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ABSTRACT

Prediction of upper limb function from simple activity of daily living using deep
learning in patients with stroke

Dain Shim

Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Dong-wook Rha)

Upper limb function in stroke patients is commonly determined by clinical
measurements such as the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) and Box
and Block Test (BBT), which are time-consuming and require trained clinicians. Three-
dimensional (3D) computerized motion analysis is one alternative, but it is also time-
consuming and requires expensive devices. So, we wanted to know if we could predict
upper limb function from simple activity of daily life using deep learning. The aim of this
study was to predict upper limb function in stroke patients using deep learning with short
two-dimensional (2D) videos of patients performing a simple activity of daily living. To
achieve this, we first developed models to predict metrics representing upper limb function
using 3D motion capture data of patients with stroke. We then developed similar models to
predict the same metrics using keypoints in 2D video data of patients with stroke.

We collected FMA-UE score, BBT score, the temporospatial parameters including
Movement Time (MT), Index of Curvature (IC) and Number of Movement Units (NMU)
and Arm Profile Score (APS) from 3D motion capture in 265 stroke patients from 2014 to
2023. In addition, 2D video data recorded during Reach & Grasp Cycle were collected in
103 stroke patients from 2021 to 2023. Two versions of input data were used to train the
deep learning model. First, we used 3D coordinate data to construct the 3D motion capture
dataset to predict metrics representing upper limb function. During 3D motion capture, we

obtained a total of 30 coordinate data per trial, consisting of X, Y, and Z coordinates data

Vi



of 10 reflex markers: Trunk (4), Shoulder, Elbow, Wrist (2), Finger (2). Second, we used
330 video clips to construct a 2D video dataset to predict metrics representing upper limb
function. 2D keypoints were extracted through pose estimation using the RTMPose method.
We obtained a total of 14-coordinate data per video, consisting of X and Y coordinates of
7 keypoints of upper limb from 2D video; Trunk, Shoulder, Elbow, Wrist (2), Finger (2).
The Convolutional Neural Network (CNN) and Temporal Convolutional Network (TCN)
were used to classify FMA and BBT into 3 groups by severity of upper limb dysfunction
and to estimate temporospatial parameters and APS. The input data were divided into a
training set (60%), a validation set (20%), and a test set (20%).

We found that a CNN performed better than a TCN for all predictions regardless of
whether 3D or 2D data were used. The CNN model using 3D data had accuracy, precision,
recall, and F1-score exceeding 90 for FMA-UE (91.13,90.27,90.35 and 90.31, respectively)
and 72 for BBT prediction (79.03, 72.54, 73.96 and 73.24, respectively). The predicted MT,
IC, NMU and APS had moderate to strong correlations with true value (r=0.544, 0.755,
0.601 and 0.783). The performance metrics were similar, each exceeding 80 for FMA-UE
prediction (89.23, 88.39, 85.97 and 87.16, respectively) and 73 for BBT prediction (76.92,
73.79, 75.51 and 74.64, respectively) when a CNN model was used with 2D data. The
predicted MT, IC, NMU and APS had moderate to strong correlations with true value
(r=0.528, 0.703, 0.625 and 0.569, respectively).

The deep learning method gave highly promising results in predicting upper limb
function of stroke patients using only single 2D video recorded during simple activity of
daily living. The upper limb dysfunction could be classified according to its severity
according to FMA and BBT. Also, temporospatial parameters and APS showed moderate

to strong correlation with the predicted values and true values.

Key words: stroke, upper limb function, prediction, deep learning, activity of daily

living
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Prediction of upper limb function from simple activity of daily living using deep
learning in patients with stroke

Dain Shim

Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Dong-wook Rha)

I. INTRODUCTION

Stroke is a major health problem and a leading cause of adult disability worldwide.! A
stroke is caused by a burst or blockage of a blood vessel in the brain, which can result in
loss or limitation of upper limb function.? Accurate measurement of upper limb function is
important for confirming stroke patients’ functional state, planning appropriate treatment,
and improving motor function and quality of daily life.> Existing methods to evaluate upper
limb function in stroke patients can be divided into two major categories. The first category
consists of clinical methods in which clinicians or therapists observe a patient’s movements
and score upper limb function using evaluation tools whose reliability and validity have
been proven. Examples of such tools include the Fugl-Meyer Assessment-Upper Extremity
(FMA-UE), Box and Block test (BBT), and Jepsen Taylor hand function test.*” However,
these evaluations involve subjective judgments made by humans, so well-trained clinicians
are needed to ensure their accuracy, and their results are semi-quantitative. The second
major way to evaluate upper limb function in patients with stroke is by a three-dimensional
(3D) computerized motion analysis test.® In this method, two or more infrared cameras
record the movements of reflective markers attached to points on the subject’s body, and
the 3D coordinates of the markers are inversely calculated by triangulation after the subject
is projected from the same point.’ Although this method provides relatively objective and

guantitative data, it requires expensive hardware and analysis software as well as a large



space to install the hardware. In addition, highly skilled experts are needed to post-process
the vast amount of data obtained and interpret the results. Since a vast amount of data is
difficult to interpret easily, clinically meaningful parameters can be calculated using 3D
motion capture data. In a previous study, Arm Profile Score (APS), which is a kinematic
parameter, and spatiotemporal parameters including movement time, index of curvature,
and number of movement units obtained from 3D motion analysis were found to have high
correlations with upper limb function in children with cerebral palsy. However, to obtain
these parameters, post-processing and a separate calculation process were required after the
3D motion capture.!%-!!

To overcome the limitations of existing methods for evaluation of upper limb function in
patients with stroke, a new method using Artificial Intelligence (Al) technology is needed.
Al and big data are currently being applied to many economic and social fields, resulting
in innovative changes.!? In particular, the development of Al is having a great impact on
the medical field.!>!> For example, Al is being used to interpret CT and MRI images and
reduce doctors' reading times in Radiology Departments,'® and to analyze physical function
by using motion data for diagnosis or monitoring for functional recovery in Departments
of Rehabilitation Medicine.!” In addition, with the recent worldwide Covid-19 pandemic,
interest in non-face-to-face or remote medical treatment has increased,'®"* and several
researchers have focused on using Al to improve the digital healthcare workflow.?
Ongoing advances in Al have the potential to bring many more changes to medical
diagnosis and treatment systems in the future.?! These innovations are expected to
transform traditional medical practices by increasing non-face-to-face patient diagnosis and
treatment and providing personalized healthcare services effortlessly.?

The motion of objects can be detected and recognized by combining Al technology with
image processing and analysis.”* Furthermore, studies are being reported that estimate
human motion and predict body functions using markerless motion capture from two-
dimensional (2D) images.>* For example, one study reported that gait metrics were well

predicted using Al with 2D video recorded by a single camera.?> Compared with marker-



based motion capture, which is highly dependent on specialized hardware, markerless
motion capture is inexpensive, independent of location, and easy to interpret because it
does not require a complicated inspection process. We want to develop a convenient
method that uses Al to measure body function based on 2D video of a subject's movement
without trained experts and expensive equipment.

The ultimate goal of this study was to develop deep learning algorithms that predict upper
limb function using 2D video data recorded while patients with stroke conduct only simple
activities of daily living. To achieve this goal, three processes were performed. First, we
developed deep learning algorithms to predict upper limb function using 3D motion capture
data and explored the possibility of similarly predicting upper limb function with 2D video
data. Second, to implement markerless motion capture, we used a pose estimation
algorithm to accurately detect keypoints from 2D video. Third, we developed deep learning

algorithms to predict upper limb function using 2D keypoint data estimated from 2D video.

Il. MATERIALS AND METHODS
1. Participants

Participants were stroke patients visited to the Department of Rehabilitation Medicine in
Severance rehabilitation hospital between October 2014 and September 2023 who
underwent upper limb motion analysis test and clinical upper limb function evaluation.
Inclusion criteria for the study were: (1) adults with stroke 18 years of age or older, (2)
hemiplegic or quadriplegic patients, and (3) clinical assessment and 3D motion analysis
performed within seven days. Patients were excluded if they met any of the following
criteria: (1) had other musculoskeletal or nervous system disorders, (2) had insufficient
cognitive function to follow the instructions for clinical assessment and 3D motion analysis,

or (3) were judged by the researcher to be unsuitable for participation.

2. Study design

This retrospective study used clinical measurements and 3D motion capture data from 265



patients with stroke who underwent clinical evaluation of upper limb function and 3D
motion capture-based analysis of upper limb motion in the Department of Rehabilitation
Medicine at Severance Rehabilitation Hospital between October 2014 and September 2023.
Clinical evaluation and 3D motion analysis of the upper extremities are performed as
standard treatments for patients with stroke with upper limb functional impairment at
Severance Rehabilitation Hospital. In addition, 2D video data were recorded
simultaneously with 3D motion capture from October 2021 to September 2023. Ethical
approval for this study was granted by the institutional review board and ethics committee
(4-2023-0450). In our study, we used upper limb movement data to estimate parameters
representing upper limb function that are currently being used in the hospital based on Al.

Figure 1 summarizes the overall workflow of the study.
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Figure 1. Overall workflow diagram



3. Data collection
A. Clinical Upper limb Functional assessment
(1) Fugl-Meyer Assessment-Upper Extremity

FMA-UE is a tool used to evaluate function of the shoulder, elbow, forearm, wrist, and
hand in patients with stroke. It has high reliability, with test-retest reliability of 0.94 and
inter-rater reliability of 0.99.*7 The FMA-UE score is based on multiple items measured
on a three-point scale, with a maximum total score of 66 points. Overall upper limb
functional impairment can be summarized in three categories: severe (0-28 points),
moderate (29-58 points), and mild (59-66 points).2¢-%’

(2) Box and Block Test

The BBT is an evaluation tool in which hand dexterity is measured based on the number
of blocks a patient can move, one at a time, into a box in 1 min.® The test-retest reliability
is 0.98, and the inter-rater reliability is 0.95, indicating high reliability. Task-oriented
function of the upper limb can be summarized by the following equation: Patient's Score —
Mean Score / Standard Deviation (SD), where the Mean Score and SD refer to age- and
gender-matched healthy individuals, and the result is classified as normal (0 to —2SD), mild
(-2SD to -3SD), or severe (< —-3SD).%

B. Three-dimensional upper limb motion analysis test

Upper limb motion analysis was performed by using a computerized 3D motion capture
system (VICON MX-T10 Motion Analysis System, Oxford Metrics Inc., Oxford, UK) to
record trajectories of reflective markers while patients performed the Reach & Grasp Cycle
(Figure 2).%-*! Patients performed the Reach & Grasp Cycle at a self-selected speed while
sitting in front of a table in the motion analysis lab at Severance Rehabilitation Hospital.
During the examination, 16 markers (C7, T10, clavicle, sternum, acromio-clavicle joint,
lateral epicondyles, styloid processes of radius, heads of ulna, 2nd and 5th metacarpal joints

of hands) were attached to both arms and the trunk according to the plug-in gait upper body



model (Figure 3). From a starting position sitting at the table with the elbow and knee flexed
at 90 degrees, the Reach & Grasp Cycle consists of four tasks: reaching for a cup on the
table (T1), holding the cup and bringing it to the mouth (T2), putting the cup back in place
(T3), and returning to the starting position (T4; Figure 4). The movements of each marker
were recorded with six infrared cameras, and the coordinate data of each marker were
obtained by post-processing on a computer with Nexus software version 1.8.5 connected
to the motion analysis equipment. In addition, inverse kinematic analysis was performed to
calculate the angles of each joint of the upper limb and determine any deficiency of upper

limb movement.

Figure 3. Marker set of 3D upper limb motion capture.

(A) Side view, (B) Front view, (c) Back view.
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Figure 4. Reach & Grasp Cycle

C. Two-dimensional video

A 2D sagittal view of patients performing the Reach & Grasp Cycle during the 3D motion

analysis test was recorded at 30 frames per second with a resolution of 1920 x 1080 pixels

using a digital RGB camera positioned about 2—3 m from the patient’s seat (Figure 5).

Figure 5. Sagittal view of 2D video



D. Metrics representing upper limb function

The variables representing upper limb function to be predicted using Al can be classified
into two types as follows: 1) clinical metrics measured by clinician observation of patients
and 2) parameters derived from the 3D motion analysis. The two clinical metrics used were
the FMA-UE score and the BBT score, both of which can be categorized into three groups
based on the severity of upper limb dysfunction. The parameters derived from the 3D
motion analysis consisted of three spatiotemporal parameters (movement time, index of
curvature, and number of movement units) and the Arm Profile Score (APS).!%!!
Movement time is the time required to complete each phase of the Reach & Grasp Cycle.
Index of curvature, which represents the efficiency of upper limb movement, is calculated
by dividing the length of the trajectory of the wrist marker during each phase of the Reach
& Grasp Cycle by the linear distance between the initial and final marker positions (Figure
6). Number of movement units is a value representing the smoothness of upper limb
movement and is calculated by calculating the number of acceleration—deceleration
inflection points in the velocity profile of the wrist marker during the Reach & Grasp Cycle
(Figure 7). The APS is a kinematic parameter calculated from 3D motion capture data by
determining the Root Mean Square Error (RMSE) value between the kinematic data of
individuals with upper limb dysfunction and the average kinematic data of individuals
without upper limb pathology (Figure 8).!! Specifically, the APS is an average of 10 Arm
Variable Scores: Trunk Tilt, Trunk Obliquity, Trunk Rotation, Shoulder Flexion/Extension,
Shoulder Abduction/Adduction, Shoulder Rotation, Elbow Flexion/Extension, Wrist
Flexion/Extension, Wrist Deviation, and Wrist Rotation. The higher the APS, the higher
the severity of upper limb movement impairment.

We classified clinical function evaluation FMA-UE and BBT into 3 groups, and estimated
the parameter derived from 3D motion capture data through regression with the coordinate

data obtained from 3D motion capture using the deep learning model (Table 1).
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Table 1. Parameters predicted by deep learning

Parameters Prediction method
1. Fugl-Meyer Assessment - Classification of 3 groups
Clinical metrics Upper Extremity (severe, moderate, mild)

Classification of 3 groups

2. Box and Block Test (severe, mild, normal)

3. Movement times

Parameters derived Temporospatial 4. Index of curvature Regression of a continuous
. arameters value
from the 3D motion P 5. Number of movement
. units
analysis : : : :
I;;?;?::eli 6. Arm Profile Score Regresswnvci 1;1econt1nuous
E. Input data

(1) Three-dimensional motion capture dataset
The input data for Al to predict upper limb function metrics based on 3D motion capture

data consisted of coordinate values of 10 markers: Trunk (4), Shoulder, Elbow, Wrist (2),

10



and Finger (2). To solve the problem of global translation, the coordinate value of the
sternum marker was set to O for each patient. In addition, because each patient performed
the Reach & Grasp Cycle at a self-selected speed, time normalization was performed using
TimeSeriesResampler to set all data frames to 2000. The format of the 3D coordinate input
data (relative X, Y and Z coordinates of the 10 markers) represented a 2D matrix with a
feature dimension (30) as a vertical axis and a time dimension (2000) as a horizontal axis
(Figure 9). The 3D motion capture data included 624 datasets of 265 patients. To train the
deep learning models, these datasets were divided into a training set (60%), a validation
set (20%), and a test set (20%; Table 2).

Frame (2000)

T
<7 )
¢ )

10 ¢

T10 (y)
T10 ()

finger 2 oo I
Finger 2 ) I
Finger 2 ) I

Feature (30)

Figure 9. Input dataset format 1. Time series data of 3D coordinates measured by 3D
motion capture

Table 2. Number of 3D coordinate dataset

Train  Validation  Test Total
Fugl-Meyer Assessment -Upper Extremity 373 127 124 624
Box and Block Test 370 127 124 621
Arm Profile Score 347 114 114 575
Temporospatial parameters 347 114 114 575

11



(2) Two-dimensional video dataset

Two-dimensional keypoints recorded in 2D video while patients performed the Reach &
Grasp Cycle were extracted using the RTMPose algorithm applied through the MMPose
tool developed by Open-mmlab (Figure 10). RTMPose follows a top-down paradigm by
first finding the object bounding box using CSPNeXt as a backbone model, which has
excellent speed and accuracy, and then estimating each pose individually using a SimCC-
based algorithm, which has competitive accuracy with relatively few calculations.?*3
Before it was applied to the video of patients performing the Reach & Grasp Cycle,
RTMPose was trained with the COCO-WholeBody dataset, which contains annotated
whole-body keypoints from 200,000 images.?> The COCO-WholeBody dataset is an
extension of the COCO dataset and includes a total of 133 keypoints, with 68 detailed
keypoints on the face, 42 on the hand, and 6 on the foot added to 17 existing keypoints for
the body (Figure 11). The COCO-WholeBody dataset, rather than the more commonly used
COCO dataset, was used because it contains detailed hand keypoints important in upper
limb movements. The 2D keypoints in the COCO-WholeBody dataset used to train
RTMPose were similar to the markers used in the 3D motion capture dataset and included
the shoulder (6, 7), elbow (8, 9), wrist (10, 11), carpometacarpal joint of the thumb (93,
113), and metacarpal joints of the 2nd and 5th fingers (97, 109, 118, 130). The median
value of the right shoulder and left shoulder was used for the trunk.
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Figure 10. Pose estimation by RTMPose. A green box: the box that detects the subject,

Small circles and the lines: keypoints of the subject and the lines connecting keypoints.
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Figure 11. Keypoint annotations of COCO-wholebody dataset

13



The coordinate values of seven keypoints in the 2D video dataset [Trunk, Shoulder,
Elbow, Wrist (2), and Finger (2)] were used as input data for predicting upper limb function
metrics with Al. To solve the problem of global translation, normalization was performed
to the maximum size of the bounding box that recognizes individuals in the 2D video. The
X and Y coordinates of the exact center of the bounding box were each set to 0, and the
maximum and minimum values of the coordinates of each keypoint were set to 1 and -1,
respectively. In the 2D video dataset, the horizontal position was indicated on the X axis,
and the vertical position was indicated on the Y axis. In addition, because each patient
performed the Reach & Grasp Cycle at a self-selected speed, time normalization was
performed using TimeSeriesResampler to set all data frames to 600. The format of the 2D
video input data (relative X and Y coordinates of seven keypoints) represented a 2D matrix
with a feature dimension (14) as a vertical axis and a time dimension (600) as a horizontal
axis (Figure 12). The 2D video data included 330 datasets of 103 patients. To train the
deep learning model, the input data were divided into a training set (60%), a validation set
(20%), and a test set (20%; Table 3).

Frame (600)

Trunk{x)
Trunk(y)
Shoulder(x)
Shoulder(y)

Elbow(x) Time Se I"ies data

Elbow(y)

Feature (14)

PinkyFinger(x)
PinkyFinger(y)

Figure 12. Input dataset format 2. Time series data of 2D keypoints estimated in 2D videos.
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Table 3. Number of 2D keypoint dataset

Train  Validation  Test Total
Fugl-Meyer Assessment -Upper Extremity 199 66 65 330
Box and Block Test 199 66 65 330
Arm Profile Score 117 39 40 196
Temporospatial parameters 117 39 40 196

4. Deep learning model
A. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a deep learning algorithm that excels in image
and time series data recognition and processing. The core of the CNN approach is to extract
and understand the data features through convolution and pooling. Convolution refers to
the process of extracting information by moving a small filter over the data. During this
process, the filter is optimized to recognize a specific pattern, giving the CNN the ability
to extract high-level information by recognizing various features. Pooling is the process of
simplifying the information extracted from convolutions. By reducing the size of the data
or emphasizing certain information, pooling enables efficient processing by leaving only
notable features. A one-dimensional (1D) CNN model moves in only one direction in
sequence data, making it very suitable for time series analysis. Therefore, we used a 1D

CNN maodel to detect and train patterns according to spatial dimensions.

(1) Three-dimensional motion capture dataset
We classified 3D datasets according to predicted FMA-UE and BBT scores by training a
CNN model with time series coordinate data from 3D motion capture of the Reach & Grasp
Cycle. The CNN architecture for classification is shown in Figure 13. Convolution was
performed with a filter size of 3 and a stride of 1. To overcome the vanishing gradient
problem, we used leaky rectified linear unit (leakyRelu) as the activation function, which
allows models to learn faster and perform more efficiently. After convolution, max pooling

was performed to simplify the time axis data. The CNN was trained with a total of six
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convolution layers + pooling layers. The convolution block was composed of 1D
convolutional layers, which are widely used in time series data processing because they
calculate the output while moving only horizontally. Adam was used as the optimizer, and
the loss function minimized by the model was cross-entropy. The batch size was 64 and
the initial learning rate was 0.001. Drop-out was set to 0.4 to randomly remove some
neurons to prevent the model from becoming overly dependent on specific neurons.
Iteratively convolutioned and pooled data were flattened to create a fully connected neural
network, and the softmax function was used to find the probability of belonging to each of
the three categories of FMA-UE and BBT.

We also used a CNN model to estimate continuous values of spatiotemporal parameters
and APS in 3D datasets by regression. The CNN architecture for regression is shown in
Figure 14. The CNN regression model was trained with the same 1D CNN architecture as
the classification model with three stacked convolution layers. The loss function was the
mean square error (MSE), and the optimizer was Adam. The batch size was 64 and the
initial learning rate was 0.001. After flattening, the output was changed to 1 so that a

continuous value came out.
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