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ABSTRACT 

Diagnostic utility of molecular profiling to distinguish multiple primary lung 

cancer from intrapulmonary metastasis 

 

Yeon Seung Chung 
 

Department of Medicine 

The Graduate School, Yonsei University  
 

(Directed by Professor Hyo Sup Shim) 
 

Introduction: In multiple lung cancer, distinguishing between multiple primary lung 

cancer (MPLC) and intrapulmonary metastasis (IPM) critically influences clinical 

prognosis prediction and therapeutic decision-making. Despite various approaches 

proposed, leveraging histological assessments and molecular status, the task remains 

challenging. 

  

Methods: We introduced the MeTel (Metastasis-Teller) algorithm, a Bayesian 

probabilistic model designed to determine MPLC or IPM based on the molecular profile of 

the tumor. Six datasets from previous studies, encompassing 279 tumor pair (75 IPM and 

204 MPLC) with diverse sizes of gene panel (22 genes to whole exome sequencing) were 

compiled to compare the accuracy of MeTel against other previously published algorithms. 

Equivocal cases from our institution were further re-classified using MeTel, with results 

validated using next-generation sequencing or whole-exome sequencing. 

  

Results: MeTel exhibited superior performance with 97.5% accuracy across all six datasets, 

outpacing other algorithms which ranged from 82.08% to 95.70%. Importantly, its 

accuracy remained consistent regardless of gene panel size. In our institution's evaluation 

of the 12 equivocal cases, four cases showed discordant result with histologic criteria; 

subsequent validation favored MeTel's classifications. 
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Conclusion: MeTel demonstrates reliable accuracy in classifying multiple lung cancer and 

holds significant potential for clinical application in the future. 

                                                                   

Key words : multiple primary lung cancer, intrapulmonary metastasis, multifocal 

lung cancer, non-small cell lung cancer, Bayesian probabilistric model
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I. INTRODUCTION 

Lung cancer is the second most commonly diagnosed cancer and the leading cause of 

cancer death worldwide, with up to 75% of recurrence rates in non-small cell lung 

carcinoma(NSCLC)1, and 90% in small cell lung carcinoma(SCLC)2, within 2 years 

after surgical resection. The prognosis of lung cancer are significantly determined by 

the TNM staging system3, so accurate TNM staging is pivotal for both prognostic 

assessment and therapeutic planning in lung cancer patients. 

One of the factors that contribute to determining the TNM stage of lung cancer is its 

multifocality. The presentation of multiple tumors in lung cancer cases is not 

uncommon, reported in 0.2 to 20% of cases.4 The TNM stage of multiple lung cancers 

differ widely, depending on whether they are intrapulmonary metastases(IPMs) or 

multiple primary lung cancers(MPLCs). In the 8th edition of the AJCC staging 

manuals, multiple tumor nodules categorized as IPM are classified as pT3 if they are 

located in the same lobe, pT4 if in a different but ipsilateral lobe, and M1a if in the 

contralateral lobe. Meanwhile, tumor nodules categorized as SPLC are staged 

according to the T stage for each tumor independently.5 This distinction is crucial for 

deciding whether patients should have surgical resection or non-invasive treatments 

like chemotherapy or radiotherapy. For example, in bilateral lung cancer cases, 

surgical resection may be an option for MPLC but only palliative care with 
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chemoradiation therapy is available for contralateral IPM.6  

Differential diagnosis between MPLC and IPM is crucial yet challenging in clinical 

practice, prompting several efforts to distinguish between the two.7-10 The first criteria 

for distinguishing MPLC and IPM were proposed by Martini and Melamed in 1975.7 

According to their criteria, MPLC is defined based on whether the multiple lung 

cancers have differing histologies. If the histologies are identical, MPLC is defined: 

each tumor shows carcinoma in situ, with an absence of lymph node or extrapulmonary 

metastases, and, if the tumors occur metachronously, a time interval of at least two 

years exist. Subsequently, the American College of Chest Physicians(ACCP) proposed 

a modified criterion in 2007 that extended the time interval to four years.8 Additionally, 

Girard et al. introduced further diagnostic criteria, including histologic subtype as well 

as cytologic and stromal features.9 These criteria focus on the tumor's 

clinicopathologic features, which simplifies their clinical application. However, the 

lack of high-level evidence, such as molecular profiling of the tumor, complicates the 

clinical decision-making process for accurately defining the true nature of the tumors. 

Recently, researchers have actively been trying to use genomic technology to classify 

SPLC and IPM. Driver mutation statuses such as EGFR, ALK, and ROS1 are now 

commonly evaluated for lung adenocarcinoma, and several studies have attempted to 

use these driver mutation statuses for the classification of SPLC and IPM, given that 

tumors from the same origin share driver mutations, though the opposite isn't always 

true.11, 12 More recently, large-scale gene comparisons using next-generation 

sequencing(NGS) have been employed to distinguish between SPLC and IPM, 

extending beyond the scope of just driver oncogenes. Nicholson et al developed a 

strategy (named Cochin) that uses both clinical information (time interval) and the 

number of shared non-driver mutations, wherein any shared rare mutation is judged to 

be IPM13. Chang et al used the same strategy on the number of shared mutation, with 

further utilizing histological information (named MSK)14. Wang et al developed the 

first genome-only classification, HAPLOX15, allowing up to two non-driver mutations 
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for MPLC. The rationale for using NGS sequencing-based discriminatory criteria is 

clear - the more mutations two tumors share, the more likely they are to be IPMs of 

the same origin. However, classification based on the count of shared mutations has 

its limitations, as the cutoff is inherently arbitrary. Additionally, the reliability of this 

criterion can vary depending on the size of the gene panel, as a larger panel increases 

the chance of coincidental matching mutations between independent tumors. 

In this study, we propose a new algorithm for differentiating MPLC and IPM based on 

a Bayesian probability model, which we have named 'Metastasis-Teller' as ‘MeTel’. 

MeTel calculates the probability ratio for MPLC and IPM in a consistent manner, 

regardless of panel size, and does not require a specific cutoff. The probability for 

MPLC or IPM reflects the variant allele frequency(VAF) and occurrence rate of the 

mutations detected from each tumor, offering a more quantitative and objective 

criterion compared to the empirical interpretation of the previous studies.  

We assessed MeTel's performance by comparing it against other NGS-based 

algorithms (Cochin, MSK, and HAPLOX), using six multiple lung cancer cohorts 

totaling 279 samples, with gene panel sizes ranging from 22 genes to whole-exome 

sequencing. Additionally, we gathered ambiguous MPLC or IPM cases under 

histological criteria within our institution and reclassified them using MeTel.  
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II. MATERIALS AND METHODS 

1. MeTel Algorithm 

Figure 1. Overview of MeTel algorithm. a) MeTel takes in input somatic mutation (with variant 

allele frequency) profile from DNA sequencing data of multiple lung cancer samples. b) First, MeTel 

compares driver mutations (KRAS p.G12X, EGFR p.L858R and E19del). If there are different 

drivers, they are classified as multiple primary lung cancer (MPLC), and if the driver matched, move 

on to step c). c) MeTel estimates probability of intrapulmonary metastasis (IPM) (pi) and MPLC 

(pm). d) MeTel outputs classfication score (S), the log-scale value of the ratio of pi, and pm. e) 

Confidence level, another output from MeTel. Based on the maximum value of p, and p, 0.8 and 

0.95 cutoff represent one of the three: Likely, Probable and Confident. f) Final classification IPM or 

MPLC: If S > 0, samples classified as IPM or if S < 0, MPLC. g) The process of combining with 

histopathology data with Metel's results (only with 'Likely' confidence level). 

 

We introduce MeTel, an innovative algorithm designed to classify IPM and MPLC 

using molecular information from multiple lung cancer samples obtained from the 

same patient. MeTel takes genomic profiles, including integrated somatic mutations 

and variant allele frequencies (VAFs) of tumor samples, as input (Fig. 1a). 

The primary criterion employed by MeTel for classification is the presence of 

matching driver mutations (Fig. 1b). If the tumor pair exhibits KRAS (p.G12X) or 

EGFR (p.L858R or E19del) mutations, known to be the most common driver 

mutations in NSCLC, as the sole driver mutations, it is classified as MPLC. However, 

if the tumors cannot be classified based on this criterion, MeTel proceeds to estimate 

the probabilities of IPM and MPLC using a Naive Bayes Classifier (Fig. 1c). 

We assume that the occurrence of each mutation is independent and define the 

observation value D as the union of observed somatic mutations and VAFs in the early 
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and late tumor samples, denoted by A and B. We establish the following equation based 

on the Naive Bayes Classifier for D = {v1, v2, ···,vn}, and p(IPM) and p(MPLC), which 

are the priors of IPM and MPLC : 

 

P(IPM|D) = ∏ P(vi|IPM)p(IPM)n
i=1    (1) 

P(MPLC|D) = ∏ P(vi|MPLC)p(MPLC)n
i=1   (2) 

 

The status of the variable vi, belonging to D, can manifest in one of three forms: (VAF 

in A, VAF in B), (VAF in A, not detected in B), and (not detected in A, VAF in B). To 

account for these possibilities, we calculated six distinct likelihood values applicable 

under the conditions of IPM and MPLC. 

 

P(VAFA, VAFB|IPM) = p ∗ {m + (1 − m) ∗ p}  (3) 

P(VAFA, Not in B|IPM) = p ∗ {(1 − m) ∗ (1 − p)} (4) 

P(Not in A, VAFB|IPM) = (1 − p) ∗ p   (5) 

 

P(VAFA, VAFB|MPLC) = p ∗ p    (6) 

P(VAFA, Not in B|MPLC) = p ∗ (1 − p)   (7) 

P(Not in A, VAFB|MPLC) = (1 − p) ∗ p   (8) 

 

In the equations, p represents the probability of the corresponding somatic variant 

occurring accidentally in lung cancer. This value is determined based on the frequency 

with which the mutation was reported in the NSCLC dataset of the GENIE database 

(v13) from cBioPortal. It is calculated as p = ncase (reported case in primary NSCLC) / 

nall (all case in primary NSCLC). If the mutation is not present in the database, we set 

p to 10-6, which is generally the probability of accidental mutation occurrence. 

The variable m represents the probability of the variant being transmitted during tumor 
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metastasis and is proportional to the VAF, which denotes the ratio of alleles with the 

corresponding mutations. Assuming no copy number variation (CNV) or loss of 

heterozygosity (LOH) has occurred, m is set to 2 * VAF for cells with two alleles. If 

the VAF is 0.5 or greater (m≥1), m is set to 1 – ε to avoid divergence within the equation. 

In the absence of available VAF information, the default value is set to 0.3 which is 

the mean VAF of mutations reported in the GENIE database used to determine the 

value of p. Alternatively, the expected average VAFs can be manually inputted. 

Equations (3) to (5) represent the likelihoods for the IPM condition, while equations 

(6) to (8) represent the MPLC condition. In Equation (3), the mutation is observed in 

both A and B, and it can occur through two possible pathways: either the mutation 

arises in A and is subsequently transmitted to B through metastasis, or the mutation 

arises independently in both A and B. Equation (4) describes the situation where the 

mutation is observed in A only, indicating that the mutation occurred in A but was not 

transferred to B through metastasis and did not occur independently in B. Equation (5) 

pertains to the scenario where the mutation is only observed in B, indicating that the 

mutation did not arise in A but appeared in B after metastasis. For the MPLC condition, 

where A and B are independent, equations (6) to (8) are computed by multiplying each 

probability. 

We set the prior probabilities as p(IPM) = 0.28 and p(MPLC) = 0.72 based on the 

respective ratio of IPM and MPLC observed in 975 samples across seven existing 

study datasets13-19. 

Using the likelihoods (3) to (8) and the priors, we compute equations (1) and (2) to 

estimate the probabilities of IPM (pi) and MPLC (pm) : pi = (1) / {(1) + (2)} and pm = 

(2) / {(1) + (2)}. 

After the estimation process, MeTel provides two values: the classification score (S) 

(Fig. 1d) and corresponding confidence level (Fig. 1e). The classification score (S) is 

the logarithmic scale value of the ratio of two probabilities: S = log10 {pi / pm}.  



７ 

 

If the sequence of the two samples is unknown, we calculate two S values based on 

the sequence and choose the case with the larger absolute value (|S|). The confidence 

level reflects the reliability of the S value and is categorized into three classes: Likely, 

Probable, and Confident, based on the difference between the estimated pi and pm from 

the previous step. MeTel assigns the confidence level using MAX (pi, pm) according 

to the criteria 0.8 and 0.95 (Supplementary table 1). Consequently, MeTel distinguishes 

whether the relationship between tumors is IPM or MPLC: S > 0 suggests IPM, while 

S < 0 suggests MPLC (Fig. 1f). 

Following the MeTel classification, an optional process is available for samples with 

a 'Likely' confidence level (Fig. 1g). The 'Likely' condition indicates relatively low 

reliability in the algorithm's classification call, and we suggest an additional process 

that combines histopathological data to achieve a more sophisticated classification. In 

this step, we demonstrate the possibility of modifying the original results when the 

previous classification differs from the new classification obtained through the 

optional process. 
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2. Test Dataset 

 

Table 1. Summary of test dataset 

 

To evaluate the performance of algorithms, we tested four different methods, including 

previous approaches such as Cochin, MSK, and HAPLOX (Supplementary table 2)13-

15 on six distinct datasets (Table 1)13-15, 18, 20, 21. The test dataset comprised somatic 

mutation profiles and clinical data of each sample from existing studies. Tumor pair 

with no genetic alteration (all-wild type) was excluded during the collecting process. 

Panel size of 

dataset 

(number of 

gene) 

Number of Pairs 

(IPM) 

Number of 

Pairs 

(MPLC) 

Clinical 

information1 

Reference 

22 33 76 △  
13 

189 14 0 O 20 

468 25 51 O 14 

520 3 22 O 18 

605 7 44 X 15 

WES 0 11 O 21 

Total 6 datasets with 279 paired samples. (75 IPM/204 MPLC) 

1O: All cases were available for histologic classification (MPLC or IPM). △: Only 30 pairs were available 

for histologic classification, which showed discordant results with molecular classification in the study. X: 

Histologic classification was not available, but all cases were synchronous adenocarcinomas. 

IPM: intrapulmonary metastasis, MPLC: multiple primary lung cancer, WES: whole-exome sequencing. 
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To determine the diagnosis of each paired sample, we relied on the final classified 

results from previous studies. The test dataset consisted of a total of 279 pairs, with 75 

pairs diagnosed with IPM and 204 pairs diagnosed with MPLC. The panel sequencing 

data utilized in the dataset varied in the number of genes covered, including 22, 189, 

468, 520, 605, and whole-exome sequencing(WES). 

During the evaluation of algorithm performance, limited clinical data were available 

from the studies. In the absence of specific information, we applied a default VAF 

value of 0.3. When evaluating the performance of previous algorithms, we compared 

the results obtained both with and without training datasets specific to each algorithm. 

 

3. Sample Background for in-house patients 

To evaluate the scalability and potential applicability of MeTel, we gathered NSCLC 

cases from our institution as a resource for comprehensive molecular investigation. We 

reviewed the medical charts of NSCLC patients who underwent surgical resection at 

Yonsei University Severance Hospital (Seoul, Korea) during 2006 to 2020. During the 

study period, we identified 4595 patients, out of which 493 patients (10.7%) were 

pathologically confirmed to have multiple tumor nodules. We excluded 60 patients 

who did not achieve complete tumor resection at the time of their final surgical 

intervention. Consequently, the total number of eligible patients available for this study 

culminated in 433. 

From the eligible patients, Clinical data including age, sex, smoking history, location 

of tumor, nodal status were obtained from medical records. Disease-free survival was 

defined as the time from the last resection to the point of recurrence detected in the 

follow-up examination (imaging or biopsy). The histology of the tumors was reviewed 

by pathologists (YSC and HSS) using the comprehensive histologic assessment (CHA) 

proposed by Girard et al.9 Additionally, if a driver gene mutation test was performed 
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at the time of diagnosis, the results of the tests were also collated. 

 

4. Statistical analysis 

For a descriptive study of in-house patients according to classification (MPLC or IPM), 

categorical variables were presented as frequencies and percentages. Continuous 

variables were described using medians and ranges. Variables in each classification 

were compared using Mann-Whitney U test and χ2 test. Disease-free survival curves 

for each classification were estimated using the Kaplan-Meier method and compared 

with the log-rank test. All results were considered significant when the significance 

tests indicated a two-sided p value of less than 0.05. Statistical analysis was performed 

using SPSS Version 26.0 statistical software (IBM SPSS Statistics for Windows, 

Version 26.0. Armonk, NY: IBM Corp.). 
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5. In-house patient selection 

 

Table 2. Summary of clinical characteristics of the 12 in-house patients. 

Patient characteristics (N=12) Value 

Sex, n (%)  

Male 4 (33.3) 

Female 8 (66.7) 

Mean age at first resection, y (range) 63.7 (45-74) 

Smoking status, n (%)  

Current/Ex-smoker 2 (16.7) 

Nonsmoker 10 (83.3) 

Mean pack-year of smoker (range) 27.5 (25-30) 

Synchronicity, n (%)  

Synchronous 2 (16.7) 

Metachronous 10 (83.3) 

Median time interval for metachronous case, m (range) 64.6 (13.3-

129.8) 

Distribution of tumors, n (%)  

Ipsilateral (same lobe) 1 (8.3) 

Ipsilateral (different lobe) 5 (41.7) 

Contralateral 6 (50.0) 

 

After a comprehensive review of the cases, tumor pairs showing atypical features 

under traditional histological criteria were ultimately selected for MeTel application. 

Initially, 12 in-house patients with 27 tumors were chosen, but two tumors were 

excluded due to low sequencing quality, resulting in a total of 25 tumors being included 

in the study for the following reasons (Table 2 and Supplementary Table 4):  

(1) Similar histology with a long time interval: Traditional histologic criteria define a 

time interval cutoff for the determination of MPLC - 2 years according to Martini and 



１２ 

 

Melamed criteria7, and 4 years according to ACCP8. In the Cochin method13, 5-year 

cutoff is suggested for MPLC identification. We identified five patients who presented 

multiple tumors with similar histology and shared driver gene mutation, but had a time 

interval exceeding five years (patient 1-5 and 7-8). 

(2) Synchronous multiple squamous cell carcinoma: Determining the origin of 

squamous cell carcinoma (either MPLC or IPM) is challenging due to the lack of a 

specific driver gene and histologic diversity22, 23, compared to adenocarcinoma. We 

identified a pair of synchronous squamous cell carcinomas with similar histology and 

no precursor lesion, implying an IPM diagnosis, but with a favorable prognosis. Both 

tumors were found on contralateral sides, which significantly increased the tumor stage 

when considered as IPM. However, the patient survived without recurrence for over 

71 months (patient 6). 

(3) Similar histology with discordant driver gene status: One patient exhibited 

recurrent adenocarcinoma in the same lobe after a year, presenting a similar histologic 

subtype (acinar predominant with papillary and micropapillary components) devoid of 

any in situ lesion. Nevertheless, the subsequent tumor acquired an EGFR exon 19 

deletion, unlike the previous tumor, which was of EGFR wild type. This introduced a 

discordance between the clinicohistologic indication for IPM and its driver gene status 

(patient 9). 

(4) Ambiguous histology with identical driver gene status: Some patients exhibited 

ambiguous histologic features across multiple tumors with the same driver gene status. 

They shared a similar histologic subtype components, but the proportion of the subtype 

had changed, some including the dominant histologic pattern, leading to an MPLC 

identification. However, as previously noted, they share the same histologic patterns 

and driver gene mutation, which does not eliminate the possibility of IPM. (patient 10-

12). 
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6. Genomic data Profiling 

To obtain reliable somatic mutations for the classification algorithm, we performed 

targeted sequencing using the TSO500 DNA workflow24 for 12 samples from 6 

patients. We then filtered out variables with a VAF outside the range of 0.05 to 0.5 and 

applied germline filtering using its own population database in the TSO500 pipeline. 

To ensure the accuracy of the results, each somatic mutation was manually checked 

using IGV25. 

For a more comprehensive analysis, we also performed whole-exome sequencing 

(WES) for 6 patients with a total of 13 samples with a sequencing depth of 200x. The 

raw reads were aligned to the GRCh38 genome reference using the BWA-MEM 

aligner (v0.7.17-r1188)26, and pre-processing was completed by applying 

MarkDuplicates, FixMateInformation, BaseRecalibrator, and ApplyBQSQ, which are 

included in the GATK Best Practices (v4.0.1.1)27. 

Somatic mutations were called using the GATK Mutect2 (v.4.0.1.1) tumor-only mode 

with the --f1r2-tar-gz argument to remove strand orientation bias artifacts. We filtered 

cross-sample contamination using GetPileupSummaries and CalculateContamination, 

and further artifact of FFPE filtering was applied using SOBDetector (v1.0.2)28 to the 

filtered output of Mutect2. To exclude false calls, we applied filtering based on VAF 

(<0.05) and the count of alternate allele (<5). Additionally, we applied the following 

cutoffs to remove germline mutations: (1) VAF (>0.5), (2) variants from two germline 

mutation callers, Strelka2 (v2.9.10)29 and GATK HaplotypeCaller (under default 

parameters), (3) dbSNP (>0.01), and (4) gnomAD db (>0.0001)30. This rigorous 

filtering process ensured that only high-quality somatic mutations were included in our 

analysis, improving the accuracy of the classification algorithm. 

  



１４ 

 

III. RESULTS 

1. Performance of Algorithm 

 

 
 

We compared MeTel with three previous methods (Cochin, MSK, and HAPLOX) for 

distinguishing between IPM and MPLC using the test dataset. MeTel outperformed all 

other methods, achieving the lowest error rate of 2.51% for total test set (Fig. 2a and 

Figure 2. Performance of algorithms. a) Classification results of algorithms for test set (N=279). 

Dark gray dataset mean the training set of the algorithm. *, error rate except for training dataset. 

b) The Cohen κ scores by algorithms. c) Precision and Recall for intrapulmonary metastasis (IPM) 

and multiple primary lung cancer (MPLC). The values represent the F1 scores. d) The accuracy of 

the algorithms on the dataset of different sizes of panels. e) Accuracy by confidence level. f) 

Changed accuracy at ‘Likely' and overall with optional process. g) Precision and recall before and 

after optional process. 
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Supplementary table 5). This error rate was less than 60% of the error rates observed 

with the other algorithms. MeTel also showed the highest Cohen κ score of 0.94 

(Cochin: 0.86, MSK: 0.89, and HAPLOX: 0.48), indicating almost perfect agreement 

with the correct classification31 (Fig. 2b and supplementary table 5). The F1 scores for 

IPM and MPLC were 0.96 and 0.98, respectively, demonstrating the strong predictive 

power of the MeTel algorithm (Fig. 2c and supplementary table 6). Notably, MeTel 

which is based solely on genomic data, outperformed algorithms that incorporate 

clinical data. The outstanding performance of MeTel was further highlighted in the 

results excluding the training dataset of each algorithm that showed 100% accuracy. 

We also evaluated the performance of the methods using different panel sizes, ranging 

from 22 genes to WES. Each algorithm was optimized for performance on the trained 

dataset, resulting in performance deviations when applied to other datasets, 

particularly when there were significant differences in panel size. However, MeTel 

consistently demonstrated excellent performance across most datasets with only a 

slight decline in accuracy, even though it was not trained on any of the test sets used 

to developed the algorithm (95.41% - 100%) (Fig. 2d). MeTel showed exceptional 

performance even on the large sequencing dataset WES, which had the most 

significant difference compared to other algorithms (Cochin: 9.09%, MSK: 81.82%, 

and HAPLOX: 9.09%).  

MeTel provides three confidence levels based on the difference between the 

probabilities of IPM and MPLC. For the total test set (n=279), the number of samples 

included in each confidence level were as follows: Likely: 16 (5.73%), Probable: 80 

(28.67%), and Confident: 183 (65.59%). Errors in MeTel were only observed in 

‘Likely’ cases, which had a low number of variants on average (1.29), while all cases 

categorized as Probable and Confident showed 100% accuracy (Fig. 2e and 

Supplementary Fig.1) Thus, the confidence level of MeTel provides important 

evidence for decision-making when integrating clinical data with results of MeTel 

(optional process). 
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2. Integration of Optional Pathological Data 

While MeTel demonstrated high accuracy using genomic data alone, we proposed an 

optional process to incorporate histopathological data based on MeTel’s output.  

In cases where the classification was not clear due to minimal differences in the 

probabilities between IPM and MPLC, we applied an exceptional rule to adjust the 

original results of MeTel based on histology. This optional process was performed on 

16 'Likely' cases, resulting in an improvement in accuracy. Of the total seven errors, 5 

errors belonging to the 22-panel dataset were correctly classified (two were included 

in the 605-panel dataset without available clinical data). As a result, the accuracy of 

MeTel for the ‘Likely’ category improved to 87.5%, and the accuracy for the entire 

test set was 99.28% (Fig. 2f). Furthermore, the F1 scores for both IPM and MPLC 

reached 0.99 and 1.0 (Fig. 2g), respectively, indicating that combining MeTel's results 

with histopathological information allows for nearly perfect prediction.  
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3. Descriptive analysis of sample background of in-house patients 

 

Table 3. Clinico-histologic characteristics of 433 non-small cell lung cancer patients with 

multiple tumors at Yonsei University Severance Hospital (2006 to 2020) 
 IPM (N=156) MPLC (N=277) p-value 

Sex, n (%)   <0.001 

Male 104 (66.7) 143 (51.6)  

Female 52 (33.3) 134 (48.4)  

Median age at first resection 
(range) 

64.0 (32-83) 65.0 (41-84) 0.027 

Smoking status, n (%)   <0.001 

Current smoker 51 (32.7) 61 (22.0)  

Ex-smoker 51 (32.7) 63 (22.7)  

Nonsmoker 54 (34.6) 153 (55.2)  

Mean pack-year of smoker 

(range) 

36.8 (2.5-130) 34.8 (0.5-120) 0.54 

Synchronicity, n (%)   0.28 

Synchronous 103 (66.0) 198 (71.5)  

Metachronous 53 (34.0) 79 (28.5)  

Median time interval for 

metachronous case, m 

(range) 

24.7 (0-129.8) 23.6 (0-142.3) 0.49 

Distribution of tumors, n 

(%) 

  0.004 

Ipsilateral (same lobe) 67 (43.0) 86 (31.1)  

Ipsilateral (different 

lobe) 

57 (36.5) 95 (34.3)  

Contralateral 32 (20.5) 96 (34.7)  

Lung cancer stage group, 

8th edition 

(available N=147) (available N=271) 
<0.001 

Stage 0  3(1.2)  

Stage I  203 (73.2)  

Stage II 40 (27.2) 37 (14.6)  

Stage III 76 (51.7) 27 (10.6)  

Stage IV 31 (21.1) 1(0.4)  

Median tumor size, cm 

(range) 
3.05 (0.1-15)  2.3 (0.1-9.2) <0.001 

The average ISALC grade 2.27 1.70 <0.001 

Nodal status   0.003 

N0 or Nx 111 (71.2) 231 (83.4)  

N1/2/3 45 (28.8) 46 (16.6)  
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MPLC: multiple primary lung cancer, IPM: intrapulmonary metastasis. 

 

 
Figure 3. Kaplan–Meier survival curves for disease-free survival of non-small cell lung 

cancer patients with multiple tumors resected at Yonsei University Severance Hospital 

(2006-2020).  a) based on AJCC stage (p<0.001) and b) histologic classification 

(p<0.001). 

 

In a cohort of 433 non-small cell lung cancer (NSCLC) patients with multiple tumors 

resected at Yonsei University Severance Hospital (Seoul, Korea) between 2006 and 

2020, we identified several statistically significant differences between MPLC and 

IPM groups when classified based on histologic criteria. (Table 3) 

In the IPM group (n=156), there was a higher proportion of males (104, 66.7%) 

compared to the MPLC group (n=277) with 143 males (51.6%) (p<0.001). 

Additionally, the IPM group had a lower percentage of non-smokers (54, 34.6%) 

compared to the MPLC group (153, 55.2%) (p<0.001). Patients in the IPM group 

underwent resection for their first tumor at a slightly younger median age (64 years) 

compared to those in the MPLC group (65 years) (p=0.027). 

In terms of tumor distribution, the IPM group showed a decreasing proportion from 

intralobal (43.0%) to different but ipsilateral lobe (36.5%) and to contralateral lobe 

(20.5%). In contrast, the MPLC group exhibited a relatively even distribution across 

the locations with 31.1% in intralobal, 34.3% in different but ipsilateral lobe, and 34.7% 

in contralateral lobe (p=0.004). 

Regarding other prognostic factors, the IPM group consistently demonstrated poorer 
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prognosis compared to the MPLC group: IPM had a larger median tumor size (3.05cm 

vs 2.3cm) (p<0.001), a higher average ISALC grade for non-mucinous 

adenocarcinoma cases (2.27 vs 1.70) (p<0.001), and a greater proportion of nodal 

metastasis (28.8% vs 16.6%) (p=0.003). In the final AJCC stage classification, the 

proportion of patients in advanced stages (stage III-IV) was 72.8% for IPM and 11% 

for MPLC (p<0.001). Most cases showed poor disease-free survival as the pathologic 

stage increased (p<0.001) (Fig. 3a), and as a result, IPM cases demonstrated shorter 

disease-free survival compared to MPLC cases (p<0.001). (Fig. 3b) 

Among the study group, 62 patients had available information on the driver mutation 

status (EGFR, ALK and ROS1) for all of their tumors; 2 tumors in 58 patients and 3 

tumors in 4 patients, totaling 128 tumors. The most common mutation was the EGFR 

mutation (80, 62.5%), with the L858R missense mutation (49, 38.3%) being the most 

frequently detected. This was followed by the ROS1 (3, 2.4%) and ALK (1, 0.8%) 

rearrangements. Notably, in one case of ROS1, an EGFR Exon 19 deletion mutation 

was detected concomitantly. (Supplementary table 3)  
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4. Comparison to histologic classification and MeTel algorithm in in-house data 

 
Figure 4. Discordant cases between histologic predictions and MeTel analysis. Tumors 
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with distinct histologic histology are represented by different colors, while those with 

similar histologic characteristics share the same color. Each tumor is sequentially 

numbered according to the order of occurrence. The microscopic slide on the top displays 

the major histologic patterns of each tumor, and the bottom displays other secondary 

histological components. MPLC: multiple primary lung cancer, IPM: intrapulmonary 

metastasis, SqCC: squamous cell carcinoma, MD: moderately differentiated. 

 

In comparison of histologic classification and MeTel algorithm, 33.3% (2 out of 6) of 

the patients in both the WES and TSO500 datasets showed disagreement in the 

prediction of MPLC or IPM. (Fig. 4 and Supplementary table 7) For patient 9, exon 

19 deletions in both tumors confirmed via TSO500 panel sequencing, concluding that 

the previous EGFR sequencing of the first tumor (EGFR wild) resulted in a false 

negative. This resulted in a consistent IPM diagnosis from both the histologic 

classification and MeTel algorithm. In the WES dataset, Patient 2 was classified as 

MPLC in the histologic classification but as IPM in the MeTel algorithm and another 

patient (Patient 6) had the opposite classification. In the TSO500 dataset, both Patients 

7 and 11 were classified as MPLC in the histologic classification but as IPM in the 

MeTel algorithm. The confidence level of the MeTel algorithm for all TSO500 and 

WES dataset samples was ‘confident'. 

In Patient 2, three tumors were resected: one adenocarcinoma in the right middle lobe 

in 2009 and two synchronous adenocarcinomas in the right lower lobe in 2016. During 

histologic evaluation, all tumors were found to have a lepidic component (10-40%), 

which was interpreted as a non-invasive precursor lesion and therefore classified as 

MPLC. However, the MeTel algorithm classified all tumors as IPM. Upon re-review, 

the two tumors in 2016 were found to be adenocarcinomas with high-grade histologic 

components (10-15% micropapillary), while the first tumor in 2009 was an 

adenocarcinoma with only acinar (60%) and lepidic (40%) components. The patient 

was found to have subdiaphragmatic metastasis on an abdominal CT two years after 

the last resection of the tumors. 

Patient 6 was diagnosed with two synchronous squamous cell carcinomas located in 
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the left lower lobe and right upper lobe in 2015. Microscopic examination revealed 

that both tumors displayed similar histologic features, including keratinizing type, 

moderate differentiation, necrosis (10-30%), and an inflammatory stroma, but no 

evidence of a precursor lesion such as squamous dysplasia. Based on these findings, 

the tumors were classified as IPM in the histologic evaluation. A clonality test using 

WES data showed distinct copy number variations in both tumors, suggesting that their 

true nature was MPLC. The patient has been under observation for 71.5 months 

without recurrence. 

In the case of Patient 7, two cases of adenocarcinoma were detected with an interval 

of 8 years. The first tumor was identified in the left upper lobe in 2009 and exhibited 

a lepidic predominant (70%) pattern. After one year, a brain metastasis was found, 

which was treated with gamma knife surgery and subsequently Navelbine 

chemotherapy. In 2017, a second tumor was discovered in the left lower lobe, which 

also had a lepidic predominant (90%) pattern, leading to MPLC classification by 

histologic criteria. However, the presence of systemic metastasis raises the possibility 

that the tumors may be IPM. MeTel classified the tumor pair as IPM, and further NGS 

analysis also showed similar copy number variations and eight shared mutations 

between the tumors, favoring IPM. The patient received palliative care at another 

hospital without additional chemotherapy, and follow-up was lost 34 months after the 

last resection. 

In Patient 11, a lung adenocarcinoma first occurred in the right upper lobe in 2016 and 

another case of lung adenocarcinoma was found in the left lower lobe a year later in 

2017. The first tumor showed an acinar predominant (60%) pattern with minor solid 

(30%) and micropapillary (10%) components. The second tumor showed a much 

higher solid component (80%), resulting in a diagnosis of MPLC due to the difference 

in predominant histologic type. MeTel classified the tumor pair as IPM, and further 

NGS analysis revealed similar chromosomal patterns, with copy number gains on 

chromosomes 5 and 7 and a shared rare genomic variant (AKT3 c.*5422T>A), 
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supporting MeTel’s result. The patient has not exhibited any recurrence for over 43 

months during the current follow-up period.  
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5. The Ethnic-Specific Mode of MeTel 

 

Table 4. Accuracy of MeTel with race information. 

The country of the institution from which the samples were collected and the accuracy of each dataset.  
1 in-house dataset from Severance Hospital. 

 

To further enhance the sophistication of MeTel, we propose incorporating ethnic-

specific differences in mutation frequency into the calculation of the likelihood 

formula. Due to significant variations in mutation frequency among different ethnic 

populations, considering these differences is expected to improve the accuracy of 

MeTel's classification. 

Dataset 

(Country 

of the 

institution 

where the 

sample was 

collected) 

Accuracy with race information (%) 

Asian Black White 
Total 

population 

22 

(France) 
94.50 95.41 95.41 95.41 

189 

(France) 
100 100 100 100 

468 

(America) 
100 100 100 100 

520 

(China) 
100 100 100 100 

5231 

(South Korea) 
100 100 100 100 

605 

(China) 
98.04 92.16 92.16 96.08 

WES-1 

(China) 
100 100 100 100 

WES-21 

(South Korea) 
100 100 100 100 

Total 97.61 96.93 96.93 97.61 
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To evaluate the impact of the ethnic-specific mode of MeTel, we applied the value p 

that reflects such differences and assessed the accuracy for each dataset. While ethnic 

information for each sample was not available in most datasets, since the nationality 

of the institution from which each sample was collected was known, we could infer 

the ethnic composition of each dataset based on the nationality of the collecting 

institution (Table 4). 

Our analysis revealed interesting findings. When considering the Asian population 

frequency, we observed a decrease in accuracy for the 22-panel dataset obtained from 

institutions in France, but an increase for the 605-panel dataset from Chinese 

institutions. Conversely, when applying non-Asian population frequencies, such as 

Black and White, we observed a decrease in accuracy for the 605-panel dataset. 

Notably, specific mutations, such as KRAS (p.G12C) in the 22-panel dataset and 

EGFR (p.L858R) in the 605-panel dataset, showed significant differences in frequency 

based on race, resulting in different classification outcomes compared to the original 

MeTel results (Supplementary Table 8 and Supplementary Fig. 2). 

These findings suggest that incorporating ethnicity information of patients into 

MeTel's process could enhance its sophistication and accuracy. Currently, in this study, 

MeTel relies on the frequency of mutations in the entire population, but when using 

MeTel, it is recommended to utilize the ethnic-specific mode to better reflect the 

genetic diversity across different populations.  
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IV. DISCUSSION 

1. MeTel Algorithm 

In this study, we introduced MeTel, a novel sequencing-based classification algorithm 

for identifying IPM and MPLC in patients with multiple lung cancer. MeTel overcomes 

the limitations of previous genomic methods by estimating the probabilities of IPM 

and MPLC based on the somatic mutation profile of tumors, rather than relying solely 

on the number of shared mutations. 

The distinct error trends of each algorithm and accuracy rate by panel size in the 

classification result (Fig.1b and 1d) shows the limitation of previous mutation count-

based algorithms and outstanding performance of probability ratio-based algorithm, 

MeTel, especially in large-sized gene panel. With the count-based algorithm, as the 

panel size decreases, there's a reduced opportunity to detect shared mutations. This 

reduction manifests as an increasing rate of IPM errors. Conversely, in larger panels, 

the incidence of coinciding MPLC mutations rises, triggering a surge in MPLC errors. 

As the gene panel size expands to whole-exome size, the accuracy of count-based 

algorithm dramatically decreases, causing errors in most cases. It's crucial to note that 

these two error types have opposing influences: this interplay means that merely 

adjusting the cutoff of mutation count won't optimize overall accuracy. Consequently, 

when charting the accuracy rate against panel size, we witness a reverse U-shaped 

trend of previous mutation count-based algorithms. 

MeTel employs a Bayesian probability model to quantitatively calculate and compare 

the likelihood of coincidental mutation matching in MPLC and the potential for 

transition in IPM for each detected mutation. MeTel's analytical strength intensifies as 

the number of mutations detected within the panel increases, and it is free from the 

MPLC errors in large panels caused by count-based algorithm. This is evident in the 

near-perfect performance of MeTel when compared to the significantly lower accuracy 

of the count-based algorithm in the whole exome panel cohort. 
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MeTel's performance consistently outperformed other algorithms, even in smaller-

sized panels like the 22 genes. The few errors that were observed with MeTel indicated 

a distinct algorithmic principle compared to other count-based algorithms. While the 

primary error from count-based algorithms in small panels arises from insufficient 

detection of shared mutations in IPM, causing IPM error, all of MeTel's error instances 

occurred in the study where only a few mutations were detected that shared single 

driver gene mutation. Consequently, there was a mistaken interpretation of 

coincidentally matching driver gene mutations in MPLC as evidence for IPM, leading 

to MPLC errors. 

The impact of ethnicity also plays a role in these errors. Since the mutation incidence 

was calculated based on an overall population without considering ethnicity, the 

probability of coincidence for driver gene mutations that frequently appear within 

specific ethnic cohorts was underestimated, leading to incorrect classifications as IPM. 

This can be corroborated when applying the updated incidences specific to each 

ethnicity for KRAS and EGFR mutations, as seen in cases where the errors were 

corrected. (Supplementary Table 8 and Supplementary fig. 2) 

As mentioned previously, such errors occurred when the number of detected mutations 

was insufficient to provide ample evidence for classification. We were able to 

categorize potential risk groups by distinguishing confidence levels in a tiered manner. 

When cases were divided into three levels based on the MAX (pi, pm) value (Likely, 

Probable, and Confident), all the error cases in this study fell into the group with the 

lowest confidence, the 'Likely' group. Enhancing the reliability of these cases by 

optionally applying classic histologic criteria resulted in an accuracy level comparable 

to that of the other confidence groups. Similarly, among the count-based algorithms, 

the MSK model employs a histology-molecular combined algorithm. When evaluating 

tumor pairs, it first applies histologic criteria to determine distinct MPLC. Compared 

to the other two algorithms, the MSK model demonstrated higher accuracy in the 

whole exome panel. 
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We applied MeTel to 12 patients at our institution whose classifications were 

challenging based solely on pathological findings. Among them, four showed 

discordant result with MeTel classification. Upon conducting additional NGS analysis, 

such as copy number variation, the result favored MeTel's categorization. This 

demonstrates MeTel's potential for real-world clinical trial and its excellence as a 

supplementary tool complementing traditional histological classifications. 

There are several limitations to consider before implementing MeTel in actual clinical 

settings. Firstly, in Korea, only a few driver genes (EGFR, ALK, ROS1) targeting lung 

tumors are currently sequenced. Due to medical insurance policies, only one of the 

tumors is allowed NGS-scale molecular test. As such, to fully utilize MeTel, additional 

molecular testing is inevitable. Secondly, in small tissue samples, like biopsies, tumor 

purity can greatly vary due to the presence of normal contaminants such as 

inflammatory cells. Compared to resection specimens, there’s a need to consider the 

tumor purity as a significant variable. 

Fortunately, the NGS test for NSCLC patients with 23-gene panels (Oncomine Dx 

target test)32 has been approved by medical insurance in Korea since december 2022. 

As MeTel has demonstrated high performance in this scale of panel, we anticipate its 

increased applicability in actual clinical environments in the future. 

 

2. Pathologic review of discordant cases between histologic classification and 

MeTel algorithm 

The time interval serves as one of the key indicators in distinguishing between MPLC 

and IPM in cases of multiple lung cancer. The majority of NSCLC cases recur within 

two years of onset, hence the two-year cutoff in the Martini criteria7 and the extended 

four-year cutoff in the ACCP 8 were established based on such clinical incidence data. 

The Cochin method also utilizes a five-year cutoff for classifying MPLC 13. In our 

cohort of multiple lung cancer patients, cases classified as IPM based on histologic 
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findings were assembled, we found that approximately 94% of them had a time interval 

of less than five years (Supplementary table 9). 

Despite the convenience of analysis, the time interval cutoff, based on incidence-based 

statistics, has inherent limitations in terms of fundamental reliability. In our study, all 

cases selected with a time interval exceeding five years (patients 1-5, 7-8) were 

classified as IPM in the in-depth classification by MeTel. Given the clinical 

significance that the distinction between MPLC and IPM holds for patients, it is 

necessary to be cautious about using time intervals as classification criteria. 

In the cases of patients 2 and 7, both patients were initially classified as MPLC based 

on the presence of a lepidic (in situ) component in their respective tumors, not only 

based on time interval. Irrespective of the type and organ of origin, such precancerous 

lesions have consistently been employed as strong evidence for primary cancer, rather 

than metastasis.33-35 Similarly, in conventional histologic criteria for lung cancer, the 

presence of an in situ component plays a pivotal role in distinguishing primary cancer 

from metastasis.23, 36 However, these cases were reclassified as IPM using MeTel. 

In lung adenocarcinoma, the in situ component is characterized by neoplastic cells 

confined to the pre-existing alveolar wall, absent any structural destruction 23, 36. This 

growth pattern is now termed 'lepidic', and non-mucinous lung adenocarcinoma with 

a purely or predominantly lepidic pattern is classified as adenocarcinoma in situ (AIS), 

minimally invasive adenocarcinoma (MIA), and lepidic adenocarcinoma, depending 

on the presence and size of invasive foci23. However, certain invasive adenocarcinomas 

can demonstrate outgrowth along the alveolar wall, mimicking precancerous lesions. 

Moore et al. suggested several features that represent peripheral outgrowth of the 

invasive component rather than low-grade precursor: (1) clear nuclear difference 

between invasive and in situ component; (2) architectural asymmetry of invasive 

component; and (3) the absence of lepidic “penumbra”, composing a uniformly 

widened thickness of the in situ component.37 In a recent study conducted by the 
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IASLC pathology committee, several pathologists derived potentially useful features 

for distinguishing between in situ components and invasive patterns through the 

Delphi approach.38 According to their findings, the invasive pattern includes two or 

more of the following three major histologic criteria: (1) "Extensive Epithelial 

Proliferation" (EEP), (2) desmoplasia, and (3) altered alveolar structure. EEP is 

defined as epithelial cells, consisting of more than two cell layers, growing along the 

alveolar wall accompanied by cytologic atypia. If these major criteria are not met, the 

presence of high-grade cytologic atypia, cytologic transition between the invasive and 

in situ components, or the presence of macrophages within a collapsed space are 

considered as useful features to determine "considerable" invasive pattern. On the 

other hand, monolayered lepidic component with compressed but regular parallel or 

streaming pattern was considered as iatrogenic collapse, favoring non-invasive pattern.  

For the cases of Patient 2, there were differences in the morphology of the lepidic 

component between the tumor from 2009 and the two tumors from 2016. (Fig. 5) The 

Figure 5. Lepidic components of the early and later tumors from Patient 2. The top image 

provides an overview of the entire tumor, with the tumor's outer boundary delineated by 

dotted lines. The bottom image shows a higher magnification of the lepidic component 

area marked by a rectangle in the overview image. While Tumor 1 displayed a typical 

iatrogenic collapse pattern, Tumor 2-1 and Tumor 2-2 exhibited features approaching 

extensive epithelial proliferation. 
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early tumor from 2009 displayed a typical iatrogenic collapse pattern, with the lepidic 

component showing low-grade atypia being compressed in parallel direction, and 

occasional alveolar macrophages observed in the lumen. However, the lepidic 

component of the later tumors from 2016 showed irregular fibrosis of the alveolar wall 

and stratification of more than 2 cells, considered as EEP. Moreover, these components 

partly seemed to transit into micropapillary components, suggesting the possibility that 

the lepidic component of the later tumors might be an outgrowth of an invasive pattern.  

Figure 6. Lepidic component of the early and later tumor from Patient 7. The top image 

provides an overview of the entire tumor, with the tumor's outer boundary and the invasive 

(acinar) pattern indicated by dotted lines. The bottom image shows a higher magnification 

of the extensive epithelial proliferation (EEP) and non-EEP areas of the tumor's lepidic 

component, each marked by blue and black rectangles, respectively, in the overview image. 

Histologically, early tumor shows iatrogenic collapse pattern, but later tumor exhibits a mix 

of EEP and definitive lepidic pattern, leading it to be an equivocal case. 
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However, in the case of Patient 7, the early tumor shows iatrogenic collapse pattern 

but the later tumor is histologically mixture of EEP and definitive lepidic pattern, 

leading it to be an equivocal case. (Fig. 6) Previous study already showed that the 

lepidic component does not always guarantee MPLC through the discordance with 

molecular testing, but the result was only restricted to lepidic non-predominant cases.14 

On the other hand, the brain metastasis history could provide a clinical clue suggesting 

IPM. Considering the probability that the mutations confirmed in TSO500 sequencing 

coincidentally match, it would be more rational to favor the possibility of IPM. 

The ability to confirm the metastatic nature of squamous cell carcinoma in the case of 

Patient 6 provides an encouraging perspective. Compared with lung adenocarcinoma, 

pulmonary squamous cell carcinoma displays a relatively lower frequency of driver 

gene alterations such as EGFR mutations or ALK rearrangements. 22 Beyond the rarity 

of these specific gene alterations, the histological diversity of lung squamous cell 

carcinoma is also less complex than that of lung adenocarcinoma, dividing into only 

three categories: keratinizing, non-keratinizing, and basaloid. 23 When pulmonary 

squamous cell carcinoma presented as multiple intrapulmonary tumors, such lack of 

the significant driver gene and morphologic heterogeneity make it difficult to predict 

clonal relationship of the tumors.39  

In histological assessment for multiple pulmonary squamous cell carcinoma, detailed 

morphologic characteristics beyond the WHO classification was suggested to 

distinguish MPLC and IPM: degree of keratinization, necrosis, desmoplasia and 

inflammation and rare cytologic features such as clear cell, papillary, basaloid or 

sarcomatoid patterns.9 However, in our study, the squamous cell carcinoma pair 

demonstrated indistinguishable cytologic, structural, and stromal backgrounds, 

making it impossible to differentiate MPLC. Using WES analysis to examine the copy 

number variation data, we confirmed that these tumors are independently occurred. 

This finding was consistent with the patient's outcome, who has remained recurrence-

free more than 5 years.  
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In Patient 11, the discrepancy in predominant histologic components between two 

tumors led to a classification as MPLC. However, detailed histological review revealed 

this was due to an increased high-grade (solid) component in the secondary tumor that 

appeared a year later. The International Association for the Study of Lung Cancer 

(IASLC) categorized these high-grade patterns - solid, micropapillary, and complex 

glandular - in 2020, and established their correlation with poorer prognosis in non-

mucinous adenocarcinoma.40, 41 Previous reports also documented increased 

proportions of these high-grade components in metastatic cancers.14, 42 Through 

molecular analysis using the MeTel model, we were able to rectify the histologic 

discrepancy by confirming that the two tumors shared unique genomic variants. 

Consequently, variations in predominant histologic patterns should not be hastily 

interpreted as MPLC, but rather carefully assessed for potential progression during 

metastasis. 

 

3. Potential candidates for the expanded application of MeTel 

In this study, the performance of MeTel was assessed using a dataset predominantly 

composed of non-mucinous adenocarcinoma cases. However, since it operates without 

being limited to specific cancer types or driver genes, there is potential to expand its 

application. 

Pulmonary mucinous adenocarcinoma exhibits a histology similar to pancreatobiliary 

adenocarcinoma. Both have a high frequency of KRAS mutations, making 

differentiation between metastasis or double primary challenging.43, 44 Although TTF-

1 marker is known to be relatively specific to pulmonary mucinous adenocarcinoma45, 

its expression frequency isn't high, underscoring the need for a more accurate 

differential analysis. 

Squamous cell carcinoma does not present as diverse morphologic variations as 
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adenocarcinoma, making the application of classic histologic criteria challenging.23 

However, lung squamous cell carcinoma generally has a higher tumor mutation burden 

(TMB) than lung adenocarcinoma46, suggesting a greater utility for molecular-based 

classification like MeTel. 

Head and neck squamous cell carcinoma (HNSCC) often metastasizes to the lungs47, 

but double primary lung squamous cell carcinoma is also frequently observed, 

appearing in about 5-19% of cases48. While considering surgical resection for double 

primary lung squamous cell carcinoma, the direction of treatment may shift towards 

palliative therapy for metastatic HNSCC.49, 50 At present, there is a lack of clear criteria 

or biomarkers to differentiate the two50, but with a sufficient cohort, the application of 

MeTel can be anticipated.  
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V. CONCLUSION 

Identifying the clonality of multiple lung cancers is crucial for establishing an accurate 

T stage and treatment plan. MeTel offers consistent and accurate analysis, surpassing 

previously reported algorithms. Furthermore, the integration of MeTel can help to 

refine traditional criteria based on morphological analysis and result in more accurate 

prognostic predictions.  
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APPENDICES 

 

Supplementary Table 1. The criteria of confidence level 

Confidence level Criteria 

Likely Max(P(IPM), P(MPLC)) < 0.8 

Probable 0.8 ≤ Max(P(IPM), P(MPLC)) ≤ 0.95 

Confident Max(P(IPM), P(MPLC)) > 0.95 

IPM: intrapulmonary metastasis, MPLC: multiple primary lung cancer.  
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Supplementary Table 2. The previous genomic based methods. 

Name of algorithm Cochin (2019) MSK (2019) 
HAPLOX 

(2021) 

Journal 

Journal of 

Thoracic 

Oncology 

Clinical Cancer 

Research 

Frontiers in 

Oncology 

Panel (number of genes) 

Ion AmpliSeq 

Colon-Lung 

Cancer Research 

Panel v2 (22 

genes) 

MSK-impact (468 

genes) 

Haplo-X (605 

genes) 

Clinical 

AIS, MIA - 

MPLC 

Time interval over 

5 years – MPLC 

Same morphology - 

IPM 

Different histology 

- MPLC 

AIS/MIA/Lepidic 

predominant – 

MPLC 

Unutilized 

Molecular1 

Non shared MPLC MPLC MPLC 

 

1 (Rare)2 IPM IPM 

MPLC (TKI 

genes) 1 (Frequent)2 

MPLC (EGFR 

(del19, L858R), 

KRAS G12X) 

MPLC 

2 IPM IPM MPLC 

3 IPM IPM IPM 

No mutation Indeterminate Indeterminate Indeterminate 

1Molecular classification is based on the number of shared mutation. 
2The algorithms classified a shared mutation as either rare or frequent in non-small cell lung cancer when 

there was only one mutation involved. 

AIS: adenocarcinoma in situ, MIA: minimally invasive adenocarcinoma, MPLC: multiple primary lung 

cancer, IPM: intrapulmonary metastasis, TKI: Tyrosine kinase inhibitor 
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Supplementary table 3. Driver gene status of tumors from the in-house patients (available 

tumor n=128) 

Molecular status (%)   

EGFR  80 (62.5) 

Exon 18   

G719X+L861Q 1 (0.8) 

Exon 19   

Exon 19 deletion1 28 (21.9) 

Exon 20   

E20 insertion 1 (0.8) 

Exon 21   

L858R 48 (37.5) 

L858R+T790M 1 (0.8) 

L861Q 1 (0.8) 

Wild 48 (37.5) 

ALK   

Positive 1 (0.8) 

Negative 127 (99.2) 

ROS1   

Positive1 3 (2.4) 

Negative 125 (97.6) 

1 1 case is concomitant ROS1 rearrangement and EGFR Exon 19 deletion. 
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Supplementary table 4. Clinical and pathologic characteristics of the 12 in-house pateints 

and their tumor pairs 
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1 classification result by suggested criteria. 

2 WES was done for patient 1-6 and TSO500 sequencing was done for patient 7-12. 

3 The initial tumors of patients 3 and 4 (E4_13 and E5_13) were excluded due to low sequencing quality, hence 

the classification comparison was conducted on two later tumors (E4_19_1 and E4_19_2) (E5_19_1 and 

E5_19_2) from each patient. 

4 Patient 9 was initially diagnosed with multiple tumors showing discordant driver gene statuses, specifically 

EGFR E19 deletion and wild type. However, TSO500 sequencing conducted in this study revealed that the 

previously identified wild type was actually a false-negative for the identical EGFR E19 deletion status. 

Pt: patient, CHA: Comprehensive histologic assessment, Seq.: sequencing, P-Y: pack-year, DFS: disease-free 

survival, OS: overall survival, F: female, M: male, A: adenocarcinoma, MPLC: multiple primary lung cancer, 

IPM: intrapulmonary metastasis, WES: whole exome sequencing, LUL: left upper lobe, LLL: left lower lobe, 

RUL: right upper lobe, RML: right middle lobe, RLL: right lower lobe, NA: not available. 
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Supplementary Table 5. The performance of algorithms. (279 cases in 6 test dataset) 
 

Cochin MSK HAPLOX MeTel 

IPM MPLC IPM MPLC IPM MPLC IPM MPLC 

Final 

Classificatio

n 

IPM 70 5 66 9 35 40 75 0 

MPLC 11 193 3 201 10 194 7 197 

Error Rate 

(Training set 

excluded) 

Kappa 

coefficie

nt 

5.73% 

(9.41) 

0.86 4.30% 

(5.91) 

0.89 17.92

% 

(21.93) 

0.48 2.51% 0.94 

IPM: intrapulmonary metastasis, MPLC: multiple primary lung cancer.  
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Supplementary Table 6. F-1 scores for IPM and MPLC of algorithms. (279 cases in 6 test 

dataset) 

 
Cochin MSK HAPLOX MeTel 

IPM MPLC IPM MPLC IPM MPLC IPM MPLC 

Precision 0.86 0.97 0.96 0.96 0.78 0.83 0.91 1.00 

Recall 0.93 0.95 0.88 0.99 0.47 0.95 1.00 0.97 

F1 0.90 0.96 0.92 0.97 0.58 0.89 0.96 0.98 

IPM: intrapulmonary metastasis, MPLC: multiple primary lung cancer.  
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Supplemantary table 7. Clinical and pathologic characteristics of discordant cases 

between histologic prediction and MeTel analysis 
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WES: whole-exome sequencing, TI: time interval, LVI: lymphovascular invasion, STAS: spread through air 

spaces, P-Y: pack-year, DFS: disease-free survival, OS: overall survival, Pt: patient, F: female, M: male, MPLC: 

multiple primary lung cancer, IPM: intrapulmonary metastasis, LUL: left upper lobe, LLL: left lower lobe, 

RUL: right upper lobe, RML: right middle lobe, RLL: right lower lobe, MD: moderate differntiated, NA: not 

available. 

  



４９ 

 

Supplementary Table 8. Mutation frequency showing the biggest difference by race. 

  

 
Mutation Frequency 

Asian Black White Total population 

KRAS 

(p.G12C) 

0.03 0.12 0.13 0.12 

EGFR 

(p.L858R) 

0.21 0.04 0.05 0.07 



５０ 

 

Supplementary table 9. Distribution of time interval between multiple tumors of 433 non-small cell lung 

cancer patients with multiple primary lung cancer and intrapulmonary metastasis at Yonsei University 

Severance Hospital. (2006 to 2020) 

 IPM (N=156) MPLC (N=277) 

Time interval Frequency (N) % Cumultive % Frequency (N) % Cumultive % 

0-6M 

(synchronous) 
106 67.9 67.9 204 73.6 73.6 

6M-1Y 9 5.8 73.7 9 3.2 76.9 

1Y-1Y6M 10 6.4 80.1 4 1.4 78.3 

1Y6M-2Y 6 3.8 84.0 7 2.5 80.9 

2Y-2Y6M 8 5.1 89.1 4 1.4 82.3 

2Y6M-3Y 2 1.3 90.4 2 0.7 83.0 

3Y-3Y6M 2 1.3 91.7 12 4.3 87.4 

3Y6M-4Y 2 1.3 92.9 4 1.4 88.8 

4Y-4Y6M 1 0.6 93.6 5 1.8 90.6 

4Y6M-5Y 1 0.6 94.2 4 1.4 92.1 

5Y-5Y6M 5 3.2 97.4 2 0.7 92.8 

5Y6M-6Y    4 1.4 94.2 

6Y-6Y6M 1 0.6 98.1 3 1.1 95.3 

6Y6M-7Y    1 0.4 95.7 

7Y-7Y6M    5 1.8 97.5 

7Y6M-8Y       

8Y-8Y6M    2 0.7 98.2 

8Y6M-9Y 1 0.6 98.7 1 0.4 98.6 

9Y-9Y6M       

9Y6M-10Y 1 0.6 99.4 1 0.4 98.9 

10Y-10Y6M 1 0.6 100.0 1 0.4 99.3 

10Y6M-11Y    1 0.4 99.6 

11Y-11Y6M       

11Y6M-12Y    1 0.4 100.0 

Median TI (for 

cases TI>6M) 
 2Y-2Y6M   1Y-2Y  

MPLC: multiple primary lung cancer, IPM: intrapulmonary metastasis, M: month, Y: year, TI: time interval.  
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Supplementary figure 1. Confidence level and error cases of MeTel by sample. ‘Probable’ 

and ‘Confident’ showed 100% accuracy. All seven errors occurred only in ‘likely’ cases. 
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Supplementary figure 2. Changed cases when applying the ethnic specific frequency. One 

case (22-panel dataset from France) shared KRAS(p.G12C) and three cases (605-panel 

dataset from China) shared EGFR(p.L858R).  
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ABSTRACT(IN KOREAN) 

독립된 다발성 폐암과 폐내 전이암의 감별에 대한 분자생물학적인 

접근법 

<지도교수 심 효 섭> 

 

연세대학교 대학원 의학과 

 

정 연 승 

 

 

배경 

폐암은 종종 다발성으로 발견되며 이는 독립된 다발성 폐암(Multiple primary 

lung cancer, MPLC) 또는 폐내 전이암(intrapulmonary metastasis, IPM)일 수 있다. 

두 유형을 정확히 구분하는 것은 임상적으로 중요한 의미를 지니나 아직까지 

그 진단 방법은 확립되지 않았다. 

방법 

본저에서는 유전체 정보를 기반으로 IPM과 MPLC를 구분하는 베이지안 확률 

모델 (MeTel)을 개발하였다. 여섯 개의 코호트에서 다양한 크기의 패널(22개 

유전자에서 전체 exome까지)로 시퀀싱된 279개의 샘플(75개의 IPM와 204개의 

MPLC)을 대상으로 이전에 발표된 감별법들과 비교하였으며, 본원에서 감별이 

모호했던 폐암 사례들을 모아 MeTel을 시행하고 기존 결과와 비교하였다. 

결과 

MeTel은 여섯 개 코호트를 대상으로 97.5%의 정확도를 보여 기존에 제시된 

방법들(82.08-95.70%)을 능가하였으며, 패널의 크기에 잘 영향받지 않고 

일관된 성능을 보였다. 나아가 MeTel의 분류를 통해, 본원에서 모호한 감별 

결과를 얻었던 다발성 폐암 진단을 일부 수정할 수 있었다. 

의의 

본저에서는 IPM과 MPLC을 분류하는 새로운 유전체 기반 분류 알고리즘을 

제시하고 그 정확성을 검증하였으며, 실제 임상 사례에 대한 활용성을 보였다. 

                                                                   

핵심되는 말 : 다발성 폐암, 독립된 다발성 폐암, 폐내 전이암, 비소세포

폐암, 베이지안 확률 모델 
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