABSTRACT 

The biomechanical effect of fibular strut grafts on humeral surgical neck 

fractures with lateral wall comminution 
 

Sun-Ho, Jang 
 

Department of Medicine 

The Graduate School, Yonsei University  
 

(Directed by Professor Yong-Min, Chun) 
 

 

 

No studies have evaluated the effect of fibular strut augmentation on the stability of locking 

plate fixation for osteoporotic proximal humeral fractures with lateral wall comminution. 

The purpose of this study was to evaluate the stability of locking plate fixation with a fibular 

strut graft compared with locking plate alone in an osteoporotic two-part surgical neck 

fracture model with lateral cortex comminution. Ten paired fresh-frozen cadaveric humeri 

were randomly allocated into two groups, either the locking plate alone (LP group) or 

locking plate with fibular strut graft augmentation (LPFSG group), with an equal number 

of right and left osteoporotic surgical neck fractures with lateral wall comminution of the 

greater tuberosity. Varus, internal/external torsion, and axial compression stiffness as well 

as single load to failure were measured in plate-bone constructs, and the LPFSG group 

showed significantly greater values in all metrics. In conclusion, this biomechanical study 

shows that fibular strut augmentation significantly enhances varus stiffness, internal torsion 

stiffness, external torsion stiffness, and maximum failure load of a construct compared to 

locking plate fixation alone in proximal humeral fractures with lateral wall comminution.  

 

 

                                                                   

Key words : Humeral surgical neck fracture, lateral wall comminution, fibular strut 

graft, biomechanical study  
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I. INTRODUCTION 

Proximal humeral fractures are one of the most common fractures in the elderly, and the 

incidence of proximal humeral fractures has increased with longer life expectancy [1-3]. 

Approximately 70% of all proximal humeral fractures occur in patients aged 60 and older 

[4]. Most cases can be treated conservatively; however, surgical treatment is favored over 

conservative treatment if the fracture is unstable and displaced [5].  

Stable fixation followed by adequate rehabilitation has shown satisfactory outcomes in 

proximal humeral fractures, and among the many fixation methods, locking plate 

techniques have shown good results in patients with compromised bone quality [6, 7]. In 

addition, calcar screws and strut bone grafts have been associated with enhanced 

mechanical stability against varus collapse and satisfactory surgical outcomes in proximal 

humeral fractures with medial metaphyseal comminution or poor bone quality related to 

osteoporosis [8, 9]. 

Typically, solid fixation can be achieved through the use of plate and screw fixation of the 

near and far cortex [10]. However, in the proximal humerus fracture, fixation is dependent 

on the cancellous bone within the humeral head and the cortical bone of the lateral wall 

of the greater tuberosity, which are frequently involved in proximal humerus fracture. 

The involvement of the greater tuberosity (GT) is known to be common with its incidence 

up to 20% among all types of proximal humerus fractures [11]. Furthermore, the fixation 
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plate is commonly placed lateral wall of the GT [12, 13]. Considering that proximal 

humeral fractures occur in the elderly, stability of fixation may be significantly 

compromised by lack of lateral wall integrity of the greater tuberosity, especially in cases 

of low bone mass in the humeral head [4]. Although it is well known that fibular strut 

grafts have enhanced the results of locking plate fixation in unstable osteoporotic 

proximal humerus fractures with medial wall comminution [8, 14], no studies have 

evaluated the effect of fibular strut augmentation on the stability of locking plate fixation 

for osteoporotic proximal humeral fractures with lateral wall comminution. 

In this study, we aim to evaluate the stability of locking plate fixation with a fibular strut 

graft compared with locking plate alone in an osteoporotic two-part surgical neck fracture 

model with lateral cortex comminution. We hypothesized that augmentation with a 

fibular strut graft will enhance the biomechanical stability of locking plate fixation in 

proximal humeral fractures with lateral wall comminution. 
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II. MATERIALS AND METHODS 

1. Specimen preparation 

Ten pairs of fresh-frozen cadaveric humeri without any gross deformities or a history of 

injury or operation were used in this study. All specimens were stored frozen at −20°C 

and thawed at room temperature 24 hours before use. All soft tissue of the humerus were 

thoroughly removed before use.  

Quantitative computed tomography was used to measure bone mineral density (BMD) of 

each humeral head. BMD was evaluated at the greatest transverse diameter of the humeral 

head along three parallel sections separated by 1.5-mm distance [15]. The square region 

of interest (ROI) was positioned over the bone slice so that every edge of the square could 

reach the subcortical shell of the humeral head. The mean BMD of the three slices was 

used [15]. (Figure 1) 

There is no conventional reference of lateral wall comminution in an osteoporotic proximal 

humerus fracture model. Thus the most similar model based on the clinical data 

experienced in our institute was simulated as below. A two-part surgical neck fracture 

with a comminuted lateral wall of the greater tuberosity model was created by performing 

osteotomy at the following points using a microsagittal saw (Figure 2): (1) a 5-mm wedge 

shaped gap one centimeter distal to the most inferior portion of the articular cartilage on 

the humeral head perpendicular to the humeral shaft [16-19] and (2) a 5-mm-thick 

segment posterior to the bicipital groove corresponding to zones 2, 3, and 4 of the applied 

Proximal Humerus Internal Locking System (PHILOS) plate (Figure 3), leaving two 

millimeters of the tip of the greater tuberosity intact to serve as a reference for locking 

plate application [13, 20, 21].  

Block randomization was used to allocate the paired specimens (left and right side) into 

two groups: (1) locking plate alone (LP group) and (2) locking plate with fibular strut 

graft augmentation (LPFSG group). Each group was assigned an equal number of right 

and left humeri. All specimens were fixed with the same locking plate (PHILOS; Synthes, 

Paoli, Pennsylvania) using 12 screw holes (three distal and nine proximal) and the 
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standard technique (Figure 3). Plates were fixed on the lateral wall of the proximal 

humerus using six locking screws on the most proximal screw holes (Sections A, B, and 

C) and three screws on the shaft (Sections F, G, and H). Two additional screws were 

inserted on Section E (Figure 3) for medial calcar support. Specimens in the locking plate 

with fibular strut graft augmentation group were fixed with an additional intramedullary 

fibular strut graft. An 80 mm segment from the ipsilateral fibular diaphysis of the cadaver 

was inserted into the medullary cavity of the diaphysis and humeral head. Then, 5 cm of 

the graft was impacted into the diaphysis and stabilized with three locking screws. 

The humeral shaft was cut transversely at 16.5 cm from the upper margin of the wedge 

resection that is perpendicular to the anatomical axis of the humeral shaft and secured in 

a 7-cm-long tube with unsaturated polyester resin (EC‐304, Aekyung Chemical Co.) [22, 

23]. The humeral head was placed in unsaturated polyester resin up until 2 cm from the 

proximal wedge-shaped cut at the surgical neck and mounted to a customized jig. 

 

2. Biomechanical testing 

Measurement variables for biomechanical testing included axial compression, varus 

bending, torsional stiffness, and one single load to failure of varus bending, which 

commonly used in mechanical testing [24]. Biomechanical axial compression and varus 

bending and single load to failure tests were conducted using an electrohydraulic 

materials test system (model 3366; Instron, Norwood, Massachusetts), and rotational 

stiffness was measured using a torsional stiffness tester (DPTST; DYPHI). 

First of all, quasi-static internal and external torsional tests were performed, with rotating 

the humeral head at 0.2Nm torque per second +3.5Nm and -3.5Nm for internal and 

external torsional stiffness, respectively (Figure 4A). Secondly, axial compression test 

was performed with an axial force up to 200N at a rate of 0.1mm per second (Figure 4B). 

The four-point varus bending stiffness test was performed using an electrohydraulic 

materials test system setup (Figure 4C), with a supporting span of 21cm, and a loading 

span of 13cm, with 3.5Nm at 0.1mm per second. The stiffness was determined by 
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calculating the slope of the linear region in the force/displacement graph at the fifth cycle 

(Figure 5A-D). Finally, the single load to failure test was measured in the four-point varus 

test setup, until a sudden change occurred due to loss of fixation in the force/displacement 

curve [25] (Figure 5E). 

 

3. Statistical analysis  

Sample size calculation for comparison between two groups requires estimates of treatment 

effect [26, 27]; however, because there were no previous studies in the literature, we 

performed a pilot study using three paired humeri (six specimens). Sample size was 

calculated using the varus stiffness values, and the mean ± standard deviation values for 

the LP group and LPFSG group were 338.69 ± 158.54 N/mm and 493.44 ± 171.91 N/mm, 

respectively. Accordingly, 10 specimens were required to achieve a power of 80% at an 

α level of 0.05.  

Due to the small sample size, we used the non-parametric Wilcoxon signed-rank test to 

compare the differences in mechanical testing values between the paired samples. 

Statistical significance was set at p < .05, and statistical analyses were performed using 

IBM SPSS Statistics for Windows (version 25.0; IBM Corp.). 
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III. RESULTS 

The mean BMD for the LP group was 32.1 mg/cm3 and 33.69 mg/cm3 for the LPFSG 

group. The two groups did not show a significant difference in BMD (p=0.139). The 

mean varus stiffness, mean internal torsion stiffness, mean external torsion stiffness, 

mean axial compression stiffness, and single load to failure values were 265.32 N/mm, 

2.34 N/deg, 1.72 N/deg, 320.92 N/mm, and 199.50 N in the LP group, respectively, and 

417.65 N/mm, 0.68 N/deg, 0.72 N/deg, 384.55 N/mm, and 455.45 N in the LPFSG group. 

The LPFSG group showed significantly greater values in all biomechanical metrics 

excluding axial compression stiffness (Table 1). 
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IV. DISCUSSION 

In the osteoporotic proximal humeral fracture with lateral wall comminution model of this 

study, we compared the stability of locking plate alone versus locking plate fixation with 

fibular strut graft augmentation. As we hypothesized, augmentation with a fibular strut 

graft significantly enhanced the biomechanical stability of locking plate fixation in 

proximal humeral fractures with lateral wall comminution in terms of varus stiffness, 

internal and external torsion stiffness compared with that of lateral wall comminution 

alone.  

Due to comminution and a low bone mass within the humeral head in elderly patients, 

fixation failure is frequent despite the developments in fixation materials and techniques, 

including a locking plate and screw system. Particularly in surgical neck fractures with 

medial cortex comminution, the importance of medial calcar support screw fixation has 

been emphasized in many biomechanical and clinical studies [28, 29]. On the contrary, 

although many proximal humerus fractures involve the lateral wall of the GT where the 

plate is applied, it has not been highlighted. Supposedly, this is because non-displaced 

lateral wall fractures of the GT with comminution are only identified on computed 

tomography (CT) and can be easily missed on plain x-ray.  

Once the lateral wall is involved, application of the locking screw and plate system on the 

fractured lateral wall seems to be difficult to provide stable fixation, especially when the 

quality of humeral head bone is poor due to osteoporosis. Naturally, postoperative 

rehabilitation including ROM exercise is very limited due to concern about fixation 

failure and morbidities in elderly patients resulting from subsequent re-operation.  

The endosteal fibular allogenous strut bone graft technique was introduced to improve 

fixation stability in cases of proximal humerus fracture with medial cortex comminution 

with low bone mass [35]. However, we thought that it would be helpful in cases of 

concomitant lateral wall fracture with osteoporosis; therefore, an unstable medial column 

model with osteoporosis was created with elderly cadaver specimens as in a previous 

study [29], and unstable lateral column components were added. If loss of lateral wall 
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integrity and low bone mass within the humeral head are present, the stability of the 

proximal fragment will not be sufficient, even with the medial calcar screw. Recently, 

Jang et al. published a study comparing locking plate with medial support screw and 

locking plate with intramedullary fibular graft fixation in varus collapsed proximal 

humerus fracture models [36]. Despite several studies reporting the advantages of the 

medial support screw, the fibular strut graft showed significantly better biomechanical 

stability than the medial support screw. 

As we hypothesized, the use of fibular strut bone graft significantly improved fixation 

stability compared to the LP group in the osteoporotic proximal humerus fracture model 

with lateral wall comminution. Thus, the presence of lateral wall comminution of the 

greater tuberosity should be identified in preoperative planning, and strut bone 

augmentation should be considered for sold fixation in osteoporotic proximal humerus 

fractures.  

To the best of our knowledge, this is the first biomechanical study comparing the stability 

of locking plate alone versus locking plate fixation with fibular strut graft augmentation 

in a proximal humeral fracture model with lateral wall comminution. However, our study 

has several limitations. First, as in most other cadaver studies, this was time-zero research. 

In studies using cadavers, additional bracing typically yields better fixation stability. 

However, it is well known that the strut bone blocking the medullary canal will become 

an obstacle in conversion to arthroplasty. Therefore, the use of strut bone augmentation 

should be carefully determined in preoperative planning and surgical field assessment on 

a case-by-case basis. Second, lateral wall comminution in an osteoporotic proximal 

humerus fracture model had no conventional reference. Although we tried our best to 

simulate the most similar model based on the clinical data experienced in our institute, 

we would not have the same specimens represented in the actual lateral wall comminution 

models. The degree of osteotomy was determined by referring to the existing surgical 

neck comminuted fracture model. 
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V. CONCLUSION 

This biomechanical study shows that fibular strut augmentation significantly enhances the 

varus stiffness, internal torsion stiffness, external torsion stiffness, and maximum failure 

load of a construct compared to locking plate fixation alone in proximal humeral fracture 

models with lateral wall comminution. 
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APPENDICES 

 

Figures 

 

Figure 1. A schematic figure for measuring BMD of the humeral head. 

 

 

Figure 2. A two-part surgical neck fracture with a comminuted lateral wall of the greater 
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tuberosity fixed with a locking plate alone (A) and a locking plate with fibular strut graft 

augmentation (B).  

      (A)                (B) 

 

 

 

 

 

 

 

 

Figure 3. (A) A PHILOS humerus plate with 9 proximal screw holes in Sections A-E for 

locking screws, 10 proximal suture holes to help maintain fracture reduction, and 3 distal 

screw holes. (B) Screws were categorized into several zones based on position [20].  
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Figure 4. (A) Test for rotational stiffness using a torsional stiffness tester (DPTST; DYPHI). 

(B) Test for axial compression using an electrohydraulic materials test system (model 3366; 

Instron, Norwood, Massachusetts). (C) Test for four-point bending using an 

electrohydraulic materials test system (model 3366; Instron, Norwood, Massachusetts).  
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Figure 5. Load displacement curve of (A) Internal torsion stiffness, (B) External torsion 

stiffness, (C) Axial compression stiffness, (D) Four-point varus stiffness, and (E) Single 

load to failure. 
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Table 1. Comparative results of bone marrow density (BMD), stiffness, and single load to 

failure between the LP group and LPFSG group.  

 LP Group 

(range) 

LPFSG Group 

(range) 

p-value 

BMD (mg/cm3) 32.1±15.0 

(13.4-52.9) 

33.7±15.2 

(12.2-58.9) 

0.139 

Varus stiffness (N/mm) 265.3±146.7 

(61.9-447.0) 

417.7±116.3 

(258.1-623.2) 

0.014 

Internal torsion stiffness (N/deg) 2.3±0.9 

(1.0-3.5) 

0.7±0.4 

(0.2-1.6) 

0.003 

External torsion stiffness (N/deg) 1.7±0.9 

(1.0-3.5) 

0.7±0.3  

(0.4-1.0) 

0.003 

Axial compression stiffness 

(N/mm) 

320.9±182.2 

(93.0-590.3) 

384.6±128.0 

(109.1-513.6) 

0.223 

Single load to failure (N) 199.5±119.8 

(54.0-365.4) 

455.5±416.5 

(196.8-1609.8) 

0.011 
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ABSTRACT(IN KOREAN) 

외측벽 분쇄를 동반한 상완골 외과적 경부 골절에 대한 비골 지주 

이식의 생체역학적 효과 

 

<지도교수 천용민> 

 

연세대학교 대학원 의학과 

 

장선호 

 

 

 

외측벽 분쇄를 동반한 골다공증성 근위 상완골 골절에 대한 잠금판 고정의 

안정성에 대한 비골 지주 보강의 효과를 평가한 연구는 현재까지 알려진 바가 

없다. 본 연구의 목적은 외측 피질 분쇄를 동반한 골다공증성 상완골 외과적 

경부 골절 모델에서 잠금 플레이트 단독 사용군과 비교하여 비골 지주 

이식보강을 시행한 잠금 플레이트 고정군의 안정성을 평가하는데 있다. 좌/우 

동일한 개수의 냉동 사체 상완골 10쌍을 잠금 플레이트 단독군 (LP)과 비골 

지주 이식보강을 시행한 잠금 플레이트 고정군 (LPFSG)으로 나누어, 두 

그룹을 무작위로 할당하였다. 내반 (varus), 내측/외측 비틀림 (internal/external 

torsion), 축성 압박 (axial compression) 및 단일 하중에서 금속판 파손 강도 

(single load to failure) 값이 측정되었으며, LPFSG 그룹은 축성 압박 외 모든 

지표에서 통계적으로 유의미하게 더 높은 값들을 나타냈다. 결론적으로, 본 

생체역학적 연구를 통해 외측벽 분쇄를 동반한 골다공증성 근위 상완골 

골절에서 잠금판 고정 단독 사용에 비해 비골 지주 보강을 시행할 경우 내반 

강성, 내측/외측 비틀림 강성 및 금속판 파손 강도를 크게 향상시키는 것을 

확인하였다. 

 

 

                                                                   

핵심되는 말: 상완골 외과적 경부 골절, 외측벽 분쇄 골절, 비골 지주 

이식, 생체역학연구 
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