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ABSTRACT

Development of machine learning-based model to predict
cardiovascular disease in patients at risk using healthcare big data

Shinjeong Song

Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Hyuk-Jae Chang)

The rise in cardiovascular disease worldwide is causing enormous social and economic
costs. Accordingly, the field of precision medicine aims to improve care through
personalized prediction and prevention. In South Korea, we have health insurance claims
data covering almost every citizen, which provides all the information about healthcare
utilization behavior. Health insurance users can access their data through a simple
authentication process. This data can be used to predict their personalized risk factors.
Recently, bidirectional encoder representations from transformers (BERT) and related
models have achieved tremendous success in the natural language processing domain. We
adapt the BERT framework originally developed for the text domain to the structured
HIRA data. The study aimed to predict cardiovascular diseases in subjects at risk (newly
diagnosed metabolic diseases; hypertension, diabetes, hyperlipidemia) using health
insurance claims data and BERT. Each disease was assigned to the training, validation, and
test sets in the ratio of 7:2:1 through data augmentation. Patients' diagnoses and prescribed
medications were embedded as input sequences, and age was used for positional encoding
to distinguish visits. The model's predictive ability was evaluated by measuring the area
under curve (AUC).

In each group of patients diagnosed with hypertension, diabetes, and dyslipidemia, BERT
achieved mean AUC areas of 97.9%, 97.8%, and 97.8%, respectively. We found that the



top-ranked conditions for self-attendance were hypertension, diabetes, dyslipidemia, and
diagnoses and medications that are more common in older adults.

BERT performs good cardiovascular diseases prediction using only diagnosis names and
medication prescriptions on a relatively small training dataset. This study suggests that

BERT can be used to advance personalized predictive healthcare models and patient care.

Key words : bert, machine learning, metabolic disease, cardiovascular diseases,
hypertension, diabetes, dyslipidemia
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Development of machine learning-based model to predict

cardiovascular disease in patients at risk using healthcare big data

Shinjeong Song

Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Hyuk-Jae Chang)

I. INTRODUCTION
Cardiovascular disease (CVD), which is the leading cause of death globally, has rapidly

increased in public health all over the world.! This has resulted in significant social and
economic costs. Patients at high risk for CVD can be identified by prediction models that
use risk stratification. The field of precision healthcare aims to improve the provision of
care through precise and personalized prediction, prevention, and intervention.
Traditionally, risk factors used to predict cardiovascular events include systolic blood
pressure, diastolic blood pressure, glycated hemoglobin, cholesterol levels, family history,
smoking history, etc. These risk factors for cardiovascular events have not been studied in
anational cohort or shared data in Korea. In addition, tools for patients to assess or identify
their risk of future cardiovascular events are difficult to access and the interpretation of the
results by the general public is very limited. Therefore, it would be meaningful to show
disease prediction results using only information on healthcare utilization behaviors that is
accessible and shared by everyone.

In Korea, there are Health Insurance Review and Assessment (HIRA) Service, which



reviews the claims, assesses the quality of care provided, and evaluates adequacy for
healthcare services. HIRA database includes information about healthcare utilization
behavior on diagnoses, procedures (examinations), prescription records, visit dates, and
demographic characteristics almost all citizens. Health insurance users can access their data
through a simple authentication process, and researchers can obtain complete data for
research purposes, which is very useful for research purposes or to use as a predictor of
individual risk factors for users.

However, this HIRA database is claims data, like statements. Unlike traditional risk factors,
it is not numeric but characterized by ICD codes and medication codes, and there is a lot
of information in the time series, which limits the development of models using traditional
risk factor prediction statistical methods. It is well known that in recent years, advances in
deep learning (DL), a subfield of machine learning (ML), have led to significant progress
toward personalized predictions in cardiovascular medicine, radiology, neurology,
dermatology, ophthalmology, and pathology.>

The remarkable success of DL in these applications can be attributed not only to
advancements in DL algorithms but also to the substantial influx of extensive multimodal
biomedical data. These datasets include, among others, electronic health records (EHR)®,
which have played a pivotal role in supporting the development and effectiveness of DL
models in the medical domain. With the increasing adoption of electronic health records
(EHR) systems in many countries, linking data from tens of thousands of patients over the
years, there has been a lot of development on how to use this textual medical information
to make predictions using machine learning.

Information about a patient's healthcare utilization behavior, such as multiple outpatient



visits or hospitalizations and the medical procedures and medication types associated with
them, can generate thousands of data points, while a diagnosis can be a single disease code,
making the volume of data suitable for applying ML models and vice versa. Large-scale
EHRs therefore provide an unparalleled source of insights and a unique data source for
training ML models that require large amounts of data. DL models are gaining popularity
in EHR research due to their success in a variety of applications. Various DL approaches *
10 have been shown to provide good results compared to widely used feature extraction and
transformation methods for predicting various diseases from EHR data. In addition, CNN,
RNN, and LSTM models have been proposed to account for the complexity of EHRs, such
as irregular visit intervals and event sequences. ''"'* Transfer learning was developed to
address pre-training some representation on a large unannotated dataset, then training it on
a large dataset, and then further tuning it to guide other tasks. '* A recent trend in transfer
learning is the use of self-supervised learning on large general datasets: learning is used to
derive a general-purpose pre-trained model that captures the intrinsic structure of the data,
which can then be applied to specific tasks on specific datasets through fine-tuning. This
pre-training fine-tuning paradigm has proven to be very effective in natural language

)16-20

processing (NLP and more recently in computer vision. 2> The bidirectional encoder

transducer representation (BERT) is one of the most widely used models for processing
sequential inputs such as text and has many variants. 2%>*?° BERTSs have also been adopted

23,24,30

in the clinical domain and have been trained on clinical NLP tasks and clinical texts

only. Through fine-tuning, they can be used for specific purposes on specific datasets.



Therefore, we aimed to predict cardiovascular event in patients at risk; with new-onset
metabolic diseases such as hypertension, diabetes, and dyslipidemia using national health

insurance claims data represented by ICD codes and drug codes via a BERT model.

10



I1. Materials and Methods
1. Study design

The period from 2007 to 2010 was used as a wash out period, and people who were newly
diagnosed with hypertension, diabetes, and dyslipidemia between 2011 and 2020 were
defined as patients at risk. Among the patients at risk, we divided them into those diagnosed
with cardiovascular diseases according to the operational definition (positive) and those
without (negative) and trained them with a machine learning model (Bidirectional Encoder
Representations from Transformers model) to develop a prediction model. This study was

approved by the Institutional Review Board of Yonsei University Severance Hospital.

2. Data.

South Korea has a universal healthcare coverage system, with the National Health
Insurance covering approximately 98% of the total South Korean population. The Health
Insurance Review and Assessment Agency's claims data covers 46 million patients per year,
or 90% of South Korea's population as of 2011, and includes claims from approximately
80,000 healthcare providers across the country. HIRA's claims data includes patients'
diagnoses, treatments, procedures, surgical histories, and prescription drugs, making it a
valuable resource for healthcare research.

Due to the nature of these HIRA data, understanding the complex structure and large
volume of claims data requires significant effort from researchers, so HIRA has developed
validated patient sample data from five organizations.

The patient sample is a stratified random sample drawn from HIRA's claims data. The
sample size was carefully calculated and drawn on a yearly basis to be representative of

Korean patients' sociodemographic characteristics, diagnoses, and prescribed medications.
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31 For this study, we were provided with a dataset of 200,000 patients each with
hypertension, dyslipidemia, and diabetes directly from the HIRA. Since the amount of data
for machine learning was relatively small, we performed augmentation, and after
augmentation, we divided the training, validation, and test sets in a 7:1:2 ratio to train the
model.

The study sought to predict the development of cardiovascular events in a subject at risk,
so the definition of 'subject at risk' was those with newly diagnosed hypertension, diabetes,
or dyslipidemia. The operational definitions of hypertension, diabetes, and dyslipidemia
are as follows, followed by a list of cardiovascular diseases that are considered
complications of each condition. If there were multiple cardiovascular events during the

follow-up period, the time point was defined based on the first cardiovascular event.
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Table 1. Operational definition of the comorbidities

ICD 10
Medication Number of diagnoses Diagnostic test or
code Combination
2) 3) treatment (4)
(D
Subjects at risk
Hypertension
[10.x—  Anti- Admission  >1 or
I13.x,  hypertensiv  outpatient department 1+2+3
I15.x e drugs >1
Diabetes
Ell.x - outpatient department
1+2
El4.x >2
Admission >1  or
Ell.x— Antidiabetic
outpatient department 1+2+3
El4x  agent
>1
Dyslipidemia
Lipid- Admission >1  or
E78.x  lowering outpatient department 1+2+3
agent >1
Cardiovascular diseases
Coronary artery disease
Admission or CAG or CAG with
121-122 1+3 or4
outpatient department PTCA or Coronary

13



>1 artery bypass

surgery

Ischemic cerebrovascular disease
Admission or

163-164 outpatient department 1+3
>1

Hemorrhagic cerebrovascular disease
Admission or

160-162 outpatient department Transfusion 1+3+4
>1

TIA
Admission or

G45 outpatient department 1+3
>1

3. Pre-processing of data for machine learning model

The data preprocessing process consists of 1) data cleansing, 2) label definition, 3) data
augmentation, 4) vocabulary construction, and 5) input data preprocessing.

1) Data cleaning is to merge five tables of billing data and reorganize them into statement
units, each of which is as follows. T200: Statement general details, T300: Treatment details,
T400: Prescribed diseases, T530: Prescription details, T310: Death information. Drug
codes occur multiple times per statement in the T530 table depending on the number of
drugs prescribed, so they were reconstructed by grouping them by statement using the

separator '|'. Variable names, meanings, and examples are shown in the supplementary table.

14



Table 2. Data cleansing examples

Variables Definition/Meaning Example
Provider Number (De-

JID 11111111
identified)

MID Statement number 100001
Gender (1: Male, 2:

SEX TP CD 1
Female)

PAT BTH Patient's date of birth 19660518

RECU _FR DD Treatment Start Date 20120705
Type code

FOM_TP_CD  (031:Outpatient, 031

021:Hospitalization, etc.)

Main diagnosis code
MAIN_SICK 1109
(*KCD code)

Sub diagnosis code (KCD
SUB_SICK E785
code)

Drug generic name code
123908 ACS|262500ATB|42780
GNL CD (main ingredient code)
0ACH
Separator: "'

VST DDCNT  Number of inpatient days 0

15



2) Label definition - The subjects of the billing data used to train the label definition model
are divided into positive data that develop the disease during the entire data period and
negative data that do not develop the disease. Based on the date of the subject's latest
statement, we organize the labels in the form of classification by indicating the year in
which the specific disease to be predicted develops and labeling it as negative (not
developed within the data period) or a specific year of development (positive). Since the
data was obtained from 2011 to 2020, 11 classes are generated, where 1 means no disease
occurred within 10 years, 2 means disease occurred in year 1, and 11 means disease

occurred in year 10.

No. ([Negative| Year1 | Year2 | Year3 | Year4 | Year5 | Year6 | Year 7 | Year8 | Year9 | Year 10

1 0 0 0 0 0 0 0 0 0 0

Figure 1. Label definition. No. 1 means 'no disease within 10 years' and is classified as
negative data. No. 2 means "disease occurred in year 1" and is positive data, and in the

same order, No. 11 means "disease occurred in year 10" and is classified as positive data.

16



3) Data augmentation - In general, it is known that deep learning models are best suited for
large-scale data, and the more data you have, the more potential you have to improve
performance. Since the number of dataset is relatively small for training a deep learning
model, we tried to compensate for it through data augmentation. In addition, we designed
the model in the form of a classification to predict the year of disease onset and one of the
important factors in a classification model is the ratio between classes. It is best if the model
learns each class evenly, but there may be a class imbalance due to a small number of
disease incidence data, or the disease incidence data being divided by year. To compensate
for this, we augmented the positive data. Diagnosed subjects (positive) were augmented to
generate annualized diagnosis incidence data by

truncating the most recent data by one year based on the first diagnosis treatment start date.
Subjects who were not diagnosed (negative) were labeled the same because they were
negative, but the data were augmented to create multiple data from a single person by
truncating the data by one year based on the last date of care.

The illustration (Figure 2) of the positive data augmentation process is an example of
diabetes, where the light blue area on the left is the period used as input data for the model,
and [-ny] means the data (statements) corresponding to year n as of the first diagnosis date.
If all the data before the diagnosis is used, the label will be the first-year occurrence because
the diagnosis is made within one year from the last data, but if the data in the -1y period is
not used, the first diagnosis is made in the second year from the last data, so the label is
applied as the second year occurrence, and in this way, the positive data is increased by
excluding the intermediate data by one year. While positive data has a reference date of the
first diagnosis, negative data, i.e., data of subjects who are not diagnosed with the target

disease within the time period, does not have a reference date, so we set the last date of the

17



data as the reference date. Since negative data are not diagnosed during the entire time

period, the label is always negative regardless of how the data is truncated. We used the

historical data exclusion method (Figure 3) and to control the number of voice data, we did

not use all augmented data but randomly sampled some of them.

Raw data

Augmentationl

Augmentation2

Augmentation3

Augmentation4

2011.1.1

First DM diagnosis
(DM =1)

\ 4 2020.12.31
|-7y|-5y|-5y None -3y|-Zy|-1y‘X‘1|l|l‘l‘
A
First OPD visit
Input data (om-0) Label
-Ty‘-Gy‘-Sy‘Nem‘-ay‘-Zy‘-1y||0‘1‘0]0‘0‘0|0‘0\0|0‘0}
ay | v | sy Jome [y [ 2] | o [0 [ 2o of[o]o]o]o]a]0]
SRR e (oo [ o]
SRR o | o [ [o[o [ ofofofo]o]

Figure 2. The process of augmenting positive data. In the process of augmenting positive

data, the light blue part on the left is the period used as input data for the model, and [-ny]

means the data (statements) corresponding to year n as of the first diagnosis date. If all of

the data prior to diagnosis is used, the label will be a year 1 occurrence because the

diagnosis is made within one year of the last data. If we disable the data in the -1y interval,

the first diagnosis will occur in the second year after the last data, so we label it as a second-

year occurrence. In this way, we set the label by increasing the positive data by excluding

the intermediate data by one year.
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Final data
202031

201111 V¥ 2020123

Raw data |-9\;‘-E\r|-7y‘-ﬁy|-5y‘—ly|-3v‘-1\f|-lv‘ﬂ|

Input data Label

Augmentationl nln[u|u|0]n|u[o|n|a|
Augmentation2 1 0 0 0 0 0 0 0 0 0 0

Augmentation3

nmensions SIS o [ [ [ [ -] ]°]

Figure 3. The process of augmenting negative data. Negative data is not diagnosed within
the entire time period, so no matter where you cut the data, the label is always negative.
We created augmented data by excluding historical data. To control the number of negative

data, we did not use all of the augmented data but randomly sampled some of it.

4) Dictionary - Configure a dictionary for mapping disease codes and drug codes in
character (String) type to numbers (vector). Main or sub-diagnosis codes consist of 5 or
more digits, and to reduce the size of the dictionary, a 3-unit classification (3 digits) is used
to classify disease groups with common characteristics. Drug codes are also composed of
5 or more digits and use a 3-unit classification (3 digits) to categorize groups of diseases
with common characteristics to reduce the size of the dictionary. (Table 3) Special tokens
are tokens required for model training, such as sequence length and exception tokens, and
there are five types of them as follows. [pad], [cls], [unk], [sep], [mask] Added hypertension
history tokens (JHTN _O]([7]), [HTN_X]([8])) and dyslipidemia history tokens

([LDL_O]([9]), [LDL_X]([10])) for diabetes-based complication models and diabetes

19



history tokens ([DM_O]([5]) for hypertension-based complication models, [DM_X]([6])),
and dyslipidemia history tokens for dyslipidemia-based complication models, and diabetes
history tokens and hypertension tokens for hypertension-based complication models. Since
sensitive diseases are sometimes represented by only one letter of the alphabet rather than
the exact diagnosis code, we used the temporary diagnosis code: as a diagnosis code to
consider this. (e.g. F: Mental illness) Therefore, the size of the dictionary is 2113 (medical

code) + 9533 (pharmaceutical code) + 5 (special) + 26 (temporary medical code) = 11677.

Table 3. Dictionary examples

Variables Definition/Meaning Example
DM Whether or not the condition occurred

(HTN, HL, (corresponding statement) 1
STROKE, CHD) Assume 'l" for all after the first diagnosis

Whether the condition occurred (all time
periods)

EVENT 1
Assume 'l' for all statements for disease

developers

If the diagnosis condition includes [outpatient
DM _first

visits>2/year], the date of the first treatment that 20150604
(HTN_firt, HL_first)

meets the diagnosis condition.

MAIN_SICK F3 First 3 digits of the main diagnosis code 110

SUB_SICK F3 First 3 digits sub diagnosis code E78

20



5) Input Data Preprocessing - The model used in this study is a Transformer-based model,
which, unlike existing RNN-based models, is characterized by computing sequence data at
once rather than sequentially. For this purpose, a preprocessing process is required to
convert the data divided into statement units into one final input form. The model input
data size is 1024, and if the input data size is less than 1024, [PAD] token is added to fit the
size, and if the input data size is more than 1024, historical data is truncated to fit the size.

The input data variables and formats are as follows (Table 4, Figure 4)

Table 4. Input variables

Input Variables Description
Gender Male, Female, Exception
Age Age as of the most recent statement used as input data.

Medical Diagnosis Code ~ Main diagnosis code, sub-diagnosis code (3 digits)
Medication Code All billed medication codes (4 digits)

Calculates and applies the age difference (in years) from the
Start date of care
most recent statement and penalizes for historical data.

If it is an inpatient statement, it is represented by the
Hospitalization date statement's admission date.

If it is an outpatient statement, represented as a 0

o Total number of visits in the input data period (number of
Total visits

statements)
Total number of Number of hospitalizations in the input data period (number
hospitalizations of hospitalization statements)

21



MID MAIN_SICK_F3 | SUB_SICK_IF3 GNL_CD
100001 109 E78 12391262514278 16408
100002 H52 H52 2039 1 5300

|

[CLS1,['109'],['E78'1,[°1239'],['2625°],['4278'],['4599'],['6408°], ['H52'],['H52'],['2039'1,['5300"] -

Vocabulary

(size : 11677)

|

[2],06271,[4871,[23821,137601,153921,[56611,[72281,[6341,[6341,[31771,[6328]---

Figure 4. Input variables and format. Shows the preprocessing that converts data that is
split into statements into one final input. The age, gender, diagnosis, and drug code per

statement are converted into a single sentence format.

4. Modelling and validation
To develop a prediction model among those patients, the transformer-based BERT model
was used to develop prediction model in the training group. For each patient ID, there may
be about N statements as shown in Figure 5, but the diagnosis and prescription medication
that occur in each statement will be different each time, and there will be a difference in
the time of the visit, so we represented them as input, age sequence, and applied them to
the following model. Since the input of the transformer is all elements at once, we used age
as a positional encoding value to distinguish visits. We also used two attentions by applying

the weight obtained through multi-head attention to custom attention once more.
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5. Model Evaluation Method
The evaluation of the disease risk prediction model is measured by the Area Under the
Curve (AUC). For the existing multi-classification label, the OvR method (One vs Rest) is
used to obtain the AUC, and then the AUC for each class is measured by switching to the
binary classification by assuming a specific class as 1 and the rest as 0, and then the AUC
for all classes is averaged. However, since the purpose of this study is not to predict the
year of disease onset, but to predict the probability of disease onset over 10 years, the AUC

value is measured within N years, even though the labels are multi-classified.
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II1. RESULTS

1. Baseline characteristics
The total number of sets used for training and the number of patients with newly diagnosed
hypertension, diabetes, hyperlipidemia, and cardiovascular diseases in the sets are as

follows Figure 7

Subjects at risk

MNewly diagnosed

—— hypertension b
subjects (n=21,729)

Cardiovascular
disease (n=14,181)

Hypertension Set
(n=200,890)

MNewly diagnosed
—t—p  diabetes subjects = e
(n=49,802)

Cardiovascular
disease (n=11,116}

Diabetes Set
(n=205,568)

Newly diagnosed
—— dyslipidemia R >
subjects (n=63,188)

- /

Figure 7. Subjects at risk; newly diagnosed hypertension, diabetes and dyslipidemia. This

Cardiovascular
disease (n=17,909)

Dyslipidemia set
(n=200,044)

figure shows the number of new cases of hypertension, diabetes, and dyslipidemia in each
of the hypertension, diabetes, and dyslipidemia sets, and the number of cardiovascular

diseases that occurred secondary to the diagnosis of each condition.

For each disease, we divided the training set, validation set, and test set into a training set,
modeled through the training set, and selected the model with the lowest loss value in the
validation set. This model was applied to the test set that was not included in the training
set and validation set to obtain the AUC value. The number of positive and negative data

used for each disease is in Table 5.
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Table 5. The number of training, validation, and test sets after augmentation by diseases

Hypertension Diabetes Dyslipidemia
Positive  Negative Positive  Negative Positive  Negative
Training set 18167 136392 8607 78484 16423 182783
Validation set 2600 19470 1232 11225 2356 26085
Test set 5194 38956 2463 22412 4693 52210
Total 25961 194818 12302 112121 23472 261078

We compared the performance of LSTM, GRU, and BERT, which are models for time

series data, on diabetes set and the results are shown in Table 6 and Figure 8. BERT model

shows superior predictive performance in prediction of cardiovascular diseases with

respect to LSTM and GRU.

Table 6. Model performance in the prediction of cardiovascular diseases according to

model
AUC Accuracy
BERT 0.905 0.847
GRU 0.835 0.857
LSTM 0.819 0.865
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Figure 8. The Receiver operating characteristic curve and area under curve according to
model. Model performance in prediction of cardiovascular disease. Compared the
performance of LSTM, GRU and BERT. Red line means ROC curve of BERT (area =
0.905), Blue line means ROC curve of GRU (area = 0.835), Green line means ROC curve
of LSTM (area = 0.819)

The mean of the cohort was 54 years old and the proportion of men and women was similar
across the three datasets. For follow-up time, the positive data is the average of the time
between the diagnosis of hypertension, diabetes, and dyslipidemia and the diagnosis of a
cardiovascular event, while the negative data is the total time between the diagnosis of
hypertension, diabetes, and dyslipidemia and follow-up because no cardiovascular event

occurred. The number of outpatient visits appears to be higher in the positive data (the
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group that developed cardiovascular disease), but when comparing the density of the
number of visits divided by the follow-up period, it tends to be higher in the positive data.

(Table 7)
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2. The performance of the BERT
The performance of the BERT model is shown in the following Table 4. It predicts the
occurrence of secondary cardiovascular diseases during the follow-up period after batch
inputting and training with age, gender, and prescription drugs for major injuries. The
model performed well with an AUC of over 0.9. The performance of the model for
predicting cardiovascular diseases is shown in the following Table 5 by adding the past
history of each disease during the washout period (e.g., for hypertension, if the patient had

dyslipidemia or diabetes before the diagnosis of hypertension) as a past history token
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3. Self-attention score

Figure 8 is an example of self-attention predicting the development of a secondary
condition in a patient with newly diagnosed hypertension, showing the attention score from
the input data

The top 20 Attention Scores for each disease according to the convergence matrix are
shown in the Table 10-15. Common to all three conditions are hypertension, diabetes, and
dyslipidemia and their associated medications. In addition, we observed diagnoses or drug
codes related to upper respiratory infection or arthritis, or gastrointestinal disease, which

are relatively common in the elderly
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IV. DISCUSSION

In this paper, we introduced a new deep neural network model called BERT to predict the
occurrence of major cardiovascular events in patients with newly diagnosed hypertension,
diabetes, and dyslipidemia, known as cardiovascular risk diseases, using healthcare big
data.

In machine learning, it is well known that learning from more data can improve prediction
accuracy, but despite the limited availability of the original data used in this study,
augmenting it with data that can be learned through various methods showed superior
predictive power compared to other known methods.

Various models have been proposed to predict risk for cardiovascular disease (CVD) in the
context of primary prevention.”3” Nevertheless, the effectiveness of CVD prediction
models that rely on risk factors or statistics is not universally accepted.*®~? This is because
they tend to over- or under-predict risk based on race or socioeconomic status. Therefore,
there are ongoing efforts to improve their predictive ability, including the discovery of new
biomarkers.

However, the studies on the usefulness of these prediction models and markers did not
include Koreans, and there are various opinions on their predictive power in Korean people.
Therefore, this model is expected to have a better fit compared to other models because it
is based on Korean people.

A recent study showed that traditional risk factors derived from traditional cohort studies,
such as body mass index, total cholesterol, blood pressure, and glucose levels, did not
appear as significant predictors of cardiovascular disease (CVD) in regression models,
which is consistent with previous conclusions from scrutinizing a variety of hospital

information, indicating that several customary risk factors have declined in importance
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with respect to the occurrence of CVD. %

Given this, it makes sense that deep learning might be better suited to scrutinizing complex,
time-varying data obtained from standard clinical procedures. Such data can be quite
different from information obtained through prospective controlled clinical trials.
Previous studies have shown that BERT is an appropriate tool for analyzing EHRs.

With the introduction of electronic health records (EHRs) decades ago, the healthcare field
has accumulated a significant amount of electronic health data, and this study confirms the
usefulness of BERT models in analyzing large and complex health data sets.

The primary goal of the study was to provide the field with a precise model capable of
predicting future disease development. In achieving this goal, BERT produced a number of
ancillary results, each of which has independent utility and the potential to be pivotal in
subsequent research efforts. In more detail, the disease embeddings extracted through
BERT provide profound insights into the interconnectedness of various factors. These
embeddings go beyond the mere co-occurrence of diseases and delve into the realm of
understanding the proximity of diseases based on trajectories across a broad patient
population.

Furthermore, these pre-trained disease embeddings can be used as reliable disease vectors
that can be easily deployed by future researchers for numerical and algebraic manipulations.
We have also demonstrated that the disease associations produced by BERT's attention
mechanism are useful for explaining disease trajectories in patients with multiple diseases,
which not only highlights the co-occurrence of diseases, but also explains the impact of
certain diseases in the past on the risk of other diseases in the future.

The idea that a patient's healthcare utilization trajectory and subsequent diagnoses and

prescriptions can be used to predict future events, even in the absence of information about
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known risk factors, is groundbreaking.

For each disease, the self-attention score according to the confusion matrix showed that the
well-known hypertension, diabetes, and dyslipidemia were the highest ranked diagnosis or
drug prescription codes. In addition, upper respiratory tract infections, gastrointestinal
related diseases, and degenerative arthritis, which are diseases that increase with age, were
also observed at the top of the list, indirectly indicating that "age" is being reemphasized
as an important risk factor.

The performance of the model used in this study was found to be comparable to or better
than the performance of models used in other studies that have used BERT to predict
disease, particularly cardiovascular disease.*!

Based on this study, it is expected that BERT can be used as a personalized predictive
healthcare model to predict cardiovascular events in patients at risk for cardiovascular
disease. By presenting the results of this evaluation, it is expected to improve the healthcare
utilization behavior of healthcare users to prevent cardiovascular disease morbidity and
improve prognosis. The model is also expected to help in the application of precision

medicine.

Limitations

Despite the fact that national health insurance claim data has almost all the information of
the entire population, due to some limitations, we only received and analyzed the
information of a relatively small number of patients through a well-extracted method.
However, to overcome this, we adopted positive and negative augmentation methods to
increase the amount of data that can be learned, and we tried to increase the predictive value

by testing various augmentation methods. The training, and validation test sets in this study
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were all done only within national health insurance claim dataset, and there is a point that
the performance of this model could not be checked in other cohorts. The model was trained
with a limited number of data points and time periods to predict cardiovascular disease over
a 10-year period, which has limitations in providing probabilities for each year. This study
is a model that predicts cardiovascular morbidity only at 10 years. However, due to the
relatively well-stratified cohort, it is unlikely that the predicted rate of cardiovascular
diseases will meaningfully decrease during follow-up beyond 10 years. It is also expected
to be a good predictive model for patients who may migrate to serious cardiovascular
diseases in a relatively short period of time. The inability to predict death due to limited
information related to death can also be said to be a limitation. Recently, various studies
have shown that obesity and smoking are very important risk factors for cardiovascular

diseases, but the lack of consideration of such risk factors in this study is a limitation.
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V. CONCLUSION

This study introduced a machine learning model called BERT to predict the occurrence of
major cardiovascular events in patients with newly diagnosed hypertension, diabetes, and
dyslipidemia, known as cardiovascular risk diseases, using healthcare big data. It is a
prediction model made with a dataset for Koreans, with a prediction accuracy of more than
0.9, and it is expected to be helpful in the application of precision medicine in that it can

predict the occurrence of diseases using individual medical insurance claim data.
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