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Abstract 

Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant 

Chemotherapy for ER+ HER2- Locally Advanced Breast Cancer  

: A Machine Learning Model with Comprehensive Radiomic Features from 

Tumoral and Peritumoral regions across MRI sequences 

 

Jiwoo Park 

 

Department of Medicine 

The Graduate School, Yonsei University  
 

(Directed by Professor Min Jung Kim) 
 

Objective: To predict the optimal patients who can achieve pathologic complete 

response (pCR) after neoadjuvant chemotherapy (NAC) before starting treatment for the 

ER+ HER2- locally advanced breast cancer (LABC) patient group, which is currently 

known to have a poor response to NAC. 

Methods: This retrospective study was conducted on 265 patients who were 

diagnosed with ER+ HER2- LABC, underwent pretreatment magnetic resonance imaging 

(MRI) and performed NAC and whose final pathology was confirmed by surgery at our 

hospital between 2010 and 2020. Based on January 2016, the day of pretreatment MRI, the 

patients were divided into the training and validation cohorts. In this study, the volume of 

interest (VOI) was drawn for the tumoral and peritumoral regions in the pretreatment MRI, 

and three MRI sequences were used; T1-weighted fat-suppressed early and delayed post-

contrast subtraction sequences (Ph2 and Ph6, respectively) and T2-weighted fat-suppressed 

sequence (T2FS). Seven machine learning models were constructed on the tumoral, 

peritumoral and tumoral + peritumoral texture features from each sequence, and models 

equally created by combining with one another across two different sequences. The same 

process was applied in constructing the models incorporating the clinical factors including 

patient age, tumor size and ER and PR expression rates. The pCR prediction performance 
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was evaluated and compared for all models based on receiver operator characteristic curve 

and area under the curve (AUC) values. 

Results: A total of 7,533 texture features were obtained from the VOIs of three 

pretreatment MRI sequences. Among the models for a single sequence, the SVM model on 

the tumor + peritumor 1 mm VOIs in the Ph2 demonstrated superior performance 

(AUC=0.9447). And the K-Nearest Neighbor combination model on the tumor + peritumor 

1 mm VOIs in Ph2 and on the peritumor 3 mm VOI in the T2FS exhibited the best 

performance (AUC=0.9631). 

Conclusion: We suggest that the combination machine learning model 

incorporating tumoral and peritumoral texture features across the different MRI sequences 

can make more accurate pretreatment pCR prediction for NAC response of ER+HER2- 

LABC patients. Our results are also anticipated to make a potential contribution to the 

development of clinical therapeutic strategies. 

                                                                   

Key words : ER+ HER2- locally advanced breast cancer, neoadjuvant chemotherapy 

(NAC), pathological complete response (PCR), tumoral radiomics, peritumoral radiomics, 

pretreatment MRI, radiomics, machine learning (ML) 
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I. Introduction 

 Breast cancer is the most common female cancer worldwide 1,2. Among them, 

ER+ HER2- breast cancer has consistently increased in number since surpassing the 

incidence of ER- breast cancer in 1950 2. Overall, ER+ HER2- breast cancer has a good 

prognosis compared to other breast cancer subtypes, but due to the high incidence, it is the 

main subtype that accounts for the highest proportion of breast cancer mortality 2. 

The treatment of ER+HER2- breast cancer can be broadly divided into early stage 

with no lymph node (LN) involvement and advanced stage with LN involvement. Currently, 

for the early breast cancer without LN involvement, the oncotype DX breast recurrence 

score is used as a quantitative measurement using RT-PCR to predict the chemotherapy 

response for patients requiring adjuvant chemotherapy 3. For the locally advanced breast 

cancer (LABC) with LN involvement, the standard protocol has so far been the operation 

after neoadjuvant chemotherapy (NAC) 4,5. For NAC, first, the lesion size is reduced to 

improve the operability, and notably, the pathologic complete response (pCR) upon the 

operation after NAC has been proven as a powerful prognostic factor of the patients’ long-
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term outcomes 6,7,8. Nonetheless, when the effect of NAC is compared with breast cancer 

of other molecular subtypes, it is rather known to be poor NAC response 4,5. According to 

a meta-analysis study, the pCR rate of LABC upon the operation after NAC varied from 

26.5% to 39.0% in other molecular subtypes, the ER+HER2- subtype showed a significant 

difference with a rate of 7.2% to 13.0% 9. In this respect, we have focused on identifying, 

at an early stage, patients within the minority of approximately 10% of ER+ HER2- LABC 

patients who exhibit a favorable response to NAC and have the potential to achieve a pCR 

upon the operation. For this purpose, we aimed to utilize magnetic resonance imaging 

(MRI), a representative modality for treatment response evaluation, to classify these 

patients and potentially provide clinical assistance 6,7,10.  

In the early days, MRI has been used to measure the lesion size, volume, 

morphologic features, and enhancement patterns in the assessment of treatment response 

11. Since then, with technological advancement, there have been attempts to predict NAC 

by multi-parametric MRI, where diffusion or perfusion is used, magnetic resonance 

spectroscopy (MRS) and fluorodeoxyglucose (FDG)-positron emission tomography (PET), 

etc. 7,12. Nevertheless, it has been still a challenge to design a set of parameters with high 

accuracy and reproducibility. Recently, radiomics research using MRI texture features has 

been actively conducted 3, 10. The MRI texture analysis (TA) is advantageous in allowing 

an objective MRI-based evaluation by quantifying a large amount of data reflecting the 

heterogeneity of internal tissue components that are difficult to observe by the naked eye 

13. Moreover, MRI radiomic features are applied to the field of machine learning models 

composed of key texture features, and it leads to attempts to increase the reproducibility of 

assessment 14.  

Most previous studies that have utilized MRI to predict the pCR rate of breast 

cancer can be broadly divided into two general aspects based on the region of interest in 

the imaging. First, many studies have attempted to explain the treatment responses through 

the change in values in initial MRI and early or mid-term MRI after NAC 15,16. However, 

in evaluating residual lesion in the follow-up MRI, it has been reported to either over- or 
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under-estimate the lesions due to various changes associated with the treatment response 

17. More importantly, the experience of drug toxicity or delay of suitable treatments by the 

patients who end up receiving unnecessary treatments should be considered. Thus, this 

study focused on how to refine the prediction of pCR in pretreatment MRI. Second, in 

many previous studies, when evaluating lesions on MRI, the focus was mainly on the tumor 

region, but in this study, the peritumoral region is also evaluated and analyzed 18,19,20. Based 

on the several study results that the peritumoral region can be a critical to the response of 

NAC by reflecting angiogenic or lymphangiogenic activity, this study focused more on 

confirming the importance of the peritumoral region 21,22. So far, a few recent studies have 

attempted to use pretreatment MRI only or include the peritumoral region as a 

consideration 21,23, but these studies considered the ER+HER2- subtype, the focus of this 

study, only as a part of the study population, and no study has yet investigated the 

pretreatment NAC response with a focus on the ER+HER2- subtype.  

Therefore, this study aimed to develop and validate a reproducible practical 

machine learning model with the texture feature incorporating both the tumoral and 

peritumoral regions across initial MRI sequences before treatment in ER+ HER2- LABC 

patients whose NAC response is notably low. Through this study, we hope to provide 

practical help for clinicians to establish a tailored therapy strategies by stratifying this 

patient population prior to treatment.  

 

II. Materials and Methods 

1. Patient population and study design 

 This retrospective study was approved by the institutional review board of our 

hospital, and the requirement for informed consent was waived.  

From January 2010 to December 2020, 2,349 patients with advanced breast cancer 

received neoadjuvant chemotherapy (NAC) at our hospital. Among them, 818 patients were 

diagnosed as ER+ HER2- locally advanced breast cancer (LABC) subtype. First, 403 

patients were excluded due to the lack of raw data of dynamic study in Picture Archiving 
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and Communication System (PACS). Next, patients were excluded if they had a history of 

previous treatment, could not confirm the initial axillary LN metastasis cytology results or 

final pathology results, did not have a pretreatment MRI or all four MRI sequences focused 

on the study (T1-weighted fat-suppressed pre-contrast, early and delayed post-contrast 

subtraction sequences and T2-weighted fat-suppressed sequence) or had insufficient image 

quality to perform lesion segmentation. Lastly, the inclusion criteria were patients who (1) 

had a pretreatment MRI performed at our center, (2) completed all cycles of NAC and had 

surgery with final pathologic report whether achieving pCR or non-pCR, (3) can be 

confirmed that all four sequences with sufficient quality for segmentation, resulting in a 

total of 265 enrolled patients. 

  

Figure 1. Flowchart of patient selection and data set 

Abbreviations: NAC, neoadjuvant chemotherapy; LABC, locally advanced breast cancer; 
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MRI, magnetic resonance imaging; Ph2, T1-weighted fat-suppressed early post-contrast 

subtraction sequences; Ph6, T1-weighted fat-suppressed delayed post-contrast subtraction 

sequences; T2FS, T2-weighted fat-suppressed sequence; pCR, pathologic complete 

response.  

 

Based on the date of the pretreatment MRI scans, it was divided into training and 

validation cohorts. The 195 patients who had MRI from 2010 to 2015 were included into 

the training cohort. Another 70 patients who had undergone MRI from 2016 to 2020 were 

included as the validation cohort. The patient selection process is shown in Figure 1. 

 

2. MRI acquisition 

The breast MRI examinations was performed with the patients in a prone 

position in a 3.0T scanner (MR750, GE Healthcare, Milwaukee, WI, USA or TrioTim, 

Siemens Healthcare, Erlangen, Germany using dedicated eight- or four-channel breast 

coil, respectively). The following images have been commonly obtained after the 

localizer images from one of the two types of scanners: T2 weighted fast spin echo axial 

images (TR/TE, 9100/100 ms; flip angle, 110°; matrix, 416×256 pixels; section thickness, 

3 mm, or TR/TE, 4360/82ms; flip angle, 150°; matrix, 512×512 pixels; section thickness, 

3 mm), T2 weighted short time inversion recovery (STIR) axial images (TR/TE, 5000/70 

ms; inversion time, 200 ms; flip angle, 110°; matrix, 320×256 pixels; section thickness, 3 

mm), and T1-weighted fat-suppressed pre-contrast and 3D dynamic post-contrast 

enhanced (DCE) axial images (TR/TE, 5.6/1.7 ms; flip angle, 12°; matrix, 280×512 

pixels; section thickness, 3 mm, or TR/TE, 280/2.6 ms; flip angle, 65°; matrix, 343×512 

pixels; section thickness, 3 mm) with one pre-contrast and six post-contrast dynamic 

series obtained before and after a bolus injection of 0.1 mmol/kg body weight of 

gadolinium-based contrast agent (Dotarem, Guerbet, Paris, France; Magnevist, Berlex 

Laboratories, Wayne, NJ, or Gadovist, Bayer Schering Pharma, AG, Berlin, Germany) at 

a rate of 2 mL/s, followed by 20 mL saline flush. Post-processing, image subtraction was 
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performed by subtracting the pre-contrast images from post-contrast images. The field of 

view was 32–34 cm for all of the MRI sequences. 

  

3. Volume of interest (VOI) segmentation  

The VOI segmentation of tumors was first semi-automatically performed along 

the margin of the tumor in the axial scan of T1-weighted fat-suppressed early post-

contrast subtraction sequences (Ph2) by a radiologist (PJW with 5 years of experience in 

radiology) using a 3D-Slicer (version 5.0.2) software, and the accuracy of the image up to 

the 3D margin on the coronal and sagittal planes was checked with necessary 

modifications. For peritumoral VOI segmentation, the tumor mask was 3D dilated to a 

range of 1 mm and 3 mm, followed by the subtraction of the previous tumor mask (Figure 

2). The same process was applied to the T1-weighted fat-suppressed delayed post-contrast 

subtraction sequences (Ph6) and T2-weighted fat-suppressed sequence (T2FS). In this 

way, 15 VOIs of tumoral, peritumoral (1mm, 3mm), and tumoral + peritumoral (1mm, 

3mm) were obtained for Ph2, Ph6 and T2FS in each patient's pretreatment MRI. The 

process was evaluated by another senior radiologist (KMJ with 23 years of experience in 

radiology) to evaluate and revise the tumoral and peritumoral VOI segmentations so as to 

reconfirm the entire procedure.  
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Figure 2. Segmentation on T1-weighted fat-suppressed early post-contrast subtraction 

sequence for a patient with histologically confirmed ER+ HER2- LABC. (A) axial (B) 

coronal (C) sagittal tumoral masks, (D) axial-1mm (E) axial-3mm peritumoral mask 

Abbreviations: LABC, locally advanced breast cancer  
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4. MRI preprocessing and radiomic texture feature extraction 

For the segmented VOIs, N4ITK MRI bias correction was applied to improve the 

non-uniformity of MR images between different patients 24, and the variation between data 

was minimized by normalizing the gray-level value as shown in this formula, 

f(x)=
s(x-μx)

σx
  25. Here, x is the amplitude of the image, μx is the average of the image 

values, σx is the standard deviation of the image, and s is an optional scaling value set to 

10 to prevent errors in the calculation of radiomic features that may occur due to a relatively 

large standard deviation. Then, after resampling the image with a 1×1×1mm iso-voxel, 863 

radiomic features were extracted from each VOI of three sequences, respectively. Among 

the extracted features diagnostic features (n=12), which are information on the entire image, 

not VOI, and shape features among original features (n=14), which are information related 

to tumor size or volume measurable in conventional MRI, were excluded. The final feature 

set incorporated 2511 features for each sequence, and a total of 7533 features were 

extracted from each patient.  

 

5. Dimension reduction  

Python 3.8 was used from the data handling to the machine learning steps, and the 

key feature selection on the radiomic features extracted from each VOI was performed in 

two steps: First, the Mann-Whitney U test was used with statistical significance related to 

pCR or non-pCR prediction (p<0.05). Second, through the random forest (RF) algorithm, 

the top 30 features were selected for the radiomic feature importance in pCR prediction. 

Prior to data training, the Standard scaler was applied to adjust the deviating scales of 

radiomic features and reduce the influence of outliers. Additionally, the Synthetic Minority 

Over-sampling Technique (SMOTE) was performed to reduce the problem of overfitting 

toward non-pCR due to the numerical imbalance between the pCR and non-pCR groups, 

even if the number reflects the actual clinical pCR rate of ER+ HER2- LABC.  
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6. Development of pCR prediction model in the training cohort 

A. Model development in each sequence 

First, the process of the pCR prediction model development was performed for 

each sequence individually. The seven representative machine learning models were 

created with the key radiomic features for each of the 5 VOIs (tumor, peritumor 1 mm, 

peritumor 3 mm, area from tumor to peritumor 1 mm, and area from tumor to peritumor 3 

mm) in MRI sequences of the training cohort; binary classification model, K-Nearest 

Neighbor model, Support Vector Machine (SVM), Decision Tree classifier, AdaBoost 

classifier, Random Forest (RF) classifier, and Light Gradient-Boosting Machine 

(LightGBM). Five-fold cross validation was conducted, and the optimal model for each 

VOI was selected based on the area under the curve (AUC) value. 

 

B. Model development across different sequences 

Next, to construct a more sophisticated pCR prediction model, the seven machine 

learning models were created with the sets of selected key radiomic features in combination 

for tumoral, peritumoral and tumoral + peritumoral VOIs across sequences from the 

training cohort. The training and testing processes were identical as above, and the AUC 

values were used to select the optimal model. 

 

C. Model development using clinical factors 

Lastly, a model incorporating clinical factors instead of radiomics features was 

created as a comparison group and its performance was evaluated. we selected patient age, 

tumor size, estrogen and progesterone receptor expression levels as clinical characteristics 

potentially associated with the prognosis of the disease, excluding the fixed variables; the 

molecular subtype of breast cancer and the presence of axillary lymph node metastasis. 
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7. Performance of the pCR prediction model in the validation cohort 

We validated the predictive performance of the optimal models developed using 

radiomic features extracted from each sequence's VOIs, radiomic features combined from 

VOIs across different sequences, and clinical factors in the validation cohort. After 

calculating the AUC, precision, recall and F1 score, the predictive performance of the 

model was evaluated using the AUC value of the receiver operator characteristic (ROC) 

curve. The entire process of this study is summarized in Figure 3. 

 

Figure 3. Radiomics workflow used in this study.  

Abbreviations: Ph2, T1-weighted fat-suppressed early post-contrast subtraction sequence; 

Ph6, T1-weighted fat-suppressed delayed post-contrast subtraction sequences; T2FS, T2-

weighted fat-suppressed sequence 

 

8. Statistical analysis 

The clinical characteristics were expressed as mean and standard deviation for 

continuous variables, and categorical variables were summarized as frequencies and 
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percentages. Continuous variables were tested using the Mann–Whitney U test, and 

categorical variables were compared by using the x2 test. The statistical significance was 

accepted where P values were <0.05.  

 

III. Results 

1. Patient characteristics 

In this study, pretreatment MRIs of a total of 265 ER+ HER2- LABC patients 

with axillary LN metastasis were included. The clinical and histological factors of the pCR 

and non-pCR groups, considering the pCR which is the end point in this study, are shown 

in the table below (Table 1).  

Table 1. Comparison of the patient characteristics between non-pCR and pCR groups. 

 non-pCR pCR p value 

 n=238 (89.8%) n=27 (10.2%)  

Age, years 49.2 ± 9.1 48.6 ± 6.2 0.975 

Tumor size, mm 14.5 ± 6.7 16.9 ± 9.3 0.210 

ER expression, % 85.6 ± 20.5 75.3 ± 30.7 0.058 

PR expression, % 34.3 ± 36.3 28.9 ± 38.9 0.386 

Abbreviations: pCR, pathologic complete response; ER, estrogen receptor; PR, 

progesterone receptor.  

 

Among the patients, 238 (89.8%) patients were non-pCR and 27 (10.2%) patients 

reached pCR. The mean age was 49.2 years in the non-pCR group and 48.6 years in the 

pCR group with no significant difference. Additionally, we could confirm from our 

hospital’s patient cohort in 10 years, that there was no difference in tumor size and estrogen 

and progesterone receptor expression level between the pCR and non-pCR groups.  

Next, the comparison of the training cohorts and validation cohorts is shown in the 
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Table 2. The two cohorts had no significant difference in the pCR rate, with 9.7% and 

11.4%, respectively. And Table 2 provides other characteristics in two cohorts including 

patient age, tumor size and estrogen and progesterone receptor expression level. 

 

Table 2. Comparison of the patient characteristics between the training and validation 

cohorts.  

  Train Validation p value 

  n=195 (73.6%) n=70 (26.4%)  

Pathology non-pCR 176 (90.3%) 62 (88.6%) 0.865 

 pCR 19 (9.7%) 8 (11.4%)  

Age, years  48.5 ± 8.4 51.0 ± 9.9 0.043 

Tumor size, mm  15.2 ± 7.1 13.0 ± 6.3 0.057 

ER expression, %  85.2 ± 21.7 82.8 ± 22.5 0.408 

PR expression, %  30.9 ± 35.7 41.7 ± 38.0 0.016 

Abbreviations: pCR, pathologic complete response; ER, estrogen receptor; PR, 

progesterone receptor. 

 

2. Radiomic texture feature composition and dimension reduction 

As previously mentioned, excluding diagnostic features and shape features, 837 

radiomic texture features per VOI were extracted from each patient's pretreatment MRI. 

These features consist of 93 original features and 744 wavelet features and Table 3 presents 

more details.  

Table 3. The radiomic features extracted via 3D Slicer PyRadiomics 

Image type Feature Class Num of features 

original First-order 18 

original GLCM 24 

original GLDM 14 
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original GLRLM 16 

original GLSZM 16 

original NGTDM 5 

wavelet-HHH First-order 18 

wavelet-HHH GLCM 24 

wavelet-HHH GLDM 14 

wavelet-HHH GLRLM 16 

wavelet-HHH GLSZM 16 

wavelet-HHH NGTDM 5 

wavelet-HHL First-order 18 

wavelet-HHL GLCM 24 

wavelet-HHL GLDM 14 

wavelet-HHL GLRLM 16 

wavelet-HHL GLSZM 16 

wavelet-HHL NGTDM 5 

wavelet-HLH First-order 18 

wavelet-HLH GLCM 24 

wavelet-HLH GLDM 14 

wavelet-HLH GLRLM 16 

wavelet-HLH GLSZM 16 

wavelet-HLH NGTDM 5 

wavelet-HLL First-order 18 

wavelet-HLL GLCM 24 

wavelet-HLL GLDM 14 

wavelet-HLL GLRLM 16 

wavelet-HLL GLSZM 16 

wavelet-HLL NGTDM 5 

wavelet-LHH First-order 18 
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wavelet-LHH GLCM 24 

wavelet-LHH GLDM 14 

wavelet-LHH GLRLM 16 

wavelet-LHH GLSZM 16 

wavelet-LHH NGTDM 5 

wavelet-LHL First-order 18 

wavelet-LHL GLCM 24 

wavelet-LHL GLDM 14 

wavelet-LHL GLRLM 16 

wavelet-LHL GLSZM 16 

wavelet-LHL NGTDM 5 

wavelet-LLH First-order 18 

wavelet-LLH GLCM 24 

wavelet-LLH GLDM 14 

wavelet-LLH GLRLM 16 

wavelet-LLH GLSZM 16 

wavelet-LLH NGTDM 5 

wavelet-LLL First-order 18 

wavelet-LLL GLCM 24 

wavelet-LLL GLDM 14 

wavelet-LLL GLRLM 16 

wavelet-LLL GLSZM 16 

wavelet-LLL NGTDM 5 

 

Abbreviations: GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence 

matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size- zone matrix; 

NGTDM, neighboring gray tone difference matrix. 

837 radiomic texture features included 93 original (first-order, shape, gray-level 
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co-occurrence matrix (GLCM), gray-level dependence matrix (GLDM), gray-level run-

length matrix (GLRLM), gray-level size-zone matrix (GLSZM), neighboring gray tone 

difference matrix (NGTDM)), and 744 wavelet features. And first, Mann-Whitney U test 

was used to remove 16 features showing no significant difference between pCR and non-

pCR, then for the remaining 821 features are ranked by the importance values from the 

Random Forest (RF) algorithm, and the top 30 features were chosen.  

 

3. Performance of the pCR prediction model in each sequence 

Table 4 presents the final pCR prediction performance in the validation cohort 

that were confirmed by applying the optimal machine learning models developed from each 

of the five types of VOIs in a sequence. A general look at the table reveals that the models 

derived from the Ph2 and T2FS show relatively high AUC values, while even the best 

performing models in the Ph6 do not exceed an AUC value of 0.9. And the best model for 

pCR prediction of NAC in ER+ HER2- LABC in respective three sequences is SVM model 

of tumor + peritumor 1mm on Ph2 (AUC = 0.9447, recall = 91%, precision = 91%, and F1 

score = 91%). The ROC curves and AUCs of the fifteen models in the validation cohorts 

are shown in Figure 4, and it can be confirmed once again that the overall high AUC value 

is shown in Ph2.  

 

Table 4. The predictive performance of pCR in the validation cohort using the optimal 

machine learning models developed for tumoral, peritumoral, and tumoral + peritumoral 

VOIs in each sequence 

Type Rank AUC Precision Recall F1-score Best Model 

Tumor (Ph2) 8 0.8594 0.9093 0.8696 0.8840 SVC 

Tumor (Ph6) 15 0.7005 0.8731 0.7826 0.8166 Random Forest Classifier 

Tumor (T2FS) 12 0.8018 0.8984 0.6667 0.7327 SVC 

Peri1 (Ph2) 3 0.9171 0.9335 0.8986 0.9098 Logistic Regression 
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Peri1 (Ph6) 9 0.8422 0.9051 0.8986 0.9015 K Neighbors Classifier 

Peri1 (T2FS) 13 0.7995 0.8851 0.8406 0.8582 Random Forest Classifier 

Peri3 (Ph2) 6 0.8756 0.8934 0.8696 0.8795 Random Forest Classifier 

Peri3 (Ph6) 10 0.8249 0.8366 0.7826 0.8066 AdaBoost Classifier 

Peri3 (T2FS) 11 0.8134 0.9215 0.6522 0.7203 Logistic Regression 

Tumor_peri1 (Ph2) 1 0.9447 0.9130 0.9130 0.9130 SVC 

Tumor_peri1 (Ph6) 5 0.8917 0.9193 0.9275 0.9185 AdaBoost Classifier 

Tumor_peri1 (T2FS) 2 0.9240 0.9442 0.9275 0.9330 AdaBoost Classifier 

Tumor_peri3 (Ph2) 4 0.9009 0.8061 0.8841 0.8433 Random Forest Classifier 

Tumor_peri3 (Ph6) 14 0.7189 0.8450 0.7246 0.7718 Decision Tree Classifier 

Tumor_peri3 (T2FS) 7 0.8710 0.9193 0.9275 0.9185 SVC 

Abbreviations: Ph2, T1-weighted fat-suppressed early post-contrast subtraction sequence; 

Ph6, T1-weighted fat-suppressed delayed post-contrast subtraction sequences; T2FS, T2-

weighted fat-suppressed sequence, Peri1, peritumoral region, 1mm; Peri3, peritumoral 

region, 3mm Tumor_peri1, tumoral + 1mm peritumoral region; Tumor_peri3, tumoral + 

3mm peritumoral region; SVM, Support Vector Machine. 

 

(A) 

 



１７ 

 

(B) 

 

(C) 

 

Figure 4. The ROC curve for the predictive performance of pCR in the validation cohort 

using the optimal machine learning models in each sequence. 

(A) AUC of the tumor, Peri1, Peri3, Tumor_peri1, and Tumor_peri3 on Ph2, (B) AUC of 

the tumor, Peri1, Peri3, Tumor_peri1 and Tumor_peri3 on Ph6, (C) AUC of the tumor, 

Peri1, Peri3, Tumor_peri1, and Tumor_peri3 on T2FS.  

Abbreviations: Ph2, T1-weighted fat-suppressed early post-contrast subtraction sequence; 

Ph6, T1-weighted fat-suppressed delayed post-contrast subtraction sequences; T2FS, T2-

weighted fat-suppressed sequence, Peri1, peritumoral region, 1mm; Peri3, peritumoral 

region, 3mm, Tumor_peri1, tumoral + 1mm peritumoral region; Tumor_peri3, tumoral + 

3mm peritumoral region; FPR false positive rate; TPR true positive rate 
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4. Performance of the pCR prediction in combination model across 

sequences 

We confirmed the predictive performance of pCR for the optimal machine 

learning model developed from 75 VOIs combining tumoral and peritumoral regions in 

two different sequences for the validation cohort. The KNN model with key radiomics 

features derived from a combination of VOIs ranging from the tumor to peritumor 1mm in 

Ph2 and peritumor 3mm VOI in T2FS exhibited the best pCR prediction performance with 

an AUC of 0.96. The pCR prediction performances based on combination of tumoral and 

peritumoral regions of different sequences are shown in Table 5. Additionally, Figure 5 

compares the ROC curve of the optimal model developed using the tumoral VOI, the 

peritumoral 1mm VOI, and the tumoral-peritumoral 1mm VOI of Ph2, and the peritumoral 

3mm VOI of T2FS, which are the components of the combination model. And the Cochran 

Q test verified that there is a significant difference between these five models at the p<0.001 

level.  

Table 5. Predictive performance of pCR in the validation cohort using the optimal 

machine learning models based on combination of tumoral and peritumoral regions across 

sequences  

Type1 Type2 Rank AUC Precision Recall F1-
score Best Model 

Tumor_peri1 (Ph2) Tumor (Ph6) 5 0.9378 0.9207 0.9130 0.8824 SVC 

Tumor_peri1 (Ph2) Tumor (T2FS) 9 0.9194 0.9335 0.8986 0.9098 SVC 

Tumor_peri1 (Ph2) Peri1 (Ph6) 6 0.9309 0.9329 0.9275 0.9088 AdaBoost 

Tumor_peri1 (Ph2) Peri1 (T2FS) 21 0.9032 0.9196 0.8406 0.8655 SVC 

Tumor_peri1 (Ph2) Peri3 (Ph6) 9 0.9194 0.8981 0.9130 0.8970 LGBM 

Tumor_peri1 (Ph2) Peri3 (T2FS) 1 0.9631 0.9234 0.9275 0.9250 K Neighbors 

Tumor_peri1 (Ph2) Tumor_peri1 
(Ph6) 14 0.9101 0.8981 0.9130 0.8970 LGBM 
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Tumor_peri1 (Ph2) Tumor_peri1 
(T2FS) 12 0.9171 0.9137 0.8841 0.8950 SVC 

Tumor_peri1 (Ph2) Tumor_peri3 
(Ph6) 6 0.9309 0.9234 0.9275 0.9250 LGBM 

Tumor_peri1 (Ph2) Tumor_peri3 
(T2FS) 2 0.9505 0.9325 0.9275 0.9297 K Neighbors 

Tumor_peri1 (T2FS) Tumor (Ph2) 25 0.8963 0.8987 0.8841 0.8904 LGBM 

Tumor_peri1 (T2FS) Tumor (Ph6) 51 0.8594 0.9093 0.8696 0.8840 AdaBoost 

Tumor_peri1 (T2FS) Peri1 (Ph2) 9 0.9194 0.9420 0.9420 0.9420 Logistic 

Tumor_peri1 (T2FS) Peri1 (Ph6) 28 0.8940 0.9188 0.8986 0.9062 LGBM 

Tumor_peri1 (T2FS) Peri3 (Ph2) 17 0.9078 0.9420 0.9420 0.9420 LGBM 

Tumor_peri1 (T2FS) Peri3 (Ph6) 55 0.8525 0.9021 0.8406 0.8624 Logistic 

Tumor_peri1 (T2FS) Tumor_peri1 
(Ph6) 41 0.8779 0.8963 0.8116 0.8411 AdaBoost 

Tumor_peri1 (T2FS) Tumor_peri3 
(Ph2) 14 0.9101 0.8981 0.9130 0.8970 Random 

Forest 

Tumor_peri1 (T2FS) Tumor_peri3 
(Ph6) 58 0.8364 0.8816 0.8261 0.8478 Logistic 

Peri1 (Ph2) Tumor (Ph6) 31 0.8894 0.9033 0.9130 0.9065 LGBM 

Peri1 (Ph2) Tumor (T2FS) 19 0.9055 0.9188 0.8986 0.9062 Logistic 

Peri1 (Ph2) Peri1 (Ph6) 38 0.8802 0.9021 0.8406 0.8624 Logistic 

Peri1 (Ph2) Peri1 (T2FS) 32 0.8871 0.9130 0.9130 0.9130 K Neighbors 

Peri1 (Ph2) Peri3 (Ph6) 43 0.8733 0.8922 0.8986 0.8951 Random 
Forest 

Peri1 (Ph2) Peri3 (T2FS) 17 0.9078 0.9130 0.9130 0.9130 Logistic 

Peri1 (Ph2) Tumor_peri1 
(Ph6) 48 0.8641 0.9455 0.9420 0.9313 LGBM 

Peri1 (Ph2) Tumor_peri3 
(Ph6) 32 0.8871 0.9130 0.9130 0.9130 Logistic 

Peri1 (Ph2) Tumor_peri3 
(T2FS) 30 0.8917 0.9420 0.9420 0.9420 Random 

Forest 

Tumor_peri3 (Ph2) Tumor (Ph6) 71 0.7926 0.8032 0.8551 0.8284 Random 
Forest 

Tumor_peri3 (Ph2) Tumor (T2FS) 43 0.8733 0.9051 0.8986 0.9015 Random 
Forest 
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Tumor_peri3 (Ph2) Peri1 (Ph6) 3 0.9401 0.9193 0.9275 0.9185 LGBM 

Tumor_peri3 (Ph2) Peri1 (T2FS) 56 0.8433 0.9033 0.9130 0.9065 Random 
Forest 

Tumor_peri3 (Ph2) Peri3 (Ph6) 21 0.9032 0.8507 0.8841 0.8627 Random 
Forest 

Tumor_peri3 (Ph2) Peri3 (T2FS) 38 0.8802 0.8346 0.8551 0.8441 LGBM 

Tumor_peri3 (Ph2) Tumor_peri1 
(Ph6) 19 0.9055 0.8802 0.8986 0.8859 LGBM 

Tumor_peri3 (Ph2) Tumor_peri3 
(Ph6) 43 0.8733 0.8611 0.8696 0.8651 Random 

Forest 

Tumor_peri3 (Ph2) Tumor_peri3 
(T2FS) 8 0.9274 0.9137 0.8841 0.8950 K Neighbors 

Tumor_peri1 (Ph6) Tumor (Ph2) 12 0.9171 0.8074 0.8986 0.8505 SVC 

Tumor_peri1 (Ph6) Tumor (T2FS) 36 0.8825 0.9207 0.9130 0.8824 SVC 

Tumor_peri1 (Ph6) Peri1 (T2FS) 48 0.8641 0.9196 0.8406 0.8655 SVC 

Tumor_peri1 (Ph6) Peri3 (Ph2) 23 0.8986 0.8890 0.8551 0.8688 Logistic 

Tumor_peri1 (Ph6) Peri3 (T2FS) 41 0.8779 0.9130 0.9130 0.9130 Random 
Forest 

Tumor_peri1 (Ph6) Tumor_peri3 
(T2FS) 38 0.8802 0.9130 0.9130 0.9130 Random 

Forest 

Peri3 (Ph2) Tumor (Ph6) 35 0.8836 0.9171 0.8261 0.8547 Decision Tree 

Peri3 (Ph2) Tumor (T2FS) 59 0.8318 0.8915 0.7826 0.8199 Random 
Forest 

Peri3 (Ph2) Peri1 (Ph6) 23 0.8986 0.9335 0.8986 0.9098 Random 
Forest 

Peri3 (Ph2) Peri1 (T2FS) 51 0.8594 0.8785 0.8116 0.8374 Random 
Forest 

Peri3 (Ph2) Peri3 (Ph6) 47 0.8652 0.8915 0.7826 0.8199 AdaBoost 

Peri3 (Ph2) Peri3 (T2FS) 16 0.9090 0.9281 0.7536 0.8016 AdaBoost 

Peri3 (Ph2) Tumor_peri3 
(Ph6) 62 0.8249 0.8642 0.8261 0.8425 Random 

Forest 

Peri3 (Ph2) Tumor_peri3 
(T2FS) 46 0.8687 0.8915 0.7826 0.8199 Random 

Forest 

Tumor_peri3 (T2FS) Tumor (Ph2) 28 0.8940 0.9329 0.9275 0.9088 SVC 

Tumor_peri3 (T2FS) Tumor (Ph6) 73 0.7857 0.8890 0.8551 0.8688 Random 
Forest 

Tumor_peri3 (T2FS) Peri1 (Ph6) 34 0.8848 0.9188 0.8986 0.9062 Random 
Forest 
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Tumor_peri3 (T2FS) Peri3 (Ph6) 69 0.7995 0.8872 0.7536 0.7985 Random 
Forest 

Tumor_peri3 (T2FS) Tumor_peri3 
(Ph6) 74 0.7834 0.8609 0.8116 0.8324 Random 

Forest 

Tumor (Ph2) Tumor (Ph6) 67 0.8018 0.8261 0.8261 0.8261 Random 
Forest 

Tumor (Ph2) Tumor (T2FS) 54 0.8571 0.8798 0.6957 0.7549 Logistic 

Tumor (Ph2) Peri1 (Ph6) 3 0.9401 0.9137 0.8841 0.8950 AdaBoost 

Tumor (Ph2) Peri1 (T2FS) 36 0.8825 0.8934 0.8696 0.8795 Logistic 

Tumor (Ph2) Peri3 (Ph6) 61 0.8272 0.8074 0.8986 0.8505 SVC 

Tumor (Ph2) Peri3 (T2FS) 25 0.8963 0.8981 0.9130 0.8970 SVC 

Tumor (Ph2) Tumor_peri3 
(Ph6) 57 0.8410 0.8851 0.8406 0.8582 Random 

Forest 

Peri1 (Ph6) Tumor (T2FS) 51 0.8594 0.9207 0.9130 0.8824 SVC 

Peri1 (Ph6) Peri1 (T2FS) 59 0.8318 0.8915 0.7826 0.8199 SVC 

Peri1 (Ph6) Peri3 (T2FS) 25 0.8963 0.9021 0.8406 0.8624 Random 
Forest 

Peri3 (Ph6) Tumor (T2FS) 66 0.8111 0.8933 0.6087 0.6847 SVC 

Peri3 (Ph6) Peri1 (T2FS) 50 0.8618 0.9234 0.9275 0.9250 Random 
Forest 

Peri3 (Ph6) Peri3 (T2FS) 70 0.7972 0.8582 0.5217 0.6100 Logistic 

Peri3 (T2FS) Tumor (Ph6) 67 0.8018 0.8915 0.7826 0.8199 Random 
Forest 

Peri3 (T2FS) Tumor_peri3 
(Ph6) 75 0.7097 0.8148 0.7681 0.7900 Random 

Forest 

Tumor (T2FS) Tumor (Ph6) 63 0.8226 0.8872 0.7536 0.7985 Random 
Forest 

Tumor (T2FS) Tumor_peri3 
(Ph6) 72 0.7880 0.8725 0.8551 0.8629 LGBM 

Peri1 (T2FS) Tumor (Ph6) 64 0.8203 0.8922 0.8986 0.8951 Random 
Forest 

Peri1 (T2FS) Tumor_peri3 
(Ph6) 65 0.8157 0.9207 0.9130 0.8824 SVC 

Abbreviations: Ph2, second-post contrast subtraction image; Ph6, sixth-post contrast 

subtraction image; T2FS, T2 weighted fat-saturated image, Peri1, peritumoral region, 1mm; 

Peri3, peritumoral region, 3mm Tumor_peri1, tumoral + 1mm peritumoral region; 
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Tumor_peri3, tumoral + 3mm peritumoral region; SVM, Support Vector Machine; LGBM, 

Light Gradient-Boosting Machine. 

 

Figure 5. Comparison of the pCR prediction performance: The best combination model of 

the VOI from tumor to peritumor 1 mm in Ph2 and the peritumor 3 mm VOI in T2FS as 

well as the respective component VOI models. 

Abbreviations: Ph2, T1-weighted fat-suppressed early post-contrast subtraction sequence; 

T2FS, T2-weighted fat-suppressed sequence; Peri1, peritumoral region, 1mm; 

Tumor_peri1, tumoral + 1mm peritumoral region; Peri3, peritumoral region, 3mm; FPR 

false positive rate; TPR true positive rate 

5. Diagnostic performance of clinical model 

Furthermore, we applied the same process to confirm the predictive performance 

of pCR for clinical factors that may be associated with the patient's prognosis in breast 

cancer, such as patient age, tumor size, and estrogen and progesterone expression levels. 

In the validation cohort, the AUC values were generally low for pCR prediction 

performance when compared to the radiomics models. The AUC values for patient age, 

tumor size, and the combination model of patient age and tumor size were 0.63, 0.81, and 

0.67, respectively. The AUC values for estrogen and progesterone expression levels and 
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their combination model were 0.68, 0.64, and 0.53, respectively. The results are 

summarized in Table 6 and Figure 6. 

 

Table 6. pCR prediction performances of the clinical models in the validation cohort  

Features AUC Precision Recall F1-score Model 

Age 0.6261 0.8766 0.7750 0.8180 K Neighbors Classifier 

Tumor size 0.8063 0.9067 0.7500 0.8063 Logistic Regression 

Age + Tumor size 0.6667 0.8936 0.6000 0.6933 Logistic Regression 

ER expression 0.6847 0.8708 0.7250 0.7847 Decision Tree Classifier 

PR expression 0.6396 0.8680 0.7000 0.7675 Random Forest Classifier 

ER + PR expression 0.5315 0.8766 0.7750 0.8180 K Neighbors Classifier 

Abbreviations: ER, estrogen receptor; PR progesterone receptor  

 

Figure 6. The ROC curve for pCR prediction performances of the clinical models in the 

validation cohort 

Abbreviations: ER, estrogen receptor; PR progesterone receptor, FPR false positive rate; 

TPR true positive rate. 
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IV. Discussion 

 The ER+ HER2- locally advanced breast cancer (LABC) has a poor pathologic 

complete response (pCR) rate of around 10%, compared to the 3-40% pCR rates of other 

molecular subtypes upon the operation after neoadjuvant chemotherapy (NAC) 9. Therefore, 

this study aimed to classify the ER+ HER2-LABC patients with a high probability of giving 

an effective response to the NAC, using pretreatment MRI, which is an important modality 

for non-invasive assessment of breast cancer 6,7,10. Several recent studies have attempted to 

create a prognosis prediction model for breast cancer through the radiomic texture feature 

extraction with respect to the pretreatment MRI applied in this study 10,21,26. However, all 

these studies were conducted on the heterogeneous molecular subtype that includes ER+ 

HER2- LABC, the focus in this study, only as a small part of the entire cohort.  

To construct a sophisticated model for the pCR prediction after NAC in ER+ 

HER2- LABC patients, the radiomic texture features of MRI were extracted from the tumor, 

peritumor 1 mm, peritumor 3 mm, area from tumor to peritumor 1 mm and area from tumor 

to peritumor 3 mm, for each of early post-contrast subtraction image, delayed post-contrast 

subtraction image, T2 weighted fat-saturated image. In line with previous studies, it was 

also further established that early post-contrast subtraction image predominantly contains 

the most useful texture features in the machine learning models as a single sequence model 

evaluation 27,28,29. The inclusion of the delayed post-contrast subtraction image in this study 

was based on the previous study by Jin et al., claiming that the texture heterogeneity is 

better reflected in the delayed enhanced phase for breast tumors 30; however, the model 

incorporating the texture features of the tumor in the delayed phase did not produce more 

powerful data in comparison to other sequences in our study. 

Furthermore, not only the tumoral region as the basis of determining the VOI for 

the radiomic feature extraction in MRI but also the peritumoral region reported to form a 

microenvironment that affects the NAC response 21,22, were included in this study. Until 
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recently, there have been studies to include the peritumoral region for investigating an 

extended area from the tumoral region to the peritumoral region on a single MRI sequence 

22. In this study, on the other hand, the tumoral and peritumoral regions in combination 

across sequences were examined to construct a more sophisticated model that reflects more 

important sequences related to each region. As a result, the model with the combination of 

the tumoral region in the early enhanced phase and the peritumoral region in the T2FS 

exhibited the highest AUC. This finding is significant as it coincides with the basic 

principle of MRI, that signal alterations for tumors generally arise greater in the T2FS 31,32. 

In the future, more elaborate models need to be performed by combining the tumoral and 

peritumoral regions across different sequences and validated for other molecular subtypes 

of breast cancer. 

There are several limitations in this study. First, there is a possibility of selection 

bias as the study was conducted based on a retrospective design at a single tertiary referral 

center. Second, it is difficult to generalize the results of this study to all breast cancer 

patients as this study intentionally focused on one molecular subtype ER+ HER2- LABC, 

the subtype with the lowest NAC response. For this, follow-up studies should be conducted. 

Third, the target patients were those who received the pretreatment MRI and operation and 

whose final pathological results were available for the 10 years, which is a long period of 

time. However, the pCR rates after NAC did not significantly vary in patients with ER+ 

HER2- breast cancer during this period and the lack of significant difference in the pCR 

rate based on 2016 was the first to be checked in this study. And techniques such as bias 

correction, gray scale normalization and standard scaler were applied in the preprocessing 

to reduce the non-uniformity of MRI images. Fourth, regarding the potential clinical utility, 

more time seems necessary for immediate clinical application of the findings through rapid 

and reliable automatic segmentation. To provide accurate key texture features to constitute 

machine learning models, an accurate VOI segmentation process on the tumor is a 

prerequisite. Although this study used a 3D slicer to produce images in a semi-automatic 

way, the reliability of the VOI produced by the program decreased as the irregularity of 
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tumor margin increased, which demanded the modification by a radiologist and 

reconfirmation by a senior radiologist for the process of refining the VOI segmentation. 

Lastly, the most fundamental limitation is found in the revision of treatment plans for ER+ 

HER2- LABC patients. Despite a mere 10% pCR rate after NAC, NAC is still given to 

ER+ HER2- LABC patients mainly because more effective and specific treatments for this 

patient group are still on the way. Nevertheless, the accumulation of such studies, where 

the NAC-effective and non-effective groups are distinguished, is thought to provide 

continuous support and assistance in the search for therapeutic strategies for clinicians. 

 

V. Conclusion 

To assess the NAC response of ER+ HER2- LABC patients in pretreatment MRI, 

this study applied the radiomic texture features in the tumoral and peritumoral regions 

across MRI sequences. We suggest that the combination machine learning model 

incorporating tumoral and peritumoral texture features across the different MRI sequences 

can make more accurate pCR prediction for NAC response of these patients. Our results 

are also anticipated to make a potential contribution to the development of clinical 

therapeutic strategies.  
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APPENDICIES 

 

Table 4-1. The predictive performance of pCR in the validation cohort using the optimal 

machine learning models developed for tumoral, peritumoral, and tumoral + peritumoral 

VOIs in each sequence 

Type Rank AUC Sensitivity Specitivity Precision Recall F1-score Best Model 

Tumor 
(Ph2) 8 0.8594 0.8571 0.8226 0.9093 0.8696 0.8840 SVC 

Tumor 
(Ph6) 15 0.7005 0.8571 0.5806 0.8731 0.7826 0.8166 RandomForest 

Tumor 
(T2FS) 12 0.8018 0.8571 0.7742 0.8984 0.6667 0.7327 SVC 

Peri1 
(Ph2) 3 0.9171 0.8571 0.9194 0.9335 0.8986 0.9098 Logistic 

Peri1 
(Ph6) 9 0.8422 1.0000 0.6129 0.9051 0.8986 0.9015 KNeighbors 

Peri1 
(T2FS) 13 0.7995 0.8571 0.6774 0.8851 0.8406 0.8582 RandomForest 

Peri3 
(Ph2) 6 0.8756 0.8571 0.7903 0.8934 0.8696 0.8795 RandomForest 

Peri3 
(Ph6) 10 0.8249 1.0000 0.7097 0.8366 0.7826 0.8066 AdaBoost 

Peri3 
(T2FS) 11 0.8134 1.0000 0.6290 0.9215 0.6522 0.7203 Logistic 

Tumor_peri1 
(Ph2) 1 0.9447 1.0000 0.8548 0.9130 0.9130 0.9130 SVC 

Tumor_peri1 
(Ph6) 5 0.8917 0.8571 0.8226 0.9193 0.9275 0.9185 AdaBoost 

Tumor_peri1 
(T2FS) 2 0.9240 0.8571 0.9355 0.9442 0.9275 0.9330 AdaBoost 

Tumor_peri3 
(Ph2) 4 0.9009 1.0000 0.7258 0.8061 0.8841 0.8433 RandomForest 

Tumor_peri3 
(Ph6) 14 0.7189 0.7143 0.6935 0.8450 0.7246 0.7718 DecisionTree 

Tumor_peri3 
(T2FS) 7 0.8710 0.7143 0.9355 0.9193 0.9275 0.9185 SVC 

Abbreviations: Ph2, T1-weighted fat-suppressed early post-contrast subtraction sequence; 

Ph6, T1-weighted fat-suppressed delayed post-contrast subtraction sequences; T2FS, T2-

weighted fat-suppressed sequence, Peri1, peritumoral region, 1mm; Peri3, peritumoral 

region, 3mm Tumor_peri1, tumoral + 1mm peritumoral region; Tumor_peri3, tumoral + 
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3mm peritumoral region.  

Table 5-1. Predictive performance of pCR in the validation cohort using the optimal 

machine learning models based on combination of tumoral and peritumoral regions across 

sequences  

 

Type1 Type2 

R 
a 
n 
k 

AUC Sensitivity Specitivity Precision Recall F1-
score Best Model 

Tumor_peri1 
(Ph2) 

Tumor 
(Ph6) 5 0.9378 1.0000 0.8387 0.9207 0.9130 0.8824 SVC 

Tumor_peri1 
(Ph2) 

Tumor 
(T2FS) 9 0.9194 0.8571 0.9355 0.9335 0.8986 0.9098 SVC 

Tumor_peri1 
(Ph2) 

Peri1 
(Ph6) 6 0.9309 0.8571 0.9194 0.9329 0.9275 0.9088 AdaBoost 

Tumor_peri1 
(Ph2) 

Peri1 
(T2FS) 21 0.9032 0.8571 0.8548 0.9196 0.8406 0.8655 SVC 

Tumor_peri1 
(Ph2) 

Peri3 
(Ph6) 9 0.9194 0.8571 0.8871 0.8981 0.9130 0.8970 LGBM 

Tumor_peri1 
(Ph2) 

Peri3 
(T2FS) 1 0.9631 1.0000 0.8387 0.9234 0.9275 0.9250 KNeighbors 

Tumor_peri1 
(Ph2) 

Tumor_peri1 
(Ph6) 14 0.9101 0.8571 0.8710 0.8981 0.9130 0.8970 LGBM 

Tumor_peri1 
(Ph2) 

Tumor_peri1 
(T2FS) 12 0.9171 0.8571 0.9032 0.9137 0.8841 0.8950 SVC 

Tumor_peri1 
(Ph2) 

Tumor_peri3 
(Ph6) 6 0.9309 1.0000 0.8065 0.9234 0.9275 0.9250 LGBMr 

Tumor_peri1 
(Ph2) 

Tumor_peri3 
(T2FS) 2 0.9505 1.0000 0.7581 0.9325 0.9275 0.9297 KNeighbors 

Tumor_peri1 
(T2FS) 

Tumor 
(Ph2) 25 0.8963 0.8571 0.8871 0.8987 0.8841 0.8904 LGBM 

Tumor_peri1 
(T2FS) 

Tumor 
(Ph6) 51 0.8594 0.8571 0.7581 0.9093 0.8696 0.8840 AdaBoost 

Tumor_peri1 
(T2FS) 

Peri1 
(Ph2) 9 0.9194 1.0000 0.7097 0.9420 0.9420 0.9420 Logistic 

Tumor_peri1 
(T2FS) 

Peri1 
(Ph6) 28 0.8940 0.8571 0.8226 0.9188 0.8986 0.9062 LGBM 

Tumor_peri1 
(T2FS) 

Peri3 
(Ph2) 17 0.9078 0.8571 0.8871 0.9420 0.9420 0.9420 LGBM 

Tumor_peri1 
(T2FS) 

Peri3 
(Ph6) 55 0.8525 0.7143 0.9032 0.9021 0.8406 0.8624 Logistic 

Tumor_peri1 
(T2FS) 

Tumor_peri1 
(Ph6) 41 0.8779 0.7143 0.9355 0.8963 0.8116 0.8411 AdaBoost 

Tumor_peri1 
(T2FS) 

Tumor_peri3 
(Ph2) 14 0.9101 1.0000 0.7097 0.8981 0.9130 0.8970 RandomForest 
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Tumor_peri1 
(T2FS) 

Tumor_peri3 
(Ph6) 58 0.8364 0.5714 1.0000 0.8816 0.8261 0.8478 Logistic 

Peri1 
(Ph2) 

Tumor 
(Ph6) 31 0.8894 0.8571 0.7903 0.9033 0.9130 0.9065 LGBM 

Peri1 
(Ph2) 

Tumor 
(T2FS) 19 0.9055 0.7143 0.9677 0.9188 0.8986 0.9062 Logistic 

Peri1 
(Ph2) 

Peri1 
(Ph6) 38 0.8802 0.7143 0.9839 0.9021 0.8406 0.8624 Logistic 

Peri1 
(Ph2) 

Peri1 
(T2FS) 32 0.8871 0.8571 0.9355 0.9130 0.9130 0.9130 KNeighbors 

Peri1 
(Ph2) 

Peri3 
(Ph6) 43 0.8733 0.7143 0.9194 0.8922 0.8986 0.8951 RandomForest 

Peri1 
(Ph2) 

Peri3 
(T2FS) 17 0.9078 0.8571 0.9516 0.9130 0.9130 0.9130 Logistic 

Peri1 
(Ph2) 

Tumor_peri1 
(Ph6) 48 0.8641 0.7143 0.9839 0.9455 0.9420 0.9313 LGBM 

Peri1 
(Ph2) 

Tumor_peri3 
(Ph6) 32 0.8871 0.8571 0.8871 0.9130 0.9130 0.9130 Logistic 

Peri1 
(Ph2) 

Tumor_peri3 
(T2FS) 30 0.8917 0.7143 0.9677 0.9420 0.9420 0.9420 RandomForest 

Tumor_peri3 
(Ph2) 

Tumor 
(Ph6) 71 0.7926 1.0000 0.5968 0.8032 0.8551 0.8284 RandomForest 

Tumor_peri3 
(Ph2) 

Tumor 
(T2FS) 43 0.8733 0.8571 0.8387 0.9051 0.8986 0.9015 RandomForest 

Tumor_peri3 
(Ph2) 

Peri1 
(Ph6) 3 0.9401 0.8571 0.9516 0.9193 0.9275 0.9185 LGBM 

Tumor_peri3 
(Ph2) 

Peri1 
(T2FS) 56 0.8433 0.7143 0.8871 0.9033 0.9130 0.9065 RandomForest 

Tumor_peri3 
(Ph2) 

Peri3 
(Ph6) 21 0.9032 1.0000 0.7742 0.8507 0.8841 0.8627 RandomForest 

Tumor_peri3 
(Ph2) 

Peri3 
(T2FS) 38 0.8802 1.0000 0.7742 0.8346 0.8551 0.8441 LGBM 

Tumor_peri3 
(Ph2) 

Tumor_peri1 
(Ph6) 19 0.9055 0.8571 0.9032 0.8802 0.8986 0.8859 LGBM 

Tumor_peri3 
(Ph2) 

Tumor_peri3 
(Ph6) 43 0.8733 0.8571 0.8387 0.8611 0.8696 0.8651 RandomForest 

Tumor_peri3 
(Ph2) 

Tumor_peri3 
(T2FS) 8 0.9274 1.0000 0.6935 0.9137 0.8841 0.8950 KNeighbors 

Tumor_peri1 
(Ph6) 

Tumor 
(Ph2) 12 0.9171 0.8571 0.8387 0.8074 0.8986 0.8505 SVC 

Tumor_peri1 
(Ph6) 

Tumor 
(T2FS) 36 0.8825 0.8571 0.8871 0.9207 0.9130 0.8824 SVC 

Tumor_peri1 
(Ph6) 

Peri1 
(T2FS) 48 0.8641 0.8571 0.8710 0.9196 0.8406 0.8655 SVC 

Tumor_peri1 
(Ph6) 

Peri3 
(Ph2) 23 0.8986 0.8571 0.8065 0.8890 0.8551 0.8688 Logistic 
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Tumor_peri1 
(Ph6) 

Peri3 
(T2FS) 41 0.8779 0.8571 0.9032 0.9130 0.9130 0.9130 RandomForest 

Tumor_peri1 
(Ph6) 

Tumor_peri3 
(T2FS) 38 0.8802 0.8571 0.7581 0.9130 0.9130 0.9130 RandomForest 

Peri3 
(Ph2) 

Tumor 
(Ph6) 35 0.8836 0.8571 0.8226 0.9171 0.8261 0.8547 DecisionTree 

Peri3 
(Ph2) 

Tumor 
(T2FS) 59 0.8318 0.8571 0.7097 0.8915 0.7826 0.8199 RandomForest 

Peri3 
(Ph2) 

Peri1 
(Ph6) 23 0.8986 0.8571 0.9194 0.9335 0.8986 0.9098 RandomForest 

Peri3 
(Ph2) 

Peri1 
(T2FS) 51 0.8594 0.8571 0.7581 0.8785 0.8116 0.8374 RandomForest 

Peri3 
(Ph2) 

Peri3 
(Ph6) 47 0.8652 1.0000 0.7581 0.8915 0.7826 0.8199 AdaBoost 

Peri3 
(Ph2) 

Peri3 
(T2FS) 16 0.9090 1.0000 0.7742 0.9281 0.7536 0.8016 AdaBoost 

Peri3 
(Ph2) 

Tumor_peri3 
(Ph6) 62 0.8249 0.8571 0.7258 0.8642 0.8261 0.8425 RandomForest 

Peri3 
(Ph2) 

Tumor_peri3 
(T2FS) 46 0.8687 1.0000 0.7258 0.8915 0.7826 0.8199 RandomForest 

Tumor_peri3 
(T2FS) 

Tumor 
(Ph2) 28 0.8940 0.7143 0.9355 0.9329 0.9275 0.9088 SVC 

Tumor_peri3 
(T2FS) 

Tumor 
(Ph6) 73 0.7857 0.7143 0.8065 0.8890 0.8551 0.8688 RandomForest 

Tumor_peri3 
(T2FS) 

Peri1 
(Ph6) 34 0.8848 0.7143 0.9516 0.9188 0.8986 0.9062 RandomForest 

Tumor_peri3 
(T2FS) 

Peri3 
(Ph6) 69 0.7995 0.8571 0.7097 0.8872 0.7536 0.7985 RandomForest 

Tumor_peri3 
(T2FS) 

Tumor_peri3 
(Ph6) 74 0.7834 0.8571 0.6452 0.8609 0.8116 0.8324 RandomForest 

Tumor 
(Ph2) 

Tumor 
(Ph6) 67 0.8018 1.0000 0.6129 0.8261 0.8261 0.8261 RandomForest 

Tumor 
(Ph2) 

Tumor 
(T2FS) 54 0.8571 1.0000 0.6452 0.8798 0.6957 0.7549 Logistic 

Tumor 
(Ph2) 

Peri1 
(Ph6) 3 0.9401 0.8571 0.8710 0.9137 0.8841 0.8950 AdaBoost 

Tumor 
(Ph2) 

Peri1 
(T2FS) 36 0.8825 0.8571 0.8065 0.8934 0.8696 0.8795 Logistic 

Tumor 
(Ph2) 

Peri3 
(Ph6) 61 0.8272 0.8571 0.8226 0.8074 0.8986 0.8505 SVC 

Tumor 
(Ph2) 

Peri3 
(T2FS) 25 0.8963 1.0000 0.7258 0.8981 0.9130 0.8970 SVC 

Tumor 
(Ph2) 

Tumor_peri3 
(Ph6) 57 0.8410 0.8571 0.7742 0.8851 0.8406 0.8582 RandomForest 

Peri1 
(Ph6) 

Tumor 
(T2FS) 51 0.8594 0.7143 0.9516 0.9207 0.9130 0.8824 SVC 
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Peri1 
(Ph6) 

Peri1 
(T2FS) 59 0.8318 0.8571 0.7419 0.8915 0.7826 0.8199 SVC 

Peri1 
(Ph6) 

Peri3 
(T2FS) 25 0.8963 0.7143 0.9839 0.9021 0.8406 0.8624 RandomForest 

Peri3 
(Ph6) 

Tumor 
(T2FS) 66 0.8111 0.8571 0.7581 0.8933 0.6087 0.6847 SVC 

Peri3 
(Ph6) 

Peri1 
(T2FS) 50 0.8618 0.7143 0.9516 0.9234 0.9275 0.9250 RandomForest 

Peri3 
(Ph6) 

Peri3 
(T2FS) 70 0.7972 0.7143 0.8548 0.8582 0.5217 0.6100 Logistic 

Peri3 
(T2FS) 

Tumor 
(Ph6) 67 0.8018 0.7143 0.8387 0.8915 0.7826 0.8199 RandomForest 

Peri3 
(T2FS) 

Tumor_peri3 
(Ph6) 75 0.7097 1.0000 0.4355 0.8148 0.7681 0.7900 RandomForest 

Tumor 
(T2FS) 

Tumor 
(Ph6) 63 0.8226 0.8571 0.7419 0.8872 0.7536 0.7985 RandomForest 

Tumor 
(T2FS) 

Tumor_peri3 
(Ph6) 72 0.7880 0.8571 0.7581 0.8725 0.8551 0.8629 LGBM 

Peri1 
(T2FS) 

Tumor 
(Ph6) 64 0.8203 0.7143 0.9194 0.8922 0.8986 0.8951 RandomForest 

Peri1 
(T2FS) 

Tumor_peri3 
(Ph6) 65 0.8157 0.8571 0.8548 0.9207 0.9130 0.8824 SVC 

 

Abbreviations: Ph2, second-post contrast subtraction image; Ph6, sixth-post contrast 

subtraction image; T2FS, T2 weighted fat-saturated image, Peri1, peritumoral region, 1mm; 

Peri3, peritumoral region, 3mm Tumor_peri1, tumoral + 1mm peritumoral region; 

Tumor_peri3, tumoral + 3mm peritumoral region.  
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ABSTRACT (IN KOREAN) 

 

국소진행성유방암 (ER+ HER2- subtype)의 치료 전 선행 화학 요법 후 완전 

관해 예측 

<지도교수 김민정> 

 

연세대학교 대학원 의학과 

 

박 지 우 

 

 

목적: 이 연구의 목적은 현재까지 선행화학요법에 저조한 성적을 보인다고 

알려져 있는 ER+ HER2- 국소 진행성 유방암 환자 군의 더 효과적인 치료 

전략 수립을 돕기 위해, 치료 시작 전 선행화학요법 후 병리학적 완전 관해를 

달성할 수 있는 최적의 환자들을 예측해보는 것이다.  

방법: 본 연구는 후향적으로 2010년부터 2020년까지 본원에서 ER+ HER2- 

국소 진행성 유방암으로 진단된 818명의 환자중에서, 수술 전 자기공명영상을 

시행 받고 선행화학요법을 모두 완료하였으며 수술을 통하여 최종 병리학적 

결과가 확인된 환자 265명을 대상으로 하고 있고, 이 환자들을 치료 전 

자기공명영상 시행일 2016년 1월을 기준으로 학습 코호트와 검증 코호트로 

분류하였다. 본 연구에서는 치료 전 자기공명영상에서 종양과 종양 주변의 

VOI를 그렸으며, 텍스처 특성 추출은 3종류의 자기공명영상 시퀀스; 초기 

조영 증강 영상, 후기 조영증강 영상, 지방 포화 T2 강조 영상; 에서 

이루어졌다. 일곱개의 머신 러닝 모델이 각각의 시퀀스에서 추출한 종양, 종양 

주변, 종양과 종양 주변의 텍스처 특성으로 만들어졌고, 동일한 모델들은 서로 

다른 두개의 시퀀스 각각에서 종양과 종양주변 텍스처 특성의 결합을 

통하여서도 만들어졌다. 환자의 나이, 종양의 크기, ER and PR receptor expression 

rate을 포함하는 임상적인 요소를 포함한 모델도 동일한 방법으로 만들었다. 

모든 모델의 pCR 예측 능력은 ROC 곡선의 AUC로 평가 및 비교되었다.  

결과: 총 7533개의 텍스처 특성이 치료 전 자기공명영상에서 3종류의 

시퀀스의 VOIs; 종양, 종양 주변, 종양과 종양 주변 영역; 으로부터 얻어졌다. 

단독 시퀀스 모델로서는 초기 조영 증강 영상에서 종양부터 종양 주변부 

1mm를 포함한 영역의 SVM 모델이 가장 우수한 성능을 보였다 (AUC = 
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0.9447). 그리고 앞서 언급한데로 서로 다른 시퀀스에서 종양, 종양 주변, 

종양과 종양 주변 영역의 텍스처 특성을 결합해 보았을 때는, 초기 조영 증강 

영상에서 종양부터 종양 주변 1mm까지와 지방 포화 T2 강조 영상의 종양 

주변 3mm를 결합하였을 때 AUC 0.9631의 가장 우수한 모델이 개발되었다.  

결론: 본 연구는 치료 전 자기공명영상에서 ER+ HER2- 국소 진행성 유방암 

환자의 선행화학요법 반응을 평가해보고자 다양한 시퀀스에서 종양과 종양 

주변 영역의 텍스처 특성을 활용하였다. 본 연구는 서로 다른 시퀀스에서의 

종양과 종양 주변의 텍스처 특성의 결합 머신 러닝 모델로 이 환자군의 

병리학적 완전 관해를 보다 정확하게 예측하고 분류할 수 있다는 것을 

제안하며, 나아가 이 결과가 임상적인 치료 전략 수립에 직접적으로 도움을 

줄 수 있을 것으로 기대한다.  

                                                            

핵심 단어: ER+ HER2- 국소 진행성 유방암, 선행화학요법, 병리학적 완전 관해, 

종양의 텍스처 특성, 종양 주변의 텍스처 특성, 치료 전 자기공명영상, 머신 

러닝 
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