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ABSTRACT 

Integrated analysis of microbiome and metabolome reveals disease-specific 

profiles in inflammatory bowel diseases and intestinal Behçet’s disease 
 

Yehyun Park 
 

Department of Medicine 

The Graduate School, Yonsei University  
 

(Directed by Professor Jae Hee Cheon) 
 

 

 

Background and aims: Gut microbial and metabolite alterations have been linked to the 

pathogenesis of inflammatory bowel diseases (IBD), including ulcerative colitis (UC) and 

Crohn’s disease (CD). However, investigations into microbial and metabolic characteristics 

in intestinal Behçet’s disease (BD), a condition sharing many clinical similarites with UC 

and CD, are largely lacking. The current study aimed to evaluate alterations in the gut 

microbiome and plasma metabolites in patients with intestinal BD, as well as UC and CD, 

compared with those in healthy controls. We also sought to discover microbial and 

metabolomic biomarkers that can aid in differentiating UC, CD, and intestinal BD. 

Methods: Patients with IBD and intestinal BD undergoing diagnostic endoscopies, as well 

as healthy volunteers with endoscopy but no signs of inflammation, were enrolled. We 

conducted 16S ribosomal RNA (rRNA) sequencing on colon tissue samples obtained 

during colonoscopy and compared the diversity of microbial communities, taxonomic 

composition, and functional profiling between the control group and the UC, CD, and 

intestinal BD groups. Additionally, we collected and analyzed stool samples from the 

control group and IBD patients for 16S rRNA sequencing. Blood samples were drawn from 

the control group, UC, CD, and intestinal BD patients, and plasma metabolomic analysis 

was performed using gas chromatography time-of-flight mass spectrometry (GC–TOF–MS) 

and ultra-performance liquid chromatography–quadrupole/time-of-flight mass 

spectrometry (UPLC–Q–TOF–MS) analysis. 
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Results: A total of 100 patients (35 UC, 30 CD, and 35 BD) and 41 healthy volunteers were 

enrolled in the study. We conducted 16S rRNA sequencing on 73 tissue samples (12 control, 

24 UC, 14 CD, and 23 BD) and 19 stool samples (5 control, 9 UC, and 5 CD). Metabolite 

analysis was performed on 100 blood samples (25 control, 24 UC, 26 CD, and 25 BD). The 

microbial diversity of colon tissue was reduced only in CD, with no significant decrease 

observed in BD. The microbial taxonomic profile of intestinal BD displayed a pattern more 

similar to healthy controls than UC or CD, and it exhibited distinctive features setting it 

apart from both UC and CD. However, there were common changes across all three 

conditions (UC, CD, and BD), which is a decrease in five beneficial bacteria responsible 

for producing short-chain fatty acids: Fusicatenibacter saccharivorans, Coprococcus 

comes, Blautia obeum, Dorea formicigenerans, and Roseburai ceciola. Additional changes 

in intestinal BD included a decreased abundance of Subdoligranulum variable and Blautia 

wexlerae, which were shared features with either UC or CD. As a specific alteration unique 

to BD, a decrease in the genus Bacteroides, particularly the species Bacteroides fragilis, 

was identified. The metabolomic profile of intestinal BD was most similar to CD and 

distinct from both controls and UC. However, UC, CD, and BD each exhibited distinct 

metabolomic profiles. Overall, BD exhibited pronounced functional changes and 

metabolite alterations, including changes in energy metabolism, amino acid, carbohydrate, 

and lipid metabolism, cofactor and vitamin metabolism, nucleotide metabolism, and 

genetic information processing, while not showing as substantial microbial taxonomic 

changes as UC or CD. The microbial functions analyzed by phylogenetic investigation of 

communities by reconstruction of unobserved states (PICRUSt) showed a good alignment 

with the enriched pathways identified by qualitative enrichment analysis of plasma 

metabolite. 

Conclusion: In this integrative analysis of microbiome and metabolome in IBD and 

intestinal BD, we observed that intestinal BD exhibited profiles that were both shared with 

and distinct from those of the control group, UC, and CD. 
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Key words : intestinal Behçet’s disease, ulcerative colitis, Crohn’s disease, 

microbiome, metabolome, multi-omics 
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I. INTRODUCTION 

Crohn’s disease (CD) and ulcerative colitis (UC) are inflammatory bowel disease (IBD), 

a chronic inflammatory disorder of the gastrointestinal tract that is related to dysbiosis 

and altered interactions between the dysbiotic microbiota and host intestinal immune 

system.1 In CD, transmural inflammation can occur throughout the entire gastrointestinal 

tract, whereas in UC, inflammation is confined to the mucosal layer of the colon. Behçet's 

disease (BD) is a chronic relapsing systemic inflammatory disorder of unknown origin 

characterized by oral and genital mucosal ulcers, uveitis, skin lesions, and neurological, 

or gastrointestinal manifestations. The prevalence of intestinal involvement in patients 

with BD has been reported in the range of 2.8% to 50% with a remarkable geographic 

variation, which is more frequent in East Asia, including Korea and Japan, than in other 

areas of the world.2 There exist many similarities between IBD and intestinal BD. Both 

have chronic inflammation in the gastrointestinal tract, similar extraintestinal 

manifestations, and chronic fluctuating courses characterized by repeated episodes of 

relapse and remission. IBD and intestinal BD may be closely related and be a part of a 

spectrum of diseases, rather than distinct disease entities. Regarding the pathogenesis of 

BD, it is postulated that similar to IBD, the involvement of triggering factors such as 

infection occurs in genetically predisposed patients.3 However, due to its rarity in 

Western countries, the understanding of BD remains significantly less established 

compared to IBD. While numerous studies have suggested the involvement of intestinal 



２ 

 

microbiota in the pathogenesis of IBD, such investigations are largely lacking in the 

context of intestinal BD. 

Metagenomics is defined as the analysis of the collective genomes that are present in a 

defined environment or ecosystem, hence giving insight into the functions of non-

cultivated bacteria. The development of cultivation-independent methods based on next-

generation sequencing rapidly expanded our knowledge about the fundamental role of the 

intestinal microbiome in the pathogenesis of microbiota in the gastrointestinal tract. 

Pyrosequencing can sequence 500 million bases, at 99% or better accuracy, in a single 

run. It represents an approximately 2,000-fold increase in throughput over Sanger 

sequencing, and many more sequences can be read as shorter sequences.4 Bacteria that 

are in low abundance can be detected using this method. Metagenomic approaches can 

demonstrate the microbial diversity of the gut microbiota, qualitative and quantitative 

information on bacterial species, and changes in the gut microbiota in relation to disease. 

Although metagenomic shotgun sequencing enables precise taxonomic classification to 

species and strain level and can directly infer the relative abundance of microbial 

functional genes, this method is relatively expensive, laborious, and has a complex 

sample preparation and analysis process. Instead, 16S ribosomal RNA (16S rRNA) gene 

sequence analysis, also called marker gene analysis or amplicon sequencing, has the 

advantage of quick, simple, and relatively inexpensive sample preparation and analysis. 

16S rRNA sequencing uses primers that target a specific region of a 16S rRNA gene in 

order to determine the bacterial phylogenies of a sample. This region contains a highly 

variable region that can be used for detailed identification that is flanked by highly 

conserved regions that can serve as binding sites for PCR primers. This approach is 

suitable for samples contaminated by host DNA such as tissue, and 16S rRNA gene 

sequencing generally correlates well with genomic content.  

Previous studies have evaluated the composition of gut microbiota in IBD patients and 

confirmed significant differences of gut microbiota from that of healthy individuals.5-11 

However, previous studies have demonstrated heterogenous results of changes in the 
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intestinal microbiota in IBD patients, and limited data are available regarding BD. Also, 

knowing only the variations in microbial community structure is no longer adequate for a 

thorough understanding of the disease. An emerging field of study involves the 

integration of various chemical and biological data types through multi-omics analysis, 

aiming to offer a comprehensive, functional, and mechanistic understanding of complex 

biological systems. One of the data types integrated with marker gene sequencing is 

metabolite data. Metabolomics is the study of the metabolome; the metabolome is the 

collective array of metabolites present in a biological sample. Metabolomic data provide 

important information regarding molecules such as short-chain fatty acids or bile acids 

that are produced or modified by the gut microbiota that affect mucosal protection and 

immune regulatory functions. Due to the inherent limitations of 16S rRNA gene 

sequencing in estimating microbial community function, the integration of metabolomics 

provides a more comprehensive understanding of both the composition and function of 

microbial communities. Several studies identified metabolite differences in the stool,12,13 

serum,13-15 or mucosa of IBD patients compared with controls. While fecal metabolites 

may better reflect the direct metabolic output of the microbiota, blood metabolites offer 

insight into the subset of these compounds that enter circulation, potentially influencing 

host metabolism and health. The advent of untargeted metabolomics has enhanced our 

comprehension of the blood metabolome and facilitated the detection of distinctive 

molecules in circulation, produced by the gut microbiota, and potentially exerting 

biological effects in the host. However, such a multi-omics approach has mainly been 

conducted within the broader context of IBD, and research distinguishing features 

between UC and CD is lacking. Specifically, there is a dearth of studies that integrate the 

characteristics of BD, UC, and CD for analysis. 

The current study aimed to evaluate gut microbiome change in patients with intestinal BD 

as well as UC and CD, and to identify alterations in plasma metabolites in IBD and BD 

patients compared with healthy control. Through this study, we seek to discover 
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microbial and metabolomic markers that can aid in the diagnosis and differential 

diagnosis of UC, CD, and intestinal BD. 

 

II. MATERIALS AND METHODS 

1. Study subjects 

We included patients aged 18 years and older with UC, CD, and intestinal BD from the 

IBD Clinic of Yonsei University College of Medicine, Severance Hospital, Seoul, Korea 

between January 2014 and January 2019. Patients with evidence of active infection or 

sepsis at the time of enrollment or those who received antibiotics within the prior 3 months 

were excluded from the study. The diagnosis of UC, CD, and intestinal BD is based upon 

the internationally accepted diagnostic criteria.16-18 The diagnosis involved evaluating 

various factors, including clinical presentation, endoscopic findings or surgical 

observations, radiology, histology, and/or serology. For intestinal BD, only patients who 

were finally classified as “definite” or “probable” types were included in this study.18 The 

healthy volunteer group without current acute active illness, renal failure, diabetes, 

congestive heart failure, and cirrhosis were enrolled.  

 The Institutional Review Board of Severance Hospital, Yonsei University approved this 

study (IRB approval number: 4-2013-0805). All patients and controls provided written 

informed consent and all methods were performed in accordance with the relevant 

guidelines and regulations.  

 

2. Clinical data collection 

Demographic factors, disease duration, location, surgery, medical treatment, disease 

activities, C-reactive protein (CRP), and albumin levels were collected. Disease activities 

were evaluated using the partial Mayo (pMayo) score for UC, Crohn’s disease activity 

index (CDAI) for CD, and the activity index for intestinal Behçet’s disease (DAIBD) for 

BD.19 Disease severity was classified based on clinical scores. Remission was defined as 

pMayo below 2, CDAI below 150, and DAIBD below 20. Mild disease was defined as 
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pMayo of 2-4, CDAI 150-219, and DAIBD 20-39; moderate disease as pMayo of 5-7, 

CDAI 220-450, and DAIBD 40-74; and severe disease as pMayo score of 8 or higher, 

CDAI 451 or higher, and DAIBD 75 or higher. 

 

3. Collecting tissue, blood, and stool samples 

Tissue samples were collected at the time of colonoscopy. Three mucosal biopsies were 

retrieved from the ileocecal area using biopsy forceps and immediately snap-frozen in 

liquid nitrogen. The tissue was stored at -80 ℃ until further analysis. If there was active 

inflammation in the ileocecal area, biopsies were performed from non-ulcerated mucosa 

whenever possible. Stool samples were collected either at the time of colonoscopy or at the 

time of visiting out-patient clinic. In the case of collecting at the time of colonoscopy, stool 

before administration of bowel preparation was collected. Stool samples of 50~100 mg 

were kept at 4°C for less than 24 hours and were stored at -80°C until DNA extraction. For 

patients who consented to blood collection, 10 mL of blood was collected into an EDTA 

tube following a 9-hour fasting period. The collected blood was then transferred to the 

laboratory immediately. The blood was centrifuged at 1,500 × g for 15 min and each 300 

μL aliquot was stored at -80 ℃ until further analysis. 

 

4. Microbiome analysis 

A. DNA extraction 

Fecal samples or mucosal biopsy samples were resuspended in 50 mM Tris buffer (pH 7.5) 

containing 1 mM EDTA, 0.2% β-mercaptoethanol (Sigma-Aldrich, Burlington, MA, USA) 

and 1000 U/ml of lyticase (Sigma-Aldrich, Burlington, MA, USA). The mix is incubated 

at 37°C for 30 min and genomic DNA is isolated by using FastDNATM SPIN Kit for Soil 

(MP Biomedicals, Irvine, CA, USA) according to the manufacturer's instructions. The 

extracted DNA was stored at -80 ℃ until analysis. 
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B. PCR amplification and 16S rRNA amplicon sequencing  

PCR amplification was performed using barcoded fusion primers targeting the V1 to V3 

regions of the 16S rRNA gene and the extracted DNA as a template, using a C1000 Touch 

thermal cycler (Bio-Rad, Hercules, CA, U.S.A). The 16S universal primers 27F (5’- 

GAGTTTGATCMTGGCTCAG-3’) and 518R (5’- WTTACCGCGGCTGCTGG-3’) were 

used. For samples collected later, fusion primers 341F (5’- CCTACGGGNGGCWGCAG-

3’) and 805R (5’- GACTACHVGGGTATCTAATCC) targeting the V3 to V4 regions of 

the 16S rRNA gene were used. The PCR product was confirmed using 1% agarose gel 

electrophoresis and visualized under a Gel Doc system (BioRad, Hercules, CA, USA). 

Amplified products were purified using the QIAquick PCR purification kit (Qiagen, 

Valencia, CA, USA) and quantified using the PicoGreen dsDNA Assay kit (Invitrogen, 

Carlsbad, CA, USA). Equimolar concentrations of the purified amplicon from different 

samples were pooled and short fragments < 500 bp (non-target products) were removed 

using Ampure beads (Agencourt Bioscience, MA, USA). The quality and product size were 

assessed on a Bioanalyzer 2100 (Agilent, Palo Alto, CA, USA) using a DNA 7500 chip. 

Mixed amplicons were subjected to emulsion PCR and then sequenced. Pyrosequencing 

was carried out at ChunLab, Inc. (Seoul, Korea), using a GS FLX Titanium system (Roche, 

Branford, CT, USA) and Illumina MiSeq platform (Illumina, San Diego, California, USA). 

 

  C. Microbiome data analysis 

Sequencing data were analyzed according to previous descriptions.20-22 Reads obtained 

from the samples were categorized by means of the unique barcodes of each PCR product. 

The sequences of the barcode, linker, and primers were removed from the original 

sequencing reads. The quality of sequencing was checked manually by secondary-

structure-aware alignment using the EzEditor program.23 After eliminating non-specific 

amplicons, amplicons not assigned to the target taxon, and chimeras in the quality check 

process, the taxonomic classification of each read was analyzed using the EzBioCloud24 

using the database version PKSSU4.0, which is an up-to-date version for the prokaryotic 
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16S database. EzBioCloud contains 16S rRNA gene sequences of type strains that have 

valid published names and representative species-level phylotypes of either cultured or 

uncultured entries with complete hierarchical taxonomic classifications, from the phylum 

to the species levels. Calculations of alpha- and beta-diversity indices, biomarker discovery 

using linear discriminant analysis (LDA) effect size (LEfSe), and phylogenetic 

investigation of communities by reconstruction of unobserved states (PICRUSt) 

algorithms25 were carried out after normalization based on 16S rRNA gene copy number 

variation. For alpha-diversity, we utilized the numbers of operational taxonomic units 

(OTUs) for richness, Simpson for evenness, and the Shannon index as a combined measure 

considering both richness and evenness. Beta-diversity was visualized by hierarchical 

cluster trees using the unweighted pair group method with arithmetic mean (UPGMA) and 

analyzed by Bray-Curtis and visualized using principal coordinate analysis (PCoA).26,27 

LEfSe was used to identify specific microbiota that were differentially distributed between 

different samples, which may be available as microbial biomarkers. The predictive 

functional profiling was described using the PICRUSt and annotated to their Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways. Comparing taxonomic data and 

alpha-diversity between groups was performed using Mann-Whitney U test. Comparing 

beta-diversity between groups was performed using permutational multivariate analysis of 

variance (PERMANOVA), which is a non-parametric multivariate statistical test.28 A p 

value of less than 0.05 was considered statistically significant. 

 

 5. Metabolomic analysis 

  A. Sample preparation for metabolomic analysis 

Metabolites were extracted from 200 μL of plasma. One milliliter of methanol containing 

10 μL of internal 2-chlorophenylalanine standard (1 mg/mL in water) was added to plasma 

samples and then homogenized using a mixer mill at a frequency of 30 Hz for 5 min and 

sonicator for 5 min. After homogenization, the suspension was held at 4 °C for 60 min, and 

then centrifuged at 20,000 × g and 4 °C for 10 min. The supernatant was filtered through a 
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0.2 μm polytetrafluoroethylene (PTFE) filter and evaporated using a speed vacuum 

concentrator (Modulspin 31, Biotron, Wonju, Korea). The final concentration of each 

analyzed sample was 10 mg/mL. Metabolomic analysis by mass spectrometry was carried 

out at MetaMass, Inc. (Seoul, Korea). 

 

  B. GC-TOF-MS analysis 

Each sample of 100 μL was re-evaporated for derivatization. Dried samples were further 

oximated and silylated for gas chromatography time-of-flight mass spectrometry (GC–

TOF–MS) analysis. For metabolite profiling, GC-TOF–MS analysis was performed using 

an Agilent 7890A gas chromatography system coupled with an Agilent 7693 autosampler 

(Agilent Technologies, Palo Alto, CA, USA) equipped with a Pegasus III TOF MS (LECO 

Corp., St. Joseph, MI, USA) system. An Rtx-5MS column (30 m × 0.25 mm, 0.25 µm 

particle size; Restek Corp., Bellefonte, PA, USA) was used with a constant flow of 

1.5 mL/min of helium as the carrier gas. Derivatized samples of 1 µL were injected into the 

GC with splitless mode. The oven temperature was maintained at 75 °C for 2 min, then 

incrementally increased by 15 °C/min to 300 °C and held for 3 min as the final temperature. 

The temperatures of the front inlet and transfer line were 250 and 240 °C, respectively. The 

electron ionization was carried out at − 70 eV and full scanning over the range of 50–

800 m/z was used for mass data collection. 

 

  C. UPLC-Q-TOF-MS analysis  

Dried extracts were re-dissolved in 250 µL of methanol for ultra-performance liquid 

chromatography–quadrupole/time-of-flight mass spectrometry (UPLC–Q–TOF–MS) 

analysis. UPLC was performed on a Waters ACQUITY UPLC™ system (Waters Corp., 

Milford, MA, USA) equipped with a binary solvent delivery system, a UV detector, and an 

auto-sampler. Chromatographic separation was performed on a Waters ACQUITY UPLC 

BEH C18 column 100 mm × 2.1 mm, 1.7 µm particle size (Waters Corp., Milford, MA, 

USA), and the injection volume was 5 µL. The column temperature was set at 37 °C and 
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the flow rate was 0.3 mL/min. The mobile phase consisted of 0.1% v/v formic acid in water 

(Solvent A) and 0.1% v/v formic acid in acetonitrile (Solvent B). The total run time was 14 

min, including re-equilibration of the column to the initial conditions. The gradient 

parameters were set as follows: 5% solvent B was maintained initially for 1 min, followed 

by a linear increase to 100% solvent B over 9 min, and then sustained at 100% solvent B 

for 1 min with a gradual decrease to 5% solvent B over 3 min. For MS experiments, the 

Waters Micromass Q–TOF Premier (Micromass MS Technologies, Manchester, UK) was 

operated in negative ion mode with an m/z range of 100–1000. The source temperature was 

set at 100 °C, the collision energy was set at 10 eV, the collision gas flow was 0.3 mL/min, 

and the desolvation gas was set to 650 L/h at a temperature of 300 °C. The capillary voltage 

and sample cone voltage were set at 2.5 kV and 50 V, respectively. The V mode was used 

for the mass spectrometer and data were collected in the centroid mode with a scan 

accumulation of 0.2 s. Leucine encephalin was used as reference lock mass (m/z 554.2615) 

by independent LockSpray interference. 

 

D. Data analysis 

The GC–TOF–MS data were acquired, pre-processed, and converted into the NetCDF 

format (*.cdf) using the LECO Chroma TOF™ software (version 4.44, LECO Corp., St. 

Joseph, MI, USA). The raw data from UPLC–Q–TOF–MS analysis were acquired and 

converted into the NetCDF format (*.cdf) using MassLynx software (version 4.1, Waters 

Corp., Milford, MA, USA) and MassLynx DataBridge software (version 4.1, Waters Corp., 

Milford, MA, USA). After conversion, peak detection, retention time correction, and 

alignment were processed using the MetAlign software (Wageningen Food Safety Research, 

Wageningen, Netherlands). The resulting alignment data were exported to a Microsoft 

Excel file.  

Integrative metabolomic data analysis was performed using a web-based comprehensive 

metabolomics data processing tool, MetaboAnalyst 5.0 (http://www.metaboanalyst.ca). 

Each variable of the quantitative data was first normalized by the median value and then 

http://www.metaboanalyst.ca/
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log-transformed, centered and scaled to mean and standard deviation of each variable. 

Hierarchical cluster analysis was performed in order to identify clustering patterns and 

Spearman’s rank correlation coefficient was used to evaluate the correlation between each 

pair of features. Dendrograms were visualized through heatmaps, where each colored cell 

on the map corresponds to a concentration value. To analyze differences between groups, 

analysis of variance (ANOVA) was performed on normalized data. To compare differential 

metabolites among control, UC, CD, and BD, and to explain the maximum separation 

among groups, unsupervised and supervised multivariate regression techniques, principal 

component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), 

respectively, were performed. For each model, the optimal number of components was 

chosen according to the highest prediction accuracy (Q2) estimated by the 5-fold cross-

validation technique. The discriminative metabolites were selected based on variable 

importance in projection (VIP) values. VIP is one of the important measures of PLS-DA 

and is a weighted sum of squares of the PLS loadings taking into account the amount of 

explained class variation in each dimension. Metabolites were ranked according to their 

VIP scores and metabolites with VIP scores greater than 1 are considered as the significant 

contributors. To identify biologically meaningful patterns based on the metabolomics data, 

quantitative enrichment analysis [QEA] was carried out. Data were mapped to the KEGG 

human metabolic pathway database comprising 84 metabolite sets of normal metabolic 

pathways. QEA is based on the well-established globaltest29 to test associations between 

metabolite sets and the outcome. The algorithm uses a generalized linear model to compute 

a ‘Q-stat’ for each metabolite set. The Q-stat is calculated as the average of the Q values 

calculated for each single metabolite, while the Q value is the squared covariance between 

the metabolite and the outcome. Spearman’s rank correlation coefficient was used to 

analyze the correlation between microbiota and metabolites, and visualization was made in 

the form of a heat map. 
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6. Statistical analysis 

Baseline characteristics were analyzed by descriptive statistics. For continuous variables, 

the median and range were reported. For comparing between two groups, Mann–Whitney 

U test was used. Comparing multiple groups was first analyzed by the Kruskal–Wallis H 

test and if p < 0.05, then pairwise comparisons using the Mann–Whitney U test were used 

to compare continuous variables. For categorical variables, frequency with percentage was 

reported and compared using Pearson’s χ2 test or Fisher’s exact test. Correlations were 

identified by Spearman’s rank correlation coefficient. All results were considered 

statistically significant when the two-tailed p value was < 0.05. To control for false 

discovery rate (FDR), the resultant p values were then adjusted for multiple comparisons 

using the Benjamini and Hochberg method.30 A FDR of 10%, or FDR-adjusted p < 0.1, was 

considered significant for microbial functional biomarker discovery and metabolites 

analysis.14 

Statistical analysis and visualizing by chart were performed using SPSS version 20.0 (SPSS 

Inc., Chicago, IL, USA) and GraphPad Prism V.10.0 (GraphPad Software Inc., San Diego, 

CA, USA). 

 

III. RESULTS 

1. Study population 

In total, 100 patients (35 UC, 30 CD, and 35 BD) and 41 healthy volunteers were eligible 

for enrollment. Each subject provided samples from one to three sources, including tissue, 

stool, and blood. Overall, 192 samples from 141 subjects were analyzed. We conducted 

16S rRNA sequencing on 73 tissue samples (12 control, 24 UC, 14 CD, and 23 BD) and 

19 stool samples (5 control, 9 UC, and 5 CD), and performed metabolite analysis on 100 

blood samples (25 control, 24 UC, 26 CD, and 25 BD) (Figure 1). The sample status from 

141 patients or controls is visualized in Figure 2. The clinical information of the patients 

and controls in each sample type is shown in Table 1.  
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Figure 1. Flow diagram of the study. In total, 100 patients (35 UC, 30 CD, and 35 BD) 

and 41 healthy volunteers were eligible for enrollment. Each subject provided samples 

from one to three sources, including tissue, stool, and blood. Overall, 192 samples from 

141 subjects were analyzed. IBD: inflammatory bowel disease, BD: Behçet’s disease, 

rRNA: ribosomal ribonucleic acid, GC-TOF-MS: gas chromatography time-of-flight 

mass spectrometry, UPLC-Q-TOF-MS: ultra-performance liquid chromatography–

quadrupole/time-of-flight mass spectrometry 

 

Among the patients who underwent tissue microbiome analysis, the CD patient group 

exhibited a younger age, a higher prevalence of bowel resection history (21.4%), elevated 

CRP levels, and a higher frequency of immunomodulator usage (57.1%) compared to 

control, UC, and BD patients. In the case of BD, an increased use of steroids (43.5%) was 

observed. Based on the disease activity scores, clinical disease activity was divided into 

four categories (remission, mild, moderate, and severe). In UC, the proportion of mild cases 

was relatively high (41.7%), while in CD, remission was more prevalent (50.0%). In the 

case of BD, activity was distributed relatively evenly. Among the patients who underwent 

stool microbiome analysis, the CD patient group displayed a tendency towards a younger 
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age in comparison to controls or UC patients. Furthermore, CD patients demonstrated 

higher ESR levels and a greater frequency of immunomodulator (IMM) usage (80%). The 

clinical disease activity was distributed between remission to moderate activity. For 

patients who underwent plasma metabolite analysis, the CD patient group showed a 

younger age, a higher proportion of males (84.6 %), elevated CRP levels, and a greater 

frequency of IMM usage (57.7%). UC patients exhibited longer disease durations 

compared to CD or BD patients (32.1 months vs. 7.2 and 5.9 months). Additionally, in the 

context of BD, higher ESR levels and an elevated proportion of steroid usage were noted. 

Clinical disease activity showed that in UC, the proportion of mild cases was relatively 

high, while in CD, it ranged from remission to moderate. In the case of BD, activity was 

distributed relatively evenly. Among intestinal BD patients, 30% of tissue sample donors 

and 36% of blood sample donors had intestinal BD without systemic BD. 

 

 

Figure 2. Venn diagram of collected samples of a total 141 patients or controls according 

to sample type. UC: ulcerative colitis, CD: Crohn’s disease, BD: Behçet’s disease 
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Table 1. Baseline clinical characteristics of enrolled patients and controls 

 Tissue microbiome analysis (n=73) p 

Characteristics Control (n=12) UC (n=24) CD (n=14) BD (n=23)  

Age, median 

(range) 

47.2  

(32.1-74.2) 

42.6  

(19.5-68.6) 

22.7  

(18.0-31.5) 

46.2  

(25.8-76.5) 

<0.001 

Sex, 

male/female, n 

(%) 

6 (50.0)/ 6 

(50.0) 

13 (54.2)/ 

11 (45.8) 

11 (78.6)/ 3 

(21.4) 

10 (43.5)/ 13 

(56.5) 

0.21 

BMI, kg/m2, 

median (range) 

22.3  

(15.6-26.8) 

21.8  

(16.1-28.7) 

21.1  

(13.9-22.9) 

23.0  

(16.0-28.0) 

0.10 

Bowel resection 

history, n (%) 

0 0 3 (21.4) 1 (4.3) 0.03 

Disease 

duration, 

months, median 

(range) 

- 39.6  

(24.0-65.6) 

20.3  

(7.5-28.3) 

27.5  

(6.8-72.7) 

0.20† 

Disease 

location, n (%) 

-     

  E1 (proctitis) - 6 (25) - -  

  E2 (left sided) - 7 (29.2) - -  

  E3 

(pancolitis) 

- 11 (45.8) - -  

  L1 (ileal) - - 0 -  

  L2 (colonic) - - 1 (7.1) -  

  L3 (ileocolic) - - 13 (92.9) -  

With/without 

systemic BD, n 

(%) 

- - - 16(69.6)/7(3

0.4) 

 

Disease activity, 

remission/mild/

moderate/severe

, n (%) 

- 2 (8.3)/10 

(41.7)/7 

(29.2)/5 

(20.8) 

7 (50.0)/2 

(14.3)/5 

(35.7)/0 

4 (17.4)/6 

(26.1)/7 

(30.4)/6 

(26.1) 

0.05 

Disease activity 

score, median 

(range) 

     

Partial Mayo 

score 

- 4.5  

(3.0-6.0) 

- -  

CDAI - - 148.5 

(73.0-

226.0) 

-  

DAIBD - - - 60.0  

(22.5-70.0) 
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Hb, g/dL, 

median (range) 

13.0  

(11.7-16.0) 

13.5  

(9.7-15.2) 

12.9  

(10.7-15.8) 

13.1  

(10.2-16.8) 

0.63 

ESR, mm/hr, 

median (range) 

14.0 (2.0-62.0) 23.5  

(2.0-52.0) 

37.0  

(3.0-99.0) 

33.0  

(8.0-106.0) 

0.07 

CRP, mg/L, 

median (range) 

0.4 (0.3-0.5) 2.2  

(0.8-3.9) 

7.9  

(2.3-23.6) 

5.6 (1.5-13.9) 0.02 

Albumin, g/dL, 

median (range) 

4.3 (4.2-4.5) 4.2  

(4.0-4.5) 

4.0  

(3.7-4.5) 

4.4 (4.2-4.5) 0.14 

Creatinine, 

mg/dL, median 

(range) 

0.8 (0.5-1.0) 0.7  

(0.5-1.1) 

0.8  

(0.5-1.0) 

0.7 (0.5-1.4) 0.62 

ALT, U/L, 

median (range) 

18 (8.0-30.0) 9 (5.0-34.0) 9.5  

(6.0-40.0) 

20.0  

(7.0-40.0) 

<0.01 

Medication, n 

(%) 

     

  5-ASA - 24 (100) 12 (85.7) 23 (100) 0.05† 

  Steroid - 3 (12.5) 1 (7.1) 10 (43.5) 0.01† 

  IMM - 5 (20.8) 8 (57.1) 5 (21.7) 0.04† 

  Anti-TNF - 4 (16.7) 1 (7.1) 0 0.10† 

 Stool microbiome analysis (n=19) p 

Characteristics Control (n=5) UC (n=9) CD (n=5)  

Age, median (range) 22.0  

(20.5-31.2) 

44.3  

(18.4-56.3) 

18.0  

(18.0-38.2) 

0.05 

Sex, male/female, n (%) 3 (60.0)/2 

(40.0) 

5 (55.6)/4 

(44.4) 

5 (100)/0 0.21 

BMI, kg/m2, median (range) 19.1  

(18.9-22.8) 

20.7  

(16.8-23.3) 

20.5  

(16.3-29.6) 

0.87 

Bowel resection history, n 

(%) 

0 1 (11.1) 1 (20.0) 1.00 

Disease duration, months, 

median (range) 

- 2.6 (1.0-46.0) 2.9 (2.0-12.0) 0.95† 

Disease location, n (%)     

  E1 (proctitis) - 3 (33.3) -  

  E2 (left sided) - 4 (44.4) -  

  E3 (pancolitis) - 2 (22.2) -  

  L1 (ileal) - - 1 (20)  

  L2 (colonic) - - 0  

  L3 (ileocolic) - - 4 (80)  

With/without systemic BD, n 

(%) 

- - -  

Disease activity, 

remission/mild/moderate/sev

- 4 (44.4)/4 

(44.4)/1 

1 (20.0)/2 

(40.0)/2 

0.63 
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ere, n (%) (33.3)/0 (40.0)/0 

Disease activity score, 

median (range) 

    

Partial Mayo score - 2.0 (1.0-6.0) -  

CDAI - - 186.0 (128.0-

358.0) 

 

DAIBD - - -  

Hb, g/dL, median (range) 14.6  

(13.2-15.2) 

14.1  

(12.5-16.5) 

12.7  

(10.6-16.0) 

0.17 

ESR, mm/hr, median (range) 7.5 (3.0-24.0) 9.0 (2.0-45.0) 47.0 (17.0-

99.0) 

0.02 

CRP, mg/L, median (range) 2.3 (0.6-5.5) 1.0 (0.3-25.5) 18.6 (0.7-

91.3) 

0.10 

Albumin, g/dL, median 

(range) 

4.4 (4.1-4.4) 4.4 (4.1-4.8) 3.7 (3.6-4.4) 0.10 

Creatinine, mg/dL, median 

(range) 

0.76  

(0.62-0.99) 

0.78  

(0.56-0.94) 

0.67  

(0.61-0.95) 

0.92 

ALT, U/L, median (range) 14.0  

(12.0-14.0) 

11.0  

(9.0-20.0) 

10.0  

(10.0-12.0) 

0.71 

Medication, n (%)     

  5-ASA - 9 (100) 4 (80.0) 0.36† 

  Steroid - 2 (22.2) 1 (20.0) 1.00† 

  IMM - 0 4 (80) 0.01† 

  Anti-TNF - 0 0 - 

 Plasma metabolite analysis (n=100) p 

Characteristics Control 

(n=25) 

UC (n=24) CD (n=26) BD (n=25)  

Age, median 

(range) 

33.7  

(26.0-43.6) 

37.9  

(18.0-68.6) 

23.3  

(18.0-42.6) 

44.3  

(23.3-62.9) 

<0.001 

Sex, 

male/female, n 

(%) 

8 (32.0)/17 

(68.0) 

15 (62.5)/9 

(37.5) 

22 (84.6)/4 

(15.4) 

14 (56.0)/11 

(44.0) 

<0.01 

BMI, kg/m2, 

median (range) 

21.8  

(18.1-24.2) 

21.8  

(16.1-28.7) 

20.6  

(13.9-31.2) 

21.5  

(16.5-24.7) 

0.53 

Bowel resection 

history, n (%) 

0 0 1 (3.8) 3 (12.0) 0.31 

Disease 

duration, 

months, median 

(range) 

- 32.1  

(1.0-155.0) 

7.2  

(0-128.0) 

5.9  

(0-110.0) 

<0.01† 

Disease 

location, n (%) 
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  E1 (proctitis) - 7 (29.2) - -  

  E2 (left sided) - 5 (20.8) - -  

  E3 

(pancolitis) 

- 12 (50.0) - -  

  L1 (ileal) - - 4 (15.4) -  

  L2 (colonic) - - 2 (7.7) -  

  L3 (ileocolic) - - 20 (76.9) -  

With/without 

systemic BD, n 

(%) 

- - - 16(64.0)/9(3

6.0) 

 

Disease activity, 

remission/mild/

moderate/severe

, n (%) 

- 4 (16.7)/11 

(45.8)/4 

(16.7)/5 

(20.8) 

8 (30.8)/10 

(38.5)/8 

(30.8)/0 

6 (24.0)/ 6 

(24.0)/7 

(28.0)/6 

(24.0) 

0.08 

Disease activity 

score, median 

(range) 

     

Partial Mayo 

score 

- 3.5 (1.0-9.0) - -  

CDAI - - 184.5  

(71.0-366.0) 

-  

DAIBD - - - 40.0  

(10.0-150.0) 

 

Hb, g/dL, 

median (range) 

12.4  

(11.7-13.1) 

13.7  

(9.7-15.2) 

13.9  

(10.0-16.9) 

12.5  

(6.5-15.3) 

0.52 

ESR, mm/hr, 

median (range) 

- 14.0  

(2.0-84.0) 

21.0  

(7.0-119.0) 

37.0  

(2.0-120.0) 

0.02† 

CRP, mg/L, 

median (range) 

- 1.0 (0.1-9.2) 6.5  

(0.9-66.2) 

2.4  

(0.3-28.4) 

<0.01† 

Albumin, g/dL, 

median (range) 

4.5 (4.4-4.6) 4.4 (3.5-5.1) 4.1 (3.4-4.8) 4.2 (3.4-5.1) 0.07 

Creatinine, 

mg/dL, median 

(range) 

0.7 (0.6-0.8) 0.7 (0.5-1.2) 0.7 (0.5-1.1) 0.8 (0.5-1.2) 0.34 

ALT, U/L, 

median (range) 

19  

(17.0-21.0) 

11.0  

(5.0-34.0) 

13.0  

(5.0-47.0) 

14.0  

(6.0-58.0) 

0.10 

Medication, n 

(%) 

     

  5-ASA - 24 (100) 24 (92.3) 25 (100) 0.33† 

  Steroid - 6 (25.0) 6 (23.1) 13 (52.0) 0.05† 

  IMM - 7 (29.2) 15 (57.7) 7 (28.0) 0.05† 

  Anti-TNF - 1 (4.2) 1 (3.8) 2 (8.0) 0.84† 
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UC: ulcerative colitis, CD: Crohn’s disease, BD: Behçet’s disease, SD: standard deviation, 

BMI: body mass index, CDAI: Crohn’s disease activity index, DAIBD: disease activity 

index for intestinal Behçet’s disease, CRP: C-reactive protein, ALT: alanine 

aminotransferase, 5-ASA: 5-aminosalicylic acid, IMM: immunomodulator, anti-TNF: anti-

tumor necrosis factor  

†p values were calculated between disease groups excluding the control group 

 

2. Changes in microbiome in IBD and intestinal BD 

A. Changes in tissue and fecal microbiota composition in IBD and intestinal BD 

Among 73 tissue samples, 49 samples (6 samples in control group, 15 samples in UC, and 

14 samples in CD and BD each) were sequenced targeting V1-3 region, whereas 24 samples 

(6 samples in control group and 9 samples in UC and BD each), which were collected later, 

were sequenced targeting V3-4 region. To investigate the differences in microbial 

composition in IBD and intestinal BD, the relative abundance of multiple taxa between 

control and IBD or intestinal BD was compared by the Mann–Whitney U test. In the 

phylum level, IBD and intestinal BD showed an increased tendency of Proteobacteria and 

Fusobacteria and a decreased tendency of Bacteroidetes compared with control (Figure 3). 

Increased Fusobacteria in UC compared with control was significant (p < 0.05). UC showed 

an increased abundance of order Fusobacteriales, family Fusobacteriaceae and 

Burkholderiaceae, and genus Ralstonia and Fusobacterium, whereas the genus Roseburia 

decreased. CD showed an increased abundance of order Enterobacterales and family 

Enterobacteriaceae and genus Escherichia and a decreased abundance of family 

Ruminococcaceae and Coriobacteriaceae, genus Blautia, Anaerostipes, Faecalibacterium, 

and Roseburia. In intestinal BD, a decreased abundance of family Bacteroidaceae and 

genus Bacteroides, Acinetobacter, and Subdoligranulum was noted, but these changes were 

only significant compared with control, and there was no significant change compared with 

IBD.  

Microbial analysis of fecal samples of control and IBD showed similar but different 

patterns. At the phylum level, IBD showed decreased Firmicutes and Actinobacteria, 
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whereas Proteobacteria and Bacteroidetes increased compared with control (Figure 4). 

Microbial richness and evenness were evaluated by Shannon index, and tissue sample 

showed a significant decrease in the α-diversity in CD compared with control, UC, or BD 

(Figure 5). On fecal sample analysis, the Shannon index was not different in UC and CD, 

but the number of OTUs and phylogenetic diversity was decreased in UC compared with 

control. Beta-diversity analysis was performed by the Bray-Curtis method, and PCoA plot 

with tissue samples showed clustering according to groups, and significantly different 

microbial composition among control and CD (PERMANOVA p value = 0.011), UC and 

CD (PERMANOVA p value = 0.004), UC and BD (PERMANOVA p value = 0.01), and 

CD and BD (PERMANOVA p value = 0.002) was noted (Figure 6A). The PCoA plot with 

fecal samples showed more separation of IBD from control, and significantly different 

microbial composition among control and UC (PERMANOVA p value = 0.002) and 

control and CD (PERMANOVA p value = 0.025) (Figure 6B). 
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Figure 3. Stacked bar chart of the microbial composition of colon tissue.  
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Figure 4. Stacked bar chart of the microbial composition of feces.  

 

 

Figure 5. Microbial α-diversity index from tissue and fecal samples. Microbial richness 

and evenness were evaluated by the Shannon index, and the tissue sample showed a 

significant decrease in the α-diversity in CD compared with control, UC, or BD. CD: 

Crohn’s disease, UC: ulcerative colitis, BD: Behçet’s disease 
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Figure 6. Principal coordinate analysis (PCoA) plot of tissue samples (A) and stool samples 

(B). Beta-diversity was analyzed by the Bray-Curtis method. (A) PCoA plot with tissue 

samples showed clustering according to groups, and significantly different microbial 

composition among control and CD, UC and CD, UC and BD, and CD and BD (all p value 

< 0.05). (B) PCoA plot with fecal samples showed more separation of IBD from control, 

and significantly different microbial composition among control and UC and control and 

CD (all p < 0.05). HC: healthy control, UC: ulcerative colitis, CD: Crohn’s disease, BD: 

Behçet’s disease 

 

  B. Taxonomic biomarker evaluation 

LEfSe analysis of tissue samples demonstrated significantly different abundances of 

specific taxa between control, UC, CD, and BD, and taxa with LDA effect size > 3 and p 
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<0.05 were visualized in Figure 7A. In control group, class Coriobacteriia, order 

Coriobacteriales and Bifidobacteriales, family Coriobacteriacea and Bifidobacteriaceae, 

and genus Roseburia, Holdemanella, Subdoligranulum, Fusicatenibacter, Bifidobacterium, 

and Barnesiella were more abundant taxa than UC, CD, or BD, which can be a potential 

biomarker of discriminating healthy status versus IBD or intestinal BD. In UC, phylum 

Fusobacteria, class Alphaproteobacteria, Actinomycetia, Fusobacteriia, and 

Betaproteobacteria, order Xanthomonadales, Rhizobiales, and Fusobacteriales, family 

Lactobacillaceae, Xanthomonadaceae, Comamonadaceae, Ralstonia, Burkholderiaceae, 

Fusobacteriaceae, and Ruminococcaceae, genus Lactobacillus, Dyella, Comamonas, 

Paraburkholderia, Ralstonia, and Fusobacterium were differentially abundant taxa 

compared with control, CD, or BD. In CD, family Morganellaceae, genus Proteus, and 

Escherichia were more abundant than control, UC, or BD. In intestinal BD, genus 

Lachnospira was the only taxon with a valid name that was differentially abundant 

compared with control and IBD by LEfSe analysis.  

LEfSe analysis separately performed for intestinal BD vs. control showed decreased 

abundance of butyrate-producing bacteria such as Dorea formicigenerans, 

Subdoligranulum variabile, Roseburia ceciola, Coprococcus comes, and 

Caproiciproducens (Figure 7B). LEfSe analysis of fecal samples also demonstrated 

significantly different abundances of specific taxa between the tissue of control, UC, and 

CD (Figure 7C). However, conducting a simultaneous LEfSe analysis for all four groups 

may not effectively capture taxa that are consistently increased or decreased across groups, 

as it tends to highlight features unique to a single group. To identify taxa that are commonly 

increased or decreased in UC, CD, and BD, we conducted separate LEfSe analyses for 

control vs. UC, control vs. CD, and control vs. intestinal BD. From these analyses, taxa 

that showed differences (LDA > 2.5, p < 0.05) were further assessed using the Mann-

Whitney U test, and only those taxa with significant taxonomic composition changes by 

Mann-Whitney U test were selected as microbial biomarkers and visualized in a Venn 

diagram (Figure 8). Genus Fusicatenibacter, species Fusicatenibacter saccharivorans, 
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Coprococcus comes, Blautia obeum, Dorea formicigenerans, and Roseburia ceciola 

consistently exhibited decreased abundance, indicating their 'protective' role in UC, CD, 

and BD. UC exhibited the most dynamic changes, with many both increased and decreased 

taxa, while CD primarily showed a decrease in the abundance of multiple taxa. Intestinal 

BD, on the other hand, displayed fewer significant changes, mainly characterized by a 

decrease in the abundance of several taxa including Subdoligranulum variabile and Blautia 

wexlerae. As a specific alteration unique to intestinal BD, a decrease in the genus 

Bacteroides, particularly the species Bacteroides fragilis, was identified.  
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Figure 7. Taxonomic biomarkers analyzed by LEfSe of tissue samples (A, B) and fecal 

samples (C). Taxa with LDA effect size > 3 and p <0.05 were visualized. (A) LEfSe 
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analysis of tissue samples demonstrated significantly different abundances of specific taxa 

between control, UC, CD, and BD. (B) LEfSe analysis separately performed for intestinal 

BD vs. control showed a decreased abundance of butyrate-producing bacteria. (C) LEfSe 

analysis of fecal samples also demonstrated significantly different abundances of specific 

taxa between the tissue of control, UC, and CD. LDA: linear discriminant analysis, LEfSe: 

LDA effect size, UC: ulcerative colitis, CD: Crohn’s disease, BD: Behçet’s disease 

 

 

Figure 8. Microbial taxonomic biomarkers of IBD and intestinal BD. Genus 

Fusicatenibacter, species Fusicatenibacter saccharivorans, Coprococcus comes, Blautia 

obeum, Dorea formicigenerans, and Roseburia ceciola consistently exhibited decreased 



２８ 

 

abundance, indicating their 'protective' role in UC, CD, and BD. BD displayed fewer 

significant changes, mainly characterized by a decrease in the abundance of several taxa. 

IBD: inflammatory bowel disease, UC: ulcerative colitis, CD: Crohn’s disease, BD: 

Behçet’s disease 

 

  C. Predictive functional profiling of microbiome 

Based on 16S rRNA gene sequencing data from tissue samples, we performed predictive 

functional profiling of the microbiome by PICRUSt analysis annotated to KEGG 

orthologys (KOs). In total, gene allocation for 42 KOs (2 in control, 11 in UC, 10 in CD, 

and 19 in BD) was differentially enhanced between groups with significance (LDA > 2.0, 

p <0.05, FDR-adjusted p < 0.1) (Figure 9). PICRUSt analysis from the microbiome of fecal 

samples showed no KOs, pathways, or modules with FDR-adjusted p < 0.1. Intestinal BD 

exhibited pronounced functional changes including orthologys related to drug resistance, 

signaling and cellular processes, as well as metabolic pathways. 
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Figure 9. Predictive functional profiling based on PICRUSt analysis (KEGG orthology) 

from tissue samples. PICRUSt analysis revealed multiple enhanced gene allocations for 

each group. Intestinal BD exhibited pronounced enhancements in functions related to drug 

resistance, signaling and cellular processes, as well as metabolic pathways. PICRUSt: 

phylogenetic investigation of communities by reconstruction of unobserved states, KEGG: 

Kyoto Encyclopedia of Genes and Genomes, UC: ulcerative colitis, CD: Crohn’s disease, 

BD: Behçet’s disease 
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 3. Metabolomic analysis 

  A. GC-TOF-MS analysis  

    (1) Changes in metabolite between groups 

GC-TOF-MS metabolomic analysis of 100 individual samples (25 Control, 24 UC, 26 CD, 

and 25 BD) was performed. In the PCA score plots, control and UC formed one cluster, 

while CD and BD constituted another distinct cluster. The PLS-DA score plot derived from 

the value of the PCA model demonstrated the segregation of three groups: control, UC, and 

a combined group of CD and BD (Figure 10A, B). Despite the observed significant 

difference among the three clusters (p < 0.05), the reproducibility and predictability were 

limited (R2 = 0.43, Q2 = 0.30), and a clear separation between CD and BD was not achieved. 

Consequently, a 3D PLS-DA score plot was constructed, which exhibited distinct 

separation among all four groups (Figure 10C). The PLS-DA cross-validation data showed 

cumulative values of R2 = 0.61 and Q2 = 0.52 where R2 indicates the variation shown by all 

5 components in the model and Q2 shows the predictability when the 5 components were 

considered (Figure 10D). These score plots and values indicated good clustering and 

demonstrated a good distinction between the four groups. Subsequently, we employed this 

model to identify the metabolites contributing to the group differentiation. The whole 

metabolomics profiles are shown as heatmap (Figure 11). Correlation analysis by Spearman 

rank correlation between metabolites is shown in the correlation heatmap (Figure 12). 

Metabolites within the same categories, such as fatty acids or amino acids, exhibited a 

positive correlation within each category.  

The key metabolites that contributed most to the separation between controls, UC, CD, and 

BD are shown in a PLS-DA VIP plot, ranking these by importance (Figure 13). VIP scores 

rank the overall contribution of each variable to the PLS-DA model. Uracil showed as a top 

metabolite in the discriminant analysis with higher levels in UC, lower levels in CD and 

BD, and intermediate levels in control. The following top metabolites oleamide, glutamine, 

glycerol-3-phosphate, hydroxylamine, oxalic acid, glucose, 2-oxoglutaric acid, glycerol, 

cysteine showed similar patterns of decreasing in UC and increasing in CD and BD.  
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Figure 10. Partial least squares discriminant analysis (PLS-DA) of plasma metabolites by 

GC-TOF-MS analysis. (A) Using a total of five components, we can identify combinations 

of two components that best explain the differences between groups. Figure-wise, it is 

evident that components 1 and 2 exhibit high explanatory power and effectively illustrate 

the differences between groups. (B) PLS Score 2D Plot generated using components 1 and 

2. The plot demonstrated the segregation of three groups: control, UC, and a combined 

group of CD and BD. (C) PLS Score 3D Plot using components 1, 2, and 3. (D) PLS-DA 

cross-validation showed cumulative values of R2 = 0.61 and Q2 = 0.52 where R2 indicates 
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the variation shown by all 5 components in the model. GC-TOF-MS: gas chromatography 

time-of-flight mass spectrometry, UC: ulcerative colitis, CD: Crohn’s disease, BD: 

Behçet’s disease 
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Figure 11. Heatmap of the whole plasma metabolite profiles by individual samples (A) and 

by groups (B). Overall, the metabolite profiles showed a similarity between control and 

UC, and a similarity between CD and BD. UC: ulcerative colitis, CD: Crohn’s disease, BD: 

Behçet’s disease 
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Figure 12. Correlation analysis between metabolites. A correlation heatmap by Spearman 

rank correlation analysis is shown. Metabolites within the same categories, such as fatty 

acids or amino acids, exhibited a positive correlation within each category. 
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Figure 13. Plasma partial least squares discriminant analysis (PLS-DA) variable 

importance in projection (VIP) plot. The key metabolites that contributed most to the 

separation between controls, UC, CD, and BD are shown in a PLS-DA VIP plot, ranking 

these by importance. UC: ulcerative colitis, CD: Crohn’s disease, BD: Behçet’s disease 

 

   (2) Metabolomic biomarker discovery 

Among 56 metabolites on the heatmap, 26 metabolites with VIP >1.0 by five components 

of the selected PLS-DA model, p < 0.05, FDR p < 0.1 by ANOVA were identified and 

selected as metabolites that differed between control, UC, CD, and BD. These potential 

metabolomic biomarkers of IBD and intestinal BD are summarized as a Venn diagram 

(Figure 14, Table 2).  There were common changes observed among the three groups 
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when compared to the control group. These common changes included an increase in 

cystine and a decrease in threonic acid, glutamic acid, 2-ketoisovaleic acid, and 5-

oxoproline. Substantial overlap was also observed between intestinal BD and CD, 

characterized by a decrease in terephthalmic acid and uracil, as well as an increase in 

oleamide, glutamine, glycerol, glycerol-3-phosphate, oxalic acid, and cysteine. UC 

exhibited a distinct metabolite profile compared to the other two conditions, except for the 

shared alterations among the three groups. Notably, UC had the least pronounced 

metabolite changes compared to the control, with decreases in phenylalanine and maltose 

being the notable changes. In CD, a distinct increase in hydroxylamine, glucose, and uric 

acid was noted compared to the control and other groups. In BD, a distinct increase in 

glucuronic acid and a decrease in pyrophosphate were notably observed. 

Figure 14. Potential metabolomic biomarkers of IBD and intestinal BD. In total, 26 

metabolites with VIP > 1.0, ANOVA p < 0.05, and FDR-adjusted p < 0.1 (20 different with 

control, 6 different between UC, CD, and BD) were noted. IBD: inflammatory bowel 

disease, UC: ulcerative colitis, CD: Crohn’s disease, BD: Behçet’s disease, VIP: variable 

importance in projection, ANOVA: analysis of variance, FDR: false discovery rate 
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   (3) Functional aspects of metabolomic biomarkers 

To identify biologically meaningful patterns based on the metabolomics data, QEA was 

performed for all diseases collectively (control vs. IBD and intestinal BD) and separately 

for UC, CD, and intestinal BD. When comparing control and inflammatory diseases of 

bowel (UC, CD, and intestinal BD), 27 pathways including nitrogen metabolism, 

nucleotide metabolism, amino acid metabolism, lipid metabolism, carbohydrate 

metabolism, metabolism of cofactors and vitamins, and genetic information processing 

were enhanced (Table 3, Figure 15A). In UC, metabolic pathway analysis revealed 18 

pathways that were significantly enriched compared to controls, with 11 of them related to 

amino acid metabolism (Figure 15B). In CD, 28 enriched metabolic pathways were 

identified (Figure 15C). In BD, 28 enriched pathways were identified, including 11 related 

to amino acid metabolism, 4 to lipid metabolism, 6 to carbohydrate metabolism, 3 to 

cofactor and vitamin metabolism, 1 to energy metabolism, 2 to nucleotide metabolism, and 

1 to genetic information processing (Table 4, Figure 15D). 

 

Table 2. List of significantly changed and differentially expressed between control, UC, 

and CD 

Name F-value P value FDR-

adjusted p 

value 

Tukey’s post-

hoc 

comparisons 

Max 

VIP 

score 

Uracil 23.304 <0.001 <0.001 2-0; 3-0; 2-1; 

3-1 

2.40 

Oleamide 16.482 <0.001 <0.001 2-0; 3-0; 2-1; 

3-1 

2.12 

Glutamine 14.065 <0.001 <0.001 2-0; 3-0; 2-1; 

3-1 

2.01 

Terephthalic acid 13.91 <0.001 <0.001 2-0; 3-0; 2-1; 

3-1 

1.97 
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Hydroxylamine 13.181 <0.001 <0.001 2-0; 2-1; 3-1; 

3-2 

1.76 

Glycerol-3-

phosphate 

10.593 <0.001 <0.001 2-0; 3-0; 2-1; 

3-1 

1.81 

Cystine 10.317 <0.001 <0.001 1-0; 2-0; 3-0 1.51 

Glucose 9.8479 <0.001 <0.001 2-0; 2-1; 3-1 1.62 

Oxalic acid 9.5713 <0.001 <0.001 2-0; 3-0; 2-1; 

3-1 

1.72 

Uric acid 9.5247 <0.001 <0.001 2-0; 2-1; 3-2 1.40 

2-Oxoglutaric 

acid 

9.1817 <0.001 <0.001 2-1; 3-1 1.46 

Threonic acid 8.0659 <0.001 <0.001 1-0; 2-0; 3-0 1.38 

Glycerol 6.6603 <0.001 0.0016873 2-0; 3-0; 2-1; 

3-1 

1.46 

Cysteine 6.5862 <0.001 0.0017107 2-0; 3-0; 2-1 1.44 

Glutamic acid 5.9269 <0.001 0.0035111 1-0; 2-0; 3-0 1.19 

Glucuronic acid 5.2158 0.0022235 0.0077824 3-0; 3-1 1.11 

Alanine 4.7845 0.0037665 0.012407 2-1; 3-2 1.05 

2-ketoisovaleric 

acid 

4.5695 0.0049041 0.015257 1-0; 2-0; 3-0 1.17 

Phenylalanine 4.4673 0.0055614 0.015677 1-0; 2-1 1.17 

Pyrophosphate 4.4619 0.0055988 0.015677 3-0 1.17 

5-Oxoproline 4.3706 0.0062657 0.016709 1-0; 2-0; 3-0 1.10 

Creatinine 4.2251 0.0074979 0.019086 3-1 1.27 

2-Monostearin 3.8419 0.012051 0.027705 3-1 1.15 

Maltose 3.821 0.012369 0.027705 1-0 1.08 

Tyrosine 3.3493 0.022237 0.046122 2-1 1.09 
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Serine 3.2671 0.024636 0.049273 2-1 1.01 

Among the 56 metabolites, 26 metabolites with VIP score > 1.0 by PLS-DA model with 5 

components and p < 0.05, FDR-adjusted p < 0.1 by ANOVA are selected. For Tukey’s 

post-hoc comparisons, 0 is control, 1 is UC, 2 is CD, and 3 is BD.  

 

Table 3. Result from quantitative enrichment analysis of ulcerative colitis, Crohn’s disease, 

and intestinal Behçet’s disease compared with control 

 Total 

compound 

Hits Statistic 

Q 

Raw p FDR- 

adjusted 

p 

Pantothenate and CoA 

biosynthesis 

19 5 7.91 <0.001 <0.001 

Pyrimidine metabolism 39 2 14.66 <0.001 <0.001 

Nitrogen metabolism 6 2 14.45 <0.001 <0.001 

Glutathione metabolism 28 4 9.68 <0.001 <0.001 

Purine metabolism 65 3 10.02 <0.001 <0.001 

Cysteine and methionine 

metabolism 

33 4 9.49 <0.001 <0.001 

Arginine biosynthesis 14 5 6.88 <0.001 <0.001 

D-Glutamine and D-glutamate 

metabolism 

6 3 9.82 <0.001 <0.001 

Glyoxylate and dicarboxylate 

metabolism 

32 5 6.56 <0.001 <0.001 

Butanoate metabolism 15 2 7.91 <0.001 0.001 

beta-Alanine metabolism 21 2 7.90 <0.001 0.001 

Porphyrin and chlorophyll 

metabolism 

30 2 8.10 <0.001 0.001 

Alanine, aspartate and 

glutamate metabolism 

28 7 4.64 <0.001 0.002 

Histidine metabolism 16 2 7.68 <0.001 0.003 

Taurine and hypotaurine 

metabolism 

8 1 10.84 <0.001 0.003 

Thiamine metabolism 7 1 10.84 <0.001 0.003 

Arginine and proline 

metabolism 

38 3 5.49 0.002 0.005 

Glycerolipid metabolism 16 2 6.82 0.002 0.007 

Glycerophospholipid 

metabolism 

36 1 8.58 0.003 0.008 
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Valine, leucine and isoleucine 

degradation 

40 4 4.72 0.010 0.024 

Valine, leucine and isoleucine 

biosynthesis 

8 4 4.72 0.010 0.024 

Aminoacyl-tRNA biosynthesis 48 12 3.78 0.010 0.024 

Glycine, serine and threonine 

metabolism 

33 3 4.08 0.012 0.025 

Fatty acid elongation 38 1 6.09 0.013 0.027 

Fatty acid degradation 39 1 6.09 0.013 0.027 

Fatty acid biosynthesis 47 2 4.17 0.034 0.066 

Biosynthesis of unsaturated 

fatty acids 

36 4 3.56 0.049 0.090 

 

Table 4. Result from quantitative enrichment analysis of intestinal Behçet’s disease 

compared with control 

 Total 

compound 

Hits Statistic 

Q 

Raw p FDR- 

adjusted 

p 

Pyrimidine metabolism 39 2 41.42 <0.001 <0.001 

beta-Alanine metabolism 21 2 22.32 <0.001 <0.001 

D-Glutamine and D-glutamate 

metabolism 

6 3 21.16 <0.001 <0.001 

Pantothenate and CoA 

biosynthesis 

19 5 14.23 <0.001 <0.001 

Arginine biosynthesis 14 5 13.55 <0.001 <0.001 

Nitrogen metabolism 6 2 27.86 <0.001 <0.001 

Glycerolipid metabolism 16 2 20.82 <0.001 <0.001 

Purine metabolism 65 3 15.84 <0.001 <0.001 

Glycerophospholipid 

metabolism 

36 1 25.60 <0.001 <0.001 

Cysteine and methionine 

metabolism 

33 4 13.58 <0.001 0.001 

Glyoxylate and dicarboxylate 

metabolism 

32 5 11.63 <0.001 0.001 

Alanine, aspartate and 

glutamate metabolism 

28 7 9.66 <0.001 0.001 

Butanoate metabolism 15 2 12.27 0.001 0.01 

Glutathione metabolism 28 4 10.62 0.002 0.01 

Pentose and glucuronate 

interconversions 

18 1 14.32 0.01 0.02 

Arginine and proline 38 3 8.13 0.01 0.03 
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metabolism 

Porphyrin and chlorophyll 

metabolism 

30 2 8.67 0.02 0.04 

Taurine and hypotaurine 

metabolism 

8 1 11.31 0.02 0.04 

Thiamine metabolism 7 1 11.31 0.02 0.04 

Histidine metabolism 16 2 8.76 0.02 0.04 

Aminoacyl-tRNA biosynthesis 48 12 6.90 0.02 0.04 

Galactose metabolism 27 3 7.26 0.03 0.04 

Fatty acid elongation 38 1 8.99 0.03 0.07 

Fatty acid degradation 39 1 8.99 0.03 0.07 

Ascorbate and aldarate 

metabolism 

8 2 7.21 0.04 0.07 

Inositol phosphate metabolism 30 2 7.21 0.04 0.07 

Valine, leucine and isoleucine 

degradation 

40 4 6.43 0.04 0.07 

Valine, leucine and isoleucine 

biosynthesis 

8 4 6.43 0.04 0.07 
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Figure 15. Quantitative enrichment analysis (QEA) for IBD and intestinal BD (A), UC (B), 

CD (C), and intestinal BD (D) compared with the control mapped to KEGG pathway (FDR-

adjusted p < 0.1). IBD: inflammatory bowel disease, UC: ulcerative colitis, CD: Crohn’s 

disease, BD: Behçet’s disease, KEGG: Kyoto Encyclopedia of Genes and Genomes, FDR: 

false discovery rate 

 

B. UPLC-Q-TOF-MS analysis 

UPLC-Q-TOF-MS metabolomic analysis of 100 individual samples (25 Control, 24 UC, 

26 CD, and 25 BD) was also performed, and 18 lysophospholipids including 

lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) were 

identified. However, these lysophospholipids did not show significant differentiation 
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between groups in both PCA score plots and PLS-DA score plots. The whole metabolomics 

profiles by UPLC-Q-TOF-MS analysis are shown as heatmap (Figure 16). Similar to the 

GC-TOF-MS analysis, a trend was observed where control and UC appeared similar, and 

BD and CD appeared similar. However, aside from the increase in lysoPE in CD, there 

were no specific trends. 

 

Figure 16. Heatmap of plasma metabolite profiles using UPLC-Q-TOF-MS analysis by 

groups. UPLC-Q-TOF-MS: ultra-performance liquid chromatography–quadrupole/time-

of-flight mass spectrometry, UC: ulcerative colitis, CD: Crohn’s disease, BD: Behçet’s 

disease 
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 4. Integration of microbial and metabolomic biomarkers 

The correlation analysis by Spearman rank correlation between potential microbial and 

metabolomic biomarkers is shown in the correlation heatmap (Figure 17). Microbial taxa 

that are mainly decreased in UC show mostly positive correlations with the majority of 

metabolomic biomarkers, and this may be associated with the overall decrease in 

metabolites in UC. On the other hand, microbial taxa that are predominantly decreased in 

CD and BD exhibited a negative correlation with the majority of metabolomic biomarkers, 

resulting in an increase in metabolites in both CD and BD.  

When comparing the enriched pathways from microbial functional analysis by PICRUSt 

and metabolite QEA, we observed a consistent pattern where microbial functions showed 

a good alignment with the enriched pathways identified by QEA. In UC, microbial 

functions of arginine kinase and branched-chain amino acid transport system ATP-binding 

protein were found to be increased, corresponding to enriched metabolite pathways 

arginine and proline metabolism and valine, leucine, and isoleucine degradation. In CD, 

microbial functions of acetolactate synthase I/II/III large subunit, fumarate reductase 

subunit D, and glutamate decarboxylase were found to be increased, corresponding to 

enriched metabolite pathways pantothenate and CoA biosynthesis, butanoate metabolism, 

citrate cycle, beta-alanine metabolism, taurine and hypotaurine metabolism, and alanine, 

aspartate, and glutamate metabolism. In BD, enriched metabolic pathways that showed 

correlation with PICRUSt results were pyrimidine metabolism, purine metabolism, alanine, 

aspartate, and glutamate metabolism, butanoate metabolism, arginine and proline 

metabolism, histidine metabolism, aminoacyl-tRNA biosynthesis, fatty acid degradation, 

and inositol phosphate metabolism.  
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Figure 17. Correlation heatmap of potential microbial and metabolomic biomarkers in UC, 

CD, and BD. The correlation analysis by Spearman rank correlation between potential 

microbial and metabolomic biomarkers is shown in the correlation heatmap. Microbial taxa 
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mainly decreased in UC are mostly positively correlated with most of metabolomic 

biomarkers, whereas microbial taxa mainly decreased in CD and BD showed negative 

correlation with most of metabolomic biomarkers. The cells marked with asterisks (*) 

indicate Spearman correlation analysis with p < 0.05. UC: ulcerative colitis, CD: Crohn’s 

disease, BD: Behçet’s disease 

 

 

 

 

 

IV. DISCUSSION 

In this integrative analysis of microbiome and metabolome in IBD and intestinal BD, we 

identified both common and disease-specific profiles of UC, CD, and intestinal BD. The 

microbial diversity of colon tissue was only reduced in CD, with intestinal BD showing no 

significant decrease. The microbial taxonomic profile of intestinal BD displayed a pattern 

more similar to healthy control than UC or CD, and it exhibited distinctive features setting 

it apart from both UC and CD. However, there were common changes across all three 

conditions (UC, CD, and intestinal BD), including a decrease in beneficial bacteria 

responsible for producing short-chain fatty acids such as Fusicatenibacter saccharivorans, 

Coprococcus comes, Blautia obeum, Dorea formicigenerans, and Roseburai ceciola. 

Additionally, reductions in genera like Subdoligranulum and Roseburia, previously 

mentioned in fecal sample studies of systemic BD patients, were also observed in the 

intestinal BD of this study. However, these changes were shared characteristics with UC 

and CD. As a specific alteration unique to intestinal BD, a decrease in the genus Bacteroides, 

particularly the species Bacteroides fragilis, was identified. The metabolomic profile of 

intestinal BD was most similar to CD and distinct from both controls and UC. However, 

UC, CD, and intestinal BD each exhibited distinct metabolomic profiles. Overall, UC 

displayed the most dynamic taxonomic changes in the microbiome but exhibited the least 
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microbial functional alterations and metabolomic changes. In contrast, intestinal BD, while 

not showing as substantial taxonomic changes as UC or CD, exhibited pronounced 

functional changes and metabolite alterations. This difference is likely because UC is a 

condition characterized by inflammation that is more localized to the mucosa, resulting in 

a diverse range of changes in mucosa-associated microbiota as both its cause and 

consequence. On the other hand, intestinal BD and CD exhibit a more systemic disease 

pattern, which could be a reason for the greater number of plasma metabolite changes 

associated with systemic inflammation and host immune response. 

Previous studies have evaluated the composition of gut microbiota in IBD patients and 

confirmed significant differences of gut microbiota from that of healthy individuals.5-11 

Overall, active IBD is associated with an increased abundance of the phylum Proteobacteria, 

as well as genera such as Fusobacterium, Enterococcus, and Streptococcus, and species 

including Escherichia coli and Ruminococcus gnavus. These taxa consistently showed an 

increased relative abundance that correlated with IBD activity. Conversely, IBD is linked 

to the loss of beneficial taxa such as Faecalibacterium prausnitzii, Christensenellaceae, 

Roseburia, Bifidobacterium longum, Coprococcus, Blautia, and other butyrate-producing 

bacteria.5,31-33 However, the results were heterogenous, and few studies evaluated the 

difference of microbiota between UC and CD within IBD.5,33,34 In our study, the microbial 

changes observed in UC and CD were consistent with previous research on IBD. When 

considering intestinal BD alongside IBD, we identified shared protective taxa that 

exhibited decreased abundance in all of UC, CD, and intestinal BD. Notably, these taxa 

have frequently been described as decreased in UC and CD in prior studies except for 

Fusicatenibacter, suggesting that the microbial alterations in intestinal BD follow a similar 

pattern to those in IBD. Among the five commonly decreased species in our study, 

Fusicatenibacter saccharivorans is less frequently described in IBD. It belonged to the 

Clostridium subcluster XIVa and was initially isolated and cultured from healthy human 

feces in 2013.35 F. saccharivorans produces short-chain fatty acids such as lactic acid, 

acetic acid, and succinic acid, and was reported to be decreased in UC and CD.36-38 F. 
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saccharivorans play an anti-inflammatory role by inducing IL-10 and prevented murine 

acute colitis.36 

The research on the gut microbiome in BD is limited, especially regarding intestinal BD. 

The previous studies on BD primarily focused on the oral mucosa or saliva microbiome of 

systemic BD patients. Although some studies have investigated fecal microbiota, there have 

been no studies analyzing the microbiome of colon tissue in intestinal BD. In the first study 

that confirmed gut dysbiosis in BD through stool samples in 2015,39 22 BD patients (with 

an unconfirmed precise ratio of those diagnosed with intestinal BD, as only described as 

32% having gastrointestinal symptoms) exhibited a decrease in the Roseburia genus in 

fecal microbiota analysis, a finding also observed in our study with the decrease of 

Roseburia ceciola. Additionally, a decrease in the Subdoligranulum genus was observed, 

and our study also yielded the same results. Another study also reported an increase in 

Bacteroides uniformis in the fecal microbiome among systemic BD patients without 

intestinal involvement,40 whereas our study did not find a significant difference. Among 

our intestinal BD patients, 30% of tissue sample donors and 36% of blood sample donors 

had intestinal BD without systemic BD. Although it is possible that the microbiome 

characteristics between intestinal BD and systemic BD may be similar, we anticipate that 

there may be more specific changes in mucosa-associated microbiota analyzed through 

colon biopsy in intestinal BD. The microbiota that specifically decreased in intestinal BD 

was Bacteroides fragilis in our study. Bacteroidetes is one of the dominant phylum in 

healthy individuals, and it is known to decrease in patients with IBD. Some members of 

the Bacteroides genus have demonstrated anti-inflammatory functions.41-43 Moreover, 

many Bacteroides species can break down complex polysaccharides, releasing simple 

carbohydrate products that other bacteria can use. Previous studies show that Bacteroides 

play a crucial role in the ecological networks of the gut microbiota, and their removal can 

disrupt these networks.44 Therefore, Bacteroides have the potential to act as ‘foundation 

species’ that help maintain the gut microbial community. Considering this, the decrease in 

Bacteroides in intestinal BD may be a possible explanation for pronounced functional 
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changes and metabolite alterations in intestinal BD, even though it doesn’t exhibit as 

substantial microbial taxonomic changes as UC or CD – a subtle yet impactful shit. Also, 

some members of the Bacteroides genus have demonstrated anti-inflammatory functions. 

Bacteroides fragilis, in particular, and its immunomodulatory symbiosis factor, capsular 

polysaccharide A (PSA),45 have been extensively studied and shown to be effective in 

preventing colitis in murine models.42,46,47 In the pathogenesis of BD, it shares some 

common features with autoimmune and autoinflammatory diseases as well as 

spondyloarthropathies.3 One suspected triggering infectious agent is herpes simplex virus 

(HSV)-1, which has a high homology with human proteins like heat-shock proteins. Cross-

reaction to autoantigens can lead to an autoimmune response in BD patients.3,48 PSA and 

Bacteroides fragilis have shown potent immunomodulatory activity in protecting against 

diseases like herpes simplex encephalitis caused by HSV-1 and autoimmune encephalitis 

triggered by herpes simplex encephalitis. This protection is achieved by PSA binding to 

and stimulating intestinal toll-like receptor (TLR) 2-positive plasmacytoid dendritic cells 

and B cells, leading to the secretion of IL-10. This, in turn, induces regulatory T cells that 

produce both IL-10 and IFN-γ. These regulatory mechanisms collectively suppress 

pathogenic inflammatory monocytes and neutrophils.41 Such immunomodulatory and 

autoimmune response-suppressing mechanisms associated with Bacteroides fragilis may 

represent a causal link between the decreased abundance of Bacteroides fragilis and 

intestinal BD. 

Numerous studies have reported substantial alterations in the gut metabolite profiles of 

patients with IBD.10,12,13,49 Metabolite profiling could also discriminate between different 

forms of IBD, such as CD and UC,50,51 and could further classify patients with CD as having 

either ileal or colonic inflammation.52 Previous metabolomic analysis showed a 

pronounced separation of CD and control, whereas UC was more heterogeneous.12 In our 

study, a similar finding was observed with UC exhibiting the least metabolomic changes. 

Intestinal BD showed similar metabolomic profiles with CD and is distinct from controls. 

Metabolite can be analyzed in multiple sample types such as blood, urine, stool, and tissue, 
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and each biosample provides different biochemical information. Because blood metabolite 

may provide a systemic metabolism result from the crosstalk of microbiota with the host, 

we performed metabolomic analysis in the plasma sample. Representative metabolite 

changes identified in previous studies of IBD, using serum and plasma samples, include 

alterations in branched-chain amino acids, increased levels of 3-hydroxybutyrate, and 

decreased levels of glutamine, histidine, tryptophan, and lipids.53,54 The frequently reported 

changes in bile acid or short-chain fatty acids are mainly reported from stool samples, and 

not detected in our study. In our study, glutamate was decreased in all of UC, CD, and 

intestinal BD. Butyrate-producing commensal bacteria ferment pyruvate to produce 

butyrate, while certain pathogenic bacteria, such as Fusobacterium, utilize glutamate as a 

substrate for butyrate production.55 Consequently, dysbiosis, which is commonly observed 

in IBD and intestinal BD, may contribute to the decreased levels of glutamate observed in 

our study. Additionally, the bacteria that decreased in all three diseases also possess the 

enzyme glutamate synthase, which converts glutamine to glutamate. A decrease in these 

bacteria may contribute to decreased glutamate and increase in glutamine. The unique 

change of metabolite in intestinal BD was increase in glucuronic acid. Enrichment analysis 

showed increased pentose and glucuronate interconversions in intestinal BD, and 

glucuronate isomerase catalyzes change between fructuronic acid and glucuronic acid. 

Since this enzyme is encoded in genes of bacteria that are decreased in abundance in 

intestinal BD such as Bacteroides fragilis and Caproiciproducens, changes in balance may 

contributed the changed level of glucuronic acid. In CD, hydroxylamine and uric acid were 

increased in our study. Hydroxylamine, a derivative ammonium, is an intermediate in two 

important microbial processes of the nitrogen cycle. It is formed during nitrification and 

also during anaerobic ammonium oxidation.56 It is a well-known mutagen, moderately 

toxic and harmful to human. The report on hydroxylamine in IBD is scarce, and further 

data are needed regarding this metabolite. Uric acid is the terminal product of purine 

nucleoside metabolism by xanthine dehydrogenase. The increase of Bacteroides and the 

decrease of Faecalibacterium, Clostridium, and Ruminococcus result in excessive uric acid 
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production in the liver and insufficient uric acid excretion in the kidney and intestine, 

raising serum uric acid levels.57 IBD patients had increased uric acid levels than control, 

and serum uric acid to creatinine ratio is associated with disease activity in CD.58 Also, 

phenylalanine was increased in UC in our study. Phenylalanine has been shown to be 

disturbed in IBD, but there are inconsistencies regarding increase or decrease in fecal or 

serum samples. Phenylalanine inhibits TNF-α production and has an anti-inflammatory role, 

and our study showed a decreased level in UC.53  

Integrating multi-omics data poses several challenges. Identifying a metabolite as 

originated from the microbiome can be complex, and pinpointing the specific 

microorganism responsible for producing or modifying a particular metabolite is even more 

daunting. While the mechanistic links between host diseases, microorganisms, and 

metabolites are becoming clearer, significant questions about disease-associated 

metabolites remain unanswered. These questions encompass whether these metabolites 

originate from bacteria or result from host metabolism, whether they directly affect bacteria 

or indirectly influence host physiology, or potentially represent a combination of these 

scenarios. To address these challenges, it is imperative to move beyond merely identifying 

correlations between various omics data. Additional investigations, such as comparing 

metabolites with cultured isolates of microbiota or utilizing germ-free or specific pathogen-

free mouse models, are essential. 

This study possesses several strengths. Firstly, it is the first investigation to examine 

mucosa-associated microbiome and metabolome changes in intestinal BD, providing a 

unique perspective. Additionally, it is the first study to analyze intestinal BD alongside IBD, 

allowing for a comprehensive exploration of both commonalities and differences. While 

there have been a few studies on microbiome changes in systemic BD, none have 

specifically targeted intestinal BD, and they have primarily focused on fecal microbiome 

analysis. Compositionally distinct from luminal microbiota represented by feces,59 the 

mucosa-associated microbiota interacts more directly with host epithelial and immune cells 

through pattern recognition receptors and other signals.60 
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This study has several limitations. Firstly, due to its cross-sectional design, a single sample 

may not fully capture the temporal changes in the intestinal microbiome. The stability of 

the microbial community over time, rather than the specific taxa present at a single time 

point, can be a strong predictor of disease activity.61 Additionally, many other factors, such 

as diet, lifestyle, and medication, were not controlled for, and it's possible that these factors 

could have influenced the bacterial composition or metabolite profile.7 Since the subjects 

were not enrolled in a matched manner across groups, the younger age of CD patients 

compared to other groups may have also influenced microbial composition. It's also 

important to note that distinguishing species using 16S rRNA sequencing can be 

challenging. Furthermore, untargeted metabolomics detected a relatively small number of 

metabolites, and the samples used for metagenomics analysis were different from those 

used for metabolite analysis, which limited the sample size for the microbiome-metabolite 

interaction analysis. Another limitation is that the study included patients who were already 

receiving treatment, and some changes in the microbiota and metabolites may have 

normalized due to treatment, limiting their utility as diagnostic markers. However, the 

microbial changes observed in IBD in this study were broadly consistent with those 

reported in previous studies.  

 

V. CONCLUSION 

This study performed an integrated analysis of the gut microbiome on tissue and stool 

samples by 16S rRNA sequencing and plasma metabolite profiling by GC-MS-TOF and 

UPLC–Q–TOF–MS analysis in patients with intestinal BD as well as UC and CD compared 

with healthy control. The microbial taxonomic profile of intestinal BD displayed a pattern 

more similar to healthy control than UC or CD, and it exhibited distinctive features setting 

it apart from both UC and CD. The metabolomic profile of intestinal BD was most similar 

to CD and distinct from both controls and UC. Intestinal BD exhibited pronounced 

functional changes and metabolite alterations, while not showing as substantial microbial 

taxonomic changes as UC or CD. We identified potential microbial and metabolomic 
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biomarkers that can either group the diseases together or distinguish each of UC, CD, and 

intestinal BD. 
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배경 및 목적: 장내 마이크로바이옴과 대사체 변화는 염증성 장질환인 궤양성 

대장염과 크론병과 연관된 것으로 알려져 있다. 그러나 염증성 장질환과 

임상적으로 공통점이 많은 베체트 장염에서는 이러한 마이크로바이옴이나 

대사체 변화에 대한 연구가 부족하며, 병인론적으로 베체트 장염과 염증성 

장질환의 유사성이 제기되고 있으나 아직 베체트 장염의 병인에 대해서는 

많은 연구가 필요하다. 본 연구는 베체트 장염 환자의 장 내 마이크로바이옴 

특징 및 기능적 변화, 대사체의 변화를 염증성 장질환 및 대조군과 비교하여 

확인하고, 베체트 장염과 궤양성 대장염, 크론병을 구분하는 데 도움이 되는 

미생물 및 대사체 마커를 발견하기 위해 시행되었다. 

연구 방법: 진단 대장내시경 검사를 받는 성인 염증성 장질환 및 베체트 장염 

환자와 건강한 자원자를 대상으로 회맹부에서 획득한 대장 조직 샘플을 

이용하여 16S 리보솜 RNA (rRNA) 서열 분석을 시행하였으며, 미생물 군집의 

다양성, 분류학적 조성 및 기능적 특징을 대조군, 궤양성 대장염, 크론병 및 

베체트 장염 그룹간 비교하였다. 또 대조군과 염증성 장질환 환자의 대변 

샘플을 16S rRNA 서열 분석을 위해 수집하고 분석하였다. 대조군, 궤양성 

대장염, 크론병 및 베체트 장염 환자로부터 혈액을 채취하고 가스 및 액체 

크로마토그래피 질량분석을 이용하여 혈장 대사체 분석을 시행하였다.  

결과: 총 100명의 환자 (35명의 궤양성 대장염, 30명의 크론병, 35명의 베체트 

장염) 및 41명의 건강한 자원자가 연구에 참여하였다. 73개의 조직 샘플 

(12명의 대조군, 24명 궤양성 대장염, 14명 크론병, 23명 베체트장염)과 19개의 
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대변 샘플 (5명 대조군, 9명 궤양성 대장염, 5명 크론병)에 대한 16S rRNA 서열 

분석을 시행하였고, 100개의 혈액 샘플 (25명 대조군, 24명 궤양성 대장염, 26명 

크론병, 25명 베체트 장염)에 대한 대사체 분석을 시행하였다. 대장 조직의 

미생물 다양성은 크론병에서만 의미 있게 감소하였으며, 베체트 장염에서는 

유의한 감소를 보이지 않았다. 베체트 장염의 미생물 분류상 특징은 궤양성 

대장염이나 크론병보다 대조군과 더 유사한 양상을 나타내며, 염증성 

장질환과는 뚜렷이 구분되는 특징을 보였다. 그러나 염증성 장질환과 베체트 

장염에서 공통적인 변화도 확인되었으며, 단쇄지방산을 생성하는 유익균 중 

다섯 가지 (Fusicatenibacter saccharivorans, Coprococcus comes, Blautia obeum, 

Dorea formicigenerans, and Roseburai ceciola)의 감소였다. 베체트 장염에서는 

추가적으로 Subdoligranulum variable과 Blautia wexlerae의 감소가 확인되었는데 

이는 궤양성 대장염 또는 크론병과 공통된 특징이었다. 베체트 장염에 

특이적인 변화로 Bacteroides 속, 특히 Bacteroides fragilis 종의 감소가 

확인되었다. 베체트 장염의 대사체 특징은 크론병과 가장 유사하였고, 

대조군이나 궤양성 대장염과는 구분되었다. 그러나 궤양성 대장염, 크론병, 

베체트 장염 각각 특징적인 대사체 결과를 나타냈다. 전반적으로 베체트 

장염은 궤양성 대장염이나 크론병처럼 큰 미생물 변화를 나타내지 않으면서도, 

에너지 대사, 아미노산, 탄수화물 및 지질 대사, 보조 인자 및 비타민 대사, 

뉴클레오타이드 대사, 유전 정보 처리 등의 대사 경로가 증가되어 있고 그에 

해당하는 대사체 변화를 보였으며, 이러한 변화가 미생물 변화와 잘 연관지어 

나타남을 확인할 수 있었다.  

결론: 염증성 장질환과 베체트 장염에서의 미생물 및 대사체 통합 분석에서 

베체트 장염은 대조군 및 염증성 장질환과 공유되는 특징과 함께 구분되는 

질환 특이적 특징을 나타내어, 이 질환들간의 유사성 및 차이점을 유추해 볼 

수 있었고 이러한 미생물 및 대사체 특징은 추후 이들 질환의 진단 및 감별 

진단의 마커로서 사용될 가능성이 있다.  

                                                                   

핵심되는 말: 베체트 장염, 크론병, 궤양성 대장염, 마이크로바이옴, 대

사체  
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