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ABSTRACT
Classification and molecular biological characterization of serous ovarian
cancer according to IncRNA expression

Seonhyang Jeong

Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Young Suk Jo)

Ovarian cancer (OvCa) is the deadliest gynecological malignant tumor, resulting in more
than 130,000 cancer-related deaths annually worldwide. High-grade serous carcinoma
(HGS_OvCa), the most common histological subtype of OvCa, constitutes 70% of
diagnosed Epithelial Ovarian Cancer cases and is first diagnosed at an advanced stage when
the tumor has spread to the abdomen or outside the abdominal cavity because it has no
specific symptoms. Although surgery combined with chemotherapy is common, 75% of
treated patients exhibit short survival rates due to drug resistance and relapse. New targets
are being discovered to overcome these therapeutic limitations, and one of them is IncRNAs.
LncRNAs are being investigated as new diagnostic and therapeutic targets in various types
of human cancers, and recent studies suggest that IncRNAs play an important role in
regulating tumor progression, metastasis, estrogen response, and drug resistance in OvCa.
The purpose of this study is to confirm the characteristics of IncRNA expression through
functional analysis based on the results of cluster classification using HGS OvCa RNA-
seq data. It also aims to identify factors that reflect these characteristics. CNMF clustering
was performed using the data of 367 HGS OvCa patients in the TCGA database, and
clusters reflecting prognosis were selected through survival analysis. In addition, each
cluster was classified into "Immune group", "EMT group", "Estrogen response group",
"EMT-Androgen response group", and "Differentiation group" through functional analysis.

To identify the factors affecting these characteristics, DNA mutations, somatic copy

vi



number alterations, and miRNA and DNA methylation expression patterns were analyzed.
In addition, transcription factors regulating IncRNAs and mRNAs were classified
according to cluster. Among the J4 clusters, MSC, AEBP1, and CREB3L1 were selected
as master transcription factors (MTFs) based on Eigen centrality. Additionally, I identified
seven IncRNAs (LINCO01614, LINC00702, AL109924.2, LINCO02544, AL356417.2,
AC112721.2, LINCO01929) that exert a stronger influence than the selected master
transcription factors. Through in vitro studies, I validated that these IncRNAs regulate both
the master transcription factors and EMT-related genes. This study suggests that the seven
IncRNAs regulating MTFs contribute to identifying the transcription factor regulation

mechanism of IncRNAs in HGS_OvCa and can be indicators for personalized medicine.

Key words : ovarian cancer, high grade serous ovarian cancer, long noncoding RNA,
biomarker, multi-omics data
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Classification and molecular biological characterization of serous ovarian
cancer according to IncRNA expression

Seonhyang Jeong

Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Young Suk Jo)

I. INTRODUCTION

Ovarian cancer (OvCa) is the deadliest gynecological malignant tumor, causing more
than 130,000 cancer-related deaths annually worldwide!. The overall 5-year survival rate
was only about 40% after surgical and systemic chemotherapy treatment?. The survival rate
of patients with OvCa is low because most of the patients are diagnosed at the advanced
stage of metastatic tumors’. Depending on the type of cell in which the tumor develops,
OvCa can be classified as stromal, embryonic or epithelial (EOC), the latter being the most
common and accounting for 90% of cases*. Within EOC, five histological subtypes (high-
grade serous, low-grade serous, mucinous, clear-cell and endometrioid) exist™°. They are
distinguished on the basis of histological structure, mutations in specific proto-oncogenes
or tumor suppressor genes, chemosensitivity, metastatic behavior, and prognosis’8. High-
grade serous carcinoma (HGS_OvCa), the most common histological subtype, constitutes
70% of diagnosed EOC cases and is first diagnosed at an advanced stage when the tumor
has spread to the abdomen or outside the abdominal cavity because it has no specific
symptoms®!!. Although surgery combined with chemotherapy is commonly used to treat
this malignancy, 75% of treated patients show short survival rates due to drug resistance
and relapse!!. Therefore, many biomarkers have been suggested, as early tumor detection

can improve overall 5-year survival rates.



Long non-coding RNAs (IncRNAs) are transcripts that were identified in genomic
studies in the late 1990s and 2000s. They are defined as longer than 200 nucleotides and
are presumed not to encode proteins!?. The hallmark of IncRNAs is that they regulate gene
expression through chromatin remodeling, transcription, alternative splicing, and
generating microRNAs (miRNAs) or short biologically active peptides'>°. Recently,
research on IncRNA as a biomarker of ovarian cancer has been extensively reported. For
example, overexpression of the IncRNA ABHD11-AS1 promotes tumor progression in
EOC through targeted regulation of RhoC in ovarian cancer cells A2780 and OVCAR3'S.
Casc2 and FLJ33360, respectively, distinguish the serous and high-grade serous subtypes
from the others!'”!*, DANCR' induce angiogenesis by activating the expression of VEGF
and SEMA4D. IncGHET1% and LINK-A?! are known to regulate HIF1 and HIFla to
regulate VEGF expression, respectively. Thus, these two IncRNAs are involved in
angiogenesis. Inc-miR503HG may promote methylation of miR-31-5p and act as a sponge
to inhibit OvCa cell invasion and migration®?.

Class discovery using gene expression profiling has identified clinically relevant
subtypes in solid malignancies, such as breast and lung cancer”?*. Ovarian cancer
molecular subtypes were first identified using four HGSC subtypes with microarray data
from 285 Australian patients®. Later, The Cancer Genome Atlas (TCGA) also reported four
subtypes classified as “Mesenchymal”, “Differentiated”, “Proliferative” and
“Immunoreactive” based on RNA sequencing data. Most subtypes have been classified
based on microarray data or mRNA expression data®®. In 2016, a study was published that
classified subtypes using DNA methylation, protein, microRNA, and gene expression data
for ovarian cancer provided by TCGA. Subtypes were classified according to gene
expression and the results of confirming the correlation with the subtypes of the remaining
data were presented?’. IncRNA have not been as deeply studied as their counterparts,
miRNAs, and many questions remain about their mechanisms of action and effects in the
context of cancer, including ovarian cancer.

In recent studies, transcription factors or transcription factor groups have been identified



as key drivers of biological or disease processes' development*®*. Even though there is a
group of transcription factors that regulate oncogenes and disease processes, there appears
to be a hierarchy in the regulatory activities of these transcription factors Master
transcription factors often appear to control most regulatory activities of other transcription
factors and related genes and are known to play a role in promoting cell survival, metastasis
or tumorigenesis®*-32. As such, these factors represent crucial therapeutic targets for cancer
treatment. Although the critical TFs driving HGSC development have not been
characterized, studies have recently been published that identified and validated MTFs,
including PAX8, SOX17, and MECOM?3*3_ In particular, PAX8 and SOX17 cooperate to
positively regulate cell cycle progression and angiogenesis in HGSCs***’. However, Master
Transcription Factors (MTFs) that regulate IncRNAs and are regulated by IncRNAs have
not yet been identified.

Therefore, in this study, clusters according to IncRNA expression were separated
using high-grade serous ovarian cancer (HGS OvCa) RNA-seq data, and transcription
factors representing each characteristic were identified. Among the selected transcription
factors, MTFs that regulate transcription factors were identified, and IncRNAs that
regulate MTFs were additionally identified and proposed. This study provides new
insight into the impact of IncRNAs that regulate MTFs in cancer malignancies by
regulating the expression of downstream target genes through various signaling

mechanisms.



II. MATERIALS AND METHODS

1. Public Databases

Data pertaining to 367 ovarian cancer samples were obtained from The Cancer Genome
Atlas (TCGA) Genomic Data Commons (GDC) portal *. The downloaded dataset included
total RNA-seq, miRNA, methylation, and clinical data. TCGA-OV GISTIC2 gene-level
copy number and somatic mutation data were downloaded from The Broad Institute TCGA
GDAC Firehose *° with no further processing.

Within the Cancer Cell Line Encyclopedia (CCLE) project*, 1 identified 47 cell lines
representing major subtypes of ovarian cancer and analyzed them using RNA sequencing
data. Among them, cell lines were isolated according to the widely accepted ovarian cancer
classification paradigm based on clinico-pathological and molecular evidence that Type I
and Type II tumors develop through different pathways* . As a result, 28 Type I cell lines
and 19 Type II cell lines could be identified. Since all Type Il ovarian cancer cell lines

correspond to HGSC, RNA-seq data of the 19 cell lines classified were analyzed.

2. RNA-seq data processing and Subtype discovery

Among the total RNA-seq data 60,433 identifiers were downloaded using TCGA GDC;
IncRNAs and coding RNAs were classified using the GTF file (v30) classified IncRNAs
provided by GENCODE*. As a result, 15,171 IncRNAs were classified. Among the
remaining 45,262 genes, 20,531 coding genes were classified using the HUGO probe map.
Among the total 15,171 classified IncRNAs, the top 1,500 IncRNAs were selected through
the Median Absolute Deviation (MAD) method®.

Clustering was performed using the consensus nonnegative matrix factorization (CNMF)
method for the selected top 1,500 IncRNAs. The analysis was conducted using the
ConsensusClusterPlus R package (parameters: maxK=6, reps = 100)*. This method
computes multiple k-factor decompositions of expression matrices and evaluates their
stability. In the consensus matrix, consensus values ranging from O (never clustered

together) to 1 (always clustered together) were marked by blue to red. The sample



correlation matrix ranges from -1.0 to 1.0 and is colored white to blue. Clustering results

were verified using cophenetic coefficient*’

, average silhouette width*, and total within
sum of square®. When cophenetic coefficient and average silhouette width are closer to 1,
they indicated a suitable cluster, and total within sum of square is a method of determining
the point where the WSS (within sum of square) rapidly decreases based on the sum of
squares of distances within the cluster as the appropriate number of clusters. The
appropriate number of clusters was determined based on the results of the three test
methods.

After that, the mRNA expression pattern was confirmed based on the group according
to IncRNA expression. From the 20,531 coding genes classified above, the top 1,500 were
selected using the MAD method, similar to IncRNA, and then differentially expressed

genes were identified according to the group.

3. Identification of a signature predictive of survival in ovarian cancer

Overall survival and disease-free survival, were calculated as the number of years
between the year of diagnosis and the year of all-cause death, the date of last follow-up, or
S-year censored survival data. Survival analysis was assessed by comparing overall
survival and disease-free survival according to clusters classified using Kaplan-Meier
curves and applying Log-rank®. The survival curve was plotted using the R package

‘survminer’’.

4. Functional enrichment analysis

Functional analysis was conducted using different tools for IncRNAs and mRNAs. First,
the function of IncRNAs was checked using the funcpred database®?. Funcpred proposed a
method to indirectly confirm the function of IncRNAs based on the function of the
matching coding gene by matching the IncRNA sequence with the coding gene sequence.
The IncRNAs matching the coding genes were reclassified into gene sets to which the

coding genes belonged. Analysis was performed using the hallmark gene annotation source.



Hallmark geneset results satisfying p-value < 0.05 were selected and the number of
IncRNAs contained in each geneset was counted.

Second, mRNA functional analysis was performed using gprfiler*®. Gprofiler is a public
web server used for characterizing and manipulating gene lists resulting from high-
throughput mining of genomic data. mRNAs expressed in each cluster were selected, and
functional analysis was conducted using hallmark genesets, similar to the approach used

for IncRNAs.

5. Identification of significantly mutated genes

Analysis was performed using the R package ‘MAFtools’ to investigate mutational
differences between groups®. This tool facilitated variant analysis on Mutation Annotation
Format (MAF) data, allowing mutation patterns to be explored and compared across
different groups in a study. Mutations were confirmed by dividing the entire HGSC sample

and each cluster.

6. Analysis of Copy Number Alteration

To determine copy number alterations in TCGA ovarian cancer (OVCA), Genomic
Identification of Significant Targets in Cancer (GISTIC) data from the Broad Firehose
infrastructure were used®. GISTIC statistically calculated the copy number alterations
occurring in many patient specimens. The threshold used for DNA copy number
amplification and deletion was 0.1, the confidence level was 0.99, and the g-value cut-off

was 0.25.

7. miRNA data preprocessing and analysis

Among a total of 1,881 miRNA identifiers, miRNAs that maintained gene expression
in 10% of the samples with a count value of 10 or more were selected. As a result, a total

of 486 miRNAs were classified. Differentially expressed genes were identified through



DESeq using the selected miRNAs>®. Group information was analyzed using the previously

analyzed IncRNA group.

8. DNA methylation data for model construction

DNA methylation profile was measured experimentally using the Illumina Infinium
HumanMethylation27 platform. DNA methylation values, described as beta values, are
recorded for each array probe in each sample via BeadStudio software. The DNA
methylation beta value is a continuous variable between 0 and 1 and represents the ratio of
the intensity of methylation to a bound gene. Thus, higher beta values represent higher level
of DNA methylation, i.e. hypermethylation, and lower beta values represent lower level of

DNA methylation, i.e. hypomethylation®’.

9. Identification of Transcription Factors

Master regulator inference analysis was performed based on the ARACNe and viper
algorithms>®3°. Based on the official tutorial on GitHub (https:/github.com/califano-
lab/ARACNe-AP), the analysis was conducted based on the ARACNe-AP package with
default parameters excluding the Transcription Factor list. For transcription factor lists, GO
transcription factors, active gene lists, TRRUST® and GTRD®! lists were collected. Among
the collected lists, those known as transcritpion factors were reclassified to finally identify
2,192 transcription factors®. In each cluster, the IncRNAs and mRNAs with increased
expression were selected, and positive correlation (Pearson's Correlation R > 0.4) IncRNAs
and mRNAs were selected again. Since IncRNA as a transcription factor target gene does
not exist in the list, an indirect verification method through mRNA expression was used. A
regulon object was created from an ARACNe network file and the corresponding
expression dataset using the aracne2regulon function from the viper package with default
parameters. To compare gene expression changes between groups, we employed a t-test
and generated a null model through sample permutations and subsequent t-tests. Master

regulator inference analysis was performed with the msviper function in the viper package



using t-statistics and corresponding p-values and a null model. Analysis results were judged

to be significant when p-value was less than 0.05.

10. Construction of a network of master transcription factors

Based on the results of the selected master transcription factors, the eigen centrality of
each TF was identified using the tidygraph R package®’. After confirming centrality,
IncRNAs with a positive correlation (Pearson's Correlation R > 0.4) with the target gene of
the selected Master Transcription Factor were selected. Through this method, master TF -
mRNA - IncRNA could be linked, and the result was visualized using Cytoscape (version
3.9.1)%. In addition, the topological properties of the regulatory network were visualized
and analyzed, and the directionality of the target gene was confirmed using the edge bundle

function, a Cytoscape plug-in.

11. Transcription factors target related gene enrichment analysis

Based on the result of confirming the master transcription factor, the target gene of each
TF was selected. A single-sample Gene Set Enrichment Analysis (ssGSEA) was performed
using the CCLE data set to confirm expression at the cellular level of selected target gene
sets®. The ssGSEA is a rank-based algorithm that calculates a score illustrating the level
of absolute enrichment of a particular gene set in each sample. ssGSEA was analyzed
through GenePattern (https://www.genepattern.org/), and the analysis results were

visualized using the heatmap R package®.

12. Cell culture

High-grade serous carcinoma (HGSC), Caov3 (cat#30075), OVCAR3 (cat#30161), and
SNU8 (cat#00008) cell lines were purchased from the Korean Cell Line Bank (Seoul,
Korea) and 59M (cat#89081802) cell line was purchased from ECACC (European
Collection of Authenticated Cell Cultures, UK). All cell lines were authenticated using STR



profiling. The OVCAR3, SNUS and 59M cell lines were cultured in RPMI (cat# 10040CV,
Corning, NY, USA), supplemented with 10% fetal bovine serum (cat# 35015CV, Corning,
NY, USA), 1% penicillin, and streptomycin. The CAOV3 cell line was cultured in DMEM
(cat# 10013CV, Corning, NY, USA) supplemented with 10% fetal bovine serum (cat#
35015CV, Corning, NY, USA) and 1% penicillin and streptomycin (cat# 15140122,
Thermo Fisher Scientific, Waltham, MA, USA).

13. Short interfering RNA (siRNA) transfection

Three different small interfering RNAs (siRNAs) targeting MSC (cat# 9242-1, 9242-2,
9242-3), AEBP1 (cat# 165-1, 165-2, 165-3), and CREB3L1 (cat# 90993-1, 90993-2,
90993-3) were purchased from Bioneer (Daejeon, Korea). Non-targeting siRNA was used
as a negative control. The RNA1 oligonucleotide or RNAi negative control was transfected
into the cells using a Lipofectamine RNAIMAX Transfection Reagent (Thermo Fisher

Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.

14.RNA Isolation and Real-Time PCR

Total RNA from cells was extracted using TRIzol® (Invitrogen), and ¢cDNA was
synthesized from total RNA with SuperScript® III First Strand Synthesis Kit (Invitrogen).
Real-time PCR was performed using Power SYBR® Green Master Mix (Applied
Biosystems, Foster City, CA, USA) on the Step One™ Real-Time PCR System (Applied
Biosystems, FosterCity). The comparative cycle threshold (CT) method was used to
evaluate relative quantification. Primers used in qRT-PCR are listed in Table 1. Real-time
PCR experiments were repeated three times, and each experiment was performed in

triplicate. GAPDH was used as an internal control.

15.Statistical Analysis

SPSS Statistics Version 26 (IBM, Armonk, NY, USA) or GraphPad Prism (GraphPad



Software, San Diego, CA, USA) were used for all statistical analyses. Statistical
comparisons of mean values were performed using Student’s t-test (two-tailed) and group
comparisons were performed using ANOVA. Pearson’s correlation coefficient was used to
examine the relationship between IncRNAs with the genes of interest. Data are presented
as the means + SD, and all p-values are two-sided. p < 0.05 was considered significant.
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Table 1. Primer sequences used for the gqRT-PCR

Gene Name Primer Sequence
GAPDH Forward GCCGTCTAGAAAAACCTGCC
Reverse ACCACCTGGTGCTCAGTGTA
MSC Forward AGGACCGCTATGAGAACGGCTA
Reverse  GTGGTTCCACATAGTCTGTTGGC
AEBPI Forward CTACGCACAGAATGAGGTGGTG
Reverse CACTCCTCGTTCACCACCTTCA
CREB3LI Forward GCCTTGTGCTTTGTTCTGGTGC
Reverse CCGTCATCGTAGAATAGGAGGC
COL3AI Forward GAAGTCAAGGAGAAAGTGGTCG
Reverse ACCTCGTTCTCCATTCTTACCA
LUM Forward TGGTCTCCCTGTCTCTCTTCTA
Reverse CTATCAGCCAGTTCGTTGTGAG
DCN Forward GCTCTCCTACATCCGCATTGCT
Reverse  GTCCTTTCAGGCTAGCTGCATC
FNDCI Forward TGCATCTTGGGATGCGCTACCA
Reverse  GGCAGAAGTAGTGTCTCCAGGA
THBS? Forward CAGTCTGAGCAAGTGTGACACC
Reverse TTGCAGAGACGGATGCGTGTGA
COLIAI Forward GATTCCCTGGACCTAAAGGTGC
Reverse  AGCCTCTCCATCTTTGCCAGCA
MMP2 Forward AGCGAGTGGATGCCGCCTTTAA
Reverse  CATTCCAGGCATCTGCGATGAG
FNI Forward ACAACACCGAGGTGACTGAGAC
Reverse  GGACACAACGATGCTTCCTGAG
FAP Forward GGAAGTGCCTGTTCCAGCAATG
Reverse TGTCTGCCAGTCTTCCCTGAAG
LINCO1614 Forward CAGTTGTTTTGGGGCGATCTAG
Reverse  AGAGAAAGAGCCTATTCCCCAG
Forward ACTCAATGGGAAATGGCTTG
LINCO0702 peverse  GTACCACAAGGTTGGCAGGT
Forward GTTCTCATTCGTGGCTGGAT
LINCO2544 Reverse TCTGCAAGCACAAAGACAGC
AL3564172 Forward GCTACAGTGACCTAAGCTCTAG
Reverse  GTTTTGGGTTGTCATGAGGGAG
UCI112721.2 Forward GATTTGCACTAGACGCTCTCTC
’ Reverse  GGTGCAATAGGAGAGCTTCATG
LINC01929 Forward GTGTGGTCCTGTTTCAGTCAAA

Reverse  GAAAAGATGCCCATACCAGACC
Abbreviations: GAPDH, glyceraldehyde-3-phosphate dehydrogenase; MSC, Musculin;

11



AEBP1, AE binding protein 1; CREB3L1, CAMP responsive element binding protein 3
like 1; COL3A1, Collagen Type III Alpha 1 Chain; LUM, Lumican; DCN, Decorin;
FNDCI1, Fibronectin Type III Domain Containing 1; THBS2, Thrombospondin-2;
COLI1A1, Collagen, type I, alpha 1; MMP2, matrix metalloproteinase-2; FN1, Fibronectin
1; FAP, fibroblast activation protein alpha; LINC01614, Long Intergenic Non-Protein
Coding RNA 1614; LINC00702, Long Intergenic Non-Protein Coding RNA 702;
LINC02544, Long Intergenic Non-Protein Coding RNA 2544; LINCO01929, Long
Intergenic Non-Protein Coding RNA 1929

12



III. RESULTS

1. HGS _OvCais classified into five clusters according to the expression patterns

of IncRNAs

First, among the total RNA-seq 60,433 identifiers, IncRNAs and coding RNAs were
classified using the GTF file (v30) classification IncRNAs provided by GENCODE. As a
result, 15,171 IncRNAs were identified, and among them, the top 1,500 IncRNAs were
selected for clustering (Figure 1A). Clustering was performed using the CNMF method,
and three verification methods were considered to select an appropriate k-factor (Figure
1B). Consensus matrices and sample correlation matrices are shown for k = 2 to k = 6.
Clustering with £ = 5 gave the most consistent result in both sets (Figure 1B). The
cophenetic coefficient shows a consistently high value between & = 2 and k£ = 6. Moreover,
average silhouette widths suggest optimal results for k=2, k=4, k=5, and k = 6. Finally,
in the results of total within sum of square, £ = 3 was suggested as an appropriate result
(Figure 1C and 1E). Among the methods for selecting an appropriate cluster, it was
confirmed that it was defined based on the most stable k-factor decomposition of the sample

by the sample correlation matrix and visual inspection.

Since the purpose of checking through clustering is to check whether each cluster
reflects the prognosis and classify clusters related to prognosis, additional k-factor survival
analysis was performed (Figure 2A and 2B). As a result of survival analysis, it was
confirmed that k = 5 showed a significant level compared to other k-factors (OS Log Rank
p-value = 0.034, DFS Log Rank p-value = 0.023). Based on this, k£ =5 clustering revealed

five distinct and robust clusters with limited overlap between clusters.

Therefore, it was confirmed that HGSC was classified into five clusters according to
IncRNA expression (J1 n=92,J2 n= 66, J3 n=86, J4 n=157,J5 n =66, samples for each
cluster) (Figure 2C). The number of IncRNAs corresponding to the J2 cluster was more

than twice as high as that of other clusters (J1 cluster n =284, J2 cluster n = 536, J3 cluster
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n= 297, J4 cluster n = 212, J5 cluster n = 171, number of IncRNAs in each cluster). As a
result of checking the mRNA expression based on the cluster classified according to the
confirmed IncRNA expression, it was confirmed that the expression pattern was similar to
that of the IncRNA expression pattern (Figure 2D). Like the number of IncRNAs, there
were twice as many mRNAs in the J2 cluster as compared to in other clusters (J1 cluster n
=331, J2 cluster n =577, J3 cluster n = 208, J4 cluster n =201, J5 cluster n = 183, number
of mRNAs in each cluster).

HGS_OvCa was classified into five clusters according to IncRNA expression, and each
sample reflects prognosis according to the classified cluster. The J2 cluster is a cluster that
contains a lot of IncRNAs, and mRNAs as confirmed above, but it is confirmed that it does
not affect prognosis. On the other hand, the cluster with the worst prognosis was confirmed

to correspond to the J4 cluster.
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Figure 1. CNMF clustering of 1,500 variably expressed genes and 367 HGS_OvCa
samples. (A) Clustering analysis strategy according to IncRNA expression pattern using
HGS-OvCa total RNA-seq data. (B) Consensus matrices (left panel) and correlation
matrices (right panel) are shown for clustering with k=2 to £/=6. Cluster fitness evaluation
items according to k-factor: (C) Cophenetic correlation, (D) Average silhouette width, (E)
Total Within Sum of Square.

16



Ewn gmu :? 1.00 —+ Cluster 1
o o fe)
% 075 % 075 _t'gﬂ 075 —+ Cluster 2
G050 G5 B0 — Cluster 3
T T T —+ Cluster 4
= 0.25 = 025 = 0.25 — Cluster 5
& vno{Log-rank P = 0.264 @ en{Log-rank P = 0.034 | 3w Log-rank P = 0.656 ™, Cluster 6

0 1 20 30 40 5 60 0 10 20 3 40 5 & 0 T 2 3 40 s 8

Time (months) Time (months) Time (months)
k=4 k=5 k=6
B
«© «© ©
2 2= = 100§ ¢ —+ Cluster 1
S 1™, Log-rank P=0.619 > "] ™ Log-rank P = 0.023 5 "*| " Log-rank P = 0.071
3 075 3075 3 075 —+ Cluster 2
0 ol o0
o o o —— Cluster 3
D 050 O 050 O 050
- w C —— Cluster 4
% 0.25 % 0.25 % 0.25 — Cluster 5
D 000 D voo @ 000 Cluster 6
6 0 10 20 30 40 50 60 5 0 10 20 30 40 50 60 6 0 10 20 30 40 50 60
Time (months) Time (months) Time (months)
k=4 k=5 k=6
C D
TCGA TCGA
(367 Samples) (367 Samples)
E—— — — — expression

1500 IncRNAs
1500 genes

J1 mRNA (n = 331)
J2 mRNA (n = 577)
J3 mRNA (n = 208)
J4 mRNA (n = 201)
J5 mRNA (n = 183)

J1IncRNA (n =284
J2 IncRNA (n = 536

J4 IncRNA (n =212
J5 IncRNA (n =171

- )
- )
== J3 IncRNA (n = 297)
- )
- )

Figure 2. Selection of k-factors suitable for IncRNA expression patterns according to
survival analysis results. (A) Survival probability and (B) Disease Free survival curve
according to k-factor. (C) IncRNA, (D) mRNA expression patterns of HGS-OvCa 367

samples according to selected k-factors.
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2. The five clusters of HGS_OvCa are classified according to function

Functional analysis was performed to confirm the function of each of the five clusters
identified using the IncRNA expression pattern and prognosis. As a result of selecting
IncRNAs with increased expression by cluster and classifying them using the funcpred
analysis tool, it was confirmed that all IncRNAs corresponding to the five clusters were
related to SPERMATOGENESIS in common (Figure 3A and 3E). Hallmark's
spermatogenesis-related genes are included in development categories such as
angiogenesis and EMT, and in previous studies, Notch related IncRNAs in ovarian cancer
were shown to have a function in spermatogenesis. As a result of confirming the specific
function of each cluster except for spermatogenesis-related gene sets identified in all
clusters, the J1 cluster was related to Immune, J2 cluster was related to EMT, and J3 cluster
was related to Estrogen response (Figure 3A and 3C). In the J4 cluster, APICAL
JUNCTION related to EMT and cellular components, ADIPOGENESIS and
MYOGENESIS related to development, and HYPOXIA and ANDROGEN RESPONSE
related to signaling were identified (Figure 3D). It was confirmed that the difference
between J2 and J4 clusters was related to the same EMT gene, but the J4 cluster was related
to genes reflecting multiple cancer cell aggressiveness besides EMT. Bile acid metabolism
and peroxisomes in the J5 cluster are known to affect cancer cell growth and differentiation

(Figure 3E)®".

The direct result of IncRNA function analysis has not been known so far, and funcpred
is also matched with a coding gene to guess its function in an indirect way. Based on the
previous analysis that the expression patterns of IncRNAs and mRNAs were similar for
each cluster, the increased mRNA expression for each cluster was reconfirmed in the same
way as in the IncRNA function analysis. Increased mRNA expression for each cluster was
selected and analyzed using gprofiler, and p-value < 0.05 and g-value < 0.25 were judged
as a significant result. Most of them were confirmed to be consistent with the results of

analyzing IncRNA function previously (Figure 4A and 4E). In the J1 cluster, gene sets of
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INTERFERON GAMMA RESPONSE, INTERFERON ALPHA RESPONSE,
ALLOGRAFT REJECTION, and INFLAMMATORY RESPONSE related to the immune
response were identified, just as the IncRNA function was confirmed (Figure 4A). In
addition to the EMT gene set, the J2 cluster identified a gene set with increased oncogene
KRAS signaling genes (Figure 4B)%%, The J3 cluster contains a set of estrogen-responsive
genes and a set of immune-related genes, and the J4 cluster identified the same set of genes
in IncRNA functional analysis (Figure 4C and 4D). In the J5 cluster, a gene set different
from the gene set identified in the results of IncRNA functional analysis was identified

(Figure 4E).

By combining the two results, the functions identified in common with IncRNA and
mRNA, IncRNA specific functions, and IncRNA common gene sets were classified. As a
result, J1 cluster could be classified as the Immune group (Figure SA), J2 cluster as the
EMT group (Figure 5B), J3 cluster as the Estrogen response group (Figure 5C), and J4
cluster as the EMT-Androgen response group (Figure 5D). The common gene set of
IncRNA or mRNA in the J5 cluster could be identified (Figure SE). As a result of
comparison with the cluster sample of the previous study, it was confirmed that the J5
cluster was about 51% consistent with the sample of the differentiation cluster (Figure 6A),
and the differentiation marker expression was also increased (Figure 6B and 6C). Therefore,

the J5 cluster was classified as a Differentiation group.
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Figure 3. Functional analysis of IncRNAs in each cluster. (A and E) Functional analysis
of IncRNAs in each IncRNA cluster using the Funcpred hallmark geneset. The size of the
circle represents the number of IncRNAs associated with the corresponding HALLMARK
gene set. Red circles represent genesets identified only in the corresponding cluster, and
purple circles represent genesets identified in all clusters, and the light blue circle represents

the rest of the geneset.
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Figure 4. Functional analysis of mRNA in each cluster. (A and E) Functional analysis
of mRNA included in each cluster using hallmark geneset with gprofiler. The size of the
circle represents the g-value, and the salmon-colored circle represents the set of genes with
p-value < 0.05 and g-value < 0.25. Light pink indicates gene sets with p-value > 0.05 and
g-value > 0.25.
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Figure 5. Analysis of IncRNA and mRNA functions according to each cluster. (A and
E) Identification of specific gene sets and common gene sets by merging the functional
analysis results of IncRNA and mRNA corresponding to each cluster. Orange circles
represent sets of genes commonly identified in IncRNA and mRNA function analyses, and
red circles represent specific gene sets identified in IncRNA functional analyses. Blue
circles indicate IncRNA common gene sets corresponding to the J1 and J5 clusters, and
purple circles indicate gene sets containing 10% of the IncRNAs in each cluster. Light blue
circles indicate gene sets containing less than 10% of the IncRNAs corresponding to each

cluster.
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3. There are no significant differences in the mutant genes for each HGS OvCa

cluster

Regarding the characteristics of the classified clusters, mutation profiles were first
identified for each cluster. There was no difference between the results of confirming
mutations in the entire HGSC sample without cluster classification and the results of
confirming mutations by classifying each cluster (Figure 7A and 7F). Missense mutations
were the most frequently observed mutations in all clusters, and TP53 mutations accounted

for more than 80% of each cluster sample.

A dualistic model of carcinogenesis was proposed for EOC based on histopathological
and molecular characteristics. This model broadly categorizes epithelial ovarian tumors
into two groups: Type I tumors in EOC are characterized by relative chromosomal stability
and specific mutations in genes such as KRAS, BRAF, ERBB2, CTNNBI1, PTEN, PIK3CA,
ARIDI1A, and PPPR1A. These tumors rarely exhibit mutations in TP53, which encodes the
tumor suppressor p53. Type II tumors are much more frequent and aggressive than Type I,
tend to grow faster, are present at an advanced stage, and have a very high frequency of
TP53 mutations. Titin (TTN), a mutation gene that occupies the second highest ratio in all

clusters along with TP53, is known to be most frequently mutated in all cancers.

BRCA1 mutations have been identified in the estrogen response cluster, and BRCA1,2
mutations have been found to be present in approximately 5-15% of ovarian cancers
(Figure 3D). Therefore, BRCA1 and BRCA2 mutations are relatively rare and account for
only a subset of all ovarian cancers. However, it is considered a sign for hope, because it
means that personalized treatment is possible if there is a mutation in the BRCA1 and
BRCA2 genes. Recently, PARP inhibitors have been shown to be effective in reducing
tumor burden in patients with BRCA1 and/or BRCA2 mutations’®’!. Therefore, it was
confirmed that there was no difference in mutation profiles in the remaining clusters except
for the estrogen response cluster, and that there was no characteristic distinguishing each

cluster.
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4. Functional differences between the HGS OvCa clusters are not due to

changes in Somatic Copy Number Alteration

Somatic Copy Number Alteration (SCNA) plays an important role in activating
oncogenes and inactivating tumor suppressors, and understanding of the biological and
phenotypic effects of SCNAs has resulted in significant advances in cancer diagnosis and
treatment. Recently, TCGA identified changes in SCNA in the context of a large genome-
wide integrated study of approximately 500 high-grade serous ovarian cancers (HGSOC).
Among them, the oncogenic IncRNA FAL1 with amplified gene copy number shows
increased expression levels in many types of cancer. FAL1 expression is associated with
ovarian cancer outcome and interacts with the PRC1 component BMI1 to repress numerous

genes including CDKNI1A.

Genomic Indentification of Significant Targets In Cancer (GISTIC2.0) was used to
identify focal CNA regions and potential drive genes. As a result of checking the total
HGSC copy number, the most frequent gain regions included chromosomal regions
8q24.21, 3q26.3, 19q12, 11ql4.1, and 1p34.2, and the most frequent loss regions included
19p13,3, 22q13.32, 13q14.2, 6927, and 5qll1.2 (Figure 7A). Similarly, as a result of
checking the copy number of each cluster, the regions where the most gain and the most
loss occurred were not significantly different from the results of checking the copy number
of the entire HGSC (Figure 7B and 7F). When comparing the top 10 somatic copy number
alteration amplification and deletion chromosomal regions in the entire HGS OvCa sample
and each cluster sample, similar results were confirmed without any difference (Table 2
and Table 3). Through the analysis results, it was confirmed that the difference between the

classified clusters was not due to SCNA.
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Figure 8. Identification of somatic copy number alternation in each IncRNA cluster.
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Table 2. Top 10 chromosomal regions with somatic copy number alteration amplifications
in each cluster

HGS OvCa J1 cluster J2 cluster J3 cluster J4 cluster J5 cluster
(n=367) (n=92) (n=606) (n=86) (n=57) (n=606)
8q24.21 19q12 19p13.12 8q24.3 19q12 8q24.21
3q26.2 3q26.2 3q26.2 3q26.2 3q26.2 19q12
19q12 8q24.21 19q12 7q36.3 8q24.21 11q14.1
11ql4.1 19p13.2 8q24.22 20q13.33 12pl12.1 3q26.2
1p34.2 11q14.1 19q13.2 Xq28 Xpl1.23 1p34.2
1921.3 1p34.3 1p34.2 11q14.1 19q13.2 4q13.3
12p12.1 1921.3 4p16.3 1p34.2 19p13.12 7q36.1
5p15.33 5p15.33 1921.3 1q44 18q12.1 1q44
7q36.3 11p13 8pl11.23 6p22.3 14ql1.2 15926.3
19p13.2 2q32.2 18q11.2 14932.33 1p34.2 14q11.2

Table 3. Top 10 chromosomal regions with somatic copy number alteration deletions in
each cluster

HGS OvCa J1 cluster J2 cluster J3 cluster J4 cluster J5 cluster
(n=367) (n=92) (n=66) (n=86) (n=57) (n=66)
19p13.3 19p13.3 19p13.3 19p13.3 19p13.3 22q13.32
22ql3.32 22ql3.32 22ql3.32 5ql13.2 5ql12.3 5ql13.2
13q14.2 5ql1.2 15q15.2 11pl15.5 16p13.3 13q14.2
6927 11p15.5 4q34.3 18923 22q13.32 19p13.3
5ql1.2 16q24.3 4q22.1 6925.1 16¢q23.1 15q15.1
11pl5.5 10q23.31 6q25.1 13q14.2 4q22.1 6q27
15q15.2 6q27 5qll.2 4q34.3 18q21.31 4q34.3
4q34.3 17q11.2 19q13.43 15q15.1 6927 17q11.2
17q11.2 18923 7p22.3 8p23.3 9p24.1 1p36.11
5ql3.2 Ypll.2 13q14.2 9q34.3 13q14.2 19p13.3
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5. miRNA expression and DNA methylation do not explain the differences

observed between HGS OvCa clusters

Previous analyses failed to identify the cause of functional differences between HGSC
clusters. As an additional analysis to demonstrate functional differences between the
clusters, I examined the relationship between miRNA expression patterns and DNA
methylation. LncRNAs are involved in pattern regulation of expressed proteins through
specific mechanisms, including a variety of biological interactions, such as IncRNA-
ncRNA, IncRNA-mRNA, and IncRNA-protein interactions. Therefore, the construction of
an inferred biological interaction network mediated by IncRNAs should be desirable to
uncover the potential mechanisms and biological functions of IncRNAs. In other words,
miRNAs have a significant influence on the molecular mechanisms of IncRNAs. Numerous
studies have demonstrated that miRNAs and IncRNAs are involved in pathological
processes, including a variety of diseases, and the regulatory role of miRNA-IncRNA

interactions in some human complex diseases has been systematically investigated.

Therefore, it was additionally confirmed whether miRNA expression was different
depending on the IncRNA group. When the expression patterns of the 486 miRNAs selected
based on the classified IncRNA clusters were visually inspected, it was confirmed that there
was no difference between the clusters (Figure 9A). In order to quantify and confirm that
there is no difference, the median value of miRNA expression corresponding to each cluster

was confirmed (J1 = 5.84%3.83, J2 =5.93£3.81, J3 = 5.80+3.88, J4 = 5.871+3.86, J5 =
5.831£3.86), and as a result, it was reconfirmed that there was no difference between each

cluster (Figure 9B).

DNA methylation and carcinogenesis are interrelated. The best known mechanism
through which DNA methylation affects carcinogenesis is the silencing of tumor
suppressors through hypermethylation, which is apparently localized to promoters and
other regulatory regions due to increased DNA methyltransferase levels. DNA methylation

has been shown to play an important role in OvCa, and several tumor suppressor genes
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have been shown to be hypermethylated. Methylation of the BRCA1 promoter has received
a lot of attention because it is known that BRCA1 mutations are involved in the inherited

OvCa.

Based on the results of previous studies, I used TCGA data to analyze DNA methylation
between clusters. The methylation data are quantified and provided as a B-values
(methylation ratio, proportion of methylated/unmethylated), with a total number of probes
of 24,956. As a result of checking the distribution of methylation -values for each group,
the overall pattern was similar (Figure 9C). The results were reconfirmed by quantifying
whether there was no difference for each cluster by combining the B-values of each cluster
(Figure 9D). As a result of the analysis, it was confirmed that the -values of each cluster
were different, and that the B-values of the J3 cluster were increased compared to other
clusters (J1 = 0.23+0.30, J2 = 0.23%+0.31, J3 = 0.25%£0.32, J4 = 0.23£0.30, J5 =
0.24%0.31). In general, a B-value < 0.2 is considered hypomethylation, a -value > 0.8 is
considered hypermethylation, and a -value of 0.5 is considered partially methylated. The
average of the beta values in our data set is approximately 0.238. Therefore, if the B-value
is expressed as a heat map, it can be confirmed that most of them are hypomethylated.
Based on the above results, it was determined that DNA methylation did not affect HGSC

cluster functional characteristics.
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Figure 9. Confirmation of miRNA and DNA methylation according to IncRNA clusters.
(A) Expression patterns and (B) expression levels of 486 miRNAs according to IncRNA
clusters. (C) B-value patterns and (D) B-value levels of human DNA methylation 24,956
probes according to IncRNA clusters. Data is shown as mean+SD and p-values were
calculated by ANOVA. ™ p < 0.01, ™ p < 0.0001. The results of Not Significance were

not separately indicated.
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6. HGS_OvCa clusters are regulated by different transcription factors specific

to each cluster

Several factors potentially affecting cluster functional differences were examined, but
none of them were found to be relevant. Therefore, additional investigations were
conducted to identify potential factors that could indicate functional differences among the
clusters. Recent studies have revealed that a transcription factor or group of transcription
factors play important roles in biological processes and disease progression. Therefore, |

investigated the characteristic transcription factors of each cluster.

Before starting the analysis to identify transcription factors, a data screening process was
performed. I attempted to identify transcription factors within clusters classified according
to IncRNA expression, but so far, IncRNAs have not been included in the list of
transcription factor target genes. Therefore, I selected mRNAs that had a positive
correlation with IncRNAs and confirmed that most of them covered half of the cluster
(Figure 10A and 10B). The number of IncRNAs and mRNAs corresponding to each cluster
was more than twice as high in the J2 cluster as in the other clusters, but the cluster
containing many mRNAs with a significant positive correlation with IncRNAs was
identified as the J4 cluster. Based on the above results, I speculated that the cluster with

strong interactions between IncRNAs and mRNAs would be the J4 cluster.

As a result of transcription factor inference analysis using these data, it was possible to
identify unique transcription factors for each cluster (Figure 11A and 11F, Table 4 and Table
8). The J1 cluster identified three transcription factors based on a p-value < 0.05. CDKN2A
is known to affect EMT, immune reactivity and immune cell infiltration; affect poor
prognosis of hepatocellular carcinoma; and is associated with metastasis of colorectal
cancer. Similarly, ETV7 and IFI27 are also related to immune modulation. The analysis
results are consistent with the function of the J1 cluster identified above (Figure 11A and
Table 4). A total of 21 transcription factors were identified in the J2 cluster, and among the

corresponding transcription factors, DACH1 is known to promote distant metastasis in
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ovarian cancer. Similarly, identified transcription factors are known to promote EMT or
accelerate the onset of ovarian cancer (Figure 11B and Table 5). The J3 cluster was
classified into a group related to estrogen response based on the previous functional
analysis results. According to the result, the transcription factors RUNX1, TRAP2C, and
TRPS1 identified in the J3 cluster are related to estrogen response, and RUNX1 is increased
in ovarian cancer and is known to regulate ER-mediated genes. TFAP2C is also known to
regulate ER-mediated genes, including RUNX1, and TRPSI1 is known to regulate epithelial
marker expression in ER-positive cancer (Figure 11C and Table 6). RUNX2, a transcription
factors corresponding to the J4 cluster with the worst prognosis, is associated with tumor
invasion and metastasis in ovarian cancer and is known to promote metastasis by regulating
EMT in breast cancer. ZFHX4 is also known to show poor prognosis in ovarian cancer, and
it also includes SNAI2 and TWIST1,2 related to EMT (Figure 11D and Table 7). The
transcription factor EHF identified in the J5 cluster is involved in epithelial differentiation

and carcinogenesis (Figure 11F and Table 8).
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Figure 11. Transcription factors regulating each IncRNA cluster in HGS_OvCa. (A
and E) VIPER plot showing the projection of the negative (repressed, shown in blue color)
and positive (activated, shown in red color) targets for each TF, as inferred by ARACNe
and correlation analysis when reverse engineering the regulatory network (vertical lines
resembling a barcode). The “Act” and “Exp” columns show the normalized enrichment
score (NES) of the expected activity of the entire TF network and the expression level of
the TF itself. p-values were determined using the enrichment method in the VIPER

algorithm. All data were collected according to the p-value < 0.05 criterion.
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Table 4. Identification of J1 cluster transcription factors using Viper

J1 cluster (n=7)

Transcription factor NES p-value

CDKN2A 3.209 0.001
ETV7 2.155 0.031

IF127 2.127 0.033
MESP1 1.632 0.103
HOXD1 1.581 0.114
OASL 1.353 0.176
HEY?2 0.656 0.512

Abbreviations: NES, Normalized Enrichment Score

Table 5. Identification of J2 cluster transcription factors using Viper

J2 cluster (n = 37)

Transcription factor NES p-value
DACH1 3.730 <0.0001
DACT2 3.709 <0.0001
ZNF423 3.695 <0.0001
HIF3A 3.672 <0.0001
HMGA2 3.663 <0.0001
VAX2 3.639 <0.0001
TCF7L1 3.622 <0.0001
GLI2 3.587 <0.0001
SOX6 3.535 <0.0001
MYCN 3.507 <0.0001
EBF4 3.502 <0.0001
LHX1 3.490 <0.0001
MYTI 3.399 0.001
SOX11 3.359 0.001
BEX1 3.311 0.001
PAX2 3.159 0.002
ZNF703 3.055 0.002
TBX2 2.977 0.003
EMX2 2.689 0.007
NR2F1 2.130 0.033
SP5 2.013 0.044
MLXIPL 1.626 0.104
PEG3 1.570 0.116
RXRG 1.504 0.133
NPAS3 1.447 0.148
GATA4 1.327 0.184
NRS5ALI 1.245 0.213
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FOXL2 1.227 0.220
MDFI 1.116 0.264
D4 1.062 0.288
SATBI1 1.025 0.305
GREBI 0.975 0.330
PLAGLI 0.934 0.350
FOXJ1 0.865 0.387
PGR 0.842 0.400
MYCL 0.399 0.690
HOXBS8 0.154 0.878
Abbreviations: NES, Normalized Enrichment Score
Table 6. Identification of J3 cluster transcription factors using Viper
J3 cluster (n =7)
Transcription factor NES p-value
RUNX1 2.632 0.008
TFAP2C 2.031 0.042
TRPS1 2.014 0.044
CIITA 1.192 0.233
RUNX3 0.752 0.452
Abbreviations: NES, Normalized Enrichment Score
Table 7. Identification of J4 cluster transcription factors using Viper
J4 cluster (n=17)
Transcription factor NES p-value
RUNX2 3.730 <0.0001
ZFHX4 3.709 <0.0001
SNAI2 3.695 <0.0001
AEBPI 3.672 <0.0001
ZNF521 3.663 <0.0001
ETV1 3.639 <0.0001
CREB3L1 3.622 <0.0001
TSHZ3 3.587 <0.0001
PRRX1 3.535 <0.0001
TWIST2 3.507 <0.0001
MSC 3.502 <0.0001
TWIST1 3.490 <0.0001
HOXAS 3.399 0.001
HOXA3 3.359 0.001
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NDN 3.311 0.001
HOPX 3.159 0.002
ZFPM2 3.055 0.002

Abbreviations: NES, Normalized Enrichment Score

Table 8. Identification of JS cluster transcription factors using Viper

J5 cluster (n =2)

Transcription factor NES p-value
EHF 2.641 0.008
ZBED2 1.480 0.139

Abbreviations: NES, Normalized Enrichment Score
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7. The J4 cluster has stronger transcription factor activity than the other

clusters

It is difficult to determine that a transcription factor is activated based on its own
expression. According to recent studies, it is considered that transcription factors are
activated according to the target gene expression of transcription factors rather than
transcription factors themselves. Therefore, based on the results of analyzing the master
transcription factor, the correlation between the target gene of the transcription factor and

the selected mRNA and IncRNA was analyzed.

After examining the proportion of mRNAs with a positive correlation to transcription
factor target genes in each cluster, I found that approximately 27.9% of mRNAs were
included in the J1 cluster, 11.5% in the J2 cluster, 17.8% in the J3 cluster, 69.2% in the J4
cluster, and 7.5% in the J5 cluster. Among them, in J2 and J4, it was confirmed that there
was a difference between the groups with p-value < 0.0001 (Figure 12A and 12F). Using
the same method, I confirmed that in the J1 cluster, 46.0% of IncRNAs had a correlation
with transcription factor target genes, in the J2 cluster, 30.2% had a correlation, in the J3
cluster, 18.8% had a correlation, in the J4 cluster, 88.7% had a correlation, and in the J5
cluster, 7.4% had a correlation with transcription factor target genes. Similarly, it was
confirmed that there was a significant difference (p-value < 0.0001) between groups in the
proportion of IncRNAs correlated with transcription factors in the J2 and J4 clusters (Figure
13A and 13F). Based on the results of correlation analysis with transcription factor target
genes, it was judged that the J4 cluster had transcription factors activated, even though the
IncRNA and mRNA levels corresponding to the J2 cluster were more than twice as high as

those of other clusters.
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Figure 12. Correlation between target genes of transcription factors and mRNA. (A
and E) Proportion of Transcription factor target genes positively correlated with mRNA
for each cluster. (F) The ratio of mRNA that are positively correlated with the transcription
factor target genes of each cluster is shown as an average value. Positive correlations based

on Pearson's correlation R = 0.4 are shown in salmon and others are shown in pink. Data

are presented as respective ratios (number of samples). p-values calculated by linear-by-

Kok

linear association. p < 0.001. The results of Not Significance were not separately

indicated.
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Figure 13. Correlation between target genes of transcription factors and IncRNAs. (A
and E) Proportion of Transcription factor target genes positively correlated with IncRNA
for each cluster. (F) The ratio of IncRNAs that are positively correlated with the
transcription factor target genes of each cluster is shown as an average value. Positive

correlations based on Pearson's correlation R = 0.4 are shown in salmon and others are

shown in pink. Data are presented as respective ratios (number of samples). p-values

*

calculated by linear-by-linear association. ** p < 0.001. The results of Not Significance

were not separately indicated.
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8. The J4 cluster has a stronger transitional influence than other clusters

To identify the cluster with the strongest influence in HGS OvCa, the influence of
IncRNAs and mRNAs positively correlated with the transcription factor selected from each
cluster were analyzed using eigen centrality, and a co-expression network was constructed
based on this (Figure 14A and 14E). Eigen centrality is an algorithm used to measure the
transitional influence of nodes. Relationships originating from nodes with higher scores
contribute more to the node's score than connections from nodes with lower scores. A high
eigen centrality means that the node itself is connected to many nodes with high centrality

and has strong influence.

As a result of the eigen centrality analysis of the entire cluster, it was confirmed that the
node closest to 1 was the IncRNA LINCO01614 of the J4 cluster. Subsequently, COL3A1
(eigen centrality = 0.997), the mRNA of the J4 cluster, was confirmed, and MSC (eigen
centrality = 0.918) of the J4 cluster was identified as the top node in the MTF (Table 9).
The J4 cluster contained most of the top nodes, followed by the corresponding nodes in the
J2 cluster. Thus, the J4 cluster contains the most influential MTFs, IncRNAs, and mRNAs
among all HGS OvCa, explaining why the J4 cluster is more transcriptionally active than

the J2 cluster, which contains many IncRNAs and mRNAs.
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Figure 14. Construction of the master TF-mRNA-IncRNA co-expression network. (A
and E) TF-mRNA-IncRNA co-expression networks for each cluster, based on eigenvector
centrality, with higher scores representing larger nodes and closer to yellow, and lower
scores representing smaller nodes and closer to blue. The red box shows an enlarged view
of the area where the high eigenvector centrality nodes of the J4 cluster are concentrated.

Yellow nodes are nodes with an eigenvector centrality of 0.9 or higher.
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Table 9. List of IncRNAs, mRNAs and transcription factors with eigen centrality > 0.9 in
the HGS_OvCa cluster

Rank! Name Eigen centrality Type Cluster
1 LINCO1614 1.000 IncRNA J4
2 COL3Al 0.998 mRNA J4
3 LUM 0.984 mRNA J4
4 DCN 0.982 mRNA J4
5 FNDC1 0.980 mRNA J4
6 THBS2 0.977 mRNA J4
7 AC004160.1 0.971 IncRNA J4
8 COLI1Al 0.970 mRNA J4
9 LINCO00702 0.962 IncRNA J4
10 MMP2 0.961 mRNA J4
11 AL109924.2 0.961 IncRNA J4
12 LINCO02544 0.959 IncRNA J4
13 AL356417.2 0.951 IncRNA J4
14 HARIA 0.950 IncRNA J4
15 FN1 0.941 mRNA J4
16 ITGAIl 0.938 mRNA J4
17 AC112721.2 0.928 IncRNA J4
18 FAP 0.919 mRNA J4
19 MSC 0.918 TF J4

20 COLI11A1 0.916 mRNA J4
21 COL1A2 0.908 mRNA J4
22 CLECI12A-AS1 0.906 IncRNA J4
23 LINC01929 0.900 IncRNA J4

! Rank is the rank based on eigen centrality.
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9. Master regulators MSC, AEBP1, CREB3L1 that regulate transcription

factors of the J4 cluster

As a result of the centrality analysis, it was confirmed that among the transcription
factors, theose with the greatest influence and those with the lowest influence were
classified. Based on these results, it was predicted that among transcription factors, there
may be upper transcription factors that regulate transcription factors. According to the
definition provide, the “master regulator” transcription factor is at the top of a regulatory
hierarchy and must not be under the regulatory influence of any other gene or transcription
factor. Based on previous studies, I identified top transcription factor regulators that

regulate transcription factors.

Among the transcription factors, MSC, AEBP1, and CREB3L1 were selected based on
the median eigen centrality of 0.5. Additionally, target genes commonly regulated by the
corresponding MTFs were identified. As a result, | identified nine common genes, namely
COL3A1, LUM, DCN, FNDC1, THBS2, COL1A1, MMP2, FN1, and FAP, regulated by
three MTFs (Figure 15A and 15C). The selected common genes had high eigenvector

centrality and were genes associated with EMT.

Additionally, the expression of commonly known target genes of the corresponding MTF
was confirmed for each cluster. Gene sets commonly identified in each study that identified
the target genes of the three master transcription factors were extracellular matrix, cell
adhesion, and collagen remodeling, which are related to EMT’*7, By evaluating the scores
of each gene set within clusters using ssGSEA, I confirmed an increase in the J4 cluster,

which includes the master transcription factor (Figure 16A).

Based on previous results, I used TCGA HGS OvCa data to reconfirm the expression of
selected master transcription factors for each cluster and the expression patterns of
experimentally validated target genes (Figure 16B and 16C). As expected, I confirmed that

the expressions of the three master transcription factors and their target genes are
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upregulated in the J4 cluster compared to those in all other clusters. Furthermore, the nine
common genes identified through network analysis were validated to be part of the

previously mentioned gene set using gprofiler (Figure 16D).

The transcription factors selected in this way were predicted as master transcription
factors (MTFs), and the relationship between each MTF and the transcription factors
affecting it was confirmed (Figure 17A). As a result, it was confirmed that the top three
MTFs commonly target six transcription factors (SNAI2, RUNX2, PRRX1, ZFHX4, ETV1,
TWIST1). Therefore, the top three transcription factors were considered to be MTFs that

regulate other transcription factors.

In the results of the previous analysis of eigenvector centrality (Table 9), IncRNAs
comprised the top rankings with the highest centrality. Although mRNAs were identified
as the targets for the selected MTF, IncRNAs were not included in the transcription factor
target gene list and could not be identified. Therefore, IncRNAs with a positive correlation
(Pearson's Correlation R = 0.4) with each MTF were classified, and among the classified
IncRNAs, IncRNAs commonly included in the three MTFs were reclassified (Figure 17B).
A total of fifteen IncRNAs were classified as common IncRNAs of the three MTFs, and the
eigen centrality of the IncRNAs was confirmed. All of the corresponding IncRNAs showed
eigen centrality = 0.5, and among them, LINC01614 was confirmed to have the highest
centrality in all clusters (Table 10). I predicted an overall relationship regulating EMT-
related genes in the J4 cluster, including common IncRNAs predicted to regulate master

transcription factors (Figure 17C).
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Figure 15. Identification of common target genes of three selected master
transcription factors. (A and C) Target genes of transcription factors MSC, AEBP1, and
CREB3LI. Red boxes represent common target genes of the three transcription factors.
Based on eigenvector centrality, high scores represent larger nodes and are closer to yellow,

while lower scores represent smaller nodes and are closer to blue.
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Figure 16. Confirmation of target gene expression of predicted master transcription
factors. (A) Results of confirming the expression of gene sets related to master
transcription factors for each cluster through ssGSEA. (B and C) Verification of expression
of master transcription factors and common target genes for each cluster using TCGA
HGS OvCa data. (D) A gene set containing nine common genes identified through network
analysis was identified using gprofiler. Red arrows indicate gene sets identified in previous

studies. Data are presented as mean = SD and p-values were calculated by ANOVA. ™" p <

0.001, ™ p < 0.0001. The results of Not Significance were not separately indicated.
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Figure 17. Discovery of IncRNAs regulating master transcription factors. (A) Target
transcription factors of top MSC, AEBP1, CREB3L1 among transcription factors of J4
cluster. Salmon color indicates the target Transcription factors of MSC, pink indicates the
Transcription factors of AEBP1, and orange indicates the Transcription factors of
CREB3LI. Nodes are colored yellow for high scores and blue for low scores based on
eigenvector centrality. (B) Venn diagram showing the logical relationship of positively
correlated (based on Pearson's correlation R = 0.4) IncRNAs with master transcription
factors (MTFs). Red numbers indicate the number of common IncRNAs. (C) Illustration
showing the overall relationships regulating EMT-related genes in the J4 cluster, including
common IncRNAs predicted to regulate master transcription factors. The orange round

squares are seven IncRNAs with eigenvector centrality = 0.9 among fifteen common

IncRNAs. The three master transcription factors are represented by light blue circles.
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Table 10. List of common IncRNAs of the three master transcription factors

IncRNA name Eigenvector centrality
LINCO1614 1.000
LINC00702 0.962
AL109924.2 0.961
LINC02544 0.959
AL356417.2 0.951
AC112721.2 0.928
LINC01929 0.900

HECW2-ASI1 0.889

MSC-AS1 0.871
LINCO00519 0.858

ACTA2-AS1 0.826
AC104083.1 0.811
AP000892.3 0.801
AC106739.1 0.799
LINCO1615 0.760
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10. The top regulator of the J4 cluster involved in the expression of EMT genes
are IncRNAs

For experimental validation based on previous results, CCLE data were used to confirm
the expression of mRNAs and IncRNAs correlated with transcription factor target genes in
each cluster (Figure 18A and 18B). It was confirmed that the expression of the J4 cluster
transcription factor target gene increased in the 59M cell line among the HGS_OvCa cell
lines compared to other cell lines (Figure 18C and 18D). In the J5 cluster, the scores of the
target genes of the transcription factor EHF also increased in the 59M cell line, but the
scores of IncRNAs increased significantly in the J4 cluster. The results of ssGSEA
confirmed the expression of MTF in five cell lines, including the HGS OvCa cell line
possessed by the laboratory. It was confirmed that the expression of the master transcription
factors selected above, MSC, AEBP1, CREB3L1 all increased significantly in the S9M cell
line (Figure 18E and 18G).

As mentioned above, according to the definition that MTF is not affected by other genes
or transcription factors, each MTF was silenced in the 59M cell line. As a result of silencing,
it was confirmed whether the expression of the target gene and the selected IncRNA
changed as the expression of MTF decreased. It was confirmed that the expression of each
MTF was significantly reduced by siRNA, and it was confirmed that all nine common target
genes showed significantly decreased expressions (Figure 19A and 19F). Among the
common IncRNAs, the seven most influential IncRNAs with intrinsic centrality greater
than 0.9 were selected to determine their expression. As a result, I confirmed that the
expression of common IncRNAs expected to regulate MTF did not change as MTF
expression decreased (Figure 20A and 20C). Based on eigen centrality, it was confirmed
that IncRNAs with higher centrality than MTF were not affected by MTF. Therefore, it was
confirmed that the most influential IncRNA in the J4 cluster regulates the lower genes. This
suggests that there are IncRNAs that ultimately regulate MTF, and that IncRNAs may also
regulate downstream EMT genes (Figure 21).
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Figure 18. Screening of cell lines reflecting cluster characteristics. (A) ssGSEA scores
of selected transcription factor target genes and (B) ssGSEA scores of IncRNAs and
transcription factor target genes. In the 59M cell line, (C) the ssGSEA scores of
transcription factor target genes were calculated for each cluster, as well as the (D) ssGSEA
scores of IncRNAs that positively correlate with transcription factor target genes. Relative
RNA-expression ratios of master transcription factors (E) MSC in HGS OvCa cell line.
Data are presented as mean=SD and p-values were calculated by ANOVA and all
experiments were repeated in triplicate. “p < 0.05, ™ p<0.01, ™ p < 0.001, "™ p < 0.0001.

The results of Not Significance were not separately indicated.

6 4



mm siControl

A B siRNA_#1
s = mm siRNA_#2
‘w 15 xx ‘B
w (%]
4] ew o
g 2
& 10 R
< <
= =
o Q
£ 0.5 EO
g g
=1 —
% 0.0 %

S N
i & &7 o =

C D
= <
(] o
W 18 ey 7]
w w
Q P o
a a
5 10 3
< <
= =2
o o
£ 08 S
] )

>
2 =
E 00 T E
-(P(\ \B‘ \?
& @Q &

E & F
= c
S )
‘w16 - ‘B
(%] w
E HRER E
a a
X 3
T 10 ()
< <
= =
'q o
£ 05 E
g g
= =
© ©
@ 00 [
o & N0 o

!}OQ \;\'3‘ o7
& &
S F

Figure 19. Verification of common gene expression of master transcription factors.
59M cells were treated with control siRNA (siControl) or three master transcription factor
siRNAs for 48 hours. g-PCR results confirming the expression of (A, C, E) MSC, AEBP1,
CREB3LI, (B, D, F) common mRNA target genes in transfected cells. Data are presented
as meantSD and p-values were calculated by ANOVA and all experiments were repeated
in triplicate. * p < 0.05,™ p < 0.01, ™ p < 0.001, ™ p < 0.0001. The results of Not

Significance were not separately indicated.
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Figure 20. Validation of IncRNAs regulating master transcription factors. 59M cells
were treated with control siRNA (siControl) or three master transcription factor siRNAs
for 48 hours. (A and C) g-PCR results confirming the expression of common IncRNAs in
transfected cells. Data are presented as mean+SD and p-values were calculated by ANOVA
and all experiments were repeated in triplicate. The results of Not Significance were not

separately indicated.
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Figure 21. A proposed model of EMT gene regulation through IncRNAs, which
regulate master transcription factors (MTFs) in HGS OvCa.
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IV.  DISCUSSION

Ovarian cancer, particularly high-grade serous ovarian carcinoma (HGS OvCa), is one
of the most lethal human malignancies, and ovarian cancer patients usually present at an
advanced disease stage and relapse frequently’®®°. New targets are being discovered to
overcome these therapeutic limitations, and one of them is IncRNAs. LncRNAs are being
investigated as new diagnostic and therapeutic targets in various types of human cancers,
and recent studies suggest that IncRNAs play an important role in regulating tumor

81-83 In

progression, metastasis, estrogen response, and drug resistance in ovarian cancer
addition, aberrant expression of IncRNAs can provide important information for diagnosis,
treatment, and prognosis of patients. However, the role of IncRNAs in HGS OvCa is still
in its infancy compared to miRNAs and requires further study.

To determine whether IncRNAs are involved in the carcinogenesis process, I performed
CNMF clustering using HGSC RNA-seq data. In the process of confirming the function of
IncRNAs, the characteristics of each cluster were defined using an analysis tool that
indirectly predicted the function of IncRNAs by matching the nucleotide sequence of the
coding gene. Research related to IncRNAs has been actively conducted since 201034, but
there is no gene set provided such as hallmark, GO, or Kegg gene set used for functional
analysis. Therefore, like “FuncPred”, functions are indirectly inferred by matching coding
genes, or functions are suggested through cis-acting by checking neighboring genes. In
order to review the functions identified in this way, the function of the coding gene was
checked with gprofiler, and as a result, it was confirmed that it was consistent with
FuncPred. Through this process, HGS OvCa was classified into five major clusters
according to functional characteristics: "Immune group", "EMT group", "Estrogen
response group", "EMT-androgen response group", and "Differentiated group."

To confirm where the difference in function of each cluster originated, each factor that
plays a large role in the carcinogenesis process was analyzed. First, as a result of checking
the DNA mutation profile, it was confirmed that there was no difference in the top mutation

genes for each cluster. Second, the same difference was not confirmed in the result of
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somatic copy number alternation analysis. In ovarian high-grade serous carcinoma (HGSC),
somatic copy number alternation analysis confirmed amplification in the 1q21.3
chromosomes, and IncRNA present in the chromosome was investigated. Expression of the
IncRNA FAL1 (Focally Amplified Long Noncoding on Chromosome 1) identified through
this process is closely related to E2F1 upregulation, suggesting that FAL1 affects
carcinogenesis through the cell cycle®>*. However, in each cluster classified, characteristic
amplification and deletion chromosome regions, as in previous studies, were not identified.
Third, in addition to the rule that miRNA and IncRNA act only on mRNA, the IncRNA-
miRNA interaction was confirmed based on the study that they interact with each other to
further regulate their effects in the transcriptome. Depending on these interactions, miRNA
regulates the function of IncRNA or acts as miRNA decoy to suppress miRNA target
mRNA ¥#_ However, miRNA expression medians were similar for each cluster, and no
significant difference between clusters was identified. LncRNAs are widely involved in
epigenetic regulatory mechanisms such as DNA methylation and are known to be involved
in the development and progression of malignant tumors®. For example, the p53-induced
IncRNA TP53TG1 exhibits promoter hypermethylation in gastric and colon cancer®.
Another example is the tumor suppressor IncRNA Growth Arrest-Specific transcript 5
(GASS), which has been shown to be downregulated in gastric cancer through promoter
hypermethylation®. As a result of confirming DNA methylation by cluster based on
previous studies, a value like the average beta-value of ovarian cancer was confirmed.

As a result of identifying four important factors in the carcinogenesis process, no factors
that could clearly explain the difference in function of each cluster were identified. Except
for the carcinogenesis-related factors analyzed above, I paid attention to the association
between transcription factors and IncRNAs as factors related to other carcinogenesis
processes. Identification of transcription factor drivers in solid tumors has expanded
considerably in recent years. Overexpression of the transcription factor ETS translocation
variant 1 (ETV1) occurs via chromosomal translocation and has been reported to cause

prostate cancer’®, In addition, various mechanisms (transcription factors accessing DNA,
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mRNA synthesis, processing, stability, and translation) regulating gene expression are
influenced by IncRNAs***°, Through these preceding studies, ARACNe and Viper were
used to identify the transcription factors of each cluster. It was confirmed that the functional
characteristics defined for each cluster and the function of the target gene set of
transcription factors were similar. Although the J2 and the J4 clusters have the same EMT
function, different transcription factors were selected.

The process of EMT remains incompletely resolved to date, making it a difficult process
to target therapeutically®®. Therefore, it is important to identify important molecules that
regulate EMT during carcinogenesis. The difference between the J2 and J4 clusters is
androgen response, and the role of androgen receptors in tumor development and tumor
progression in female breast and ovarian cancer has been previously reported®’. The ER,
PR, and AR pathways are involved in regulating signaling pathways such as cell-
proliferation, apoptosis, epithelial to mesenchymal transition, and cell migration and
invasion®®®. In women, androgens are produced by the ovaries, adrenal glands, and

peripheral conversion of androgen precursors (DHEA)!%0:101,

The percentage of
testosterone of ovarian origin is higher in postmenopausal women. As a result of checking
each age in the classified clusters, all cluster except for the J3 group (52.00 £ 8.80) were
included in the standard age of postmenopausal women (premenopausal is < 55 years,
postmenopausal is > 55 years)'?, and the oldest cluster in the cluster was the J4 cluster
(66.00 = 9.40). There was no difference between the groups of the J2 cluster and the J4
cluster (p-value = 0.124), but functional analysis suggests that androgen response brings
about a difference between the two groups. In addition, through data confirming the
correlation with transcription factors selected for each cluster, it was confirmed that the J2
cluster contains many mRNAs and IncRNAs, but the proportion of mRNAs and IncRNAs
that are positively correlated with target genes of transcription factors is smaller than that
of the J4 cluster. Through this result, it was found that transcription factors were strongly

activated in the J4 cluster. Further analysis confirming the centrality of each cluster

confirmed that the transcription factors, IncRNAs and mRNAs contained in the J4 cluster
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have higher eigen centrality than the other clusters. In other words, the fact that the J4
cluster contains many factors with high influence supports the contents of the previously
confirmed results.

Through the results of the centrality analysis, it was confirmed that the centrality was
greatly different within the transcription factors. There is a group of transcription factors
that regulate oncogenes and disease processes, and it was confirmed that there is a hierarchy
in the regulatory activities of these transcription factors, confirming previous studies that
identified the upper regulators of the hierarchy as master transcription factors'®. Master
transcription factors have also been defined as those that are not regulated or influenced by
other genes or regulators. Through this definition, three MTFs (MSC, AEBP1, CREB3L1)
with high eigen centrality among transcription factors and not affected by other
transcription factors were selected. In previous studies, MECOM, PAXS, and SOX17 were
suggested as master transcription factors involved in the development of high-grade serous

ovarian cancer>3343037

. However, the relevant transcription factors do not appear to play a
role in defining the characteristics of each cluster identified through the analysis. Selected
as master transcription factors, MSCs are members of the helix-loop-helix (HLH) family
of TFs and were first reported in mouse skeletal muscle precursors!®. Recent studies have
shown that MSCs, along with LEF1, have functions related to EMT-related extracellular
matrix (ECM) organization and cell-ECM interactions, and these two transcription factors
appear to be specific transcription factors identified only in LUAD?. In conclusion, MSCs
have been reported to promote malignant progression of lung cancer through the EMT
process. The role of AEBP1 in promoting carcinogenesis has been recently investigated by
several research groups, and it has been found to promote tumorigenesis through the NF-
kB pathway and EMT process in colon cancer, gastric cancer!®>!%, In addition, recent
studies have reported that CREB3L1 participates in cancer initiation and progression and
can serve as a promising clinical biomarker for cancer patients!?’. Similar to the functions

of other MTFs identified above, they induce cell invasion and metastasis through induction

of EMT. It was interesting to note that the function of the cluster identified above coincided
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with the role of the selected master transcription factor.

In addition, it was confirmed that IncRNAs commonly included in the selected MTFs
had high centrality, and it was interesting that IncRNAs could have the possibility of
regulating MTFs. Therefore, I confirmed whether the IncRNA regulates MTF while
verifying whether the expression of the common IncRNA was reduced when MTF was
silencing. Interestingly, the three MTF target genes showed a significant decrease as MTF
decreased, but the common IncRNA did not change. This result is consistent with the
definition of master regulator mentioned above, and therefore, it was judged that the
corresponding IncRNA regulates MTF. Previous studies have reported that IncRNAs are
specifically transcribed and act as signaling molecules to regulate the transcription of
downstream genes. For instance, in cases of DNA damage, the LncRNA PANDA, activated
by the interaction between p53 and cyclin-dependent kinase inhibitor 1A (CDKNI1A, p21),
has been reported to increase the survival time of tumor cells by targeting the nuclear
transcription factor Y subunit alpha (NF-YA)!%, Therefore, it seems that IncRNAs that
regulate MTF also play a role as signal molecules. Among IncRNAs, LINC01614, which
has the highest centrality, is known to promote cancer development in lung cancer and
breast cancer. Additionally, most of the genes identified as being co-expressed with
LINC01614 were associated with EMT in human cancers'®-!'1,

Currently, several examples of IncRNAs have been described as potential clinical
biomarkers for predicting response to therapy or for prognosis in breast cancer, such as
HOTAIR, H19, and DSCAM-AS1'"2, Although their clinical utility has not yet been clearly
demonstrated, the use of IncRNAs as predictive biomarkers in response to treatment has
advantages over protein- and mRNA-based biomarkers as they reveal tissue- and stage-
specific expression!'!>!, For example, CRISPR/Cas9 silencing of NEATI or MALATI
has been reported to inhibit cancer cell metastasis. A patent silencing UCAI1 using
CRISPR/Cas9 inhibited the growth of cancer cells (CN106399306B)!!5. In addition,
observational clinical trials of IncRNA WRAPS53 and UCA-1 for hepatocellular carcinoma
are in progress (NCT05088811), and observational clinical trials of IncRNA MFI2-AS1
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are also underway with 260 patients with Kidney cancer (NCT04946266)"'¢. Therefore,
this study confirmed that it can be classified according to IncRNA expression using
HGS OvCa RNA-seq data, and that each classified cluster has a distinct molecular
biological function. In addition, master transcription factors (MTFs) regulating
transcription factors have been identified as potential triggers for these traits, and seven
IncRNAs regulating MTFs have been proposed. Seven IncRNAs were selected from the J4
cluster, which is associated with a poor prognosis in HGS OvCa. It is anticipated that
patients with increased expression of these specific IncRNAs will also show increased
expression of EMT-related genes, a characteristic of the J4 cluster. As the selected IncRNA
acts as an upstream regulator influencing downstream genes, its potential as a therapeutic
agent can be confirmed through IncRNA manipulation. Similar to the IncRNA therapeutics
mentioned in the clinical trials above, gene silencing methods such as IncRNA
CRISPR/Cas9 and siRNA are necessary to identify changes in relevant master transcription
factors and downstream genes. It is expected that the role that the selected IncRNA plays

in the field of precision medicine will become clearer through future verification results.
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V. CONCLUSION

In summary, my study identified functional features of each cluster classified by IncRNA
expression. Each cluster was classified into "Immune group", "EMT group", "Estrogen
response group”, "EMT-Androgen response group", and "Differentiation group" through
functional analysis. Afterward, transcription factors representing the characteristics of each
cluster were presented, and among them, the J4 cluster, which has a stronger transcription
factor activity than other clusters, was noted. Among the J4 cluster, master transcription
factors "MSC", "AEBP1", and "CREB3L1" that regulate transcription factors were
identified. In addition, seven IncRNAs with stronger influence than the selected master
transcription factors were identified, and it was confirmed that the selected IncRNAs
regulate master transcription factors and EMT-related genes. This study suggests that the
seven IncRNAs regulating MTFs contribute to identifying the transcription factor

regulation mechanism of IncRNAs in HGS_OvCa and can be indicators for personalized

medicine.
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