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ABSTRACT 
Efficacy of radiomics predicting oncologic outcome of  

liver-directed combined radiotherapy in  
locally advanced hepatocellular carcinoma 

 
Jong Won Park 

 
Department of Medicine 

The Graduate School, Yonsei University  
 

(Directed by Professor Jinsil Seong) 

 

Purpose: We investigated whether radiomic features extracted from 3-phase dynamic 

contrast-enhanced computed tomography (CECT) can be used to predict clinical outcomes, 

including objective treatment response (OR) and in-field failure-free survival rate (IFFR), 

in patients with hepatocellular carcinoma (HCC) who received liver-directed combined 

radiotherapy (LD-CRT).  

 

Methods: We included 409 patients with locally advanced HCC who underwent LD-CRT 

between November 2005 and December 2018. They were randomly divided into training 

(n = 307) and validation (n = 102) cohorts. The endpoints were the OR and IFFR. 

Significant prognostic factors were identified using binary logistic and Cox regression 

analyses. To predict OR and IFFR, we extracted 116 radiomic features from the region of 

interest (ROI) on the CECT images. The least absolute shrinkage and selection operator 

method was used to select the most useful predictive features from the ROIs. We developed 

prediction models using radiomics features alone (radiomics model) or in combination with 

clinical features (CCR model). We also developed and validated a prognostic nomogram 

based on CCR models.  

 

Results: Among the radiomic models evaluated for OR, the OR-PVP-Peri-1cm model 

(considering a peritumoral area of 1cm on portal venous phase CT) showed favorable 
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predictive performance with an area under the curve (AUC) of 0.647. Clinical model 

showed the predictive performance of 0.729, whereas the CCR model showed better 

performance with an AUC of 0.759. For the IFFR, the IFFR-PVP-Peri-1cm model had an 

AUC of 0.673, clinical model had an AUC of 0.687, whereas the CCR model showed an 

AUC of 0.736.  

 

Conclusion: In predicting the OR and IFFR in patients with HCC undergoing LD-CRT, 

radiomic models based on both tumoral and peritumoral areas using pre-radiotherapy 3-

phase dynamic liver CT in patients with HCC undergoing LD-CRT have favorable 

predictive performance for OR and IFFR. Moreover, CCR models performed better than 

clinical and radiomics models, and they have potential use in clinical prediction. The 

constructed nomograms based on these models may provide valuable information on the 

OR and IFFR in patients with HCC undergoing LD-CRT. 

 

                                                                   

Keywords: hepatocellular carcinoma, liver-directed combined radiotherapy, 

radiomics, treatment response, in-field failure-free survival rate
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I. INTRODUCTION 

Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver and 

the fourth leading cause of cancer-related deaths worldwide1. Although treatment 

modalities have developed and reached a certain degree, the prognosis of HCC remains 

poor owing to tumor recurrence, and the 5-year overall survival is around 10-20% even 

after curative treatment options2-5 (surgical resection, ablation, or liver transplantation).  

For the treatment of advanced HCC, systemic therapy has long been the preferred 

option, which usually involves sorafenib and, more recently, atezolizumab plus 

bevacizumab6-7. However, in cases of locally advanced HCC, liver-directed combined 

radiotherapy (LD-CRT) should receive more attention because of its effectiveness, which 

may enable curative resection8-10. LD-CRT effectively reduces the size of locally 

advanced HCC that is initially unsuitable for surgery, leading to improved patient 

survival rates9-10. Additionally, recent studies have shown that selected patients treated 

with LD-CRT can convert tumors beyond the Milan criteria to those within the Milan 

criteria, indicating the potential for conversion therapy to curative surgery8. 

Predicting the treatment response is clinically important for cancer treatment. In HCC, 

the clinical predictive factors for tumor markers are well-known11-14. Although these 

factors are recognized as essential, recent attempts have been made to predict treatment 

outcomes using radiomics based on imaging markers. Radiomics has emerged as a new 

approach to extracting quantitative radiological data from medical images (radiomics 

data). This involves extracting complex information about the tumor and surrounding 
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tissue characteristics, such as density, texture, shape, borders, and blood flow, to 

understand the nature of the tumor and explore its correlation with clinical outcomes, 

such as survival, therapeutic response, and pathology. By building appropriate models 

with advanced features, radiomics analysis has already proven to be helpful in various 

types of cancer diagnosis and prognostic prediction and is expected to become 

increasingly crucial in predicting cancer treatment outcomes in the future, particularly in 

the fields of radiology and oncology.  

We aimed to investigate whether radiomics features extracted from contrast-enhanced 

dynamic liver computed tomography (CT) scans can correlate with prognostic factors and 

predict clinical outcomes such as objective response (OR) and in-field failure-free 

survival rate (IFFR) in patients with HCC undergoing LD-CRT. The predictive accuracy 

of the model was assessed using an independent validation group. To the best of our 

knowledge, this is the largest and novel study to evaluate prognostic factors and clinical 

outcomes in patients with HCC undergoing LD-CRT to develop a clinico-radiomics 

model.  

 

II. MATERIALS AND METHODS 

1. Patients  

This retrospective study was conducted by searching electronic medical records. We 

identified 409 patients with inoperable HCC who underwent LD-CRT between 

November 2005 and December 2018. The inclusion criteria were as follows: (1) HCC 

patients who had received LD-CRT; (2) pre-radiation contrast-enhanced 3-phase CT 

performed within two months before radiotherapy; (3) Child-Pugh class A or B disease; 

and (4) Eastern Cooperative Oncology Group (ECOG) performance status of no more 

than 2. We excluded patients meeting the following criteria: (1) presence of distant 

metastasis at the beginning of radiotherapy, (2) previous or concurrent other 

malignancies, (3) history of radiation to the abdominal area, and (4) incomplete 

radiotherapy (biologically effective dose [BED] < 40 Gy) owing to patient refusal or poor 
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general condition. The entire cohort was randomly divided into training and validation 

datasets in a ratio of 7:3. The training dataset was used to construct the models evaluated 

using the validation dataset. Baseline clinicopathological data, including age, sex, Eastern 

Cooperative Oncology Group (ECOG) performance status, Child-Pugh score, HCC 

etiology (hepatitis B, hepatitis C, or neither), diagnosis date, serum alpha-fetoprotein 

(AFP), serum Protein Induced Vitamin K Absence or Antagonist-II (PIVKA-II), Incyanin 

green (ICG) R15, tumor size, clinical stage, portal vein tumor thrombosis (PVTT), 

radiation dose, and treatment volume, were obtained from medical records.  

Patients were consistently followed up every three months after radiotherapy based on 

AFP, PIVKA-II, and imaging examinations, and the time of disease-specific progression 

(in-field failure, out-field failure, nodal failure, or distant metastasis) or death was 

recorded. Abdominal 3-phase contrast-enhanced CT (CECT) was performed every three 

months. Treatment response was evaluated using the modified Response Evaluation 

Criteria in Solid Tumors Group (mRECIST) at the 3-month visit after completing 

radiotherapy. Complete response (CR) and partial response (PR) were considered 

objective responses (OR), whereas stable disease (SD) and progressive disease (PD) were 

considered non-ORs.  

This study was approved by the Institutional Review Board of our institution. The 

patient records/information were anonymized and de-identified prior to analysis, and 

informed consent was not obtained from each participant owing to the retrospective 

nature of this study. 

 

2. Treatment Protocols  

Five-mm margins around the gross tumor volume (GTV) and clinical target volume 

(CTV) were defined as the CTV and planning target volume (PTV), respectively. Prior to 

2010, tumor movement was included in the PTV by adding a generous margin in the 

craniocaudal direction. Four-dimensional computed tomography-based planning was 

adopted in 2010, and the internal target volume (ITV) was delineated considering the 
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tumor movement for every respiratory phase. Additional 5-mm margins around the ITV 

and CTV were defined as the CTV and PTV, respectively.  

The radiotherapy doses were customized to maximize the dose delivered to the tumor 

while satisfying normal organ dose constraints. For 3-dimensional conformal 

radiotherapy, 45 Gy in 25 fractions is typically prescribed for the PTV. As IMRT was 

implemented in more patients, our practice pattern shifted towards delivering higher 

doses of radiation. The GTV or ITV received a radiation dose of 50–75 Gy in 20–25 

fractions using the central simultaneous integrated boost (SIB) technique, whereas the 

surrounding PTV received a lower radiation dose of 45–60 Gy in 20–25 fractions. The 

GTV minus 1cm was treated with an SIB of 100 Gy in 25 fractions for selected tumors 

with sufficient distance from the luminal organs. For equal comparisons of dose effects of 

various fractionations, the maximum prescribed dose to the tumor was calculated as BED 

(α/β= 10). 

In cases with multiple tumors, the primary and adjacent tumors were irradiated, and 

lesions outside the target volume were treated with transarterial chemoembolization 

(TACE) at the time of arterial port insertion. If portal vein tumor thrombosis or regional 

nodal metastases were present, they were treated in the radiotherapy field.  

Continuous hepatic arterial infusion chemotherapy with 5-fluorouracil (500 mg/m2/day) 

during the first and last weeks of radiotherapy was administered using a percutaneous 

hepatic arterial catheter inserted via hepatic arterial angiography. At 1 month after 

radiotherapy, hepatic arterial infusion chemotherapy using 5-fluorouracil (500 mg/m2 on 

days 1–3) and cisplatin (60 mg/m2 on day 2) was administered every 4 weeks for 1–14 

cycles in accordance with the treatment response after radiotherapy and liver function. 

 

3. CT Scan Protocols 

Three-phase CECT was performed at our institute with one of the following machines: a 

64-detector row (Aquilion CXL, Toshiba Medical System, Tokyo, Japan) or a 320-

detector row CT machine (Aquilion One, Toshiba Medical System, Tokyo, Japan). The 
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same scanning parameters were used for both machines: tube voltage, 120 kV; tube 

current, 250 mA; and slice thickness, 3 mm, and Br40d for the kernel. All images were 

reconstructed using filtered back projection (FBP) algorithms. After a routine unenhanced 

scan, 1.5 mL/kg of contrast medium was injected into the antecubital vein at a rate of 3.0 

mL/s via a pump injector. Hepatic arterial phase CT images were obtained at 20-25 

seconds, and portal venous phase CT images were obtained at 35-40 seconds after 

injection. 

 

4. Radiomics Feature Extraction 

The workflow of radiomics analysis are depicted in Figure 1. A radiation oncology 

expert performed three-dimensional segmentation of the HCC using MIM Software 

Version 6.5.8 (MIM Software Inc., Cleveland, OH). Regions of interest (ROI) were 

manually delineated on 3 mm arterial and portal venous-phase CT images to encompass 

the entire tumor (ROI tumor). Based on the initial ROI, ROI were reconstructed at 1 cm 

and 2 cm from the tumor surface, resulting in the assignment of ROI1cm and ROI2cm, 

respectively.  

Radiomics features were extracted from the contour images of each ROI, including 

ROItumor, ROI1cm, and ROI2cm, using MATLAB. In the feature extraction process, we 

utilized three 2D slice images from one image volume, which comprised the central slice 

with the largest cross-section area of the tumor and its adjacent slices. During the hand-

crafted feature (HCF) extraction process (including original texture, shape, and 

peritumoral texture), we included 116 texture features for each ROIs, such as histogram 

characteristics (such as mean, skewness, kurtosis), histogram percentile intensities, gray 

level co-occurrence matrices (GLCM) features (such as contrast, entropy), gray level run 

length matrix (GLRLM) features (such as short and long run emphasis), and local binary 

pattern (LBP) features. In Addition, we included shape features, such as area/perimeter 

ratio and eccentricity. The hand-crafted radiomics features are listed in the Table 1. 
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5. Feature Selection, Model Building, and Model Evaluation 

The least absolute shrinkage and selection operator (LASSO) method was used to select 

useful predictive features from the ROIs and construct a combined clinico-radiomics 

(CCR) model using multiscale clinical and radiomics features. The discrimination 

performance of the model was evaluated using the area under the receiver operating 

characteristic (ROC) curve (AUC) in the primary training and validation groups, with a 

value of 1 indicating perfect discrimination and 0.5 representing randomness.   

 

 

 

 

Figure 1. Workflow of radiomics analysis.  
The radiomics workflow started with three-dimensional segmentation of tumor in 3-phase 
CECT images. After segmentation, handcrafted radiomic features including shape, 
intensity and texture were extracted. Least absolute shrinkage and selection operator 
(LASSO) were used for the radiomic feature selection and model building. Combining 
radiomics model with clinical features, we obtained CCR model. Nomogram building and 
calibration was done. 
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The Hosmer–Lemeshow test was applied to the prediction model. We further built a 

nomogram for the model to provide a more direct method to determine the OR and IFFR. 

A calibration curve was plotted to analyze the prognostic performance of the nomogram 

on both the training and validation datasets. The “rms” R package was used for Cox 

proportional hazards regression, nomograms, and calibration curves. By filling in the 

CheckList for EvaluAtion of Radiomics Research (CLEAR) checklist, we tried to 

improve the quality, reliability, and in turn, reproducibility of this study. 

 
 
 
Table 1. List of hand-crafted radiomics features. 

 
GLCM, Gray-Level Co-occurrence Matrix; GLRLM, Gray Level Run Length Matrix; LBP, Local 
Binary Pattern 

 

Categories (Number of features):  
Features (feature numbers) 

Texture – Histogram features (7): 
Histogram mean (1), standard deviation (2), 
minimum (3) and maximum (4) intensities, 
skewness (5), kurtosis (6), and entropy (7) 

Texture – GLRLM features (22):  
Four direction mean and standard deviation of 
short run emphasis (27,28), long run emphasis 
(29,30), gray-level non-uniformity (31,32), run 
length non-uniformity (33,34), run percentage 
(35,36), low gray-level run emphasis (37,38), 
high gray-level run emphasis (39,40), short run 
low gray-level emphasis (41,42), short run 
high gray-level emphasis (43,44), long run low 
gray-level emphasis (45,46), long run high 
gray-level emphasis (47,48) 

Texture – Percentile intensities at (5): 
5% (8), 25% (9), 50% (10), 75% (11), 95% 
(12) 

Texture – GLCM features (14):  
Four direction mean and standard deviation of 
angular second moment (13,14), contrast 
(15,16), sum average (17,18), sum variance 
(19,290), sum entropy (21,22), entropy 
(23,24), and difference entropy (25,26) 

Texture – LBP features (59):  
10 uniform patterns in LBP histogram (49-107) 

Shape features (9): 
Area/perimeter ratio (108), convex area (109), 
eccentricity (110), major axis length (111), 
minor axis length (112), perimeter (113), 
solidity (114), Min curvature (115), Mean 
curvature (116) 
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5. Statistical Analysis 

Multivariate binary logistic regression was used to identify significant predictive factors 

of treatment response. For the IFFR, we used the Kaplan–Meier method to calculate the 

actuarial curves. The Cox proportional hazards model was used for the univariate and 

multivariate analyses of independent prognostic clinical factors for each survival rate. 

Variables significantly associated with survival rates on univariate analysis were selected 

as candidates for multivariate analysis. The candidate clinical variables included age, sex, 

ECOG performance status, Child-Pugh score, HCC viral etiology (hepatitis B, hepatitis 

C, or neither), serum alpha-fetoprotein (AFP), serum PIVKA-II, tumor size, clinical 

stage, portal vein tumor thrombosis (PVTT), and radiation dose.  

We used SPSS ver. 25 (IBM, Armonk, NY, USA) for statistical analyses, and p-values < 

0.05 were considered statistically significant. 

 

III. RESULTS 

1. Clinical Characteristics 

The patient characteristics in the training (n = 307) and validation (n = 102) groups are 

summarized in Table 2. No significant difference was found in median age (p = 0.076), 

gender (p = 0.527), viral etiology (p = 0.166), Child-Pugh class (p = 0.775), serum 

albumin level (p = 0.187), serum bilirubin level (p = 0.516), INR (p =0.401), serum AFP 

level (p = 0.441), serum protein induced by vitamin K absence-II (PIVKA-II) level (p = 

0.566), tumor size (p = 0.737), number of tumors (p = 0.550), portal vein thrombosis (p = 

0.096), and surgery after radiotherapy (p = 0.872) between the training and validation 

groups, meaning the two sets are similarly sampled, which justified their use as training 

and validation cohorts. 

 

 

 

 



９ 

 

Table 2. Patient and tumor characteristics in training and validation sets 

Characteristics Training set (n=307) Validation set (n=102) p 

Age (years) 56 (ranges, 33–83) 60 (ranges, 28–85) 0.076 

Sex        

Male 260 (84.7) 89 (87.3) 
0.527 

Female 47 (15.3) 13 (12.7) 
ECOG PS       

0, 1 293 (95.4) 91 (89.2) 
0.133 

2 14 (4.6) 11 (10.8) 
Viral etiology       

HBV 254 (82.7) 79 (77.5)   
0.166 
  

HCV 19 (6.2) 5 (4.9) 
nonB, nonC 34 (11.1) 18 (17.6) 

Child-Pugh class       
A 252 (82.1) 85 (83.3) 

0.775 
B 55 (17.9) 17 (16.7) 

Serum albumin (g/dL) 3.5 (ranges, 2.1–4.8) 3.7 (ranges, 2.0–4.9) 0.187 

Serum bilirubin (mg/dL) 0.70 (ranges, 0.20–5.5) 0.70 (ranges, 0.30–4.5) 0.516 

INR  1.1 (ranges, 0.80–1.7) 1.1 (ranges, 0.80–1.6) 0.401 
AFP (ng/mL) 280 (ranges, 1.70–12,000) 500 (ranges, 1.20–12,000) 0.441 
PIVKA-II (mAU/mL) 2000 (ranges, 10–75,000) 1400 (ranges, 11–75,000) 0.566 
Tumor size (cm) 9.2 (ranges, 2.0–21) 8.9 (ranges, 2.0–20) 0.737 
Number of tumors       
    Solitary 161 (52.4) 50 (49.0) 

0.550 
    Multiple 146 (47.6) 52 (51.0) 
PVTT       
    Vp0 92 (30.0) 40 (39.3) 

0.096     Vp1-2 70 (22.8) 18 (17.6) 
   Vp3 81 (26.4) 24 (23.5) 

    Vp4 64 (20.8) 20 (19.6) 
Surgery after RT 55 (17.9) 19 (18.6) 0.872 

 
ECOG PS, Eastern Cooperative Oncology Group performance score; HBV, hepatitis B virus; HCV, 
hepatitis C virus; AFP, alpha-fetoprotein; PIVKA-II, protein induced by vitamin K absence-II; PVTT, 
portal vein tumor thrombosis; RT, radiation therapy 
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2. Clinical Outcomes and Prognostic Factors 

Treatment response using the mRECIST showed that 126 (30.8%) patients had CR, 187 

(45.7%) had PR, 65 (15.9%) had SD, and 31 (7.6%) had PD. OR rates were 76.5%, 

whereas local control rates were 92.4%. Using binary logistic regression, tumor 

multiplicity (p = 0.020), AFP level (p = 0.009), and BED dose (p = 0.001) were 

considered significant for the OR rate (Table 3). Tumor size (p = 0.028), tumor 

multiplicity (p = 0.019), and BED (p = 0.001) were significant prognostic factors in 

multivariate Cox regression analysis (Table 3). These prognostic factors in each clinical 

outcome were used as clinical features to construct the CCR model for each clinical 

outcome. 

 

 

 

 

Table 3. Significant prognostic factors of multivariate analysis on objective response rates 

and in-field failure-free survival rates 

Objective response rates 

Prognostic factors HR 95% CI p 

Multiple tumors 1.77 1.09–2.86 0.020 
AFP 1.01 0.98–1.03 0.009 
BED 0.97 0.95–0.99 0.001 

In-field failure-free survival rates 

Prognostic factors HR 95% CI p 
Tumor size ≥ 10 cm 1.57 1.05–2.36 0.028 

Multiple tumors 1.58 1.08–2.31 0.019 
BED ≥ 62.5 Gy 0.51 0.35–0.76 0.001 

 

 
OR, odds ratio; HR, hazard ratio; AFP, alpha-fetoprotein; BED, biologically effective dose 



１１ 

 

3. Performance of Radiomics and Combined Clinico-Radiomics Models 

The LASSO method was used to select the most useful predictive features from 116 

hand-crafted features (HCFs) extracted from the arterial phase (AP) CT or portal venous 

phase (PVP) CT images of the ROI tumor, ROI1cm, and ROI2cm (Figure 2). Among the OR-

associated models, the OR-PVP-Peri-1cm model, built using the HCFs in ROI1cm on 

portal-venous phase CT, had the largest AUC of 0.647 (95% CI, 0.536-0.749) in the 

validation set. The OR-PVP-Peri-1cm radiomics model was constructed using eight 

selected HCFs: entropy, Gray.level.non.uniformity.stdv (GLN.stdv), LBP19, LBP31, 

Figure 2. Radiomics feature selection using the LASSO regression  
Tuning parameter (λ) selection in the LASSO logistic model for portal venous phase peritumor 1-cm 
model predicting (a) objective response (OR−PVP−Peri−1cm) and (b) in-field failure-free survival rate 
(IFFR−PVP−Peri−1cm). Coefficient profile plots generated by violating the log (λ) sequence for (c) OR-
PVP−Peri−1cm (8 radiomics features) and (d) IFFR−PVP−Peri−1cm (8 features). 
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Long.run.high.gray.level.emphasis.stdv (LRHGLE.stdv), min, Run.length.non. 

uniformity.mean (RLN.mean), and Sum.Average.stdv. The clinical model had an AUC 

value of 0.729 (95% CI, 0.628-0.830) in the validation set, and the combination of the 

two models (i.e., the CCR model of OR-PVP-Peri-1cm) had a larger AUC of 0.759 (95% 

CI, 0.665-0.853) than both the radiomic and clinical models. Among the IFFR-associated 

models, the clinical model had an AUC of 0.687 (95% CI, 0.581-0.793), and the IFFR-

PVP-Peri-1cm model had the largest AUC of 0.673 (95% CI, 0.566-0.781) in the 

validation set. The IFFR-PVP-Peri-1cm model was built using eight selected HCFs: 

GLN.stdv, Kurtosis, LBP 32, LBP50, LBP 52, LBP9, LRHGLE.mean, and Max. Finally, 

the CCR model for IFFR-PVP-Peri-1cm had a larger AUC of 0.736 (95% CI, 0.636-

0.836) than the clinical and radiomics models. Table 4 shows the AUC of each model 

with different ROIs, and the ROC curves of the radiomics and CCR models for the 

objective response and in-field failure-free survival are shown in Figure 3. 

 

Table 4. Performance of radiomics, clinical, and CCR model on OR and IFFR 

CCR model, combined clinico-radiomic model; OR, objective response rates; IFFR, in-field failure-
free survival rates; AP, arterial phase; PVP, portal venous phase 

 
Models 

Radiomics Model 
AUC 

Clinical Model 
AUC 

CCR Model 
AUC 

Training Validation Training Validation Training Validation 
OR 

AP−Tumor 0.500 0.500  

 
0.622 

 

 
0.729 

0.622 0.729 
AP−Peri−1cm 0.615 0.614 0.668 0.743 
AP−Peri−2cm 0.608 0.600 0.665 0.742 
PVP−Tumor 0.748 0.495 0.761 0.710 

PVP−Peri−1cm 0.684 0.647 0.704 0.759 
PVP−Peri−2cm 0.653 0.610 0.686 0.739 

IFFR 
AP−Tumor 0.581 0.625  

 
0.626 

 

 
0.687 

0.643 0.659 
AP−Peri−1cm 0.500 0.500 0.626 0.687 
AP−Peri−2cm 0.601 0.506 0.666 0.681 
PVP−Tumor 0.500 0.500 0.626 0.687 

PVP−Peri−1cm 0.691 0.673 0.718 0.736 
PVP−Peri−2cm 0.613 0.560 0.671 0.714 
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Figure 3. Receiver operating curves (ROC) of the radiomics, clinical, and combined clinico-
radiomics model 
Portal venous phase peritumor 1 cm model predicting (a) objective response (OR−PVP−Peri−1cm) 
and (b) in-field failure-free survival rate (IFFR−PVP−Peri−1cm) in training sets, as well as (c) 
OR−PVP−Peri−1cm, and (d) IFFR−PVP−Peri−1cm in validation sets. 
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4. Nomogram Construction and Evaluation 

A nomogram was used to provide clinicians with a quantitative tool to predict the 

individual probabilities of OR and IFFR. As the combined model incorporating the PVP-

Peri-1cm radiomics model and clinicopathological factors had the best predictive 

performance for OR and IFFR, we built a nomogram based on this final model (Figure 4 a, 

b). Calibration curves of the combined nomograms were plotted for the training and 

validation datasets (Figure 4 c, d). The Hosmer-Lemeshow test of the OR-PVP-Peri-1cm 

and IFFR-PVP-Peri-1cm models showed non-significant differences (p = 0.322 and p = 

0.242, respectively) in the validation sets, which demonstrated satisfactory agreement. 

 

 

Figure 4. Nomograms and calibration curves for combined clinico-radiomics models  
Nomogram for portal venous phase peritumor 1cm model predicting (a) objective response 
(OR−PVP−Peri−1cm) and (b) in-field failure-free survival rate (IFFR−PVP−Peri−1cm). Calibration 
curves for (c) OR−PVP−Peri−1cm and (d) IFFR−PVP−Peri−1cm are displayed. 
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IV. DISCUSSION 

In this study, we divided patients with HCC undergoing LD-CRT into training and 

validation groups. Using 3-phase dynamic liver CT, we built radiomic models for both 

tumoral and peritumoral areas to predict clinical outcomes such as OR and IFFR. The 

OR-PVP-Peri-1cm and IFFR-PVP-Peri-1cm models showed the best performance in 

predicting the OR and IFFR, respectively. By combining these radiomics models with 

clinical outcome-predicting prognostic factors obtained from statistical analyses, we 

developed two CCR models that provide more accurate predictions of clinical outcomes. 

Two nomograms based on the CCR models were built as a quantitative tool.  

With the increasing number of studies on the application of radiomics in HCC, 

researchers have been progressively investigating the strong predictive capabilities of 

radiomics. Radiomics, based on various imaging technologies, has broad applications in 

the diagnosis, treatment, and prognosis of HCC. These include the prognostic prediction, 

identification, and classification of different HCC types based on disease risk, 

preoperative diagnosis, treatment response prediction, postoperative recurrence 

prediction, and many other aspects. Kloth et al.[15] suggested that significant correlations 

exist between CT texture analysis parameters and those derived from liver perfusion CT 

computed tomography texture analysis (CTTA). CTTA can aid in the prediction of 

response and treatment monitoring following DEB-TACE treatment of HCC, 

complementary to perfusion CT. They also suggested that the correlation between 

perfusion CT and CTTA parameters may be best in the arterial phase. Park et al.[16] 

concluded that pre-therapeutic dynamic CT texture analysis can be valuable in predicting 

complete response (CR) to TACE in patients with HCC, and higher arterial enhancement 

and gray-level co-occurrence matrix(GLCM) moments, lower homogeneity, and smaller 

tumor size are significant predictors of CR after TACE. In a study by Zhang et al.[17], 

texture analysis based on preoperative MRI was a potential quantitative predictor of early 

recurrence in patients with HCC after hepatectomy. Furthermore, combining the radiomic 

features of CT and the clinical characteristics of HCC can be used to assess 
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individualized preoperative prediction of OS in patients with HCC portal vein tumor 

thrombosis undergoing stereotactic body radiotherapy [18]. Several studies have shown 

the potential utility of a separate peritumoral ROI in the liver parenchyma to improve the 

diagnostic performance of radiomics for HCC[19]. The radiomics nomogram is a 

valuable preoperative biomarker that can predict early recurrence of HCC without 

invasive procedures. [20]. Even in patients with small HCC tumors who have undergone 

surgery or RFA, a radiomic nomogram can be used to predict early recurrence[21]. 

Survival prediction is another important application in radiomics. Novel deep radiological 

analysis can be employed to predict the overall survival of patients with HCC undergoing 

stereotactic body radiotherapy[22]. By combining radiomics features, the radiomics 

nomogram can deliver a more precise prediction of overall survival compared to the 

clinicopathological nomogram for patients with HCC following hepatectomy[23].  

To construct the radiomics signature, we reduced the 116 candidate radiomics features 

to a smaller number of potential predictors using the LASSO method. This method 

considers the predictor-outcome association and shrinks the regression coefficients to 

select the most relevant factors. It is superior to selecting predictors based solely on their 

univariate association with the outcome and allows the selected features to be combined 

into a radiomic signature. However, given the large number of features assessed in 

radiomics, overfitting poses a considerable risk to the development of radiomic 

models[24]. To mitigate this risk, a minimum of 10-15 patients per assessed feature is 

recommended for radiomic studies[25].  

In our OR-PVP-Peri-1cm and IFFR-PVP-Peri-1cm models, we selected eight HCFs 

from the total number of HCFs. For the OR-PVP-Peri-1cm radiomics model, we selected 

Entropy, GLN.stdv, LBP19, LBP31, LRHGLE.stdv, Min, RLN.mean, and 

Sum.Average.stdv. For the IFFR-PVP-Peri-1cm radiomics model, we selected GLN.stdv, 

kurtosis, LBP 32, LBP50, LBP 52, LBP9, LRHGLE.mean, and Max. Entropy specifies 

the uncertainty/randomness in the image values, measures the average amount of 

information required to encode the image values, and GLN measures the variability of the 
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gray-level intensity values in the image, with a lower value indicating greater 

homogeneity in the intensity values. LRHGLE measures the joint distribution of long-run 

lengths with higher gray-level values, whereas RLN measures the similarity of run 

lengths throughout the image, with a lower value indicating greater homogeneity among 

the run lengths in the image. Sum.Average measures the relationship between the 

occurrence of pairs with lower intensity values and occurrences of pairs with higher 

intensity values. LBP is a simple grayscale-invariant texture descriptor measure for 

classification. Max/Min is the maximum/minimum gray level intensity within the ROI, 

and Kurtosis is a measure of the ‘peakedness’ of the distribution of values in the image 

ROI. Entropy, GLN, LRHGLE, RLN, and Sum.average are texture features that can be 

used to describe the spatial variation in intensity within an image and have been used in 

various applications, such as image segmentation and classification. These features are 

often calculated using a GLCM, which is a matrix that describes the relationship between 

the intensity of a pixel and its surrounding pixels. These features are associated with 

inhomogeneity. The selection of these features implies that radiologic inhomogeneity, 

which encompasses various aspects of the tumor, such as tumor necrosis, portal vein 

thrombosis, irregular tumor characteristics and borders, and dilation of the biliary duct by 

the tumor, may predict the treatment response to radiotherapy and IFFR.  

We assessed the relationship between extracted features and clinical outcomes using 

LASSO regression. Only features with significant diagnostic performance in assessing the 

prediction target were selected for further analysis. Yuan et al.[26] reported that 

combining clinicopathological factors with radiomics models resulted in the best 

predictive power for recurrent-free survival in a validation dataset, with the combined 

model consisting of portal venous phase radiomics signatures yielding the best results. . 

In our study, combining portal-venous phase radiomics with clinical features yielded the 

best predictive power for OR and IFFR. The AUC of radiomics models, clinical models, 

and CCR models were 0.647 / 0.729 / 0.759 for OR, and 0.673 / 0.687 / 0.736 for IFFR, 

respectively. Combining radiomics features with clinical factors can provide additional 
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information that may improve the accuracy of predicting treatment response or prognosis.  

While radiomic features can provide information about the tumor's radiologic properties, 

clinical factors such as serum AFP level (implying the overall tumor burden) and higher 

radiation dose (tumor cells are better eradicated) can provide information about the 

patient's overall disease status. By integrating these two types of information with CCR 

model, we can predict outcomes and treatment responses more accurately.  

Several studies have shown the potential utility of a separate peritumoral ROI in the 

liver parenchyma to improve the diagnostic performance of radiomics for HCC [19, 27, 

28]. Shan et al.[19] developed a peritumoral (2 cm) radiomic model in which the 

prediction accuracy in the validation cohort was fair (AUC 0.80 in the training set vs. 

0.79 in the validation set, p = 0.47) and significantly improved the accuracy of the 

preoperative model for predicting early recurrence compared to the tumoral radiomic 

model. They used a peritumoral ROI delineated with a 2 cm expansion from the lesion, 

which was based on the current standard for resection margins for HCC. A randomized 

controlled trial also reported that a margin of 2 cm could decrease the postoperative 

recurrence rate and improve survival outcomes, indicating that there may be important 

information within a 2 cm margin[29]. There are available studies[30, 31] based on 

radiomics within the tumoral area. However, these two studies lacked validation based on 

independent datasets, which may lead to a risk of overfitting the analyses. In our study, 

the peritumoral radiomic model with a 1-cm margin showed better performance for the 

OR, and the peritumoral model with a 1-cm margin showed better performance for the 

IFFR. These results suggest that microscopic disease within a 1-cm margin, which may 

not be visible, could provide valuable information on tumor response and prognosis. 

Despite its potential, the use of radiomics as a clinical biomarker requires further 

improvements. Clear evidence and greater integration of radiomics and other data are 

required to confidently accept the role of radiomics in patient management. The 

prediction of various features using imaging remains challenging, and a more effective 

evaluation should focus on both the radiomic features of the tumor and its periphery. 
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This study had several limitations. First, this was a retrospective, single-center study 

with one radiation oncologist involved in segmentation, which could have introduced bias 

or affected the analysis. Both inter-observer, and intra-observer agreement were not 

assessed. Second, there was a class imbalance, with the number of patients in the OR 

group being much higher than that in the non-OR group (3:1). This could have biased the 

model towards the majority class (i.e., OR group). Third, we used internal rather than 

external validity, which makes it difficult to generalize our results to other institutions. 

Fourth, because liver-directed combined radiotherapy was performed using CT, and 

tumors were delineated based on CT images at our institution, more information from 

other imaging devices (e.g., MRI) could not be included in the radiomic evaluation of 

HCC patients undergoing liver-directed combined RT. Therefore, although this study 

provides initial evidence that the CCR model can be valuable in predicting OR and IFFR 

in patients with HCC undergoing liver-directed combined RT, further prospective studies 

are required to validate these results.  

 

 

V. CONCLUSION 

 

In conclusion, our findings suggested that radiomic models based on both tumoral and 

peritumoral areas using pre-radiotherapy 3-phase dynamic liver CT in patients with HCC 

undergoing LD-CRT have favorable predictive performance for OR and IFFR. 

Furthermore, CCR models were better predictors than radiomic or clinical models alone 

in predicting treatment outcomes. We constructed radiomic nomograms based on CCR 

models to predict OR and IFFR, which can potentially aid in clinical decision-making for 

the pretreatment of HCC patients undergoing liver-directed combined radiotherapy. 
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ABSTRACT (IN KOREAN) 

 

국소 진행성 간세포암에서 간 지향성 복합방사선요법의  
종양학적 결과 예측에 대한 라디오믹스의 효용성  

 
<지도교수 성진실> 

 
연세대학교 대학원 의학과 

 
박 종 원 

 
 

목적: 본 연구에서는 간 지향성 복합방사선요법(liver-directed combined 

radiotherapy, LD-CRT)을 받은 간세포암종 환자들의 3상 동적 대조 증강 

단층 촬영(3-phase contrast-enhanced computed tomograpy, 3-phase CECT)에서 

추출된 radiomics feature들이 객관적 치료 반응(objective response, OR) 및 

방사선 조사야 내 무실패 생존율(in-field failure free-survival rate, IFFR)을 

포함한 임상적 결과를 예측하는 데 사용될 수 있는지에 대해 연구하였

다.  

연구 방법: 2005년 11월부터 2018년 12월까지 LD-CRT를 받은 국소 진

행성 간세포암종 환자 409명을 포함하였다. 이들을 무작위로 훈련

(n=307) 및 검증(n=102) 코호트로 나누었으며, radiomics model로 예측하려

는 임상적 결과는 OR 및 IFFR이었다. 이항 로지스틱 및 콕스 회귀 분

석을 사용하여 중요한 예후 인자를 확인하였다. OR과 IFFR을 예측하기 

위해 CECT 이미지의 regions of interest에서 116개의 radiomics feature들을 

추출했다. The least absolute shrinkage and selection operator method를 이용하
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여 ROI에서 가장 유의미한 radiomics feature를 선택하였다. Radiomics 

feature만으로 예측 모델(radiomics model)을 만들고, 임상적 요소들로 이

루어진 임상적 모델(clinical model)과, 그 둘을 결합한 모델도 개발하였다

(CCR model). 또한 CCR 모델을 기반으로 한 예후 예측 노모그램도 개

발하고 검증하였다.  

연구 결과: OR에 대한 radiomics model 중, OR-PVP-Peri-1cm model이 

0.647의 곡선하면적(area under curve, AUC)를 보여 유리한 예측능을 보여

주었다. Clinical model은 0.729의 예측능을 보였으며, CCR model은 0.759의 

AUC로 더 나은 성능을 보였다. IFFR에 대해서는 IFFR-PVP-Peri-1cm 

radiomics model이 0.673의 AUC를, clinical model은 0.687의 AUC를 보였으

며, CCR model은 0.736의 더 나은 AUC를 나타냈다. 

결론: 간세포암종 환자 중 LD-CRT를 받는 환자들의 OR과 IFFR을 예

측 시, 3-phase CECT에서 추출한 종양 및 주변 종양 영역의 radiomics 

feature로 만든 radiomics model은 적절한 예측능을 보여주었고, 이를 기

반으로 임상적 요소들과 결합한 CCR model이 clinical model 및 radiomics 

model보다 더 나은 성능을 보였다. 따라서 CCR model은 임상 결과 예측

에 있어 잠재적으로 활용될 수 있을 것으로 생각되며, 뿐만 아니라 이

러한 모델을 기반으로 구축한 노모그램을 통해 LD-CRT를 받는 간세포

암종 환자들의 OR과 IFFR 예측에 관하여 값진 정보를 제공할 수 있게 

된다.  

                                                                   
핵심되는 말: 간세포암, 간 지향성 복합방사선요법, 라디오믹스, 치료반
응, 방사선조사야 내 무실패 생존율 
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