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ABSTRACT 
Classification and molecular biological characterization of serous ovarian 

cancer according to lncRNA expression 
 

Seonhyang Jeong 
 

Department of Medicine 
The Graduate School, Yonsei University  

 
(Directed by Professor Young Suk Jo) 

 
 
 

Ovarian cancer (OvCa) is the deadliest gynecological malignant tumor, resulting in more 

than 130,000 cancer-related deaths annually worldwide. High-grade serous carcinoma 

(HGS_OvCa), the most common histological subtype of OvCa, constitutes 70% of 

diagnosed Epithelial Ovarian Cancer cases and is first diagnosed at an advanced stage when 

the tumor has spread to the abdomen or outside the abdominal cavity because it has no 

specific symptoms. Although surgery combined with chemotherapy is common, 75% of 

treated patients exhibit short survival rates due to drug resistance and relapse. New targets 

are being discovered to overcome these therapeutic limitations, and one of them is lncRNAs. 

LncRNAs are being investigated as new diagnostic and therapeutic targets in various types 

of human cancers, and recent studies suggest that lncRNAs play an important role in 

regulating tumor progression, metastasis, estrogen response, and drug resistance in OvCa. 

The purpose of this study is to confirm the characteristics of lncRNA expression through 

functional analysis based on the results of cluster classification using HGS_OvCa RNA-

seq data. It also aims to identify factors that reflect these characteristics. CNMF clustering 

was performed using the data of 367 HGS_OvCa patients in the TCGA database, and 

clusters reflecting prognosis were selected through survival analysis. In addition, each 

cluster was classified into "Immune group", "EMT group", "Estrogen response group", 

"EMT-Androgen response group", and "Differentiation group" through functional analysis. 

To identify the factors affecting these characteristics, DNA mutations, somatic copy 
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number alterations, and miRNA and DNA methylation expression patterns were analyzed. 

In addition, transcription factors regulating lncRNAs and mRNAs were classified 

according to cluster. Among the J4 clusters, MSC, AEBP1, and CREB3L1 were selected 

as master transcription factors (MTFs) based on Eigen centrality. Additionally, I identified 

seven lncRNAs (LINC01614, LINC00702, AL109924.2, LINC02544, AL356417.2, 

AC112721.2, LINC01929) that exert a stronger influence than the selected master 

transcription factors. Through in vitro studies, I validated that these lncRNAs regulate both 

the master transcription factors and EMT-related genes. This study suggests that the seven 

lncRNAs regulating MTFs contribute to identifying the transcription factor regulation 

mechanism of lncRNAs in HGS_OvCa and can be indicators for personalized medicine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                   
Key words : ovarian cancer, high grade serous ovarian cancer, long noncoding RNA, 
biomarker, multi-omics data 
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I. INTRODUCTION 

Ovarian cancer (OvCa) is the deadliest gynecological malignant tumor, causing more 

than 130,000 cancer-related deaths annually worldwide1. The overall 5-year survival rate 

was only about 40% after surgical and systemic chemotherapy treatment2. The survival rate 

of patients with OvCa is low because most of the patients are diagnosed at the advanced 

stage of metastatic tumors3. Depending on the type of cell in which the tumor develops, 

OvCa can be classified as stromal, embryonic or epithelial (EOC), the latter being the most 

common and accounting for 90% of cases4. Within EOC, five histological subtypes (high-

grade serous, low-grade serous, mucinous, clear-cell and endometrioid) exist5,6. They are 

distinguished on the basis of histological structure, mutations in specific proto-oncogenes 

or tumor suppressor genes, chemosensitivity, metastatic behavior, and prognosis7,8. High-

grade serous carcinoma (HGS_OvCa), the most common histological subtype, constitutes 

70% of diagnosed EOC cases and is first diagnosed at an advanced stage when the tumor 

has spread to the abdomen or outside the abdominal cavity because it has no specific 

symptoms9-11. Although surgery combined with chemotherapy is commonly used to treat 

this malignancy, 75% of treated patients show short survival rates due to drug resistance 

and relapse11. Therefore, many biomarkers have been suggested, as early tumor detection 

can improve overall 5-year survival rates. 
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Long non-coding RNAs (lncRNAs) are transcripts that were identified in genomic 

studies in the late 1990s and 2000s. They are defined as longer than 200 nucleotides and 

are presumed not to encode proteins12. The hallmark of lncRNAs is that they regulate gene 

expression through chromatin remodeling, transcription, alternative splicing, and 

generating microRNAs (miRNAs) or short biologically active peptides13-15. Recently, 

research on lncRNA as a biomarker of ovarian cancer has been extensively reported. For 

example, overexpression of the lncRNA ABHD11-AS1 promotes tumor progression in 

EOC through targeted regulation of RhoC in ovarian cancer cells A2780 and OVCAR316. 

Casc2 and FLJ33360, respectively, distinguish the serous and high-grade serous subtypes 

from the others17,18. DANCR19 induce angiogenesis by activating the expression of VEGF 

and SEMA4D. lncGHET120 and LINK-A21 are known to regulate HIF1 and HIF1a to 

regulate VEGF expression, respectively. Thus, these two lncRNAs are involved in 

angiogenesis. lnc-miR503HG may promote methylation of miR-31-5p and act as a sponge 

to inhibit OvCa cell invasion and migration22. 

Class discovery using gene expression profiling has identified clinically relevant 

subtypes in solid malignancies, such as breast and lung cancer23,24. Ovarian cancer 

molecular subtypes were first identified using four HGSC subtypes with microarray data 

from 285 Australian patients25. Later, The Cancer Genome Atlas (TCGA) also reported four 

subtypes classified as “Mesenchymal”, “Differentiated”, “Proliferative” and 

“Immunoreactive” based on RNA sequencing data. Most subtypes have been classified 

based on microarray data or mRNA expression data26. In 2016, a study was published that 

classified subtypes using DNA methylation, protein, microRNA, and gene expression data 

for ovarian cancer provided by TCGA. Subtypes were classified according to gene 

expression and the results of confirming the correlation with the subtypes of the remaining 

data were presented27. lncRNA have not been as deeply studied as their counterparts, 

miRNAs, and many questions remain about their mechanisms of action and effects in the 

context of cancer, including ovarian cancer. 

In recent studies, transcription factors or transcription factor groups have been identified 
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as key drivers of biological or disease processes' development28,29. Even though there is a 

group of transcription factors that regulate oncogenes and disease processes, there appears 

to be a hierarchy in the regulatory activities of these transcription factors Master 

transcription factors often appear to control most regulatory activities of other transcription 

factors and related genes and are known to play a role in promoting cell survival, metastasis 

or tumorigenesis30-32. As such, these factors represent crucial therapeutic targets for cancer 

treatment. Although the critical TFs driving HGSC development have not been 

characterized, studies have recently been published that identified and validated MTFs, 

including PAX8, SOX17, and MECOM33-35. In particular, PAX8 and SOX17 cooperate to 

positively regulate cell cycle progression and angiogenesis in HGSCs36,37. However, Master 

Transcription Factors (MTFs) that regulate lncRNAs and are regulated by lncRNAs have 

not yet been identified.  

Therefore, in this study, clusters according to lncRNA expression were separated 

using high-grade serous ovarian cancer (HGS_OvCa) RNA-seq data, and transcription 

factors representing each characteristic were identified. Among the selected transcription 

factors, MTFs that regulate transcription factors were identified, and lncRNAs that 

regulate MTFs were additionally identified and proposed. This study provides new 

insight into the impact of lncRNAs that regulate MTFs in cancer malignancies by 

regulating the expression of downstream target genes through various signaling 

mechanisms. 
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II. MATERIALS AND METHODS 

1. Public Databases   

Data pertaining to 367 ovarian cancer samples were obtained from The Cancer Genome 

Atlas (TCGA) Genomic Data Commons (GDC) portal 38. The downloaded dataset included 

total RNA-seq, miRNA, methylation, and clinical data. TCGA-OV GISTIC2 gene-level 

copy number and somatic mutation data were downloaded from The Broad Institute TCGA 

GDAC Firehose 39 with no further processing. 

Within the Cancer Cell Line Encyclopedia (CCLE) project40, I identified 47 cell lines 

representing major subtypes of ovarian cancer and analyzed them using RNA sequencing 

data. Among them, cell lines were isolated according to the widely accepted ovarian cancer 

classification paradigm based on clinico-pathological and molecular evidence that Type I 

and Type II tumors develop through different pathways41-43. As a result, 28 Type I cell lines 

and 19 Type II cell lines could be identified. Since all Type II ovarian cancer cell lines 

correspond to HGSC, RNA-seq data of the 19 cell lines classified were analyzed. 

 

2.  RNA-seq data processing and Subtype discovery  

Among the total RNA-seq data 60,433 identifiers were downloaded using TCGA GDC; 

lncRNAs and coding RNAs were classified using the GTF file (v30) classified lncRNAs 

provided by GENCODE44. As a result, 15,171 lncRNAs were classified. Among the 

remaining 45,262 genes, 20,531 coding genes were classified using the HUGO probe map. 

Among the total 15,171 classified lncRNAs, the top 1,500 lncRNAs were selected through 

the Median Absolute Deviation (MAD) method45.  

Clustering was performed using the consensus nonnegative matrix factorization (CNMF) 

method for the selected top 1,500 lncRNAs. The analysis was conducted using the 

ConsensusClusterPlus R package (parameters: maxK=6, reps = 100)46. This method 

computes multiple k-factor decompositions of expression matrices and evaluates their 

stability. In the consensus matrix, consensus values ranging from 0 (never clustered 

together) to 1 (always clustered together) were marked by blue to red. The sample 
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correlation matrix ranges from -1.0 to 1.0 and is colored white to blue. Clustering results 

were verified using cophenetic coefficient47, average silhouette width48, and total within 

sum of square49. When cophenetic coefficient and average silhouette width are closer to 1, 

they indicated a suitable cluster, and total within sum of square is a method of determining 

the point where the WSS (within sum of square) rapidly decreases based on the sum of 

squares of distances within the cluster as the appropriate number of clusters. The 

appropriate number of clusters was determined based on the results of the three test 

methods.  

After that, the mRNA expression pattern was confirmed based on the group according 

to lncRNA expression. From the 20,531 coding genes classified above, the top 1,500 were 

selected using the MAD method, similar to lncRNA, and then differentially expressed 

genes were identified according to the group. 

 

3. Identification of a signature predictive of survival in ovarian cancer  

Overall survival and disease-free survival, were calculated as the number of years 

between the year of diagnosis and the year of all-cause death, the date of last follow-up, or 

5-year censored survival data. Survival analysis was assessed by comparing overall 

survival and disease-free survival according to clusters classified using Kaplan-Meier 

curves and applying Log-rank50. The survival curve was plotted using the R package 

‘survminer’51. 

 

4. Functional enrichment analysis  

Functional analysis was conducted using different tools for lncRNAs and mRNAs. First, 

the function of lncRNAs was checked using the funcpred database52. Funcpred proposed a 

method to indirectly confirm the function of lncRNAs based on the function of the 

matching coding gene by matching the lncRNA sequence with the coding gene sequence. 

The lncRNAs matching the coding genes were reclassified into gene sets to which the 

coding genes belonged. Analysis was performed using the hallmark gene annotation source. 
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Hallmark geneset results satisfying p-value < 0.05 were selected and the number of 

lncRNAs contained in each geneset was counted. 

Second, mRNA functional analysis was performed using gprfiler53. Gprofiler is a public 

web server used for characterizing and manipulating gene lists resulting from high-

throughput mining of genomic data. mRNAs expressed in each cluster were selected, and 

functional analysis was conducted using hallmark genesets, similar to the approach used 

for lncRNAs.  

 

5. Identification of significantly mutated genes 

Analysis was performed using the R package ‘MAFtools’ to investigate mutational 

differences between groups54. This tool facilitated variant analysis on Mutation Annotation 

Format (MAF) data, allowing mutation patterns to be explored and compared across 

different groups in a study. Mutations were confirmed by dividing the entire HGSC sample 

and each cluster.  

 

6. Analysis of Copy Number Alteration  

To determine copy number alterations in TCGA ovarian cancer (OVCA), Genomic 

Identification of Significant Targets in Cancer (GISTIC) data from the Broad Firehose 

infrastructure were used55. GISTIC statistically calculated the copy number alterations 

occurring in many patient specimens. The threshold used for DNA copy number 

amplification and deletion was 0.1, the confidence level was 0.99, and the q-value cut-off 

was 0.25. 

 

7. miRNA data preprocessing and analysis  

Among a total of 1,881 miRNA identifiers, miRNAs that maintained gene expression 

in 10% of the samples with a count value of 10 or more were selected. As a result, a total 

of 486 miRNAs were classified. Differentially expressed genes were identified through 
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DESeq using the selected miRNAs56. Group information was analyzed using the previously 

analyzed lncRNA group.  

 

8. DNA methylation data for model construction 

DNA methylation profile was measured experimentally using the Illumina Infinium 

HumanMethylation27 platform. DNA methylation values, described as beta values, are 

recorded for each array probe in each sample via BeadStudio software. The DNA 

methylation beta value is a continuous variable between 0 and 1 and represents the ratio of 

the intensity of methylation to a bound gene. Thus, higher beta values represent higher level 

of DNA methylation, i.e. hypermethylation, and lower beta values represent lower level of 

DNA methylation, i.e. hypomethylation57.  

 

9. Identification of Transcription Factors 

Master regulator inference analysis was performed based on the ARACNe and viper 

algorithms58,59. Based on the official tutorial on GitHub (https://github.com/califano-

lab/ARACNe-AP), the analysis was conducted based on the ARACNe-AP package with 

default parameters excluding the Transcription Factor list. For transcription factor lists, GO 

transcription factors, active gene lists, TRRUST60 and GTRD61 lists were collected. Among 

the collected lists, those known as transcritpion factors were reclassified to finally identify 

2,192 transcription factors62. In each cluster, the lncRNAs and mRNAs with increased 

expression were selected, and positive correlation (Pearson's Correlation R ≥ 0.4) lncRNAs 

and mRNAs were selected again. Since lncRNA as a transcription factor target gene does 

not exist in the list, an indirect verification method through mRNA expression was used. A 

regulon object was created from an ARACNe network file and the corresponding 

expression dataset using the aracne2regulon function from the viper package with default 

parameters. To compare gene expression changes between groups, we employed a t-test 

and generated a null model through sample permutations and subsequent t-tests. Master 

regulator inference analysis was performed with the msviper function in the viper package 
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using t-statistics and corresponding p-values and a null model. Analysis results were judged 

to be significant when p-value was less than 0.05. 

 

10.  Construction of a network of master transcription factors 

Based on the results of the selected master transcription factors, the eigen centrality of 

each TF was identified using the tidygraph R package63. After confirming centrality, 

lncRNAs with a positive correlation (Pearson's Correlation R ≥ 0.4) with the target gene of 

the selected Master Transcription Factor were selected. Through this method, master TF - 

mRNA - lncRNA could be linked, and the result was visualized using Cytoscape (version 

3.9.1)64. In addition, the topological properties of the regulatory network were visualized 

and analyzed, and the directionality of the target gene was confirmed using the edge bundle 

function, a Cytoscape plug-in.  

 

11.  Transcription factors target related gene enrichment analysis 

Based on the result of confirming the master transcription factor, the target gene of each 

TF was selected. A single-sample Gene Set Enrichment Analysis (ssGSEA) was performed 

using the CCLE data set to confirm expression at the cellular level of selected target gene 

sets65. The ssGSEA is a rank-based algorithm that calculates a score illustrating the level 

of absolute enrichment of a particular gene set in each sample. ssGSEA was analyzed 

through GenePattern (https://www.genepattern.org/), and the analysis results were 

visualized using the heatmap R package66. 

 

12.  Cell culture 

High-grade serous carcinoma (HGSC), Caov3 (cat#30075), OVCAR3 (cat#30161), and 

SNU8 (cat#00008) cell lines were purchased from the Korean Cell Line Bank (Seoul, 

Korea) and 59M (cat#89081802) cell line was purchased from ECACC (European 

Collection of Authenticated Cell Cultures, UK). All cell lines were authenticated using STR 
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profiling. The OVCAR3, SNU8 and 59M cell lines were cultured in RPMI (cat# 10040CV, 

Corning, NY, USA), supplemented with 10% fetal bovine serum (cat# 35015CV, Corning, 

NY, USA), 1% penicillin, and streptomycin. The CAOV3 cell line was cultured in DMEM 

(cat# 10013CV, Corning, NY, USA) supplemented with 10% fetal bovine serum (cat# 

35015CV, Corning, NY, USA) and 1% penicillin and streptomycin (cat# 15140122, 

Thermo Fisher Scientific, Waltham, MA, USA). 

 

13.  Short interfering RNA (siRNA) transfection 

Three different small interfering RNAs (siRNAs) targeting MSC (cat# 9242-1, 9242-2, 

9242-3), AEBP1 (cat# 165-1, 165-2, 165-3), and CREB3L1 (cat# 90993-1, 90993-2, 

90993-3) were purchased from Bioneer (Daejeon, Korea). Non-targeting siRNA was used 

as a negative control. The RNAi oligonucleotide or RNAi negative control was transfected 

into the cells using a Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher 

Scientific,Waltham, MA, USA) according to the manufacturer’s instructions. 

  

14. RNA Isolation and Real-Time PCR 

Total RNA from cells was extracted using TRIzolⓇ (Invitrogen), and cDNA was 

synthesized from total RNA with SuperScriptⓇ III First Strand Synthesis Kit (Invitrogen). 

Real-time PCR was performed using Power SYBRⓇ Green Master Mix (Applied 

Biosystems, Foster City, CA, USA) on the Step OneTM Real-Time PCR System (Applied 

Biosystems, FosterCity). The comparative cycle threshold (CT) method was used to 

evaluate relative quantification. Primers used in qRT-PCR are listed in Table 1. Real-time 

PCR experiments were repeated three times, and each experiment was performed in 

triplicate. GAPDH was used as an internal control. 

 

15. Statistical Analysis 

SPSS Statistics Version 26 (IBM, Armonk, NY, USA) or GraphPad Prism (GraphPad 
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Software, San Diego, CA, USA) were used for all statistical analyses. Statistical 
comparisons of mean values were performed using Student’s t-test (two-tailed) and group 
comparisons were performed using ANOVA. Pearson’s correlation coefficient was used to 
examine the relationship between lncRNAs with the genes of interest. Data are presented 
as the means ± SD, and all p-values are two-sided. p < 0.05 was considered significant. 
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Table 1. Primer sequences used for the qRT-PCR 

Gene Name Primer Sequence 

GAPDH Forward GCCGTCTAGAAAAACCTGCC 
Reverse ACCACCTGGTGCTCAGTGTA 

MSC Forward AGGACCGCTATGAGAACGGCTA 
Reverse GTGGTTCCACATAGTCTGTTGGC 

AEBP1 Forward CTACGCACAGAATGAGGTGGTG 
Reverse CACTCCTCGTTCACCACCTTCA 

CREB3L1 Forward GCCTTGTGCTTTGTTCTGGTGC 
Reverse CCGTCATCGTAGAATAGGAGGC 

COL3A1 Forward GAAGTCAAGGAGAAAGTGGTCG 
Reverse ACCTCGTTCTCCATTCTTACCA 

LUM Forward TGGTCTCCCTGTCTCTCTTCTA 
Reverse CTATCAGCCAGTTCGTTGTGAG 

DCN Forward GCTCTCCTACATCCGCATTGCT 
Reverse GTCCTTTCAGGCTAGCTGCATC 

FNDC1 Forward TGCATCTTGGGATGCGCTACCA 
Reverse GGCAGAAGTAGTGTCTCCAGGA 

THBS2 Forward CAGTCTGAGCAAGTGTGACACC 
Reverse TTGCAGAGACGGATGCGTGTGA 

COL1A1 Forward GATTCCCTGGACCTAAAGGTGC 
Reverse AGCCTCTCCATCTTTGCCAGCA 

MMP2 Forward AGCGAGTGGATGCCGCCTTTAA 
Reverse CATTCCAGGCATCTGCGATGAG 

FN1 Forward ACAACACCGAGGTGACTGAGAC 
Reverse GGACACAACGATGCTTCCTGAG 

FAP Forward GGAAGTGCCTGTTCCAGCAATG 
Reverse TGTCTGCCAGTCTTCCCTGAAG 

LINC01614 Forward CAGTTGTTTTGGGGCGATCTAG 
Reverse AGAGAAAGAGCCTATTCCCCAG 

LINC00702 Forward ACTCAATGGGAAATGGCTTG 
Reverse GTACCACAAGGTTGGCAGGT 

LINC02544 Forward GTTCTCATTCGTGGCTGGAT 
Reverse TCTGCAAGCACAAAGACAGC 

AL356417.2 Forward GCTACAGTGACCTAAGCTCTAG 
Reverse GTTTTGGGTTGTCATGAGGGAG 

AC112721.2 Forward GATTTGCACTAGACGCTCTCTC 
Reverse GGTGCAATAGGAGAGCTTCATG 

LINC01929 Forward GTGTGGTCCTGTTTCAGTCAAA 
Reverse GAAAAGATGCCCATACCAGACC 

Abbreviations: GAPDH, glyceraldehyde-3-phosphate dehydrogenase; MSC, Musculin; 
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AEBP1, AE binding protein 1; CREB3L1, CAMP responsive element binding protein 3 
like 1; COL3A1, Collagen Type III Alpha 1 Chain; LUM, Lumican; DCN, Decorin; 
FNDC1, Fibronectin Type III Domain Containing 1; THBS2, Thrombospondin-2; 
COL1A1, Collagen, type I, alpha 1; MMP2, matrix metalloproteinase-2; FN1, Fibronectin 
1; FAP, fibroblast activation protein alpha; LINC01614, Long Intergenic Non-Protein 
Coding RNA 1614; LINC00702, Long Intergenic Non-Protein Coding RNA 702; 
LINC02544, Long Intergenic Non-Protein Coding RNA 2544; LINC01929, Long 
Intergenic Non-Protein Coding RNA 1929 
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III. RESULTS 

1. HGS_OvCa is classified into five clusters according to the expression patterns 

of lncRNAs 

First, among the total RNA-seq 60,433 identifiers, lncRNAs and coding RNAs were 

classified using the GTF file (v30) classification lncRNAs provided by GENCODE. As a 

result, 15,171 lncRNAs were identified, and among them, the top 1,500 lncRNAs were 

selected for clustering (Figure 1A). Clustering was performed using the CNMF method, 

and three verification methods were considered to select an appropriate k-factor (Figure 

1B). Consensus matrices and sample correlation matrices are shown for k = 2 to k = 6. 

Clustering with k = 5 gave the most consistent result in both sets (Figure 1B). The 

cophenetic coefficient shows a consistently high value between k = 2 and k = 6. Moreover, 

average silhouette widths suggest optimal results for k = 2, k = 4, k = 5, and k = 6. Finally, 

in the results of total within sum of square, k = 3 was suggested as an appropriate result 

(Figure 1C and 1E). Among the methods for selecting an appropriate cluster, it was 

confirmed that it was defined based on the most stable k-factor decomposition of the sample 

by the sample correlation matrix and visual inspection.  

Since the purpose of checking through clustering is to check whether each cluster 

reflects the prognosis and classify clusters related to prognosis, additional k-factor survival 

analysis was performed (Figure 2A and 2B). As a result of survival analysis, it was 

confirmed that k = 5 showed a significant level compared to other k-factors (OS Log Rank 

p-value = 0.034, DFS Log Rank p-value = 0.023). Based on this, k = 5 clustering revealed 

five distinct and robust clusters with limited overlap between clusters.  

Therefore, it was confirmed that HGSC was classified into five clusters according to 

lncRNA expression (J1 n = 92, J2 n = 66, J3 n = 86, J4 n = 57, J5 n = 66, samples for each 

cluster) (Figure 2C). The number of lncRNAs corresponding to the J2 cluster was more 

than twice as high as that of other clusters (J1 cluster n = 284, J2 cluster n = 536, J3 cluster 
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n= 297, J4 cluster n = 212, J5 cluster n = 171, number of lncRNAs in each cluster). As a 

result of checking the mRNA expression based on the cluster classified according to the 

confirmed lncRNA expression, it was confirmed that the expression pattern was similar to 

that of the lncRNA expression pattern (Figure 2D). Like the number of lncRNAs, there 

were twice as many mRNAs in the J2 cluster as compared to in other clusters (J1 cluster n 

= 331, J2 cluster n = 577, J3 cluster n = 208, J4 cluster n = 201, J5 cluster n = 183, number 

of mRNAs in each cluster).  

HGS_OvCa was classified into five clusters according to lncRNA expression, and each 

sample reflects prognosis according to the classified cluster. The J2 cluster is a cluster that 

contains a lot of lncRNAs, and mRNAs as confirmed above, but it is confirmed that it does 

not affect prognosis. On the other hand, the cluster with the worst prognosis was confirmed 

to correspond to the J4 cluster. 
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Figure 1. CNMF clustering of 1,500 variably expressed genes and 367 HGS_OvCa 

samples. (A) Clustering analysis strategy according to lncRNA expression pattern using 

HGS-OvCa total RNA-seq data. (B) Consensus matrices (left panel) and correlation 

matrices (right panel) are shown for clustering with k=2 to k=6. Cluster fitness evaluation 

items according to k-factor: (C) Cophenetic correlation, (D) Average silhouette width, (E) 

Total Within Sum of Square. 
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Figure 2. Selection of k-factors suitable for lncRNA expression patterns according to 

survival analysis results. (A) Survival probability and (B) Disease Free survival curve 

according to k-factor. (C) lncRNA, (D) mRNA expression patterns of HGS-OvCa 367 

samples according to selected k-factors.  
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2. The five clusters of HGS_OvCa are classified according to function 

Functional analysis was performed to confirm the function of each of the five clusters 

identified using the lncRNA expression pattern and prognosis. As a result of selecting 

lncRNAs with increased expression by cluster and classifying them using the funcpred 

analysis tool, it was confirmed that all lncRNAs corresponding to the five clusters were 

related to SPERMATOGENESIS in common (Figure 3A and 3E). Hallmark's 

spermatogenesis-related genes are included in development categories such as 

angiogenesis and EMT, and in previous studies, Notch related lncRNAs in ovarian cancer 

were shown to have a function in spermatogenesis. As a result of confirming the specific 

function of each cluster except for spermatogenesis-related gene sets identified in all 

clusters, the J1 cluster was related to Immune, J2 cluster was related to EMT, and J3 cluster 

was related to Estrogen response (Figure 3A and 3C). In the J4 cluster, APICAL 

JUNCTION related to EMT and cellular components, ADIPOGENESIS and 

MYOGENESIS related to development, and HYPOXIA and ANDROGEN RESPONSE 

related to signaling were identified (Figure 3D). It was confirmed that the difference 

between J2 and J4 clusters was related to the same EMT gene, but the J4 cluster was related 

to genes reflecting multiple cancer cell aggressiveness besides EMT. Bile acid metabolism 

and peroxisomes in the J5 cluster are known to affect cancer cell growth and differentiation 

(Figure 3E)67. 

The direct result of lncRNA function analysis has not been known so far, and funcpred 

is also matched with a coding gene to guess its function in an indirect way. Based on the 

previous analysis that the expression patterns of lncRNAs and mRNAs were similar for 

each cluster, the increased mRNA expression for each cluster was reconfirmed in the same 

way as in the lncRNA function analysis. Increased mRNA expression for each cluster was 

selected and analyzed using gprofiler, and p-value < 0.05 and q-value < 0.25 were judged 

as a significant result. Most of them were confirmed to be consistent with the results of 

analyzing lncRNA function previously (Figure 4A and 4E). In the J1 cluster, gene sets of 
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INTERFERON GAMMA RESPONSE, INTERFERON ALPHA RESPONSE, 

ALLOGRAFT REJECTION, and INFLAMMATORY RESPONSE related to the immune 

response were identified, just as the lncRNA function was confirmed (Figure 4A). In 

addition to the EMT gene set, the J2 cluster identified a gene set with increased oncogene 

KRAS signaling genes (Figure 4B)68,69. The J3 cluster contains a set of estrogen-responsive 

genes and a set of immune-related genes, and the J4 cluster identified the same set of genes 

in lncRNA functional analysis (Figure 4C and 4D). In the J5 cluster, a gene set different 

from the gene set identified in the results of lncRNA functional analysis was identified 

(Figure 4E). 

By combining the two results, the functions identified in common with lncRNA and 

mRNA, lncRNA specific functions, and lncRNA common gene sets were classified. As a 

result, J1 cluster could be classified as the Immune group (Figure 5A), J2 cluster as the 

EMT group (Figure 5B), J3 cluster as the Estrogen response group (Figure 5C), and J4 

cluster as the EMT-Androgen response group (Figure 5D). The common gene set of 

lncRNA or mRNA in the J5 cluster could be identified (Figure 5E). As a result of 

comparison with the cluster sample of the previous study, it was confirmed that the J5 

cluster was about 51% consistent with the sample of the differentiation cluster (Figure 6A), 

and the differentiation marker expression was also increased (Figure 6B and 6C). Therefore, 

the J5 cluster was classified as a Differentiation group.     
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Figure 3. Functional analysis of lncRNAs in each cluster. (A and E) Functional analysis 

of lncRNAs in each lncRNA cluster using the Funcpred hallmark geneset. The size of the 

circle represents the number of lncRNAs associated with the corresponding HALLMARK 

gene set. Red circles represent genesets identified only in the corresponding cluster, and 

purple circles represent genesets identified in all clusters, and the light blue circle represents 

the rest of the geneset. 
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Figure 4. Functional analysis of mRNA in each cluster. (A and E) Functional analysis 

of mRNA included in each cluster using hallmark geneset with gprofiler. The size of the 

circle represents the q-value, and the salmon-colored circle represents the set of genes with 

p-value < 0.05 and q-value < 0.25. Light pink indicates gene sets with p-value > 0.05 and 

q-value > 0.25. 
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Figure 5. Analysis of lncRNA and mRNA functions according to each cluster. (A and 

E) Identification of specific gene sets and common gene sets by merging the functional 

analysis results of lncRNA and mRNA corresponding to each cluster. Orange circles 

represent sets of genes commonly identified in lncRNA and mRNA function analyses, and 

red circles represent specific gene sets identified in lncRNA functional analyses. Blue 

circles indicate lncRNA common gene sets corresponding to the J1 and J5 clusters, and 

purple circles indicate gene sets containing 10% of the lncRNAs in each cluster. Light blue 

circles indicate gene sets containing less than 10% of the lncRNAs corresponding to each 

cluster. 
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Figure 6. J5 cluster involved in differentiation of HGS_OvCa. (A) Sample matching 

between clusters classified according to lncRNA expression and clusters presented by the 

TCGA group. Confirmation of TCGA marker (B) and Tothill marker (C) expression in 

clusters classified according to lncRNA expression. 
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3. There are no significant differences in the mutant genes for each HGS_OvCa 

cluster 

Regarding the characteristics of the classified clusters, mutation profiles were first 

identified for each cluster. There was no difference between the results of confirming 

mutations in the entire HGSC sample without cluster classification and the results of 

confirming mutations by classifying each cluster (Figure 7A and 7F). Missense mutations 

were the most frequently observed mutations in all clusters, and TP53 mutations accounted 

for more than 80% of each cluster sample. 

A dualistic model of carcinogenesis was proposed for EOC based on histopathological 

and molecular characteristics. This model broadly categorizes epithelial ovarian tumors 

into two groups: Type I tumors in EOC are characterized by relative chromosomal stability 

and specific mutations in genes such as KRAS, BRAF, ERBB2, CTNNB1, PTEN, PIK3CA, 

ARID1A, and PPPR1A. These tumors rarely exhibit mutations in TP53, which encodes the 

tumor suppressor p53. Type II tumors are much more frequent and aggressive than Type I, 

tend to grow faster, are present at an advanced stage, and have a very high frequency of 

TP53 mutations. Titin (TTN), a mutation gene that occupies the second highest ratio in all 

clusters along with TP53, is known to be most frequently mutated in all cancers. 

BRCA1 mutations have been identified in the estrogen response cluster, and BRCA1,2 

mutations have been found to be present in approximately 5-15% of ovarian cancers 

(Figure 3D). Therefore, BRCA1 and BRCA2 mutations are relatively rare and account for 

only a subset of all ovarian cancers. However, it is considered a sign for hope, because it 

means that personalized treatment is possible if there is a mutation in the BRCA1 and 

BRCA2 genes. Recently, PARP inhibitors have been shown to be effective in reducing 

tumor burden in patients with BRCA1 and/or BRCA2 mutations70,71. Therefore, it was 

confirmed that there was no difference in mutation profiles in the remaining clusters except 

for the estrogen response cluster, and that there was no characteristic distinguishing each 

cluster. 
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Figure 7. Identification of significantly mutated genes according to each lncRNA 

cluster. Top 10 mutant genes corresponding to the (A) total HGS_OvCa sample and (B 

and F) each cluster sample. Graphs were ordered by the total number of variants in each 

gene, and the percentages represent the proportion of tumor samples with genetic variants 

relative to the total sample. Colored squares represent mutant genes. 
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4. Functional differences between the HGS_OvCa clusters are not due to 

changes in Somatic Copy Number Alteration 

Somatic Copy Number Alteration (SCNA) plays an important role in activating 

oncogenes and inactivating tumor suppressors, and understanding of the biological and 

phenotypic effects of SCNAs has resulted in significant advances in cancer diagnosis and 

treatment. Recently, TCGA identified changes in SCNA in the context of a large genome-

wide integrated study of approximately 500 high-grade serous ovarian cancers (HGSOC). 

Among them, the oncogenic lncRNA FAL1 with amplified gene copy number shows 

increased expression levels in many types of cancer. FAL1 expression is associated with 

ovarian cancer outcome and interacts with the PRC1 component BMI1 to repress numerous 

genes including CDKN1A. 

Genomic Indentification of Significant Targets In Cancer (GISTIC2.0) was used to 

identify focal CNA regions and potential drive genes. As a result of checking the total 

HGSC copy number, the most frequent gain regions included chromosomal regions 

8q24.21, 3q26.3, 19q12, 11q14.1, and 1p34.2, and the most frequent loss regions included 

19p13,3, 22q13.32, 13q14.2, 6q27, and 5q11.2 (Figure 7A). Similarly, as a result of 

checking the copy number of each cluster, the regions where the most gain and the most 

loss occurred were not significantly different from the results of checking the copy number 

of the entire HGSC (Figure 7B and 7F). When comparing the top 10 somatic copy number 

alteration amplification and deletion chromosomal regions in the entire HGS_OvCa sample 

and each cluster sample, similar results were confirmed without any difference (Table 2 

and Table 3). Through the analysis results, it was confirmed that the difference between the 

classified clusters was not due to SCNA. 
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Figure 8. Identification of somatic copy number alternation in each lncRNA cluster. 

Genomic Identification of Significant Targets in Cancer (GISTIC) amplification (right) and 

deletion (left) plots for (A) total HGS_OvCa samples and (B and F) each cluster sample. 

Gains and losses are shown in red and blue, respectively, and are ordered according to 

genomic location. The significance threshold (q-value < 0.25) is indicated at the bottom of 

the plot. 
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Table 2. Top 10 chromosomal regions with somatic copy number alteration amplifications 
in each cluster 
 

HGS_OvCa 
(n = 367) 

J1 cluster  
(n = 92) 

J2 cluster  
(n = 66) 

J3 cluster  
(n = 86) 

J4 cluster  
(n = 57) 

J5 cluster  
(n = 66) 

8q24.21 19q12 19p13.12 8q24.3 19q12 8q24.21 
3q26.2 3q26.2 3q26.2 3q26.2 3q26.2 19q12 
19q12 8q24.21 19q12 7q36.3 8q24.21 11q14.1 

11q14.1 19p13.2 8q24.22 20q13.33 12p12.1 3q26.2 
1p34.2 11q14.1 19q13.2 Xq28 Xp11.23 1p34.2 
1q21.3 1p34.3 1p34.2 11q14.1 19q13.2 4q13.3 

12p12.1 1q21.3 4p16.3 1p34.2 19p13.12 7q36.1 
5p15.33 5p15.33 1q21.3 1q44 18q12.1 1q44 
7q36.3 11p13 8p11.23 6p22.3 14q11.2 15q26.3 

19p13.2 2q32.2 18q11.2 14q32.33 1p34.2 14q11.2 
 
 
Table 3. Top 10 chromosomal regions with somatic copy number alteration deletions in 
each cluster 
 

HGS_OvCa 
(n = 367) 

J1 cluster  
(n = 92) 

J2 cluster  
(n = 66) 

J3 cluster  
(n = 86) 

J4 cluster  
(n = 57) 

J5 cluster  
(n = 66) 

19p13.3 19p13.3 19p13.3 19p13.3 19p13.3 22q13.32 
22q13.32 22q13.32 22q13.32 5q13.2 5q12.3 5q13.2 
13q14.2 5q11.2 15q15.2 11p15.5 16p13.3 13q14.2 

6q27 11p15.5 4q34.3 18q23 22q13.32 19p13.3 
5q11.2 16q24.3 4q22.1 6q25.1 16q23.1 15q15.1 

11p15.5 10q23.31 6q25.1 13q14.2 4q22.1 6q27 
15q15.2 6q27 5q11.2 4q34.3 18q21.31 4q34.3 
4q34.3 17q11.2 19q13.43 15q15.1 6q27 17q11.2 
17q11.2 18q23 7p22.3 8p23.3 9p24.1 1p36.11 
5q13.2 Yp11.2 13q14.2 9q34.3 13q14.2 19p13.3 
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5. miRNA expression and DNA methylation do not explain the differences 

observed between HGS_OvCa clusters 

Previous analyses failed to identify the cause of functional differences between HGSC 

clusters. As an additional analysis to demonstrate functional differences between the 

clusters, I examined the relationship between miRNA expression patterns and DNA 

methylation. LncRNAs are involved in pattern regulation of expressed proteins through 

specific mechanisms, including a variety of biological interactions, such as lncRNA-

ncRNA, lncRNA-mRNA, and lncRNA-protein interactions. Therefore, the construction of 

an inferred biological interaction network mediated by lncRNAs should be desirable to 

uncover the potential mechanisms and biological functions of lncRNAs. In other words, 

miRNAs have a significant influence on the molecular mechanisms of lncRNAs. Numerous 

studies have demonstrated that miRNAs and lncRNAs are involved in pathological 

processes, including a variety of diseases, and the regulatory role of miRNA-lncRNA 

interactions in some human complex diseases has been systematically investigated. 

Therefore, it was additionally confirmed whether miRNA expression was different 

depending on the lncRNA group. When the expression patterns of the 486 miRNAs selected 

based on the classified lncRNA clusters were visually inspected, it was confirmed that there 

was no difference between the clusters (Figure 9A). In order to quantify and confirm that 

there is no difference, the median value of miRNA expression corresponding to each cluster 

was confirmed (J1 = 5.84±3.83, J2 = 5.93±3.81, J3 = 5.80±3.88, J4 = 5.87±3.86, J5 = 

5.83±3.86), and as a result, it was reconfirmed that there was no difference between each 

cluster (Figure 9B). 

DNA methylation and carcinogenesis are interrelated. The best known mechanism 

through which DNA methylation affects carcinogenesis is the silencing of tumor 

suppressors through hypermethylation, which is apparently localized to promoters and 

other regulatory regions due to increased DNA methyltransferase levels. DNA methylation 

has been shown to play an important role in OvCa, and several tumor suppressor genes 
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have been shown to be hypermethylated. Methylation of the BRCA1 promoter has received 

a lot of attention because it is known that BRCA1 mutations are involved in the inherited 

OvCa. 

Based on the results of previous studies, I used TCGA data to analyze DNA methylation 

between clusters. The methylation data are quantified and provided as a β-values 

(methylation ratio, proportion of methylated/unmethylated), with a total number of probes 

of 24,956. As a result of checking the distribution of methylation β-values for each group, 

the overall pattern was similar (Figure 9C). The results were reconfirmed by quantifying 

whether there was no difference for each cluster by combining the β-values of each cluster 

(Figure 9D). As a result of the analysis, it was confirmed that the β-values of each cluster 

were different, and that the β-values of the J3 cluster were increased compared to other 

clusters (J1 = 0.23±0.30, J2 = 0.23±0.31, J3 = 0.25±0.32, J4 = 0.23±0.30, J5 = 

0.24±0.31). In general, a β-value < 0.2 is considered hypomethylation, a β-value > 0.8 is 

considered hypermethylation, and a β-value of 0.5 is considered partially methylated. The 

average of the beta values in our data set is approximately 0.238. Therefore, if the β-value 

is expressed as a heat map, it can be confirmed that most of them are hypomethylated. 

Based on the above results, it was determined that DNA methylation did not affect HGSC 

cluster functional characteristics. 
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Figure 9. Confirmation of miRNA and DNA methylation according to lncRNA clusters. 

(A) Expression patterns and (B) expression levels of 486 miRNAs according to lncRNA 

clusters. (C) β-value patterns and (D) β-value levels of human DNA methylation 24,956 

probes according to lncRNA clusters. Data is shown as mean±SD and p-values were 

calculated by ANOVA. ** p < 0.01, **** p < 0.0001. The results of Not Significance were 

not separately indicated. 
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6. HGS_OvCa clusters are regulated by different transcription factors specific 

to each cluster 

Several factors potentially affecting cluster functional differences were examined, but 

none of them were found to be relevant. Therefore, additional investigations were 

conducted to identify potential factors that could indicate functional differences among the 

clusters. Recent studies have revealed that a transcription factor or group of transcription 

factors play important roles in biological processes and disease progression. Therefore, I 

investigated the characteristic transcription factors of each cluster. 

Before starting the analysis to identify transcription factors, a data screening process was 

performed. I attempted to identify transcription factors within clusters classified according 

to lncRNA expression, but so far, lncRNAs have not been included in the list of 

transcription factor target genes. Therefore, I selected mRNAs that had a positive 

correlation with lncRNAs and confirmed that most of them covered half of the cluster 

(Figure 10A and 10B). The number of lncRNAs and mRNAs corresponding to each cluster 

was more than twice as high in the J2 cluster as in the other clusters, but the cluster 

containing many mRNAs with a significant positive correlation with lncRNAs was 

identified as the J4 cluster. Based on the above results, I speculated that the cluster with 

strong interactions between lncRNAs and mRNAs would be the J4 cluster.  

As a result of transcription factor inference analysis using these data, it was possible to 

identify unique transcription factors for each cluster (Figure 11A and 11F, Table 4 and Table 

8). The J1 cluster identified three transcription factors based on a p-value < 0.05. CDKN2A 

is known to affect EMT, immune reactivity and immune cell infiltration; affect poor 

prognosis of hepatocellular carcinoma; and is associated with metastasis of colorectal 

cancer. Similarly, ETV7 and IFI27 are also related to immune modulation. The analysis 

results are consistent with the function of the J1 cluster identified above (Figure 11A and 

Table 4). A total of 21 transcription factors were identified in the J2 cluster, and among the 

corresponding transcription factors, DACH1 is known to promote distant metastasis in 
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ovarian cancer. Similarly, identified transcription factors are known to promote EMT or 

accelerate the onset of ovarian cancer (Figure 11B and Table 5). The J3 cluster was 

classified into a group related to estrogen response based on the previous functional 

analysis results. According to the result, the transcription factors RUNX1, TRAP2C, and 

TRPS1 identified in the J3 cluster are related to estrogen response, and RUNX1 is increased 

in ovarian cancer and is known to regulate ER-mediated genes. TFAP2C is also known to 

regulate ER-mediated genes, including RUNX1, and TRPS1 is known to regulate epithelial 

marker expression in ER-positive cancer (Figure 11C and Table 6). RUNX2, a transcription 

factors corresponding to the J4 cluster with the worst prognosis, is associated with tumor 

invasion and metastasis in ovarian cancer and is known to promote metastasis by regulating 

EMT in breast cancer. ZFHX4 is also known to show poor prognosis in ovarian cancer, and 

it also includes SNAI2 and TWIST1,2 related to EMT (Figure 11D and Table 7). The 

transcription factor EHF identified in the J5 cluster is involved in epithelial differentiation 

and carcinogenesis (Figure 11F and Table 8). 
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Figure 10. Identification of positively correlated lncRNAs and mRNAs between 

lncRNA clusters. (A) Proportion of mRNA positively correlated with lncRNA for each 

cluster. (B) Proportion of lncRNAs positively correlated with mRNAs for each cluster. Data 

are presented as respective ratios (number of samples). Positive correlations based on 

Pearson's correlation R ≥ 0.4 are shown in pink, others are shown in gray. p-values 

calculated by linear-by-linear association. **** p < 0.001. The results of Not Significance 

were not separately indicated. 
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Figure 11. Transcription factors regulating each lncRNA cluster in HGS_OvCa. (A 

and E) VIPER plot showing the projection of the negative (repressed, shown in blue color) 

and positive (activated, shown in red color) targets for each TF, as inferred by ARACNe 

and correlation analysis when reverse engineering the regulatory network (vertical lines 

resembling a barcode). The “Act” and “Exp” columns show the normalized enrichment 

score (NES) of the expected activity of the entire TF network and the expression level of 

the TF itself. p-values were determined using the enrichment method in the VIPER 

algorithm. All data were collected according to the p-value < 0.05 criterion. 
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Table 4. Identification of J1 cluster transcription factors using Viper 

J1 cluster (n = 7) 
Transcription factor NES p-value 

CDKN2A 3.209 0.001 
ETV7 2.155 0.031 
IFI27 2.127 0.033 

MESP1 1.632 0.103 
HOXD1 1.581 0.114 
OASL 1.353 0.176 
HEY2 0.656 0.512 

Abbreviations: NES, Normalized Enrichment Score 

Table 5. Identification of J2 cluster transcription factors using Viper 

J2 cluster (n = 37) 
Transcription factor NES p-value 

DACH1 3.730 <0.0001 
DACT2 3.709 <0.0001 
ZNF423 3.695 <0.0001 
HIF3A 3.672 <0.0001 

HMGA2 3.663 <0.0001 
VAX2 3.639 <0.0001 

TCF7L1 3.622 <0.0001 
GLI2 3.587 <0.0001 
SOX6 3.535 <0.0001 

MYCN 3.507 <0.0001 
EBF4 3.502 <0.0001 
LHX1 3.490 <0.0001 
MYT1 3.399 0.001 
SOX11 3.359 0.001 
BEX1 3.311 0.001 
PAX2 3.159 0.002 

ZNF703 3.055 0.002 
TBX2 2.977 0.003 
EMX2 2.689 0.007 
NR2F1 2.130 0.033 

SP5 2.013 0.044 
MLXIPL 1.626 0.104 

PEG3 1.570 0.116 
RXRG 1.504 0.133 
NPAS3 1.447 0.148 
GATA4 1.327 0.184 
NR5A1 1.245 0.213 
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FOXL2 1.227 0.220 
MDFI 1.116 0.264 
ID4 1.062 0.288 

SATB1 1.025 0.305 
GREB1 0.975 0.330 

PLAGL1 0.934 0.350 
FOXJ1 0.865 0.387 
PGR 0.842 0.400 

MYCL 0.399 0.690 
HOXB8 0.154 0.878 

Abbreviations: NES, Normalized Enrichment Score 

Table 6. Identification of J3 cluster transcription factors using Viper 

J3 cluster (n = 7) 
Transcription factor NES p-value 

RUNX1 2.632 0.008 
TFAP2C 2.031 0.042 
TRPS1 2.014 0.044 
CIITA 1.192 0.233 

RUNX3 0.752 0.452 
Abbreviations: NES, Normalized Enrichment Score 

Table 7. Identification of J4 cluster transcription factors using Viper 

J4 cluster (n = 17) 
Transcription factor NES p-value 

RUNX2 3.730 <0.0001 
ZFHX4 3.709 <0.0001 
SNAI2 3.695 <0.0001 
AEBP1 3.672 <0.0001 
ZNF521 3.663 <0.0001 
ETV1 3.639 <0.0001 

CREB3L1 3.622 <0.0001 
TSHZ3 3.587 <0.0001 
PRRX1 3.535 <0.0001 
TWIST2 3.507 <0.0001 

MSC 3.502 <0.0001 
TWIST1 3.490 <0.0001 
HOXA5 3.399 0.001 
HOXA3 3.359 0.001 
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NDN 3.311 0.001 
HOPX 3.159 0.002 
ZFPM2 3.055 0.002 

Abbreviations: NES, Normalized Enrichment Score 

Table 8. Identification of J5 cluster transcription factors using Viper 

J5 cluster (n = 2) 
Transcription factor NES p-value 

EHF 2.641 0.008 
ZBED2 1.480 0.139 

Abbreviations: NES, Normalized Enrichment Score 
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7. The J4 cluster has stronger transcription factor activity than the other 

clusters 

It is difficult to determine that a transcription factor is activated based on its own 

expression. According to recent studies, it is considered that transcription factors are 

activated according to the target gene expression of transcription factors rather than 

transcription factors themselves. Therefore, based on the results of analyzing the master 

transcription factor, the correlation between the target gene of the transcription factor and 

the selected mRNA and lncRNA was analyzed. 

After examining the proportion of mRNAs with a positive correlation to transcription 

factor target genes in each cluster, I found that approximately 27.9% of mRNAs were 

included in the J1 cluster, 11.5% in the J2 cluster, 17.8% in the J3 cluster, 69.2% in the J4 

cluster, and 7.5% in the J5 cluster. Among them, in J2 and J4, it was confirmed that there 

was a difference between the groups with p-value < 0.0001 (Figure 12A and 12F). Using 

the same method, I confirmed that in the J1 cluster, 46.0% of lncRNAs had a correlation 

with transcription factor target genes, in the J2 cluster, 30.2% had a correlation, in the J3 

cluster, 18.8% had a correlation, in the J4 cluster, 88.7% had a correlation, and in the J5 

cluster, 7.4% had a correlation with transcription factor target genes. Similarly, it was 

confirmed that there was a significant difference (p-value < 0.0001) between groups in the 

proportion of lncRNAs correlated with transcription factors in the J2 and J4 clusters (Figure 

13A and 13F). Based on the results of correlation analysis with transcription factor target 

genes, it was judged that the J4 cluster had transcription factors activated, even though the 

lncRNA and mRNA levels corresponding to the J2 cluster were more than twice as high as 

those of other clusters. 
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Figure 12. Correlation between target genes of transcription factors and mRNA. (A 

and E) Proportion of Transcription factor target genes positively correlated with mRNA 

for each cluster. (F) The ratio of mRNA that are positively correlated with the transcription 

factor target genes of each cluster is shown as an average value. Positive correlations based 

on Pearson's correlation R ≥ 0.4 are shown in salmon and others are shown in pink. Data 

are presented as respective ratios (number of samples). p-values calculated by linear-by-

linear association. **** p < 0.001. The results of Not Significance were not separately 

indicated. 
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Figure 13. Correlation between target genes of transcription factors and lncRNAs. (A 

and E) Proportion of Transcription factor target genes positively correlated with lncRNA 

for each cluster. (F) The ratio of lncRNAs that are positively correlated with the 

transcription factor target genes of each cluster is shown as an average value. Positive 

correlations based on Pearson's correlation R ≥ 0.4 are shown in salmon and others are 

shown in pink. Data are presented as respective ratios (number of samples). p-values 

calculated by linear-by-linear association. **** p < 0.001. The results of Not Significance 

were not separately indicated. 
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8. The J4 cluster has a stronger transitional influence than other clusters 

To identify the cluster with the strongest influence in HGS_OvCa, the influence of 

lncRNAs and mRNAs positively correlated with the transcription factor selected from each 

cluster were analyzed using eigen centrality, and a co-expression network was constructed 

based on this (Figure 14A and 14E). Eigen centrality is an algorithm used to measure the 

transitional influence of nodes. Relationships originating from nodes with higher scores 

contribute more to the node's score than connections from nodes with lower scores. A high 

eigen centrality means that the node itself is connected to many nodes with high centrality 

and has strong influence.  

As a result of the eigen centrality analysis of the entire cluster, it was confirmed that the 

node closest to 1 was the lncRNA LINC01614 of the J4 cluster. Subsequently, COL3A1 

(eigen centrality = 0.997), the mRNA of the J4 cluster, was confirmed, and MSC (eigen 

centrality = 0.918) of the J4 cluster was identified as the top node in the MTF (Table 9). 

The J4 cluster contained most of the top nodes, followed by the corresponding nodes in the 

J2 cluster. Thus, the J4 cluster contains the most influential MTFs, lncRNAs, and mRNAs 

among all HGS_OvCa, explaining why the J4 cluster is more transcriptionally active than 

the J2 cluster, which contains many lncRNAs and mRNAs. 
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Figure 14. Construction of the master TF-mRNA-lncRNA co-expression network. (A 

and E) TF-mRNA-lncRNA co-expression networks for each cluster, based on eigenvector 

centrality, with higher scores representing larger nodes and closer to yellow, and lower 

scores representing smaller nodes and closer to blue. The red box shows an enlarged view 

of the area where the high eigenvector centrality nodes of the J4 cluster are concentrated. 

Yellow nodes are nodes with an eigenvector centrality of 0.9 or higher. 
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Table 9. List of lncRNAs, mRNAs and transcription factors with eigen centrality ≥ 0.9 in 

the HGS_OvCa cluster 

Rank1 Name Eigen centrality Type Cluster 
1 LINC01614 1.000 lncRNA J4 
2 COL3A1 0.998 mRNA J4 
3 LUM 0.984 mRNA J4 
4 DCN 0.982 mRNA J4 
5 FNDC1 0.980 mRNA J4 
6 THBS2 0.977 mRNA J4 
7 AC004160.1 0.971 lncRNA J4 
8 COL1A1 0.970 mRNA J4 
9 LINC00702 0.962 lncRNA J4 
10 MMP2 0.961 mRNA J4 
11 AL109924.2 0.961 lncRNA J4 
12 LINC02544 0.959 lncRNA J4 
13 AL356417.2 0.951 lncRNA J4 
14 HAR1A 0.950 lncRNA J4 
15 FN1 0.941 mRNA J4 
16 ITGA11 0.938 mRNA J4 
17 AC112721.2 0.928 lncRNA J4 
18 FAP 0.919 mRNA J4 
19 MSC 0.918 TF J4 
20 COL11A1 0.916 mRNA J4 
21 COL1A2 0.908 mRNA J4 
22 CLEC12A-AS1 0.906 lncRNA J4 
23 LINC01929 0.900 lncRNA J4 

1 Rank is the rank based on eigen centrality. 
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9. Master regulators MSC, AEBP1, CREB3L1 that regulate transcription 

factors of the J4 cluster 

As a result of the centrality analysis, it was confirmed that among the transcription 

factors, theose with the greatest influence and those with the lowest influence were 

classified. Based on these results, it was predicted that among transcription factors, there 

may be upper transcription factors that regulate transcription factors. According to the 

definition provide, the “master regulator” transcription factor is at the top of a regulatory 

hierarchy and must not be under the regulatory influence of any other gene or transcription 

factor. Based on previous studies, I identified top transcription factor regulators that 

regulate transcription factors. 

Among the transcription factors, MSC, AEBP1, and CREB3L1 were selected based on 

the median eigen centrality of 0.5. Additionally, target genes commonly regulated by the 

corresponding MTFs were identified. As a result, I identified nine common genes, namely 

COL3A1, LUM, DCN, FNDC1, THBS2, COL1A1, MMP2, FN1, and FAP, regulated by 

three MTFs (Figure 15A and 15C). The selected common genes had high eigenvector 

centrality and were genes associated with EMT.  

Additionally, the expression of commonly known target genes of the corresponding MTF 

was confirmed for each cluster. Gene sets commonly identified in each study that identified 

the target genes of the three master transcription factors were extracellular matrix, cell 

adhesion, and collagen remodeling, which are related to EMT72-78. By evaluating the scores 

of each gene set within clusters using ssGSEA, I confirmed an increase in the J4 cluster, 

which includes the master transcription factor (Figure 16A).  

Based on previous results, I used TCGA HGS_OvCa data to reconfirm the expression of 

selected master transcription factors for each cluster and the expression patterns of 

experimentally validated target genes (Figure 16B and 16C). As expected, I confirmed that 

the expressions of the three master transcription factors and their target genes are 
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upregulated in the J4 cluster compared to those in all other clusters. Furthermore, the nine 

common genes identified through network analysis were validated to be part of the 

previously mentioned gene set using gprofiler (Figure 16D). 

The transcription factors selected in this way were predicted as master transcription 

factors (MTFs), and the relationship between each MTF and the transcription factors 

affecting it was confirmed (Figure 17A). As a result, it was confirmed that the top three 

MTFs commonly target six transcription factors (SNAI2, RUNX2, PRRX1, ZFHX4, ETV1, 

TWIST1). Therefore, the top three transcription factors were considered to be MTFs that 

regulate other transcription factors.  

In the results of the previous analysis of eigenvector centrality (Table 9), lncRNAs 

comprised the top rankings with the highest centrality. Although mRNAs were identified 

as the targets for the selected MTF, lncRNAs were not included in the transcription factor 

target gene list and could not be identified. Therefore, lncRNAs with a positive correlation 

(Pearson's Correlation R ≥ 0.4) with each MTF were classified, and among the classified 

lncRNAs, lncRNAs commonly included in the three MTFs were reclassified (Figure 17B). 

A total of fifteen lncRNAs were classified as common lncRNAs of the three MTFs, and the 

eigen centrality of the lncRNAs was confirmed. All of the corresponding lncRNAs showed 

eigen centrality ≥ 0.5, and among them, LINC01614 was confirmed to have the highest 

centrality in all clusters (Table 10). I predicted an overall relationship regulating EMT-

related genes in the J4 cluster, including common lncRNAs predicted to regulate master 

transcription factors (Figure 17C). 
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Figure 15. Identification of common target genes of three selected master 

transcription factors. (A and C) Target genes of transcription factors MSC, AEBP1, and 

CREB3L1. Red boxes represent common target genes of the three transcription factors. 

Based on eigenvector centrality, high scores represent larger nodes and are closer to yellow, 

while lower scores represent smaller nodes and are closer to blue.  
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Figure 16. Confirmation of target gene expression of predicted master transcription 

factors. (A) Results of confirming the expression of gene sets related to master 

transcription factors for each cluster through ssGSEA. (B and C) Verification of expression 

of master transcription factors and common target genes for each cluster using TCGA 

HGS_OvCa data. (D) A gene set containing nine common genes identified through network 

analysis was identified using gprofiler. Red arrows indicate gene sets identified in previous 

studies. Data are presented as mean ± SD and p-values were calculated by ANOVA. *** p < 

0.001, **** p < 0.0001. The results of Not Significance were not separately indicated. 
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Figure 17. Discovery of lncRNAs regulating master transcription factors. (A) Target 

transcription factors of top MSC, AEBP1, CREB3L1 among transcription factors of J4 

cluster. Salmon color indicates the target Transcription factors of MSC, pink indicates the 

Transcription factors of AEBP1, and orange indicates the Transcription factors of 

CREB3L1. Nodes are colored yellow for high scores and blue for low scores based on 

eigenvector centrality. (B) Venn diagram showing the logical relationship of positively 

correlated (based on Pearson's correlation R ≥ 0.4) lncRNAs with master transcription 

factors (MTFs). Red numbers indicate the number of common lncRNAs. (C) Illustration 

showing the overall relationships regulating EMT-related genes in the J4 cluster, including 

common lncRNAs predicted to regulate master transcription factors. The orange round 

squares are seven lncRNAs with eigenvector centrality ≥ 0.9 among fifteen common 

lncRNAs. The three master transcription factors are represented by light blue circles. 
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Table 10. List of common lncRNAs of the three master transcription factors 

lncRNA name Eigenvector centrality 
LINC01614 1.000 
LINC00702 0.962 
AL109924.2 0.961 
LINC02544 0.959 
AL356417.2 0.951 
AC112721.2 0.928 
LINC01929 0.900 

HECW2-AS1 0.889 
MSC-AS1 0.871 

LINC00519 0.858 
ACTA2-AS1 0.826 
AC104083.1 0.811 
AP000892.3 0.801 
AC106739.1 0.799 
LINC01615 0.760 
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10. The top regulator of the J4 cluster involved in the expression of EMT genes 

are lncRNAs 

For experimental validation based on previous results, CCLE data were used to confirm 

the expression of mRNAs and lncRNAs correlated with transcription factor target genes in 

each cluster (Figure 18A and 18B). It was confirmed that the expression of the J4 cluster 

transcription factor target gene increased in the 59M cell line among the HGS_OvCa cell 

lines compared to other cell lines (Figure 18C and 18D). In the J5 cluster, the scores of the 

target genes of the transcription factor EHF also increased in the 59M cell line, but the 

scores of lncRNAs increased significantly in the J4 cluster. The results of ssGSEA 

confirmed the expression of MTF in five cell lines, including the HGS_OvCa cell line 

possessed by the laboratory. It was confirmed that the expression of the master transcription 

factors selected above, MSC, AEBP1, CREB3L1 all increased significantly in the 59M cell 

line (Figure 18E and 18G).  

As mentioned above, according to the definition that MTF is not affected by other genes 

or transcription factors, each MTF was silenced in the 59M cell line. As a result of silencing, 

it was confirmed whether the expression of the target gene and the selected lncRNA 

changed as the expression of MTF decreased. It was confirmed that the expression of each 

MTF was significantly reduced by siRNA, and it was confirmed that all nine common target 

genes showed significantly decreased expressions (Figure 19A and 19F). Among the 

common lncRNAs, the seven most influential lncRNAs with intrinsic centrality greater 

than 0.9 were selected to determine their expression. As a result, I confirmed that the 

expression of common lncRNAs expected to regulate MTF did not change as MTF 

expression decreased (Figure 20A and 20C). Based on eigen centrality, it was confirmed 

that lncRNAs with higher centrality than MTF were not affected by MTF. Therefore, it was 

confirmed that the most influential lncRNA in the J4 cluster regulates the lower genes. This 

suggests that there are lncRNAs that ultimately regulate MTF, and that lncRNAs may also 

regulate downstream EMT genes (Figure 21). 
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Figure 18. Screening of cell lines reflecting cluster characteristics. (A) ssGSEA scores 

of selected transcription factor target genes and (B) ssGSEA scores of lncRNAs and 

transcription factor target genes. In the 59M cell line, (C) the ssGSEA scores of 

transcription factor target genes were calculated for each cluster, as well as the (D) ssGSEA 

scores of lncRNAs that positively correlate with transcription factor target genes. Relative 

RNA-expression ratios of master transcription factors (E) MSC in HGS_OvCa cell line. 

Data are presented as mean±SD and p-values were calculated by ANOVA and all 

experiments were repeated in triplicate. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

The results of Not Significance were not separately indicated.   
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Figure 19. Verification of common gene expression of master transcription factors. 

59M cells were treated with control siRNA (siControl) or three master transcription factor 

siRNAs for 48 hours. q-PCR results confirming the expression of (A, C, E) MSC, AEBP1, 

CREB3L1, (B, D, F) common mRNA target genes in transfected cells. Data are presented 

as mean±SD and p-values were calculated by ANOVA and all experiments were repeated 

in triplicate. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. The results of Not 

Significance were not separately indicated.   
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 Figure 20. Validation of lncRNAs regulating master transcription factors. 59M cells 

were treated with control siRNA (siControl) or three master transcription factor siRNAs 

for 48 hours. (A and C) q-PCR results confirming the expression of common lncRNAs in 

transfected cells. Data are presented as mean±SD and p-values were calculated by ANOVA 

and all experiments were repeated in triplicate. The results of Not Significance were not 

separately indicated. 
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Figure 21. A proposed model of EMT gene regulation through lncRNAs, which 

regulate master transcription factors (MTFs) in HGS_OvCa. 
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IV. DISCUSSION 

Ovarian cancer, particularly high-grade serous ovarian carcinoma (HGS_OvCa), is one 

of the most lethal human malignancies, and ovarian cancer patients usually present at an 

advanced disease stage and relapse frequently79,80. New targets are being discovered to 

overcome these therapeutic limitations, and one of them is lncRNAs. LncRNAs are being 

investigated as new diagnostic and therapeutic targets in various types of human cancers, 

and recent studies suggest that lncRNAs play an important role in regulating tumor 

progression, metastasis, estrogen response, and drug resistance in ovarian cancer81-83. In 

addition, aberrant expression of lncRNAs can provide important information for diagnosis, 

treatment, and prognosis of patients. However, the role of lncRNAs in HGS_OvCa is still 

in its infancy compared to miRNAs and requires further study. 

To determine whether lncRNAs are involved in the carcinogenesis process, I performed 

CNMF clustering using HGSC RNA-seq data. In the process of confirming the function of 

lncRNAs, the characteristics of each cluster were defined using an analysis tool that 

indirectly predicted the function of lncRNAs by matching the nucleotide sequence of the 

coding gene. Research related to lncRNAs has been actively conducted since 201084, but 

there is no gene set provided such as hallmark, GO, or Kegg gene set used for functional 

analysis. Therefore, like “FuncPred”, functions are indirectly inferred by matching coding 

genes, or functions are suggested through cis-acting by checking neighboring genes. In 

order to review the functions identified in this way, the function of the coding gene was 

checked with gprofiler, and as a result, it was confirmed that it was consistent with 

FuncPred. Through this process, HGS_OvCa was classified into five major clusters 

according to functional characteristics: "Immune group", "EMT group", "Estrogen 

response group", "EMT-androgen response group", and "Differentiated group."  

To confirm where the difference in function of each cluster originated, each factor that 

plays a large role in the carcinogenesis process was analyzed. First, as a result of checking 

the DNA mutation profile, it was confirmed that there was no difference in the top mutation 

genes for each cluster. Second, the same difference was not confirmed in the result of 
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somatic copy number alternation analysis. In ovarian high-grade serous carcinoma (HGSC), 

somatic copy number alternation analysis confirmed amplification in the 1q21.3 

chromosomes, and lncRNA present in the chromosome was investigated. Expression of the 

lncRNA FAL1 (Focally Amplified Long Noncoding on Chromosome 1) identified through 

this process is closely related to E2F1 upregulation, suggesting that FAL1 affects 

carcinogenesis through the cell cycle85,86. However, in each cluster classified, characteristic 

amplification and deletion chromosome regions, as in previous studies, were not identified. 

Third, in addition to the rule that miRNA and lncRNA act only on mRNA, the lncRNA-

miRNA interaction was confirmed based on the study that they interact with each other to 

further regulate their effects in the transcriptome. Depending on these interactions, miRNA 

regulates the function of lncRNA or acts as miRNA decoy to suppress miRNA target 

mRNA 87,88. However, miRNA expression medians were similar for each cluster, and no 

significant difference between clusters was identified. LncRNAs are widely involved in 

epigenetic regulatory mechanisms such as DNA methylation and are known to be involved 

in the development and progression of malignant tumors89. For example, the p53-induced 

lncRNA TP53TG1 exhibits promoter hypermethylation in gastric and colon cancer90. 

Another example is the tumor suppressor lncRNA Growth Arrest-Specific transcript 5 

(GAS5), which has been shown to be downregulated in gastric cancer through promoter 

hypermethylation91. As a result of confirming DNA methylation by cluster based on 

previous studies, a value like the average beta-value of ovarian cancer was confirmed.  

As a result of identifying four important factors in the carcinogenesis process, no factors 

that could clearly explain the difference in function of each cluster were identified. Except 

for the carcinogenesis-related factors analyzed above, I paid attention to the association 

between transcription factors and lncRNAs as factors related to other carcinogenesis 

processes. Identification of transcription factor drivers in solid tumors has expanded 

considerably in recent years. Overexpression of the transcription factor ETS translocation 

variant 1 (ETV1) occurs via chromosomal translocation and has been reported to cause 

prostate cancer92,93. In addition, various mechanisms (transcription factors accessing DNA, 
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mRNA synthesis, processing, stability, and translation) regulating gene expression are 

influenced by lncRNAs94,95. Through these preceding studies, ARACNe and Viper were 

used to identify the transcription factors of each cluster. It was confirmed that the functional 

characteristics defined for each cluster and the function of the target gene set of 

transcription factors were similar. Although the J2 and the J4 clusters have the same EMT 

function, different transcription factors were selected.  

The process of EMT remains incompletely resolved to date, making it a difficult process 

to target therapeutically96. Therefore, it is important to identify important molecules that 

regulate EMT during carcinogenesis. The difference between the J2 and J4 clusters is 

androgen response, and the role of androgen receptors in tumor development and tumor 

progression in female breast and ovarian cancer has been previously reported97. The ER, 

PR, and AR pathways are involved in regulating signaling pathways such as cell-

proliferation, apoptosis, epithelial to mesenchymal transition, and cell migration and 

invasion98,99. In women, androgens are produced by the ovaries, adrenal glands, and 

peripheral conversion of androgen precursors (DHEA)100,101. The percentage of 

testosterone of ovarian origin is higher in postmenopausal women. As a result of checking 

each age in the classified clusters, all cluster except for the J3 group (52.00 ± 8.80) were 

included in the standard age of postmenopausal women (premenopausal is < 55 years, 

postmenopausal is ≥ 55 years)102, and the oldest cluster in the cluster was the J4 cluster 

(66.00 ± 9.40). There was no difference between the groups of the J2 cluster and the J4 

cluster (p-value = 0.124), but functional analysis suggests that androgen response brings 

about a difference between the two groups. In addition, through data confirming the 

correlation with transcription factors selected for each cluster, it was confirmed that the J2 

cluster contains many mRNAs and lncRNAs, but the proportion of mRNAs and lncRNAs 

that are positively correlated with target genes of transcription factors is smaller than that 

of the J4 cluster. Through this result, it was found that transcription factors were strongly 

activated in the J4 cluster. Further analysis confirming the centrality of each cluster 

confirmed that the transcription factors, lncRNAs and mRNAs contained in the J4 cluster 
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have higher eigen centrality than the other clusters. In other words, the fact that the J4 

cluster contains many factors with high influence supports the contents of the previously 

confirmed results.  

Through the results of the centrality analysis, it was confirmed that the centrality was 

greatly different within the transcription factors. There is a group of transcription factors 

that regulate oncogenes and disease processes, and it was confirmed that there is a hierarchy 

in the regulatory activities of these transcription factors, confirming previous studies that 

identified the upper regulators of the hierarchy as master transcription factors103. Master 

transcription factors have also been defined as those that are not regulated or influenced by 

other genes or regulators. Through this definition, three MTFs (MSC, AEBP1, CREB3L1) 

with high eigen centrality among transcription factors and not affected by other 

transcription factors were selected. In previous studies, MECOM, PAX8, and SOX17 were 

suggested as master transcription factors involved in the development of high-grade serous 

ovarian cancer33,34,36,37. However, the relevant transcription factors do not appear to play a 

role in defining the characteristics of each cluster identified through the analysis. Selected 

as master transcription factors, MSCs are members of the helix-loop-helix (HLH) family 

of TFs and were first reported in mouse skeletal muscle precursors104. Recent studies have 

shown that MSCs, along with LEF1, have functions related to EMT-related extracellular 

matrix (ECM) organization and cell-ECM interactions, and these two transcription factors 

appear to be specific transcription factors identified only in LUAD72. In conclusion, MSCs 

have been reported to promote malignant progression of lung cancer through the EMT 

process. The role of AEBP1 in promoting carcinogenesis has been recently investigated by 

several research groups, and it has been found to promote tumorigenesis through the NF-

κB pathway and EMT process in colon cancer, gastric cancer105,106. In addition, recent 

studies have reported that CREB3L1 participates in cancer initiation and progression and 

can serve as a promising clinical biomarker for cancer patients107. Similar to the functions 

of other MTFs identified above, they induce cell invasion and metastasis through induction 

of EMT. It was interesting to note that the function of the cluster identified above coincided 
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with the role of the selected master transcription factor. 

In addition, it was confirmed that lncRNAs commonly included in the selected MTFs 

had high centrality, and it was interesting that lncRNAs could have the possibility of 

regulating MTFs. Therefore, I confirmed whether the lncRNA regulates MTF while 

verifying whether the expression of the common lncRNA was reduced when MTF was 

silencing. Interestingly, the three MTF target genes showed a significant decrease as MTF 

decreased, but the common lncRNA did not change. This result is consistent with the 

definition of master regulator mentioned above, and therefore, it was judged that the 

corresponding lncRNA regulates MTF. Previous studies have reported that lncRNAs are 

specifically transcribed and act as signaling molecules to regulate the transcription of 

downstream genes. For instance, in cases of DNA damage, the LncRNA PANDA, activated 

by the interaction between p53 and cyclin-dependent kinase inhibitor 1A (CDKN1A, p21), 

has been reported to increase the survival time of tumor cells by targeting the nuclear 

transcription factor Y subunit alpha (NF-YA)108. Therefore, it seems that lncRNAs that 

regulate MTF also play a role as signal molecules. Among lncRNAs, LINC01614, which 

has the highest centrality, is known to promote cancer development in lung cancer and 

breast cancer. Additionally, most of the genes identified as being co-expressed with 

LINC01614 were associated with EMT in human cancers109-111.  

Currently, several examples of lncRNAs have been described as potential clinical 

biomarkers for predicting response to therapy or for prognosis in breast cancer, such as 

HOTAIR, H19, and DSCAM-AS1112. Although their clinical utility has not yet been clearly 

demonstrated, the use of lncRNAs as predictive biomarkers in response to treatment has 

advantages over protein- and mRNA-based biomarkers as they reveal tissue- and stage-

specific expression113,114. For example, CRISPR/Cas9 silencing of NEAT1 or MALAT1 

has been reported to inhibit cancer cell metastasis. A patent silencing UCA1 using 

CRISPR/Cas9 inhibited the growth of cancer cells (CN106399306B)115. In addition, 

observational clinical trials of lncRNA WRAP53 and UCA-1 for hepatocellular carcinoma 

are in progress (NCT05088811), and observational clinical trials of lncRNA MFI2-AS1 
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are also underway with 260 patients with Kidney cancer (NCT04946266)116. Therefore, 

this study confirmed that it can be classified according to lncRNA expression using 

HGS_OvCa RNA-seq data, and that each classified cluster has a distinct molecular 

biological function. In addition, master transcription factors (MTFs) regulating 

transcription factors have been identified as potential triggers for these traits, and seven 

lncRNAs regulating MTFs have been proposed. Seven lncRNAs were selected from the J4 

cluster, which is associated with a poor prognosis in HGS_OvCa. It is anticipated that 

patients with increased expression of these specific lncRNAs will also show increased 

expression of EMT-related genes, a characteristic of the J4 cluster. As the selected lncRNA 

acts as an upstream regulator influencing downstream genes, its potential as a therapeutic 

agent can be confirmed through lncRNA manipulation. Similar to the lncRNA therapeutics 

mentioned in the clinical trials above, gene silencing methods such as lncRNA 

CRISPR/Cas9 and siRNA are necessary to identify changes in relevant master transcription 

factors and downstream genes. It is expected that the role that the selected lncRNA plays 

in the field of precision medicine will become clearer through future verification results
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V. CONCLUSION 

In summary, my study identified functional features of each cluster classified by lncRNA 

expression. Each cluster was classified into "Immune group", "EMT group", "Estrogen 

response group", "EMT-Androgen response group", and "Differentiation group" through 

functional analysis. Afterward, transcription factors representing the characteristics of each 

cluster were presented, and among them, the J4 cluster, which has a stronger transcription 

factor activity than other clusters, was noted. Among the J4 cluster, master transcription 

factors "MSC", "AEBP1", and "CREB3L1" that regulate transcription factors were 

identified. In addition, seven lncRNAs with stronger influence than the selected master 

transcription factors were identified, and it was confirmed that the selected lncRNAs 

regulate master transcription factors and EMT-related genes. This study suggests that the 

seven lncRNAs regulating MTFs contribute to identifying the transcription factor 

regulation mechanism of lncRNAs in HGS_OvCa and can be indicators for personalized 

medicine. 
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lncRNA 발현에 따른 장액성 난소암의 분류와  

분자 생물학적 특성 분석 

 

<지도교수 조 영 석> 

 

연세대학교 대학원 의학과 

 

정 선 향 
 
 
 

난소암(OvCa)은 가장 치명적인 부인과 악성 종양으로, 매년 전 세계적으로 

130,000명 이상이 사망한다. 가장 흔한 조직학적 아형인 장액성 난소암 

(HGS_OvCa)은 진단된 상피난소암 사례의 70%를 차지하며 특별한 증상이 

없기 때문에 암 발생 후 복부 또는 복강 외부로 전이된 단계에서 처음 

진단된다. 화학요법과 병행하는 수술이 치료의 기준으로 사용되지만 치료받은 

환자의 75%는 약물 내성과 재발로 인해 낮은 생존율을 보인다. 이러한 

치료적 한계를 극복하기 위해 새로운 표적이 발굴되고 있으며 그 중 하나로 

제시되고 있는 것은 lncRNA이다. LncRNA는 다양한 암 종의 새로운 진단 및 

치료 표적으로 연구되고 있으며 최근 연구에 따르면 lncRNA는 난소암에서 

종양 진행, 전이, 에스트로겐 반응 및 약물 내성을 조절하는 데 중요한 

역할을 한다. 본 연구의 목적은 장액성 난소암 RNA-seq 데이터를 이용한 

군집 분류 결과를 바탕으로 lncRNA 발현에 의한 기능 분석을 통해 특성을 

확인하는 것이며, 이러한 특성을 반영하는 요소를 식별하여 제시하는 것이다. 

연구 목적에 따라 TCGA database의 367명 장액성 난소암 환자 데이터를 

이용하여 CNMF 군집화를 수행하였고, 임상 분석을 통해 예후를 반영하는 

군집을 선택했다. 각 군집의 기능 분석 결과를 토대로 "면역 그룹", "EMT 

그룹", "Estrogen 반응 그룹", "EMT-Androgen 반응 그룹", "분화 그룹"으로 

분류했다. 각 군집의 특성에 영향을 미치는 요인을 확인하기 위해 DNA 

돌연변이, 체세포 복제수 변이, miRNA 및 DNA 메틸화 발현 분석을 진행했다. 
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또한, lncRNA와 mRNA를 조절하는 전사인자를 군집별로 분류하였다. J4 군집 

중에서 고유 중심성을 기준으로 MSC, AEBP1, CREB3L1를 마스터 

전사인자(Master Transcription factor, MTF)로 선택했다. 추가적으로, 선택된 

마스터 전사인자보다 더 강한 영향을 미치는 7개의 lncRNA (LINC01614, 

LINC00702, AL109924.2, LINC02544, AL356417.2, AC112721.2, 

LINC01929)를 확인하였으며 해당 lncRNA가 마스터 전사 인자를 조절하고 

EMT 관련 유전자를 조절하는 것을 실험 결과를 통해 확인했다. 이 연구를 

통해 MTFs를 조절하는 7개의 lncRNA는 장액성 난소암에서 lncRNA의 

전사인자 조절 메커니즘을 규명하는데 기여하고 개인 맞춤형 의학의 지표가 

될 수 있음을 시사한다. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                   
핵심되는 말: 난소암, 장액성 난소암, long noncoding RNA, biomarker, multi-

omics data  
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