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ABSTRACT 
 

Prediction of upper limb function from simple activity of daily living using deep 

learning in patients with stroke 
 

Dain Shim 
 

Department of Medicine 

The Graduate School, Yonsei University  
 

(Directed by Professor Dong-wook Rha) 
 

 

Upper limb function in stroke patients is commonly determined by clinical 

measurements such as the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) and Box 

and Block Test (BBT), which are time-consuming and require trained clinicians. Three-

dimensional (3D) computerized motion analysis is one alternative, but it is also time-

consuming and requires expensive devices. So, we wanted to know if we could predict 

upper limb function from simple activity of daily life using deep learning. The aim of this 

study was to predict upper limb function in stroke patients using deep learning with short 

two-dimensional (2D) videos of patients performing a simple activity of daily living. To 

achieve this, we first developed models to predict metrics representing upper limb function 

using 3D motion capture data of patients with stroke. We then developed similar models to 

predict the same metrics using keypoints in 2D video data of patients with stroke. 

We collected FMA-UE score, BBT score, the temporospatial parameters including 

Movement Time (MT), Index of Curvature (IC) and Number of Movement Units (NMU) 

and Arm Profile Score (APS) from 3D motion capture in 265 stroke patients from 2014 to 

2023. In addition, 2D video data recorded during Reach & Grasp Cycle were collected in 

103 stroke patients from 2021 to 2023. Two versions of input data were used to train the 

deep learning model. First, we used 3D coordinate data to construct the 3D motion capture 

dataset to predict metrics representing upper limb function. During 3D motion capture, we 

obtained a total of 30 coordinate data per trial, consisting of X, Y, and Z coordinates data 
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of 10 reflex markers: Trunk (4), Shoulder, Elbow, Wrist (2), Finger (2). Second, we used 

330 video clips to construct a 2D video dataset to predict metrics representing upper limb 

function. 2D keypoints were extracted through pose estimation using the RTMPose method. 

We obtained a total of 14-coordinate data per video, consisting of X and Y coordinates of 

7 keypoints of upper limb from 2D video; Trunk, Shoulder, Elbow, Wrist (2), Finger (2). 

The Convolutional Neural Network (CNN) and Temporal Convolutional Network (TCN) 

were used to classify FMA and BBT into 3 groups by severity of upper limb dysfunction 

and to estimate temporospatial parameters and APS. The input data were divided into a 

training set (60%), a validation set (20%), and a test set (20%). 

We found that a CNN performed better than a TCN for all predictions regardless of 

whether 3D or 2D data were used. The CNN model using 3D data had accuracy, precision, 

recall, and F1-score exceeding 90 for FMA-UE (91.13, 90.27, 90.35 and 90.31, respectively) 

and 72 for BBT prediction (79.03, 72.54, 73.96 and 73.24, respectively). The predicted MT, 

IC, NMU and APS had moderate to strong correlations with true value (r=0.544, 0.755, 

0.601 and 0.783). The performance metrics were similar, each exceeding 80 for FMA-UE 

prediction (89.23, 88.39, 85.97 and 87.16, respectively) and 73 for BBT prediction (76.92, 

73.79, 75.51 and 74.64, respectively) when a CNN model was used with 2D data. The 

predicted MT, IC, NMU and APS had moderate to strong correlations with true value 

(r=0.528, 0.703, 0.625 and 0.569, respectively). 

The deep learning method gave highly promising results in predicting upper limb 

function of stroke patients using only single 2D video recorded during simple activity of 

daily living. The upper limb dysfunction could be classified according to its severity 

according to FMA and BBT. Also, temporospatial parameters and APS showed moderate 

to strong correlation with the predicted values and true values. 

                                                                   

Key words: stroke, upper limb function, prediction, deep learning, activity of daily 

living 
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I. INTRODUCTION 

 Stroke is a major health problem and a leading cause of adult disability worldwide.1 A 

stroke is caused by a burst or blockage of a blood vessel in the brain, which can result in 

loss or limitation of upper limb function.2 Accurate measurement of upper limb function is 

important for confirming stroke patients’ functional state, planning appropriate treatment, 

and improving motor function and quality of daily life.3 Existing methods to evaluate upper 

limb function in stroke patients can be divided into two major categories. The first category 

consists of clinical methods in which clinicians or therapists observe a patient’s movements 

and score upper limb function using evaluation tools whose reliability and validity have 

been proven. Examples of such tools include the Fugl-Meyer Assessment-Upper Extremity 

(FMA-UE), Box and Block test (BBT), and Jepsen Taylor hand function test.4-7 However, 

these evaluations involve subjective judgments made by humans, so well-trained clinicians 

are needed to ensure their accuracy, and their results are semi-quantitative. The second 

major way to evaluate upper limb function in patients with stroke is by a three-dimensional 

(3D) computerized motion analysis test.8 In this method, two or more infrared cameras 

record the movements of reflective markers attached to points on the subject’s body, and 

the 3D coordinates of the markers are inversely calculated by triangulation after the subject 

is projected from the same point.9 Although this method provides relatively objective and 

quantitative data, it requires expensive hardware and analysis software as well as a large 
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space to install the hardware. In addition, highly skilled experts are needed to post-process 

the vast amount of data obtained and interpret the results. Since a vast amount of data is 

difficult to interpret easily, clinically meaningful parameters can be calculated using 3D 

motion capture data. In a previous study, Arm Profile Score (APS), which is a kinematic 

parameter, and spatiotemporal parameters including movement time, index of curvature, 

and number of movement units obtained from 3D motion analysis were found to have high 

correlations with upper limb function in children with cerebral palsy. However, to obtain 

these parameters, post-processing and a separate calculation process were required after the 

3D motion capture.10-11  

 To overcome the limitations of existing methods for evaluation of upper limb function in 

patients with stroke, a new method using Artificial Intelligence (AI) technology is needed. 

AI and big data are currently being applied to many economic and social fields, resulting 

in innovative changes.12 In particular, the development of AI is having a great impact on 

the medical field.13-15 For example, AI is being used to interpret CT and MRI images and 

reduce doctors' reading times in Radiology Departments,16 and to analyze physical function 

by using motion data for diagnosis or monitoring for functional recovery in Departments 

of Rehabilitation Medicine.17 In addition, with the recent worldwide Covid-19 pandemic, 

interest in non-face-to-face or remote medical treatment has increased,18-19 and several 

researchers have focused on using AI to improve the digital healthcare workflow.20 

Ongoing advances in AI have the potential to bring many more changes to medical 

diagnosis and treatment systems in the future.21 These innovations are expected to 

transform traditional medical practices by increasing non-face-to-face patient diagnosis and 

treatment and providing personalized healthcare services effortlessly.22 

 The motion of objects can be detected and recognized by combining AI technology with 

image processing and analysis.23 Furthermore, studies are being reported that estimate 

human motion and predict body functions using markerless motion capture from two-

dimensional (2D) images.24 For example, one study reported that gait metrics were well 

predicted using AI with 2D video recorded by a single camera.25 Compared with marker-
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based motion capture, which is highly dependent on specialized hardware, markerless 

motion capture is inexpensive, independent of location, and easy to interpret because it 

does not require a complicated inspection process. We want to develop a convenient 

method that uses AI to measure body function based on 2D video of a subject's movement 

without trained experts and expensive equipment. 

The ultimate goal of this study was to develop deep learning algorithms that predict upper 

limb function using 2D video data recorded while patients with stroke conduct only simple 

activities of daily living. To achieve this goal, three processes were performed. First, we 

developed deep learning algorithms to predict upper limb function using 3D motion capture 

data and explored the possibility of similarly predicting upper limb function with 2D video 

data. Second, to implement markerless motion capture, we used a pose estimation 

algorithm to accurately detect keypoints from 2D video. Third, we developed deep learning 

algorithms to predict upper limb function using 2D keypoint data estimated from 2D video. 

 

II. MATERIALS AND METHODS 

1. Participants 

Participants were stroke patients visited to the Department of Rehabilitation Medicine in 

Severance rehabilitation hospital between October 2014 and September 2023 who 

underwent upper limb motion analysis test and clinical upper limb function evaluation. 

Inclusion criteria for the study were: (1) adults with stroke 18 years of age or older, (2) 

hemiplegic or quadriplegic patients, and (3) clinical assessment and 3D motion analysis 

performed within seven days. Patients were excluded if they met any of the following 

criteria: (1) had other musculoskeletal or nervous system disorders, (2) had insufficient 

cognitive function to follow the instructions for clinical assessment and 3D motion analysis, 

or (3) were judged by the researcher to be unsuitable for participation. 

 

2. Study design 

This retrospective study used clinical measurements and 3D motion capture data from 265 
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patients with stroke who underwent clinical evaluation of upper limb function and 3D 

motion capture-based analysis of upper limb motion in the Department of Rehabilitation 

Medicine at Severance Rehabilitation Hospital between October 2014 and September 2023. 

Clinical evaluation and 3D motion analysis of the upper extremities are performed as 

standard treatments for patients with stroke with upper limb functional impairment at 

Severance Rehabilitation Hospital. In addition, 2D video data were recorded 

simultaneously with 3D motion capture from October 2021 to September 2023. Ethical 

approval for this study was granted by the institutional review board and ethics committee 

(4-2023-0450). In our study, we used upper limb movement data to estimate parameters 

representing upper limb function that are currently being used in the hospital based on AI. 

Figure 1 summarizes the overall workflow of the study. 

 

 

Figure 1. Overall workflow diagram 
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3. Data collection 

A. Clinical Upper limb Functional assessment 

(1) Fugl-Meyer Assessment-Upper Extremity 

FMA-UE is a tool used to evaluate function of the shoulder, elbow, forearm, wrist, and 

hand in patients with stroke. It has high reliability, with test-retest reliability of 0.94 and 

inter-rater reliability of 0.99.4-7 The FMA-UE score is based on multiple items measured 

on a three-point scale, with a maximum total score of 66 points. Overall upper limb 

functional impairment can be summarized in three categories: severe (0–28 points), 

moderate (29–58 points), and mild (59–66 points).26-27 

 

(2) Box and Block Test 

The BBT is an evaluation tool in which hand dexterity is measured based on the number 

of blocks a patient can move, one at a time, into a box in 1 min.6 The test-retest reliability 

is 0.98, and the inter-rater reliability is 0.95, indicating high reliability. Task-oriented 

function of the upper limb can be summarized by the following equation: Patient's Score – 

Mean Score / Standard Deviation (SD), where the Mean Score and SD refer to age- and 

gender-matched healthy individuals, and the result is classified as normal (0 to –2SD), mild 

(–2SD to –3SD), or severe (< –3SD).28 

 

B. Three-dimensional upper limb motion analysis test 

Upper limb motion analysis was performed by using a computerized 3D motion capture 

system (VICON MX-T10 Motion Analysis System, Oxford Metrics Inc., Oxford, UK) to 

record trajectories of reflective markers while patients performed the Reach & Grasp Cycle 

(Figure 2).29-31 Patients performed the Reach & Grasp Cycle at a self-selected speed while 

sitting in front of a table in the motion analysis lab at Severance Rehabilitation Hospital. 

During the examination, 16 markers (C7, T10, clavicle, sternum, acromio-clavicle joint, 

lateral epicondyles, styloid processes of radius, heads of ulna, 2nd and 5th metacarpal joints 

of hands) were attached to both arms and the trunk according to the plug-in gait upper body 
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model (Figure 3). From a starting position sitting at the table with the elbow and knee flexed 

at 90 degrees, the Reach & Grasp Cycle consists of four tasks: reaching for a cup on the 

table (T1), holding the cup and bringing it to the mouth (T2), putting the cup back in place 

(T3), and returning to the starting position (T4; Figure 4). The movements of each marker 

were recorded with six infrared cameras, and the coordinate data of each marker were 

obtained by post-processing on a computer with Nexus software version 1.8.5 connected 

to the motion analysis equipment. In addition, inverse kinematic analysis was performed to 

calculate the angles of each joint of the upper limb and determine any deficiency of upper 

limb movement. 

 

 

Figure 2. 3D upper limb motion capture 

 

   
Figure 3. Marker set of 3D upper limb motion capture. 

(A) Side view, (B) Front view, (c) Back view. 
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Figure 4. Reach & Grasp Cycle 

 

C. Two-dimensional video  

 A 2D sagittal view of patients performing the Reach & Grasp Cycle during the 3D motion 

analysis test was recorded at 30 frames per second with a resolution of 1920  1080 pixels 

using a digital RGB camera positioned about 2–3 m from the patient’s seat (Figure 5). 

 

 

Figure 5. Sagittal view of 2D video 
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D. Metrics representing upper limb function  

The variables representing upper limb function to be predicted using AI can be classified 

into two types as follows: 1) clinical metrics measured by clinician observation of patients 

and 2) parameters derived from the 3D motion analysis. The two clinical metrics used were 

the FMA-UE score and the BBT score, both of which can be categorized into three groups 

based on the severity of upper limb dysfunction. The parameters derived from the 3D 

motion analysis consisted of three spatiotemporal parameters (movement time, index of 

curvature, and number of movement units) and the Arm Profile Score (APS).10-11 

Movement time is the time required to complete each phase of the Reach & Grasp Cycle. 

Index of curvature, which represents the efficiency of upper limb movement, is calculated 

by dividing the length of the trajectory of the wrist marker during each phase of the Reach 

& Grasp Cycle by the linear distance between the initial and final marker positions (Figure 

6). Number of movement units is a value representing the smoothness of upper limb 

movement and is calculated by calculating the number of acceleration–deceleration 

inflection points in the velocity profile of the wrist marker during the Reach & Grasp Cycle 

(Figure 7). The APS is a kinematic parameter calculated from 3D motion capture data by 

determining the Root Mean Square Error (RMSE) value between the kinematic data of 

individuals with upper limb dysfunction and the average kinematic data of individuals 

without upper limb pathology (Figure 8).11 Specifically, the APS is an average of 10 Arm 

Variable Scores: Trunk Tilt, Trunk Obliquity, Trunk Rotation, Shoulder Flexion/Extension, 

Shoulder Abduction/Adduction, Shoulder Rotation, Elbow Flexion/Extension, Wrist 

Flexion/Extension, Wrist Deviation, and Wrist Rotation. The higher the APS, the higher 

the severity of upper limb movement impairment.  

We classified clinical function evaluation FMA-UE and BBT into 3 groups, and estimated 

the parameter derived from 3D motion capture data through regression with the coordinate 

data obtained from 3D motion capture using the deep learning model (Table 1). 
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Figure 6. Index of curvature. The path length of wrist marker divided by shortest linear 

distance during each phase of the Reach & Grasp Cycle 

 

 

Figure 7. Number of movement units. The number of red circles: acceleration–deceleration 

inflection points in the velocity profile of the wrist marker during the Reach & Grasp Cycle. 
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Figure 8. Arm Profile Score. The average of root mean square error values of 10 upper limb 

movements. 

 

Table 1. Parameters predicted by deep learning 
              

  Parameters Prediction method 

 

Clinical metrics 

 

1. Fugl-Meyer Assessment -  

Upper Extremity 

Classification of 3 groups 

(severe, moderate, mild) 

2. Box and Block Test 
Classification of 3 groups  

(severe, mild, normal) 

Parameters derived 

from the 3D motion 

analysis 

Temporospatial 

parameters 

3. Movement times 
 

Regression of a continuous 

value  

 

4. Index of curvature 

5. Number of movement 

units 

Kinematic  

parameter 
6. Arm Profile Score 

Regression of a continuous 

value  

 

E. Input data  

(1) Three-dimensional motion capture dataset 

The input data for AI to predict upper limb function metrics based on 3D motion capture 

data consisted of coordinate values of 10 markers: Trunk (4), Shoulder, Elbow, Wrist (2), 
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and Finger (2). To solve the problem of global translation, the coordinate value of the 

sternum marker was set to 0 for each patient. In addition, because each patient performed 

the Reach & Grasp Cycle at a self-selected speed, time normalization was performed using 

TimeSeriesResampler to set all data frames to 2000. The format of the 3D coordinate input 

data (relative X, Y and Z coordinates of the 10 markers) represented a 2D matrix with a 

feature dimension (30) as a vertical axis and a time dimension (2000) as a horizontal axis 

(Figure 9). The 3D motion capture data included 624 datasets of 265 patients. To train the 

deep learning models, these datasets were divided into a training set (60%), a validation 

set (20%), and a test set (20%; Table 2). 

 

 

Figure 9. Input dataset format 1. Time series data of 3D coordinates measured by 3D 

motion capture 

 

Table 2. Number of 3D coordinate dataset  

 Train Validation Test Total 

Fugl-Meyer Assessment -Upper Extremity 373 127 124 624 

Box and Block Test 370 127 124 621 

Arm Profile Score 347 114 114 575 

Temporospatial parameters 347 114 114 575 
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(2) Two-dimensional video dataset 

Two-dimensional keypoints recorded in 2D video while patients performed the Reach & 

Grasp Cycle were extracted using the RTMPose algorithm applied through the MMPose 

tool developed by Open-mmlab (Figure 10). RTMPose follows a top-down paradigm by 

first finding the object bounding box using CSPNeXt as a backbone model, which has 

excellent speed and accuracy, and then estimating each pose individually using a SimCC-

based algorithm, which has competitive accuracy with relatively few calculations.33-35 

Before it was applied to the video of patients performing the Reach & Grasp Cycle, 

RTMPose was trained with the COCO-WholeBody dataset, which contains annotated 

whole-body keypoints from 200,000 images.32 The COCO-WholeBody dataset is an 

extension of the COCO dataset and includes a total of 133 keypoints, with 68 detailed 

keypoints on the face, 42 on the hand, and 6 on the foot added to 17 existing keypoints for 

the body (Figure 11). The COCO-WholeBody dataset, rather than the more commonly used 

COCO dataset, was used because it contains detailed hand keypoints important in upper 

limb movements. The 2D keypoints in the COCO-WholeBody dataset used to train 

RTMPose were similar to the markers used in the 3D motion capture dataset and included 

the shoulder (6, 7), elbow (8, 9), wrist (10, 11), carpometacarpal joint of the thumb (93, 

113), and metacarpal joints of the 2nd and 5th fingers (97, 109, 118, 130). The median 

value of the right shoulder and left shoulder was used for the trunk. 
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Figure 10. Pose estimation by RTMPose. A green box: the box that detects the subject, 

Small circles and the lines: keypoints of the subject and the lines connecting keypoints. 

 

 

Figure 11. Keypoint annotations of COCO-wholebody dataset 
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The coordinate values of seven keypoints in the 2D video dataset [Trunk, Shoulder, 

Elbow, Wrist (2), and Finger (2)] were used as input data for predicting upper limb function 

metrics with AI. To solve the problem of global translation, normalization was performed 

to the maximum size of the bounding box that recognizes individuals in the 2D video. The 

X and Y coordinates of the exact center of the bounding box were each set to 0, and the 

maximum and minimum values of the coordinates of each keypoint were set to 1 and –1, 

respectively. In the 2D video dataset, the horizontal position was indicated on the X axis, 

and the vertical position was indicated on the Y axis. In addition, because each patient 

performed the Reach & Grasp Cycle at a self-selected speed, time normalization was 

performed using TimeSeriesResampler to set all data frames to 600. The format of the 2D 

video input data (relative X and Y coordinates of seven keypoints) represented a 2D matrix 

with a feature dimension (14) as a vertical axis and a time dimension (600) as a horizontal 

axis (Figure 12). The 2D video data included 330 datasets of 103 patients. To train the 

deep learning model, the input data were divided into a training set (60%), a validation set 

(20%), and a test set (20%; Table 3). 

 

 

Figure 12. Input dataset format 2. Time series data of 2D keypoints estimated in 2D videos. 
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Table 3. Number of 2D keypoint dataset 

 Train Validation Test Total 

Fugl-Meyer Assessment -Upper Extremity 199 66 65 330 

Box and Block Test 199 66 65 330 

Arm Profile Score 117 39 40 196 

Temporospatial parameters 117 39 40 196 

 

4. Deep learning model 

A. Convolutional Neural Network  

A Convolutional Neural Network (CNN) is a deep learning algorithm that excels in image 

and time series data recognition and processing. The core of the CNN approach is to extract 

and understand the data features through convolution and pooling. Convolution refers to 

the process of extracting information by moving a small filter over the data. During this 

process, the filter is optimized to recognize a specific pattern, giving the CNN the ability 

to extract high-level information by recognizing various features. Pooling is the process of 

simplifying the information extracted from convolutions. By reducing the size of the data 

or emphasizing certain information, pooling enables efficient processing by leaving only 

notable features. A one-dimensional (1D) CNN model moves in only one direction in 

sequence data, making it very suitable for time series analysis. Therefore, we used a 1D 

CNN model to detect and train patterns according to spatial dimensions. 

 

(1) Three-dimensional motion capture dataset  

We classified 3D datasets according to predicted FMA-UE and BBT scores by training a 

CNN model with time series coordinate data from 3D motion capture of the Reach & Grasp 

Cycle. The CNN architecture for classification is shown in Figure 13. Convolution was 

performed with a filter size of 3 and a stride of 1. To overcome the vanishing gradient 

problem, we used leaky rectified linear unit (leakyRelu) as the activation function, which 

allows models to learn faster and perform more efficiently. After convolution, max pooling 

was performed to simplify the time axis data. The CNN was trained with a total of six 
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convolution layers + pooling layers. The convolution block was composed of 1D 

convolutional layers, which are widely used in time series data processing because they 

calculate the output while moving only horizontally. Adam was used as the optimizer, and 

the loss function minimized by the model was cross-entropy. The batch size was 64 and 

the initial learning rate was 0.001. Drop-out was set to 0.4 to randomly remove some 

neurons to prevent the model from becoming overly dependent on specific neurons. 

Iteratively convolutioned and pooled data were flattened to create a fully connected neural 

network, and the softmax function was used to find the probability of belonging to each of 

the three categories of FMA-UE and BBT.  

We also used a CNN model to estimate continuous values of spatiotemporal parameters 

and APS in 3D datasets by regression. The CNN architecture for regression is shown in 

Figure 14. The CNN regression model was trained with the same 1D CNN architecture as 

the classification model with three stacked convolution layers. The loss function was the 

mean square error (MSE), and the optimizer was Adam. The batch size was 64 and the 

initial learning rate was 0.001. After flattening, the output was changed to 1 so that a 

continuous value came out. 

 

 

Figure 13. The architecture of the CNN classification using 3D motion capture dataset 
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Figure 14. The architecture of the CNN regression using 3D motion capture dataset 

 

(2) Two-dimensional video dataset  

We classified 2D datasets according to predicted FMA-UE and BBT scores by training a 

CNN model with time series keypoint coordinate data from 2D video of the Reach & Grab 

Cycle. The CNN architecture for classification is shown in Figure 15. Convolution was 

performed with a filter size of 7 and a stride of 1, with leakyRelu as the activation function. 

After convolution, max pooling was performed to simplify the time axis data. The model 

was trained with a total of six convolution layers + pooling layers. The convolution block 

was composed of 1D convolutional layers. Adam was used as the optimizer, and the loss 

function was cross-entropy. The batch size was 32, and the initial learning rate was 0.0001. 

Drop-out was set to 0.3. 

We also used a CNN model to estimate continuous values of APS and temporospatial 

parameters in 2D datasets by regression. The CNN architecture for regression is shown in 

Figure 16. The CNN regression model was trained with a 1D CNN architecture in the same 

way as the classification model with seven stacked convolution layers. The loss function 

was MSE, and the optimizer was Adam. The batch size was 64, and the initial learning rate 

was 0.001. After flattening, the output was changed to 1 so that continuous values came 

out. 
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Figure 15. The architecture of the CNN classification using 2D video dataset 

 

 

Figure 16. The architecture of the CNN regression using 2D video dataset 

 

B. Temporal Convolutional Network 

A Temporal Convolutional Network (TCN) is a deep learning model that shows high 

performance with time series datasets. Because of the characteristics of time series data, a 

TCN must satisfy causality, which depends on only the present and the past and not the 

future. A TCN uses causal convolution to prevent information from the future from flowing 

into the output at the current time. Additionally, dilated convolution is used to efficiently 
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identify information from distant time steps by 1D convolution. By using dilated 

convolution to add zero padding inside the filter, the receptive field is increased and 

calculations are reduced. By using causal dilated convolutional layers, a TCN reduces 

spatial dimension loss and improves computational efficiency by increasing the receptive 

field without using pooling in the sequence (Figure 17). Figure 18 shows the overall 

architecture of the TCN used in this study. 

 

 

Figure 17. Causal dilated convolutional layers of TCN 

 

 

Figure 18. The architecture of TCN 
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(1) Three-dimensional motion capture dataset  

We classified 3D datasets according to predicted FMA-UE and BBT scores by training 

the TCN model with the same 3D time series coordinate data used to train the CNN model. 

The residual block was composed of the dilated causal convolutional layer, the batchnorm 

layer, the activation layer, and the drop-out layer. For dilated causal convolution, the kernel 

size was 3, and 2, 4, and 8 were each used twice as dilated factors. Relu was used as the 

activation function, and Adam was used as the optimizer. The loss function was cross-

entropy. The batch size was 32, and the initial learning rate was 0.0001. Iteratively dilated 

convolutional data were flattened to create a fully connected neural network. The softmax 

function was used to find the probability of datasets belonging to each of the three 

categories of FMA-UE and BBT scores. 

We also estimated continuous values of APS and temporospatial parameters in 3D 

datasets by regression using a TCN model. The TCN regression model was trained with 

the same architecture as the TCN classification model. The loss function was MSE, and the 

optimizer was Adam. After flattening, the output was changed to 1 so that continuous 

values came out. 

 

(2) Two-dimensional video dataset  

We classified datasets according to predicted FMA-UE and BBT scores by training the 

TCN model with time series keypoint coordinate data from 2D video of the Reach & Grab 

Cycle. The model was composed of the same TCN architecture used for the 3D motion 

capture data. The initial learning rate was set to 0.1 to address overfitting problems related 

to the small dataset. We also estimated continuous values of APS and temporospatial 

parameters in 2D datasets by regression using a TCN model. The model used had the same 

architecture as the TCN model used for the 3D motion capture data. 

 

5. Evaluation of performance 

We calculated the accuracy, precision, recall, and F1-scores of the trained AI models to 
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evaluate the models’ performance. The accuracy is the total number of correct predictions 

divided by the total number of matched ground-truth values. The precision was calculated 

as the ratio of ground-truth positives to predicted positives. The recall was calculated as the 

ratio of predicted positives to ground-truth positives. The F1-score is an index defined as 

the harmonic average of the precision and the recall. To evaluate regression performance, 

we calculated the correlation coefficient between predicted values and ground-truth values. 

 

III. RESULTS 

1. Three-dimensional motion capture dataset 

A. FMA-UE classification  

We used the CNN and TCN models with data to classify 3D motion capture datasets into 

three categories based on predicted FMA-UE scores. Figure 19 shows the area under the 

receiver operating characteristic curve (ROC-AUC) for each category, the values of which 

were 0.98 (severe), 0.96 (moderate), and 0.97 (mild) for the CNN model and 0.95, 0.57, 

and 0.92 for the TCN model, respectively. The results of FMA-UE classification were also 

shown in the confusion matrix (Figure 20). Table 4 summarizes the performance of the 

deep learning models for FMA-UE classification using the 3D motion capture data. The 

accuracy, precision, recall, and F1-score of FMA-UE classification were 91.13%, 90.27%, 

90.35%, and 90.31% for the CNN model and 79.03%, 72.54%, 68.17%, and 73.19% for 

the TCN model, respectively. 



２２ 

 

 

Figure 19. The ROC-AUC of the FMA-UE classification using 3D motion capture 

dataset. (A) CNN, (B) TCN. 
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Figure 20. The confusion matrices of the FMA classification using 3D motion capture 

dataset. (A) CNN, (B) TCN. 
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B. BBT classification  

We used the CNN and TCN models to classify 3D motion capture datasets into three 

categories based on predicted BBT scores. Figure 21 shows the ROC-AUC for each 

category, the values of which were 0.94 (severe), 0.82 (mild), and 0.86 (normal) for the 

CNN model and 0.92 (severe), 0.62 (mild), and 0.85 (normal) for the TCN model. The 

results of BTT classification are also shown in the confusion matrix (Figure 22). The 

performance of the CNN and TCN models for BBT classification is summarized in Table 

4. The accuracy, precision, recall, and F1-score of BBT classification were 79.03%, 

72.54%, 73.96%, and 73.24% for the CNN model and 75.81%, 66.87%, 65.06%, and  

65.95% for the TCN model, respectively.  

 

Table 4. Performance of classification using 3D motion capture dataset 

 Model Group Accuracy Precision Recall F1-score 

Fugl-Meyer 

Assessment -Upper 

Extremity 

CNN 

Severe - 95.65 95.65 95.64 

Moderate - 79.31 85.19 82.14 

Mild - 95.83 90.20 92.93 

Total 91.13 90.27 90.35 90.31 

TCN 

Severe - 94.87 80.43 87.06 

Moderate - 51.22 45.65 48.27 

Mild - 90.91 78.43 84.17 

Total 79.03 79.00 68.17 73.19 

Box and Block Test 

CNN 

Severe - 95.31 88.41 91.73 

Mild - 53.57 62.50 57.69 

Normal - 68.75 70.97 70.40 

Total 79.03 72.54 73.96 73.24 

TCN 

Severe - 83.95 98.55 90.67 

Mild - 50.00 33.33 40.00 

Normal - 66.67 63.31 62.07 

Total 75.81 66.87 65.06 65.95 
1CNN, Convolutional Neural Network; TCN, Temporal Convolutional Network 
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Figure 21. The ROC-AUC of the BBT classification using 3D motion capture dataset. 

(A) CNN, (B) TCN. 
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Figure 22. The confusion matrices of the BBT classification using 3D motion capture 

dataset. (A) CNN, (B) TCN. 
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C. APS regression  

We used the CNN and TCN models to predict APS using the 3D coordinate data obtained 

from 3D motion capture. Table 5 shows the performance of APS regression using the 3D 

motion capture data. The correlation coefficient between the predicted APS and the ground-

truth data obtained by 3D motion capture was 0.783 for the CNN model and 0.668 for the 

TCN model (Figure 23). The mean error value between the predicted and ground-truth 

values was 5.46 for the CNN model and –0.93 for the TCN model (Figure 24). 

 

D. Temporospatial parameters regression  

We used the CNN and TCN models to predict movement time, index of curvature, and 

number of movement units in the 3D coordinate datasets. Table 5 shows the performance 

of temporospatial parameter regression using the 3D motion capture data. The correlation 

coefficients between the predicted and ground-truth values of movement time, index of 

curvature, and number of movement units were 0.544, 0.755, and 0.601 for the CNN model 

and 0.399, 0.531, and 0.408 for the TCN model (Figure 23). The mean errors between the 

predicted and ground-truth values of movement time, index of curvature, and number of 

movement units were 2.84, 1.68, and 5.23 for the CNN model and –0.29, –0.23, and –0.85 

for the TCN model, respectively (Figure 24). 

 

Table 5. Performance of regression using 3D motion capture dataset 

 Model 
Mean error  

[95% confidence interval] 

Correlation 

coefficient  

Arm Profile Score 
CNN 5.46 [-2.36, 13.28] 0.783* 

TCN -0.93 [-8.61, 6.75] 0.668*  

Movement times  
CNN 2.84 [-14.55, 13.14] 0.544*  

TCN -0.29 [-7.56, 6.98] 0.399* 

Index of curvature 
CNN 1.68 [0.91, 2.87] 0.755* 

TCN -0.23 [-1.81, 1.35] 0.531* 

Number of movement units 
CNN 5.23 [-10.29, 34.29] 0.601* 

TCN -0.85 [-27.77, 22.04] 0.408* 
1CNN, Convolutional Neural Network; TCN, Temporal Convolutional Network 

* p < 0.01 by Pearson correlation test 
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Figure 23. Scatter plots between true values and predicted values by regression using 3D 

motion capture dataset. (A) CNN, (B) TCN  
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Figure 24. Bland-Altman plots between true values and predicted values by regression 

using 3D motion capture dataset. (A) CNN, (B) TCN. Black solid line: mean error, Red 

dotted line: 95% confidence interval. 
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2. Two-dimensional video dataset 

A. FMA-UE classification  

We used CNN and TCN models to classify 2D keypoint coordinate datasets into three 

categories according to predicted FMA-UE scores. Figure 25 shows the ROC-AUC for 

each category, the values of which were 0.96 (severe), 0.88 (moderate), and 0.96 (mild) for 

the CNN model and 0.93 (severe), 0.57 (moderate), and 0.81 (mild) for the TCN model. 

The results of FMA-UE classification using 2D data are also shown by the confusion matrix 

(Figure 26). Table 6 summarizes the performance of FMA-UE classification by the deep 

learning models using the 2D video data. The accuracy, precision, recall, and F1-score of 

FMA-UE classification were 89.23%, 88.39%, 85.97%, and 87.16% for the CNN model 

and 78.46%, 69.10%, 76.90%, and 74.73% for the TCN model, respectively. 
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Figure 25. The ROC-AUC of the FMA classification using 2D video dataset.  

(A) CNN, (B) TCN. 
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Figure 26. The confusion matrices of the FMA-UE classification using 2D video dataset.  

(A) CNN, (B) TCN. 
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B. BBT classification  

We used the CNN and TCN models to classify the 2D keypoint coordinate datasets into 

three categories according to predicted BBT scores. Figure 27 shows the ROC-AUC for 

each category, the values of which were 0.90 (severe), 0.85 (mild), and 0.95 (normal) for 

the CNN model and 0.81 (severe), 0.70 (mild), and 0.73 (normal) for the TCN model. The 

results of BBT classification are also shown by the confusion matrix (Figure 28). The 

performance of the models for BBT classification with 2D video data is summarized in 

Table 6. The accuracy, precision, recall, and F1-score of BBT classification were 76.92%, 

73.79%, 75.51%, and 74.64% for the CNN model and 70.77%, 67.81%, 67.40%, and  

67.60% for the TCN model, respectively. 

 

Table 6. Performance of classification using 2D video dataset 

 Model Group Accuracy Precision Recall F1-score 

Fugl-Meyer 

Assessment -Upper 

Extremity 

CNN 

Severe - 92.86 92.86 92.86 

Moderate - 80.00 72.73 76.19 

Mild - 92.31 92.31 92.31 

Total 89.23 88.39 85.97 87.16 

TCN 

Severe - 87.10 96.43 91.53 

Moderate - 53.33 72.73 61.54 

Mild - 84.21 61.54 71.11 

Total 78.46 69.10 76.90 74.73 

Box and Block Test 

CNN 

Severe - 90.00 81.82 85.72 

Mild - 64.71 64.71 64.71 

Normal - 66.67 80.00 72.73 

Total 76.92 73.79 75.51 74.64 

TCN 

Severe - 84.38 81.82 83.08 

Mild - 66.67 47.06 55.17 

Normal - 52.38 73.33 61.11 

Total 70.77 67.81 67.40 67.60 
1CNN, Convolutional Neural Network; TCN, Temporal Convolutional Network 
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Figure 27. The ROC-AUC of the FMA classification using 2D video dataset. 

(A) CNN, (B) TCN. 



３５ 

 

  

Figure 28. The confusion matrices of the BBT classification using 2D video dataset.  

(A) CNN, (B) TCN. 
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C. APS regression  

APS was predicted for the 2D keypoint datasets by regression using the CNN and TCN 

models. Table 7 shows the performance of APS regression using the 2D video data. The 

correlation coefficient between the APS values predicted for the 2D keypoint datasets and 

the ground-truth values obtained from 3D motion capture was 0.569 for the CNN model 

and 0.516 for the TCN model (Figure 29). The mean error between the predicted and 

ground-truth values was 1.13 for the CNN model and –0.81 for the TCN model (Figure 30). 

 

D. Temporospatial parameters regression  

We used the CNN and TCN models to predict movement time, index of curvature, and 

number of movement units for the 2D keypoint datasets. Table 7 shows the performance 

of temporospatial parameters regression using the 2D video data. The correlation 

coefficients between the predicted values of movement time, index of curvature, and 

number of movement units and the ground-truth obtained from 3D motion capture were 

0.528, 0.703, and 0.625 for the CNN model and 0.487, 0.440, and 0.345 for the TCN model 

(Figure 29). The mean errors between the predicted and ground-truth values of movement 

time, index of curvature, and number of movement units were 0.21, –0.29, and 1.66 for the 

CNN model and 0.48,–0.04, and 1.13 for the TCN model, respectively (Figure 30). 

 

Table 7. Performance of regression using 2D video dataset 

 Model 
Mean error  

[95% confidence interval] 

Correlation 

coefficient  

Arm Profile Score 
CNN 1.13 [-8.60, 10.87] 0.569* 

TCN -0.81 [-11.00, 9.37] 0.516* 

Movement times  
CNN 0.21 [-3.48, 3.89] 0.528* 

TCN 0.48 [-3.44, 4.41] 0.487* 

Index of curvature 
CNN -0.29 [-1.13, 0.56] 0.703* 

TCN -0.04 [-0.73, 0.64]  0.440* 

Number of movement units 
CNN 1.66 [-14.79, 18.11] 0.625* 

TCN 1.13 [-14.63, 16.88] 0.345* 
1CNN, Convolutional Neural Network; TCN, Temporal Convolutional Network 

* p < 0.01 by Pearson correlation test 
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Figure 29. Scatter plots between true values and predicted values by regression using 2D 

video dataset. (A) CNN, (B) TCN. 
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Figure 30. Bland-Altman plots between true values and predicted values by regression 

using 2D video dataset. (A) CNN, (B) TCN. Black solid line: mean error, Red dotted line: 

95% confidence interval. 
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IV. DISCUSSION 

As chronic diseases become more common worldwide as a result of rapid population 

aging and dietary changes, their social and economic burden is predicted to increase day 

by day.36 To counter this increasing burden, digital healthcare based on information and 

communications technology is emerging as an essential component for future medical 

systems.37 Therefore, digital healthcare incorporating technologies such as big data and AI 

is expected to develop rapidly in the fields of prevention and health monitoring.21-22 

Recently, in the field of health monitoring, studies have been conducted to recognize, 

classify, and estimate human movements and function by applying deep learning methods 

to images of human movements.38 For example, one study used deep learning with gait 

videos of children with cerebral palsy to successfully predict metrics such as gait speed and 

gait cadence.23 Another study used a deep learning model with videos recorded by a depth 

camera to predict FMA-UE scores in stroke patients with accuracy ranging from 65% to 

87%.39 However, that study required a special camera and used data from only 41 patients, 

and the FMA-UE estimation by deep learning took the same amount of time as clinical 

FMA-UE measurement. We aimed to use deep learning methods to contribute to health 

monitoring in digital healthcare by predicting upper limb function in a relatively large 

number of stroke patients without space-time constraints and high cost burden.  

To predict upper limb function using deep learning, it was necessary to determine 

parameters that could be used as biomarkers. For this, we used a combination of clinical 

metrics (FMA-UE and BBT scores) and metrics used in 3D motion capture analysis 

(temporospatial parameters and APS). The FMA-UE and BBT are tools that have been 

verified to measure upper limb function in many validation and reliability studies.4-6 These 

tools are currently used widely in clinical practice to measure function in patients with 

stroke. The FMA-UE estimates abnormality of upper limb movement by measuring the 

range of motion, coordination, and speed of the shoulder, elbow, wrist, and hand. And the 

BBT is a task-oriented assessment tool that measures limitation of manual dexterity. We 

attempted to predict not only the overall structure and function of the upper limb but also 
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the ability to perform activity. The Reach & Grasp Cycle performed during 3D motion 

capture has been verified in many studies as a simple task that reflects the upper limb 

function of stroke patients.29-31 In addition, the validity of temporospatial parameters and 

APS determined by 3D motion capture analysis was confirmed based on correlations with 

upper limb function scores in children with cerebral palsy.10-11 Temporospatial parameters 

were also reported to differ significantly among stroke patients classified as having severe, 

moderate, or mild upper limb dysfunction based on FMA-UE scores.26 Therefore, we used 

3D motion capture metrics as objective and quantitative biomarkers of upper limb function 

in our study. 

We trained CNN and TCN models to predict upper limb function using time series data 

measured while patients performed a simple task. CNN models are suitable for learning 

based on image or time series data, and we used a 1D CNN architecture rather than a 2D 

CNN architecture for training with time series data.40 In a previous study, TCN was reported 

to have better performance than Long Short-Term Memory (LSTM), one of the recurrent 

neural network techniques suitable for training with time series data.41 In our study, the 

CNN model had better overall performance than the TCN model for predicting upper limb 

function based on time series data of upper limb key points in patients with stroke. 

The final goal of this study was to predict upper limb function in stroke patients using 

deep learning with 2D video data of simple movements recorded by a single camera without 

expensive equipment. To achieve this goal, we first trained CNN and TCN to predict upper 

limb function using 3D motion capture datasets. 

When FMA-UE classification was performed with a CNN model using 3D coordinate 

data, the accuracy was 90%. The number of 3D motion capture datasets classified in each 

FMA-UE category was 234 for severe, 138 for moderate, and 252 for mild. When BBT 

classification was performed with the same model and data, the accuracy was around 79%. 

The BBT scores were divided into after normalization by gender and age. The number of 

datasets classified in each BBT category was 343 for severe, 121 for mild, and 157 for 

normal. There was no “normal” group for the FMA-UE classification, whereas the BBT 



４１ 

 

classification involved a normal group, so the results suggest that it was difficult to 

distinguish between mild deficits and normal function using data from a simple task. Also, 

the confusion matrices of the FMA-UE and BBT classifications indicate that most cases of 

misclassification involved misclassification into the middle group. These results can be 

interpreted as classification in the “gray zone,” a term commonly used in statistics and 

classification problems to refer to the middle or border area when trying to classify 

something into two or more categories or groups.42-43 This area typically corresponds to 

cases in which it is difficult or ambiguous to make a clear decision in the classification 

model. 

When APS was estimated with the CNN model using the 3D coordinate dataset, the 

correlation coefficient between the predicted and ground-truth values was 0.783, indicating 

a strong correlation. When the movement time, index of curvature, and number of 

movement units were estimated using the same model and dataset, the correlation 

coefficients between the predicted and ground-truth values were 0.544, 0.755, and 0.598, 

respectively, indicating moderate to strong correlations. There was also a strong correlation 

between index of curvature values predicted by CNN models using the 3D motion capture 

data and the 2D video data, respectively, with a correlation coefficient over 0.7. Because 

the index of curvature is calculated using the trajectory of the wrist marker, and the input 

data are the 3D coordinate values of the marker's trajectory, it can be concluded that the 

index of curvature, which is highly related to the input data, performed better than the other 

spatiotemporal parameters. 

Our results confirmed the possibility of predicting upper limb function in stroke patients 

using 3D motion capture data. Therefore, we attempted to predict the upper limb function 

of the stroke patients using deep learning models with similar features extracted from 2D 

video data. To implement this, it was important to accurately extract the coordinates of 

upper limb keypoints from the 2D video. For this purpose, we used a highly accurate pose 

estimation algorithm. There are various algorithms for estimating human poses in 2D 

images and videos, such as OpenPose,44 RTMPose,33 and HRNet.45 RTMPose is effective 
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for estimating multiple human poses in 2D video in real time. Pose estimation methods can 

be broadly divided into two paradigms: top-down and bottom-up. OpenPose follows the 

bottom-up paradigm by first detecting individual joints of an object in an image and then 

connecting each joint to estimate the overall pose. Conversely, RTMPose follows the top-

down paradigm by first detecting objects and then estimating the position of each joint, 

making it more accurate than bottom-up methods. A previous study calculated the Average 

Precision (AP) of several pose estimation methods trained on the COCO-WholeBody 

dataset.33 In that study, estimated keypoints were considered correct when they included 

the actual keypoints within a calculated threshold, object keypoint similarity, and the AP 

was calculated as the ratio of correct keypoints to estimated keypoints. The AP of RTMPose 

was 71.2 for body, 57.9 for hand, and 64.8 for whole body, indicating higher accuracy 

compared with other algorithms such as OpenPose and HRNet. 

When FMA-UE classification was performed with the CNN model using 2D keypoint 

data, the accuracy was 80%. The number of 2D video datasets classified in each FMA-UE 

group was 138 for severe, 57 for moderate, and 135 for mild. When BBT classification was 

performed with the same model and data, the accuracy was over 76%, with 172, 87, and 71 

datasets classified in the severe, mild, and normal categories, respectively. These results 

indicate that the performance of the CNN model to classify clinical metrics was lower with 

the 2D video data than with the 3D motion capture data. However, because the number of 

data was smaller in the 2D dataset than in the 3D dataset, better performance might be 

achieved if more data are collected. 

When APS was estimated with the CNN model using 2D keypoint data, the correlation 

coefficient between the predicted and ground-truth values was 0.569, indicating a moderate 

correlation. The weaker correlation for the 2D data compared with the 3D data might be 

due to the smaller size of the 2D data. In addition, only the 2D coordinates of each keypoint 

were estimated. Because the 2D images contain X and Y coordinate information but no 

depth information corresponding to the Z coordinate, it is difficult to reflect information 

about the rotation of the wrist or hand. Therefore, there might have been insufficient 
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information to estimate APS, which represents the average value of the RMSE of 

movement in each plane, including rotation at each joint of upper limb. When the 

movement time, index of curvature, and number of movement units were determined by 

regression using the 2D video dataset, the correlation coefficients between predicted and 

ground-truth were 0.528, 0.703, and 0.625, respectively, indicating moderate to strong 

correlations. In a previous study, when a CNN model trained with keypoint coordinate data 

from 2D video recorded in the sagittal plane was used to predict gait metrics, the correlation 

coefficients for gait speed, gait cadence, and gait asymmetry were 0.73, 0.79, and 0.43, 

respectively.23 Gait is a cyclic movement performed repeatedly, and there is little variation 

in gait motion data among individuals or trials. However, because the Reach & Grasp Cycle 

is not a continuously repeated task, the variation is greater among individuals and trials. 

Therefore, the regression performance in our study was better than expected. In addition, 

the previous study on gait metrics trained the CNN model with more than 1000 datasets. 

Although our study only used 196 datasets for regression, we observed moderate to strong 

correlations between the predicted and ground-truth values. If more datasets for regression 

are added, the performance would be expected to increase further. 

We proposed a deep learning method to predict upper limb function in patients with stroke 

using 2D video of simple upper limb movements. Our method has the advantage of not 

requiring expensive equipment or trained experts, in contrast to other methods that require 

specialized instruments or trained clinicians. Our method has the advantage of not requiring 

expensive equipment or trained experts, in contrast to other methods that require 

specialized instruments or clinical evaluation. Therefore, our method can enable convenient 

health monitoring anytime and anywhere using video data of simple movements recorded 

at home or in daily life using a general camera without trained experts or expensive 

equipment. 

This study has several limitations that need to be addressed before our method can be 

commercialized for widespread use. First, a small dataset was used to predict upper limb 

function in patients with stroke. Although it is not easy to collect functional data for patients, 
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our study included a diverse sample of stroke patients with various levels of upper limb 

function. If data from more patients are collected in future studies, better model 

performance can be expected. Second, the videos used in this study were taken under 

controlled conditions in which the angle and position of the camera and the distance 

between the patient and the camera were fixed. Additional training of the model will be 

required in cases where the camera settings are different than those used in this study. It is 

also necessary to verify the model using data recorded at home or in small spaces other 

than a hospital. Third, our model predicted upper limb function using only spatial 

coordinate data. To estimate functions other than those predicted in our study, such as 

muscle tone, muscle strength, and ADL, deep learning models must be developed using 

data related to those metrics, such as EMG data and other real-world data collected during 

daily life. Furthermore, data must be collected from patients with stroke over long periods 

of time to develop a model that predicts not only current function but also future function. 

If further studies address these limitations and verify the feasibility of real-world use, a 

cost-effective measure outside the hospital can be used to evaluate overall upper limb 

function in patients with stroke, complementing clinical evaluations in hospitals. 

Additionally, clinicians will be able to remotely track patients' function. 

 

V. CONCLUSION 

Several metrics of upper limb function in patients with stroke were accurately predicted 

by a CNN model using simple 2D video data. Our results suggest that deep learning models 

can predicted accurately upper limb function measured by time-consuming functional 

evaluations that require trained clinician or expensive equipment using short and simple 

movement data. In addition, we showed that deep learning models trained with data from 

2D video recorded by a simple camera can achieve performance similar to that of models 

trained with 3D data recorded with expensive motion capture equipment. These findings 

provide a basis for further research on the use of digital healthcare to measure and monitor 

upper limb function in patients with stroke, free from the constraints of time and place. 
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APPENDICES 

Acronyms and Abbreviations 

    

FMA-UE Fugl-Meyer Assessment-Upper Extremity 

BBT Box and Block Test 

3D Three-dimensional 

2D Two-dimensional 

1D One-dimensional 

AI Artificial Intelligence 

APS Arm Profile Score 

SD Standard Deviation 

RMSE Root Mean Square Error 

RTMPose Real-Time Models for Pose estimation 

CNN Convolutional Neural Network 

TCN Temporal Convolutional Network 

leakyRelu leaky rectified linear unit 

MSE Mean Square Error 

LSTM Long Short-Term Memory 

AP Average Precision 
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뇌졸중 환자에서 간단한 일상생활 동작 데이터로부터  

딥러닝에 의한 상지 기능 예측  
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뇌졸중에서 상지 기능을 측정하기 위해 현재 가장 널리 사용되는 방법은  

푸글마이어 상지 검사 (Fugl-Meyer Assessment-Upper Extremity; FMA-UE) 및 

박스앤 블럭 검사 (Box and Block Test; BBT) 와 같은 임상적 측정법이다. 

그러나 임상적 측정은 숙련된 임상의가 필요하고 시간이 많이 소요된다. 

뇌졸중 환자의 상지 기능을 측정하는 객관적인 방법은 3차원 상지 동작 분석 

검사가 있다. 그러나 이 방법은 비싼 장비와 검사가 가능한 넓은 공간이 

필요하다는 한계가 있다. 이러한 기존 방법들의 한계를 해결하기 위해 딥러닝 

방법을 이용하여 간단한 일상 동작에서 상지 기능을 예측해보고자 하였다. 

따라서 본 연구의 최종 목적은 뇌졸중 환자의 2차원 비디오를 사용하여 

딥러닝 방법으로 상지 기능을 예측하는 것이다. 이를 달성하기 위해 2가지 

단계를 수행했다. 먼저 뇌졸중 환자에서 3차원 상지 동작 분석 검사로부터 

얻은 모션 캡처 데이터를 사용하여 딥러닝 방법으로 상지 기능을 나타내는 

지표들을 예측해서 본 연구의 최종 목표의 가능성을 타진했다. 최종적으로는 

뇌졸중 환자에서 2차원 비디오에서 자세 추정 알고리즘을 통해 추출한 2차원 

키포인트의 좌표 데이터를 사용하여 상지 기능을 예측했다. 

본 연구는 후향적 연구로 2014년부터 2023년까지 신촌 세브란스 재활병원에 
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내원한 265명의 뇌졸중 환자들의 FMA-UE 점수, BBT점수, 움직임 시간 

(Movement time, MT), 곡률 지수 (Index of curvature, IC), 이동 단위 수 (Number of 

movement units, NMU)를 포함하는 시공간적 매개변수들과 팔 프로파일 점수 

(Arm Profile Score, APS)를 수집했다. 또한 2021년부터 2023년까지 105명의 

뇌졸중 환자에서 뻗기와 잡기 주기 (Reach & Grasp Cycle) 동안 녹화된 2차원 

비디오 데이터를 수집했다. 수집된 데이터를 가지고 두 가지 버전의 입력 

데이터를 사용하여 딥러닝 모델을 개발했다. 먼저, 3차원 좌표 데이터를 

사용하여 상지 기능을 나타내는 지표들을 예측하기 위한 3차원 모션 캡처 

데이터셋을 구성했다. 3차원 모션 동안 몸통 (4), 어깨, 팔꿈치, 손목 (2), 

손가락 (2)에 총 10개의 반사마커의 X, Y, Z 좌표 데이터로 구성된 총 30개의 

좌표 데이터를 얻었다. 두번째, 상지 기능을 예측하기 위해 330개의 비디오 

데이터를 사용하여 2차원 비디오 데이터셋을 구성했다. 실시간 자세 추정 

모델 (Real-Time Models for pose estimation, RTMPose) 을 이용한 자세 추정을 

통해 2차원 키포인트를 추출했다. 하나의 2차원 비디오에서 몸통, 어깨, 

팔꿈치, 손목 (2), 손가락 (2)을 포함하는 상지의 7개 키포인트의 X, Y 좌표로 

구성된 총 14개의 좌표 데이터를 얻었다. 각각의 입력 데이터를 가지고 

합성곱 신경망 (Convolutional Neural Network, CNN)과 시간적 합성곱 신경망 

(Temporal Convolutional Network, TCN)을 사용하여 상지 기능 장애의 심각도에 

따라 FMA-UE와 BBT를 3개의 그룹으로 분류하고 시공간적 매개변수와 

APS를 추정했다. 모든 데이터셋은 훈련과 검증은 위한 데이터셋은 80%, 모델 

테스트를 위한 데이터셋은 별도의 데이터인 20%로 분할되었다. 

결과적으로 모든 결과에서 TCN보다는 CNN 모델의 성능이 더 좋았다. 먼저 

3D 모션 캡처 데이터를 사용한 CNN 모델 학습 결과는 FMA-UE 분류 정확도, 

정밀도, 재현율 및 f1 점수 모두 90을 초과했다 (각각 91.13, 90.27, 90.35, 90.31). 

BBT 분류 정확도, 정밀도, 재현율 및 f1 점수 모두 72를 초과했다 (각각 79.03, 
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72.54, 73.96, 73.24). 예측된 APS와 시공간 매개변수인 MT, IC, NMU는 참값과 

중간에서 강한 상관관계를 가졌다 (r=0.783, 0.544, 0.755, 0.601).  

2D 비디오 데이터를 사용한 CNN 모델 학습 결과, FMA-UE 분류 정확도, 정

밀도, 재현율 및 f1 점수 모두 85를 초과했다 (각각 89.23, 88.39, 85.97, 87.16). 

BBT 분류 정확도, 정밀도, 재현율 및 f1 점수 모두 73을 초과했다 (각각 76.92, 

73.79, 75.51, 74.64). 예측된 APS와 시공간적 매개변수인 MT, IC, NMU는 참값과 

중간에서 강한 상관관계를 가졌다 (r=0.569, 0.528, 0.703, 0.625). 

딥러닝 기법은 일상생활의 단순 활동 중에 녹화된 단일 2D 영상만을 이용

하여 뇌졸중 환자의 상지 기능을 예측하는 데 매우 유망한 결과를 얻었다. 데

이터 수가 작았음에도 불구하고 딥러닝 기법을 사용하여 간단한 동작 하나로 

FMA-UE 점수와 BBT 점수를 꽤 정확하게 분류할 수 있었다. 또한 시공간적 

매개변수와 APS의 참값과 예측값 사이에 중간에서 강한 상관관계를 보였다. 

본 연구에서 딥러닝 기법을 사용하여 아주 간단한 일상 생활의 동작을 촬영한 

데이터만으로도 복잡하게 수행되는 기존의 상지 기능 평가 결과를 비교적 정

확하게 예측해내었다. 본 연구를 통해 뇌졸중 환자의 간단한 영상 데이터를 

딥러닝으로 활용하여 상지 기능을 예측하여, 향후 디지털 헬스케어의 헬스 모

니터링 분야에 활용할 수 있는 가능성을 확인하였다. 

 

                                                                   

핵심되는 말 : 뇌졸중, 상지 기능, 예측, 딥러닝, 일상생활동작 
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