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ABSTRACT 
Development of machine learning-based model to predict  

cardiovascular disease in patients at risk using healthcare big data 
 

Shinjeong Song 
 

Department of Medicine 
The Graduate School, Yonsei University  

 
(Directed by Professor Hyuk-Jae Chang) 

 
 
 

The rise in cardiovascular disease worldwide is causing enormous social and economic 

costs. Accordingly, the field of precision medicine aims to improve care through 

personalized prediction and prevention. In South Korea, we have health insurance claims 

data covering almost every citizen, which provides all the information about healthcare 

utilization behavior. Health insurance users can access their data through a simple 

authentication process. This data can be used to predict their personalized risk factors. 

Recently, bidirectional encoder representations from transformers (BERT) and related 

models have achieved tremendous success in the natural language processing domain. We 

adapt the BERT framework originally developed for the text domain to the structured 

HIRA data. The study aimed to predict cardiovascular diseases in subjects at risk (newly 

diagnosed metabolic diseases; hypertension, diabetes, hyperlipidemia) using health 

insurance claims data and BERT. Each disease was assigned to the training, validation, and 

test sets in the ratio of 7:2:1 through data augmentation. Patients' diagnoses and prescribed 

medications were embedded as input sequences, and age was used for positional encoding 

to distinguish visits. The model's predictive ability was evaluated by measuring the area 

under curve (AUC). 

In each group of patients diagnosed with hypertension, diabetes, and dyslipidemia, BERT 

achieved mean AUC areas of 97.9%, 97.8%, and 97.8%, respectively. We found that the 



top-ranked conditions for self-attendance were hypertension, diabetes, dyslipidemia, and 

diagnoses and medications that are more common in older adults. 

BERT performs good cardiovascular diseases prediction using only diagnosis names and 

medication prescriptions on a relatively small training dataset. This study suggests that 

BERT can be used to advance personalized predictive healthcare models and patient care. 
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I. INTRODUCTION 

Cardiovascular disease (CVD), which is the leading cause of death globally, has rapidly 

increased in public health all over the world.1 This has resulted in significant social and 

economic costs. Patients at high risk for CVD can be identified by prediction models that 

use risk stratification. The field of precision healthcare aims to improve the provision of 

care through precise and personalized prediction, prevention, and intervention. 

Traditionally, risk factors used to predict cardiovascular events include systolic blood 

pressure, diastolic blood pressure, glycated hemoglobin, cholesterol levels, family history, 

smoking history, etc. These risk factors for cardiovascular events have not been studied in 

a national cohort or shared data in Korea. In addition, tools for patients to assess or identify 

their risk of future cardiovascular events are difficult to access and the interpretation of the 

results by the general public is very limited. Therefore, it would be meaningful to show 

disease prediction results using only information on healthcare utilization behaviors that is 

accessible and shared by everyone. 

In Korea, there are Health Insurance Review and Assessment (HIRA) Service, which 



reviews the claims, assesses the quality of care provided, and evaluates adequacy for 

healthcare services. HIRA database includes information about healthcare utilization 

behavior on diagnoses, procedures (examinations), prescription records, visit dates, and 

demographic characteristics almost all citizens. Health insurance users can access their data 

through a simple authentication process, and researchers can obtain complete data for 

research purposes, which is very useful for research purposes or to use as a predictor of 

individual risk factors for users.  

However, this HIRA database is claims data, like statements. Unlike traditional risk factors, 

it is not numeric but characterized by ICD codes and medication codes, and there is a lot 

of information in the time series, which limits the development of models using traditional 

risk factor prediction statistical methods. It is well known that in recent years, advances in 

deep learning (DL), a subfield of machine learning (ML), have led to significant progress 

toward personalized predictions in cardiovascular medicine, radiology, neurology, 

dermatology, ophthalmology, and pathology.2-5  

The remarkable success of DL in these applications can be attributed not only to 

advancements in DL algorithms but also to the substantial influx of extensive multimodal 

biomedical data. These datasets include, among others, electronic health records (EHR)6, 

which have played a pivotal role in supporting the development and effectiveness of DL 

models in the medical domain. With the increasing adoption of electronic health records 

(EHR) systems in many countries, linking data from tens of thousands of patients over the 

years, there has been a lot of development on how to use this textual medical information 

to make predictions using machine learning.  

Information about a patient's healthcare utilization behavior, such as multiple outpatient 



visits or hospitalizations and the medical procedures and medication types associated with 

them, can generate thousands of data points, while a diagnosis can be a single disease code, 

making the volume of data suitable for applying ML models and vice versa. Large-scale 

EHRs therefore provide an unparalleled source of insights and a unique data source for 

training ML models that require large amounts of data. DL models are gaining popularity 

in EHR research due to their success in a variety of applications. Various DL approaches 8-

10 have been shown to provide good results compared to widely used feature extraction and 

transformation methods for predicting various diseases from EHR data. In addition, CNN, 

RNN, and LSTM models have been proposed to account for the complexity of EHRs, such 

as irregular visit intervals and event sequences. 11-14 Transfer learning was developed to 

address pre-training some representation on a large unannotated dataset, then training it on 

a large dataset, and then further tuning it to guide other tasks. 15 A recent trend in transfer 

learning is the use of self-supervised learning on large general datasets: learning is used to 

derive a general-purpose pre-trained model that captures the intrinsic structure of the data, 

which can then be applied to specific tasks on specific datasets through fine-tuning. This 

pre-training fine-tuning paradigm has proven to be very effective in natural language 

processing (NLP)16-20 and more recently in computer vision. 21,22 The bidirectional encoder 

transducer representation (BERT) is one of the most widely used models for processing 

sequential inputs such as text and has many variants. 20,23-29 BERTs have also been adopted 

in the clinical domain 23,24,30 and have been trained on clinical NLP tasks and clinical texts 

only. Through fine-tuning, they can be used for specific purposes on specific datasets.  



Therefore, we aimed to predict cardiovascular event in patients at risk; with new-onset 

metabolic diseases such as hypertension, diabetes, and dyslipidemia using national health 

insurance claims data represented by ICD codes and drug codes via a BERT model. 

 

 

  



II. Materials and Methods 

1. Study design 

The period from 2007 to 2010 was used as a wash out period, and people who were newly 

diagnosed with hypertension, diabetes, and dyslipidemia between 2011 and 2020 were 

defined as patients at risk. Among the patients at risk, we divided them into those diagnosed 

with cardiovascular diseases according to the operational definition (positive) and those 

without (negative) and trained them with a machine learning model (Bidirectional Encoder 

Representations from Transformers model) to develop a prediction model. This study was 

approved by the Institutional Review Board of Yonsei University Severance Hospital. 

 

2. Data.  

South Korea has a universal healthcare coverage system, with the National Health 

Insurance covering approximately 98% of the total South Korean population. The Health 

Insurance Review and Assessment Agency's claims data covers 46 million patients per year, 

or 90% of South Korea's population as of 2011, and includes claims from approximately 

80,000 healthcare providers across the country. HIRA's claims data includes patients' 

diagnoses, treatments, procedures, surgical histories, and prescription drugs, making it a 

valuable resource for healthcare research. 

Due to the nature of these HIRA data, understanding the complex structure and large 

volume of claims data requires significant effort from researchers, so HIRA has developed 

validated patient sample data from five organizations.  

The patient sample is a stratified random sample drawn from HIRA's claims data. The 

sample size was carefully calculated and drawn on a yearly basis to be representative of 

Korean patients' sociodemographic characteristics, diagnoses, and prescribed medications. 



31 For this study, we were provided with a dataset of 200,000 patients each with 

hypertension, dyslipidemia, and diabetes directly from the HIRA. Since the amount of data 

for machine learning was relatively small, we performed augmentation, and after 

augmentation, we divided the training, validation, and test sets in a 7:1:2 ratio to train the 

model. 

The study sought to predict the development of cardiovascular events in a subject at risk, 

so the definition of 'subject at risk' was those with newly diagnosed hypertension, diabetes, 

or dyslipidemia. The operational definitions of hypertension, diabetes, and dyslipidemia 

are as follows, followed by a list of cardiovascular diseases that are considered 

complications of each condition. If there were multiple cardiovascular events during the 

follow-up period, the time point was defined based on the first cardiovascular event.  

  



Table 1. Operational definition of the comorbidities 

ICD 10 

code 

(1) 

Medication 

(2) 

Number of diagnoses 

(3) 

Diagnostic test or 

treatment (4) 
Combination  

Subjects at risk    

Hypertension 

I10.x–

I13.x, 

I15.x 

Anti-

hypertensiv

e drugs 

Admission ≥1 or 

outpatient department 

≥1 

 1+2+3 

Diabetes 

E11.x –

E14.x 
 

outpatient department 

≥2 
 1+2  

E11.x –

E14.x 

Antidiabetic 

agent 

Admission ≥1 or 

outpatient department 

≥1 

 1+2+3 

Dyslipidemia 

E78.x 

Lipid-

lowering 

agent 

Admission ≥1 or 

outpatient department 

≥1 

 1+2+3 

Cardiovascular diseases   

Coronary artery disease 

I21-I22  
Admission or 

outpatient department 

CAG or CAG with 

PTCA or Coronary 
1+3 or 4 



≥1 artery bypass 

surgery 

Ischemic cerebrovascular disease 

I63-I64  

Admission or 

outpatient department 

≥1 

 1+3 

Hemorrhagic cerebrovascular disease 

I60-I62  

Admission or 

outpatient department 

≥1 

Transfusion 1+3+4 

TIA 

G45  

Admission or 

outpatient department 

≥1 

 1+3 

 

3. Pre-processing of data for machine learning model 

The data preprocessing process consists of 1) data cleansing, 2) label definition, 3) data 

augmentation, 4) vocabulary construction, and 5) input data preprocessing. 

1) Data cleaning is to merge five tables of billing data and reorganize them into statement 

units, each of which is as follows. T200: Statement general details, T300: Treatment details, 

T400: Prescribed diseases, T530: Prescription details, T310: Death information. Drug 

codes occur multiple times per statement in the T530 table depending on the number of 

drugs prescribed, so they were reconstructed by grouping them by statement using the 

separator '|'. Variable names, meanings, and examples are shown in the supplementary table. 



Table 2. Data cleansing examples 

Variables Definition/Meaning Example 

JID 
Provider Number (De-

identified) 
11111111 

MID Statement number 100001 

SEX_TP_CD 
Gender (1: Male, 2: 

Female) 
1 

PAT_BTH Patient's date of birth 19660518 

RECU_FR_DD Treatment Start Date 20120705 

FOM_TP_CD 

Type code 

(031:Outpatient, 

021:Hospitalization, etc.) 

031 

MAIN_SICK 
Main diagnosis code 

(*KCD code) 
I109 

SUB_SICK 
Sub diagnosis code (KCD 

code) 
E785 

GNL_CD 

Drug generic name code 

(main ingredient code) 

Separator: '|' 

123908ACS|262500ATB|42780

0ACH 

VST_DDCNT Number of inpatient days 0 

   

 



2) Label definition - The subjects of the billing data used to train the label definition model 

are divided into positive data that develop the disease during the entire data period and 

negative data that do not develop the disease. Based on the date of the subject's latest 

statement, we organize the labels in the form of classification by indicating the year in 

which the specific disease to be predicted develops and labeling it as negative (not 

developed within the data period) or a specific year of development (positive). Since the 

data was obtained from 2011 to 2020, 11 classes are generated, where 1 means no disease 

occurred within 10 years, 2 means disease occurred in year 1, and 11 means disease 

occurred in year 10. 

 

 
Figure 1. Label definition. No. 1 means 'no disease within 10 years' and is classified as 

negative data.  No. 2 means "disease occurred in year 1" and is positive data, and in the 

same order, No. 11 means "disease occurred in year 10" and is classified as positive data. 



3) Data augmentation - In general, it is known that deep learning models are best suited for 

large-scale data, and the more data you have, the more potential you have to improve 

performance. Since the number of dataset is relatively small for training a deep learning 

model, we tried to compensate for it through data augmentation. In addition, we designed 

the model in the form of a classification to predict the year of disease onset and one of the 

important factors in a classification model is the ratio between classes. It is best if the model 

learns each class evenly, but there may be a class imbalance due to a small number of 

disease incidence data, or the disease incidence data being divided by year. To compensate 

for this, we augmented the positive data. Diagnosed subjects (positive) were augmented to 

generate annualized diagnosis incidence data by  

truncating the most recent data by one year based on the first diagnosis treatment start date. 

Subjects who were not diagnosed (negative) were labeled the same because they were 

negative, but the data were augmented to create multiple data from a single person by 

truncating the data by one year based on the last date of care.  

The illustration (Figure 2) of the positive data augmentation process is an example of 

diabetes, where the light blue area on the left is the period used as input data for the model, 

and [-ny] means the data (statements) corresponding to year n as of the first diagnosis date. 

If all the data before the diagnosis is used, the label will be the first-year occurrence because 

the diagnosis is made within one year from the last data, but if the data in the -1y period is 

not used, the first diagnosis is made in the second year from the last data, so the label is 

applied as the second year occurrence, and in this way, the positive data is increased by 

excluding the intermediate data by one year. While positive data has a reference date of the 

first diagnosis, negative data, i.e., data of subjects who are not diagnosed with the target 

disease within the time period, does not have a reference date, so we set the last date of the 



data as the reference date. Since negative data are not diagnosed during the entire time 

period, the label is always negative regardless of how the data is truncated. We used the 

historical data exclusion method (Figure 3) and to control the number of voice data, we did 

not use all augmented data but randomly sampled some of them. 

 

 

Figure 2. The process of augmenting positive data. In the process of augmenting positive 

data, the light blue part on the left is the period used as input data for the model, and [-ny] 

means the data (statements) corresponding to year n as of the first diagnosis date. If all of 

the data prior to diagnosis is used, the label will be a year 1 occurrence because the 

diagnosis is made within one year of the last data. If we disable the data in the -1y interval, 

the first diagnosis will occur in the second year after the last data, so we label it as a second-

year occurrence. In this way, we set the label by increasing the positive data by excluding 

the intermediate data by one year. 



 

Figure 3. The process of augmenting negative data. Negative data is not diagnosed within 

the entire time period, so no matter where you cut the data, the label is always negative. 

We created augmented data by excluding historical data. To control the number of negative 

data, we did not use all of the augmented data but randomly sampled some of it. 

 

4) Dictionary - Configure a dictionary for mapping disease codes and drug codes in 

character (String) type to numbers (vector). Main or sub-diagnosis codes consist of 5 or 

more digits, and to reduce the size of the dictionary, a 3-unit classification (3 digits) is used 

to classify disease groups with common characteristics. Drug codes are also composed of 

5 or more digits and use a 3-unit classification (3 digits) to categorize groups of diseases 

with common characteristics to reduce the size of the dictionary. (Table 3) Special tokens 

are tokens required for model training, such as sequence length and exception tokens, and 

there are five types of them as follows. [pad], [cls], [unk], [sep], [mask] Added hypertension 

history tokens ([HTN_O]([7]), [HTN_X]([8])) and dyslipidemia history tokens 

([LDL_O]([9]), [LDL_X]([10])) for diabetes-based complication models and diabetes 



history tokens ([DM_O]([5]) for hypertension-based complication models, [DM_X]([6])), 

and dyslipidemia history tokens for dyslipidemia-based complication models, and diabetes 

history tokens and hypertension tokens for hypertension-based complication models. Since 

sensitive diseases are sometimes represented by only one letter of the alphabet rather than 

the exact diagnosis code, we used the temporary diagnosis code: as a diagnosis code to 

consider this. (e.g. F: Mental illness) Therefore, the size of the dictionary is 2113 (medical 

code) + 9533 (pharmaceutical code) + 5 (special) + 26 (temporary medical code) = 11677. 

 

Table 3. Dictionary examples 

Variables Definition/Meaning Example 

DM 

(HTN, HL, 

STROKE, CHD) 

Whether or not the condition occurred 

(corresponding statement) 

Assume '1' for all after the first diagnosis 

1 

EVENT 

Whether the condition occurred (all time 

periods) 

Assume '1' for all statements for disease 

developers 

1 

DM_first 

(HTN_firt, HL_first) 

If the diagnosis condition includes [outpatient 

visits≥2/year], the date of the first treatment that 

meets the diagnosis condition. 

20150604 

MAIN_SICK_F3 First 3 digits of the main diagnosis code I10 

SUB_SICK_F3 First 3 digits sub diagnosis code E78 

 



5) Input Data Preprocessing - The model used in this study is a Transformer-based model, 

which, unlike existing RNN-based models, is characterized by computing sequence data at 

once rather than sequentially. For this purpose, a preprocessing process is required to 

convert the data divided into statement units into one final input form. The model input 

data size is 1024, and if the input data size is less than 1024, [PAD] token is added to fit the 

size, and if the input data size is more than 1024, historical data is truncated to fit the size. 

The input data variables and formats are as follows (Table 4, Figure 4) 

 

Table 4. Input variables  

Input Variables Description 

Gender Male, Female, Exception 

Age Age as of the most recent statement used as input data. 

Medical Diagnosis Code Main diagnosis code, sub-diagnosis code (3 digits) 

Medication Code All billed medication codes (4 digits) 

Start date of care 
Calculates and applies the age difference (in years) from the 

most recent statement and penalizes for historical data. 

Hospitalization date 

If it is an inpatient statement, it is represented by the 

statement's admission date.  

If it is an outpatient statement, represented as a 0 

Total visits 
Total number of visits in the input data period (number of 

statements) 

Total number of 

hospitalizations 

Number of hospitalizations in the input data period (number 

of hospitalization statements) 

 



 

Figure 4. Input variables and format. Shows the preprocessing that converts data that is 

split into statements into one final input. The age, gender, diagnosis, and drug code per 

statement are converted into a single sentence format. 

 

4. Modelling and validation 

To develop a prediction model among those patients, the transformer-based BERT model 

was used to develop prediction model in the training group. For each patient ID, there may 

be about N statements as shown in Figure 5, but the diagnosis and prescription medication 

that occur in each statement will be different each time, and there will be a difference in 

the time of the visit, so we represented them as input, age sequence, and applied them to 

the following model. Since the input of the transformer is all elements at once, we used age 

as a positional encoding value to distinguish visits. We also used two attentions by applying 

the weight obtained through multi-head attention to custom attention once more. 
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5. Model Evaluation Method 

The evaluation of the disease risk prediction model is measured by the Area Under the 

Curve (AUC). For the existing multi-classification label, the OvR method (One vs Rest) is 

used to obtain the AUC, and then the AUC for each class is measured by switching to the 

binary classification by assuming a specific class as 1 and the rest as 0, and then the AUC 

for all classes is averaged. However, since the purpose of this study is not to predict the 

year of disease onset, but to predict the probability of disease onset over 10 years, the AUC 

value is measured within N years, even though the labels are multi-classified. 

 

 

  



III. RESULTS 

1. Baseline characteristics  

The total number of sets used for training and the number of patients with newly diagnosed 

hypertension, diabetes, hyperlipidemia, and cardiovascular diseases in the sets are as 

follows Figure 7 

 
Figure 7. Subjects at risk; newly diagnosed hypertension, diabetes and dyslipidemia. This 

figure shows the number of new cases of hypertension, diabetes, and dyslipidemia in each 

of the hypertension, diabetes, and dyslipidemia sets, and the number of cardiovascular 

diseases that occurred secondary to the diagnosis of each condition. 

 

For each disease, we divided the training set, validation set, and test set into a training set, 

modeled through the training set, and selected the model with the lowest loss value in the 

validation set. This model was applied to the test set that was not included in the training 

set and validation set to obtain the AUC value. The number of positive and negative data 

used for each disease is in Table 5.  

 



Table 5. The number of training, validation, and test sets after augmentation by diseases 

 
Hypertension Diabetes Dyslipidemia 

Positive Negative Positive Negative Positive Negative 

Training set 18167 136392 8607 78484 16423 182783 

Validation set 2600 19470 1232 11225 2356 26085 

Test set 5194 38956 2463 22412 4693 52210 

Total 25961 194818 12302 112121 23472 261078 

 

We compared the performance of LSTM, GRU, and BERT, which are models for time 

series data, on diabetes set and the results are shown in Table 6 and Figure 8. BERT model 

shows superior predictive performance in prediction of cardiovascular diseases with 

respect to LSTM and GRU. 

 

Table 6. Model performance in the prediction of cardiovascular diseases according to 

model 

 AUC Accuracy 

BERT 0.905 0.847 

GRU 0.835 0.857 

LSTM 0.819 0.865 

 

 

 

 

 



 

Figure 8. The Receiver operating characteristic curve and area under curve according to 

model. Model performance in prediction of cardiovascular disease. Compared the 

performance of LSTM, GRU and BERT. Red line means ROC curve of BERT (area = 

0.905), Blue line means ROC curve of GRU (area = 0.835), Green line means ROC curve 

of LSTM (area = 0.819)  

 

The mean of the cohort was 54 years old and the proportion of men and women was similar 

across the three datasets. For follow-up time, the positive data is the average of the time 

between the diagnosis of hypertension, diabetes, and dyslipidemia and the diagnosis of a 

cardiovascular event, while the negative data is the total time between the diagnosis of 

hypertension, diabetes, and dyslipidemia and follow-up because no cardiovascular event 

occurred. The number of outpatient visits appears to be higher in the positive data (the 



group that developed cardiovascular disease), but when comparing the density of the 

number of visits divided by the follow-up period, it tends to be higher in the positive data. 

(Table 7)  
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2.  The performance of the BERT  

The performance of the BERT model is shown in the following Table 4. It predicts the 

occurrence of secondary cardiovascular diseases during the follow-up period after batch 

inputting and training with age, gender, and prescription drugs for major injuries. The 

model performed well with an AUC of over 0.9. The performance of the model for 

predicting cardiovascular diseases is shown in the following Table 5 by adding the past 

history of each disease during the washout period (e.g., for hypertension, if the patient had 

dyslipidemia or diabetes before the diagnosis of hypertension) as a past history token 
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3. Self-attention score 

Figure 8 is an example of self-attention predicting the development of a secondary 

condition in a patient with newly diagnosed hypertension, showing the attention score from 

the input data 

The top 20 Attention Scores for each disease according to the convergence matrix are 

shown in the Table 10-15. Common to all three conditions are hypertension, diabetes, and 

dyslipidemia and their associated medications. In addition, we observed diagnoses or drug 

codes related to upper respiratory infection or arthritis, or gastrointestinal disease, which 

are relatively common in the elderly 
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IV. DISCUSSION 

In this paper, we introduced a new deep neural network model called BERT to predict the 

occurrence of major cardiovascular events in patients with newly diagnosed hypertension, 

diabetes, and dyslipidemia, known as cardiovascular risk diseases, using healthcare big 

data.  

In machine learning, it is well known that learning from more data can improve prediction 

accuracy, but despite the limited availability of the original data used in this study, 

augmenting it with data that can be learned through various methods showed superior 

predictive power compared to other known methods.  

Various models have been proposed to predict risk for cardiovascular disease (CVD) in the 

context of primary prevention.32-37 Nevertheless, the effectiveness of CVD prediction 

models that rely on risk factors or statistics is not universally accepted.38,39 This is because 

they tend to over- or under-predict risk based on race or socioeconomic status. Therefore, 

there are ongoing efforts to improve their predictive ability, including the discovery of new 

biomarkers.  

However, the studies on the usefulness of these prediction models and markers did not 

include Koreans, and there are various opinions on their predictive power in Korean people. 

Therefore, this model is expected to have a better fit compared to other models because it 

is based on Korean people.  

A recent study showed that traditional risk factors derived from traditional cohort studies, 

such as body mass index, total cholesterol, blood pressure, and glucose levels, did not 

appear as significant predictors of cardiovascular disease (CVD) in regression models, 

which is consistent with previous conclusions from scrutinizing a variety of hospital 

information, indicating that several customary risk factors have declined in importance 



with respect to the occurrence of CVD.40 

Given this, it makes sense that deep learning might be better suited to scrutinizing complex, 

time-varying data obtained from standard clinical procedures. Such data can be quite 

different from information obtained through prospective controlled clinical trials. 

Previous studies have shown that BERT is an appropriate tool for analyzing EHRs.  

With the introduction of electronic health records (EHRs) decades ago, the healthcare field 

has accumulated a significant amount of electronic health data, and this study confirms the 

usefulness of BERT models in analyzing large and complex health data sets.  

The primary goal of the study was to provide the field with a precise model capable of 

predicting future disease development. In achieving this goal, BERT produced a number of 

ancillary results, each of which has independent utility and the potential to be pivotal in 

subsequent research efforts. In more detail, the disease embeddings extracted through 

BERT provide profound insights into the interconnectedness of various factors. These 

embeddings go beyond the mere co-occurrence of diseases and delve into the realm of 

understanding the proximity of diseases based on trajectories across a broad patient 

population. 

Furthermore, these pre-trained disease embeddings can be used as reliable disease vectors 

that can be easily deployed by future researchers for numerical and algebraic manipulations. 

We have also demonstrated that the disease associations produced by BERT's attention 

mechanism are useful for explaining disease trajectories in patients with multiple diseases, 

which not only highlights the co-occurrence of diseases, but also explains the impact of 

certain diseases in the past on the risk of other diseases in the future. 

The idea that a patient's healthcare utilization trajectory and subsequent diagnoses and 

prescriptions can be used to predict future events, even in the absence of information about 



known risk factors, is groundbreaking.  

For each disease, the self-attention score according to the confusion matrix showed that the 

well-known hypertension, diabetes, and dyslipidemia were the highest ranked diagnosis or 

drug prescription codes. In addition, upper respiratory tract infections, gastrointestinal 

related diseases, and degenerative arthritis, which are diseases that increase with age, were 

also observed at the top of the list, indirectly indicating that "age" is being reemphasized 

as an important risk factor. 

The performance of the model used in this study was found to be comparable to or better 

than the performance of models used in other studies that have used BERT to predict 

disease, particularly cardiovascular disease.41  

Based on this study, it is expected that BERT can be used as a personalized predictive 

healthcare model to predict cardiovascular events in patients at risk for cardiovascular 

disease. By presenting the results of this evaluation, it is expected to improve the healthcare 

utilization behavior of healthcare users to prevent cardiovascular disease morbidity and 

improve prognosis. The model is also expected to help in the application of precision 

medicine. 

 

Limitations  

Despite the fact that national health insurance claim data has almost all the information of 

the entire population, due to some limitations, we only received and analyzed the 

information of a relatively small number of patients through a well-extracted method. 

However, to overcome this, we adopted positive and negative augmentation methods to 

increase the amount of data that can be learned, and we tried to increase the predictive value 

by testing various augmentation methods. The training, and validation test sets in this study 



were all done only within national health insurance claim dataset, and there is a point that 

the performance of this model could not be checked in other cohorts. The model was trained 

with a limited number of data points and time periods to predict cardiovascular disease over 

a 10-year period, which has limitations in providing probabilities for each year. This study 

is a model that predicts cardiovascular morbidity only at 10 years. However, due to the 

relatively well-stratified cohort, it is unlikely that the predicted rate of cardiovascular 

diseases will meaningfully decrease during follow-up beyond 10 years. It is also expected 

to be a good predictive model for patients who may migrate to serious cardiovascular 

diseases in a relatively short period of time. The inability to predict death due to limited 

information related to death can also be said to be a limitation. Recently, various studies 

have shown that obesity and smoking are very important risk factors for cardiovascular 

diseases, but the lack of consideration of such risk factors in this study is a limitation. 

 

 

  



V. CONCLUSION 

This study introduced a machine learning model called BERT to predict the occurrence of 

major cardiovascular events in patients with newly diagnosed hypertension, diabetes, and 

dyslipidemia, known as cardiovascular risk diseases, using healthcare big data. It is a 

prediction model made with a dataset for Koreans, with a prediction accuracy of more than 

0.9, and it is expected to be helpful in the application of precision medicine in that it can 

predict the occurrence of diseases using individual medical insurance claim data.  
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