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ABSTRACT 

Characterization and evaluation of the gene expression profile for 

nontuberculous mycobacterial pulmonary disease 

 

Youngmok Park 

 

Department of Medicine 

The Graduate School, Yonsei University  

 

(Directed by Professor Young Ae Kang) 

 

 

Background: Nontuberculous mycobacteria (NTM) are environmental organisms that 

primarily cause pulmonary disease (PD). The incidence of NTM-PD is increasing 

globally; however, the current diagnosis and treatment methods are far from optimal. We 

performed ribonucleic acid (RNA) sequencing to explore gene expression profiles and 

identify potential biomarkers in individuals with NTM-PD. 

Methods: We collected peripheral blood samples from individuals with NTM-PD and 

healthy controls at a tertiary referral center in South Korea. Additional samples were 

obtained from the case group after the completion of NTM treatment. RNA sequencing 

was performed on the samples, and differentially expressed genes were identified and 

subjected to functional enrichment analysis. We employed immune cell deconvolution 

techniques to quantitatively analyze the cellular composition of 22 types of immune cells. 

Results: We enrolled 26 participants with NTM-PD (median age, 58.0 years; 84.6% 

female; Mycobacterium avium complex, 76.9%) and 22 healthy controls (median age, 

58.5 years; 90.9% female). We identified 21 upregulated and 44 downregulated 

differentially expressed genes in the case group compared to the control group. Gene 
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ontology and pathway enrichment analyses showed that the upregulated genes were 

related to autophagy in individuals with NTM-PD. According to the immune cell 

deconvolution analysis, neutrophils were the most common immune cells in both groups, 

accounting for 7.0% (interquartile range [IQR], 5.4%–9.2%) in the NTM-PD group and 

6.6% (IQR, 5.5%–8.7%; P = 0.644) in the control group. The proportions of other 

immune cell types were also similar between the two groups (P > 0.05 for all). 

The PARK2 gene, which is linked to the ubiquitination pathway, was downregulated in 

the study group (fold change, –1.314, P = 0.047). The expression levels of the PARK2 

gene remained unaltered in the five samples collected after microbiologic cure, 

suggesting that the PARK2 gene is associated with host susceptibility rather than the 

outcomes of infection or inflammation. The expression levels of the PARK2 gene showed 

promise as a potential diagnostic biomarker with an area under the receiver operating 

characteristic curve of 0.813 (95% confidence interval, 0.694–0.932). 

Conclusion: This study identified genetic signatures associated with NTM-PD infection 

in a cohort of Korean patients. The downregulation of the PARK2 gene in individuals 

with NTM-PD could provide an opportunity for the development of biomarkers, making 

it a potential candidate gene for diagnosis. 

                                                            

Key words: nontuberculous mycobacteria, gene expression profiling, ribonucleic 

acid
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Characterization and evaluation of the gene expression profile for 

nontuberculous mycobacterial pulmonary disease 

 

Youngmok Park 

 

Department of Medicine 

The Graduate School, Yonsei University  

 

(Directed by Professor Young Ae Kang) 
 

I. INTRODUCTION 
Nontuberculous mycobacteria (NTM) are ubiquitous environmental organisms in natural 

and drinking water systems, pools and hot tubs, biofilms, and soil.1 They can affect 

various tissues and body fluids, mainly causing pulmonary diseases (PD).2 The 

worldwide incidence and prevalence rates of NTM-PD are increasing, affecting both 

immuno-compromised and immuno-competent patients.3,4 Furthermore, the distribution 

of NTM varies depending on geographic location, primarily due to environmental 

factors.5 Accordingly, the characteristics of patients with NTM-PD differ across regions. 

NTM-PD poses numerous challenges for physicians. The diagnosis of NTM-PD is a 

complex process that requires repeated culture results of certain NTM species, 

radiographic correlation of chest image, and related symptoms.2,6 The clinical courses of 

NTM-PD are diverse and unpredictable; some cases progress rapidly while others remain 

stable without treatment or even experience spontaneous remission.7 The factors that 

determine treatment response are not fully understood, and the timing of treatment 

initiation and choice of regimen are not definitive based on current knowledge.8 

Consequently, the treatment outcome is often disappointing. The success rate of treating 

Mycobacterium avium complex (MAC) PD ranges from 55% to 65%,9 while that of 
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treating Mycobacterium abscessus complex (MABC) PD ranges from 24% to 46%, which 

is considered incurable.10 

Researchers have investigated biomarkers of NTM-PD to improve diagnostic barriers 

and monitor treatment response. Potential biomarkers such as Interleukin 17, 

Carbohydrate antigen 19-9, anti-glycopeptidolipid IgA, and anti-interferon (IFN)-γ 

autoantibody titer have been identified.11,12 However, the available data is limited, and no 

standardized biomarker has been established. 

We hypothesized that there would be differences in blood gene expression profiles 

between patients with NTM-PD and healthy controls. Therefore, the objective of this 

study was to explore the genetic signature of NTM-PD and identify potential blood 

biomarkers through ribonucleic acid (RNA) sequencing. 

 

II. MATERIALS AND METHODS 

1. Study population and blood sample collection 

We collected peripheral blood samples from participants with NTM-PD and healthy 

controls between 2015 and 2019. We gathered 2.5 mL of peripheral blood into the 

PAXgene RNA tube (Becton Dickinson and Co., Franklin Lakes, NJ, USA) and froze at 

–80 ℃ until analysis. In participants with NTM-PD, blood samples were stored before 

and at the end of treatment. We excluded individuals with malignancies, end-stage renal 

disease, and human immunodeficiency virus infection from the study. Healthy controls 

were defined as individuals without respiratory symptoms, abnormalities in chest X-rays, 

and a medical history of chronic lung diseases. 

The institutional review board at Severance Hospital approved the protocol of this 

study (NTM-PD cohort: 4-2017-0958, healthy control cohort: 4-2010-0213, 4-2014-1108). 

All participants provided written informed consent. 

 

2. Clinical data of study participants 

The clinical data of the participants was collected from their medical records. The 
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medical charts were reviewed, taking into account factors such as age, sex, body mass 

index, and underlying diseases. 

Participants with NTM-PD were diagnosed based on the guideline. Upon reviewing the 

chest computed tomography, radiologic types were classified as nodular bronchiectatic 

(NB) or fibrocavitary (FC). The severity of the disease was determined by the extent of 

lung involvement and sputum acid-fast bacilli smear results. The treatment outcomes 

were defined by the NTM-NET consensus statement.13 

 

3. RNA sequencing 

RNA was extracted using the provided instructions with the PAXgene Blood RNA Kit 

(PreAnalytiX, Hombrechtikon, Switzerland). The purity of the RNA was assessed by 

analyzing 1 µL of the total RNA extract on a NanoDrop 8000 spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA, USA). The integrity of the total RNA was 

evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, 

USA) with an RNA integrity number value. RNA with an optical density of 260/280 ≥ 

1.8 and an RNA integrity number ≥ 7 were selected for the subsequent experiments.  

The total RNA sequencing libraries were prepared according to the manufacturer’s 

instructions (Illumina TruSeq Stranded Total RNA Sample Prep Kit with Ribo-Zero 

Globin, Illumina, San Diego, CA, USA). The process involved removing ribosomal RNA 

from 500 ng of total RNA using Ribo-Zero Globin reagent, utilizing biotinylated probes 

to selectively bind rRNA species. After purification, the rRNA-depleted total RNA was 

fragmented into small pieces using divalent cations at an elevated temperature. The 

resulting cleaved RNA fragments were converted into first-strand cDNA using reverse 

transcriptase and random primers. Subsequently, second-strand cDNA was synthesized 

using DNA Polymerase I and RNase H. These cDNA fragments were modified with a 

single 'A' base and ligated with an adapter. The products were purified and enriched 

through PCR to create the final cDNA library.  

The quality of the amplified libraries was confirmed through capillary electrophoresis 
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using Bioanalyzer (Agilent Technologies). After performing real-time polymerase chain 

reaction with SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, 

USA), we combined the libraries that were index tagged in equimolar amounts into a pool. 

Finally, RNA sequencing was performed using a NovaSeq 6000 system (Illumina) 

following the provided protocols for 2x100 sequencing. 

 

4. Mapping reads and expression calculation 

The reads for each sample were mapped to the reference genome of the Human Genome 

Reference Consortium Human Build 37 (GRCh37, hg19)14 using Tophat (v2.0.13).15 The 

aligned results were added to Cuffdiff (v2.2.1)16 to calculate the transcript per million 

value and report differentially expressed genes (DEGs) while applying a false discovery 

rate (FDR) of 5% significance. For library normalization and dispersion estimation, 

geometric and pooled methods were used. The geometric method was used (‘blind’ when 

each condition had single replicates, or ‘pooled’ when multiple replicates were available). 

 

5. Identification of DEGs and functional enrichment analysis 

Two filtering processes were applied to detect DEGs between the case and control groups. 

Initially, using the Cuffdiff status code, only genes with an ‘OK’ status were extracted. 

The status code indicates whether there are sufficient reads in a specific locus for a 

reliable calculation of gene expression level. An ‘OK’ status indicates that the gene 

expression level was successfully calculated. For the second filtering process, a 2-fold 

change was calculated, and genes falling within the following ranges were selected. 

Upregulated: log2[case] – log2 [control] > log2 (2) = 1  

Downregulated: log2[case] – log2 [control] < log2 (1/2) = –1  

Using the STRING (v1.7.0, https://string-db.org)17 database, the protein-protein 

connections were assessed among the DEGs, and protein interactions were plotted using 

Cytoscape (v3.8, https://cytoscape.org).  

We identified human genes with relevant functional gene ontology (GO). For 
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integrative analysis, we employed both the Database for Annotation, Visualization, and 

Integrated Discovery (DAVID) functional annotation tool and the ClueGO 

(v2.5.8)/CluePedia (v1.5.8) plugin of Cytoscape to complementarily identify the DEGs 

involved in the GO terms and pathways. ClueGO combines GO terms and pathways from 

Kyoto Encyclopedia of Genes (KEGG), Reactome, and Wiki, providing a structured GO 

term or pathway network from the DEG dataset.18 In addition, the CluePedia integrates 

into the ClueGO network of terms/pathways, linking genes based on in silico and 

experimental information.19 To determine significance, we applied a threshold of P values 

< 0.05 for the study of molecular/biological/cellular function GO and enrichment of 

pathway analysis for DEGs. 

 

6. Immune cell deconvolution 

To analyze the composition of immune cells in our samples, we employed the 

CIBERSORTx platform, a computational method designed for characterizing the cell 

composition of complex tissues based on their gene expression profiles.20 The analysis 

was performed using the LM22 signature matrix, which consists of 22 distinct immune 

cell subtypes, including B cells, T cells, natural killer cells, macrophages, dendritic cells, 

and myeloid subsets.21 Notably, the analysis was conducted in the absolute mode, which 

enables a more quantitative interpretation of the results by providing the exact 

proportions of each cell type. 

 

7. Statistical analysis 

The median values of the variables among participants with NTM-PD and the control 

group were compared using the Mann-Whitney U test. Categorical variables were 

compared through Fisher’s exact test. Wilcoxon signed-rank tests were conducted to 

compare the median gene expression values between pre- and post-treatment samples. 

Receiver operating characteristic (ROC) curves were generated to assess the clinical 

relevance of the identified markers, and the area under the curve (AUC) was calculated to 
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determine the optimal cutoff value and discriminatory capacity. The sensitivity, 

specificity, positive predictive value, and negative predictive value were evaluated based 

on the optimal cutoff value. Differences with a two-sided P value below 0.05 were 

considered statistically significant. 

 

III. RESULTS 

1. Baseline characteristics 

A total of 26 participants with NTM-PD and 22 healthy controls were included in the 

study. Among the participants with NTM-PD, five additional samples were collected 

after completing the treatment, all of whom achieved microbiological cure. The baseline 

characteristics of the study participants are presented in Table 1. The study group 

exhibited lower weight and body mass index compared to the control group. Otherwise, 

the clinical characteristics were similar between the two groups. 

 

Table 1. Baseline characteristics of the study population 

 
NTM-PD 

(N = 26) 

Healthy controls 

(N = 22) 
P-value 

Age, years 58.0 [48.0–64.0] 58.5 [56.0–60.0] 0.967  

Sex, female 22 (84.6) 20 (90.9) 0.827 

Height, cm  159.8 [157.0–162.0] 157.0 [155.0–166.0] 0.101 

Weight, kg 52.0 [49.6–57.0] 58.0 [54.0–63.0] 0.021 

BMI, kg/m2 20.8 ± 2.5 23.4 ± 3.1 0.002 

BMI <18.5 kg/m2 4 (15.4) 0 (0.0) 0.162 

Ever smoker 3 (11.5) 0 (0.0) 0.295 

Comorbidity    

Hypertension 4 (15.4) 5 (22.7) 0.781 

Diabetes mellitus 1 (3.8) 1 (4.5) >0.999 

Bronchiectasis 24 (92.3)   
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COPD 5 (19.2)   

History of tuberculosis  7 (26.9)   

Previous NTM treatment 3 (11.5)   

Causative organism    

M. avium complex 20 (76.9)   

M. abscessus complex 4 (15.4)   

Others 2 (7.7)   

Radiologic findings    

  Non-cavitary NB 13 (50.0)   

  Cavitary NB 10 (38.5)   

  Fibrocavitary 3 (11.5)   

Extent, ≥ 3 lobes 21 (80.8)   

Sputum smear positivity 7 (26.9)   

Presence of cavity 13 (50.0)   

Note: Data are presented with median [interquartile range] or number (percent). 

Abbreviations: BMI, body mass index; COPD, chronic obstructive pulmonary disease; 

NB, nodular bronchiectatic; NTM, nontuberculous mycobacteria; PD, pulmonary disease. 

 

2. Principal component analysis  

Figure 1 illustrates unsupervised principal component analysis (PCA) conducted on the 

case and control groups. PC1 captured 14.51% of the total variance, while PC2 accounted 

for 10.17%. However, these components were not able to effectively differentiate the two 

groups. 
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Figure 1. Principal component analysis depicting the unsupervised clustering of the case 

and control groups. Abbreviations: NTM-PD, nontuberculous mycobacterial pulmonary 

disease; PC, principal component. 

 

3. DEG analysis 

In participants with NTM-PD, we found 21 upregulated and 44 downregulated genes with 

an FDR below 0.05 compared with the control group. Tables 2 and 3 present the lists of 

upregulated and downregulated genes between the case and control groups.
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Table 2. Upregulated genes between the case and control groups 

Rank Gene name Description Entrez ID 
Fold 

change 
P value 

1 
GCSAML 

(C1orf150) 

germinal center associated 

signaling and motility like 
148823 1.760  0.020  

2 MYCT1 MYC target 1 80177 1.584  0.015  

3 SUCNR1 succinate receptor 1 56670 1.564  0.047  

4 LEPR leptin receptor 3953 1.376  0.003  

5 CLIC2 chloride intracellular channel 2 1193 1.305  0.047  

6 P2RY12 purinergic receptor P2Y12 64805 1.296  0.020  

7 CISD2 CDGSH iron sulfur domain 2 493856 1.262  0.019  

8 CCRL2 
C-C motif chemokine receptor like 

2 
9034 1.255  0.045  

9 C9orf40 
chromosome 9 open reading frame 

40 
55071 1.255  0.028  

10 ARL4A 
ADP ribosylation factor like 

GTPase 4A 
10124 1.241  0.010  

11 MOSPD1 motile sperm domain containing 1 56180 1.207  0.006  

12 
STMP1 

(C7orf73) 

short transmembrane mitochondrial 

protein 1 
647087 1.154  0.045  

13 YOD1 YOD1 deubiquitinase 55432 1.148  0.020  

14 NSUN3 
NOP2/Sun RNA methyltransferase 

3 
63899 1.131  0.020  

15 CREG1 
cellular repressor of E1A 

stimulated genes 1 
8804 1.113  0.018  

16 
NT5C3 

(NT5C3A) 
5'-nucleotidase, cytosolic IIIA 51251 1.113  0.032  

17 YIPF6 Yip1 domain family member 6 286451 1.089  0.020  

18 BNIP3L BCL2 interacting protein 3 like 665 1.083  0.046  

19 RWDD4 RWD domain containing 4 201965 1.078  0.045  

20 STOM stomatin 2040 1.070  0.047  

21 RAB6A 
RAB6A, member RAS oncogene 

family 
5870 1.058  0.030  
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Table 3. Downregulated genes between the case and control groups 

Rank Gene name Description Entrez ID 
Fold 

change 
P value 

1 MYBPH myosin binding protein H 4608 –3.501 0.032 

2 BFSP2 beaded filament structural protein 2 8419 –2.912 0.003 

3 COL4A3 collagen type IV alpha 3 chain 1285 –1.905 0.006 

4 PTPRB 
protein tyrosine phosphatase 

receptor type B 
5787 –1.655 0.047 

5 COL4A4 collagen type IV alpha 4 chain 1286 –1.529 0.003 

6 
HNRNPA1P70 

(LOC341333) 

heterogeneous nuclear 

ribonucleoprotein A1 pseudogene 70 
341333 –1.396 0.027 

7 PARK2 
parkin RBR E3 ubiquitin protein 

ligase 
5071 –1.314 0.047 

8 PLXNA1 Plexin A1 5361 –1.306 0.047 

9 ASS1P1 
Argininosuccinate synthetase 1 

pseudogene 1 
442167 –1.274 0.047 

10 PVT1 Pvt1 oncogene 5820 –1.269 0.010 

11 
LINC00544 

(LOC440131) 

long intergenic non-protein coding 

RNA 544 
440131 –1.261 0.047  

12 ZC3H12B 
zinc finger CCCH-type containing 

12B 
340554 –1.244 0.047  

13 TMEM63A transmembrane protein 63A 9725 –1.170 0.005  

14 TSC1 TSC complex subunit 1 7248 –1.123 0.047  

15 DOCK9 dedicator of cytokinesis 9 23348 –1.116 0.020  

16 CTC1 
CST telomere replication complex 

component 1 
80169 –1.116 0.047  

17 DGCR8 
DGCR8 microprocessor complex 

subunit 
54487 –1.115 0.047  

18 PAN2 
poly(A) specific ribonuclease 

subunit PAN2 
9924 –1.115 0.032  

19 SFI1 SFI1 centrin binding protein 9814 –1.107 0.018  

20 LUC7L LUC7 like 55692 –1.101 0.047  

21 SGSM2 
small G protein signaling modulator 

2 
9905 –1.100 0.047  
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22 ASXL1 ASXL transcriptional regulator 1 171023 –1.100 0.018  

23 TRAF3 TNF receptor associated factor 3 7187 –1.099 0.036  

24 RBM14 RNA binding motif protein 14 10432 –1.096 0.047  

25 PLEC plectin 5339 –1.086 0.019  

26 CHD3 
chromodomain helicase DNA 

binding protein 3 
1107 –1.085 0.038  

27 ZCCHC11 terminal uridylyl transferase 4 23318 –1.081 0.047  

28 HIVEP2 HIVEP zinc finger 2 3097 –1.069 0.020  

29 DIDO1 death inducer-obliterator 1 11083 –1.067 0.005  

30 ANKZF1 
ankyrin repeat and zinc finger 

peptidyl tRNA hydrolase 1 
55139 –1.066 0.028  

31 PBXIP1 PBX homeobox interacting protein 1 57326 –1.064 0.032  

32 RPL36AL ribosomal protein L36a like 6166 –1.063 0.032  

33 STX16 syntaxin 16 8675 –1.063 0.020  

34 SFSWAP splicing factor SWAP 6433 –1.061 0.031  

35 WHSC1L1 
nuclear receptor binding SET 

domain protein 3 
54903 –1.054 0.027  

36 RASGRP2 RAS guanyl releasing protein 2 10235 –1.052 0.032  

37 CELF1 CUGBP Elav-like family member 1 10658 –1.052 0.027  

38 ELMO1 engulfment and cell motility 1 9844 –1.051 0.047  

39 FAM120A 
family with sequence similarity 120 

member A 
23196 –1.051 0.044  

40 KLF6 KLF transcription factor 6 1316 –1.047 0.047  

41 HMHA1 Rho GTPase activating protein 45 23526 –1.044 0.047  

42 ENTPD4 
ectonucleoside triphosphate 

diphosphohydrolase 4 
9583 –1.042 0.018  

43 ITSN2 intersectin 2 50618 –1.035 0.047  

44 RBM5 RNA binding motif protein 5 10181 1.033 0.049  
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PCA and a heatmap were generated using 65 DEGs, as shown in Figures 2 and 3. In 

Figure 2, PC1, accounting for 49.26% of the total variance, effectively distinguished the 

two groups. PC2 explained 10.43% of the variance, providing further separation, albeit to 

a lesser extent.  

 

 
Figure 2. Principal component analysis using 65 DEGs between the case and control 

groups. Abbreviations: NTM-PD, nontuberculous mycobacterial pulmonary disease; PC, 

principal component. 



13 

 

 
Figure 3. Heatmap generated using 65 DEGs between the case and control groups. The 

expression levels of the DEGs were converted to a heatmap, with red representing 

upregulation and blue representing downregulation. Abbreviations: NTM-PD, 

nontuberculous mycobacterial pulmonary disease. 
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However, there were no differences between healthy controls and subgroups of 

NTM-PD: subgroups by causative species (MAC, MABC, and others) and radiologic 

types (NB or FC) (Figures 4 and 5). 

 

 
Figure 4. Principal component analysis using the 65 DEGs between the case and control 

groups. The case group was divided into subgroups based on the causative species. 

Abbreviations: MABC, M. abscessus complex; MAC, M. avium complex; PC, principal 

component. 
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Figure 5. Principal component analysis using 65 DEGs between the case and control 

groups. The case group was divided into subgroups based on the radiologic types. 

Abbreviations: FC, fibrocavitary; NB, nodular bronchiectatic; PC, principal component. 
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4. Protein-protein connection  

The protein-protein connections were assessed among the DEGs, and the protein 

interactions were plotted, as shown in Figures 6 and 7 and Table 4. A confidence level of 

0.15 was set as the minimum requirement for interaction scores. 

Figure 6 represents the protein-protein interaction network with 53 nodes and 92 edges. 

The nodes denote the number of proteins, while the edges represent their interactions.  

 

 
Figure 6. Co-expression protein network construction. Red nodes represent significantly 

upregulated genes; blue nodes represent significantly downregulated genes. Node size is 

inversely related to the P value; edge color and edge width are directly related to the 

confidence score. 
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The MCODE plugin of Cytoscape was used to interpret the closely interlinked regions 

in clusters from the network of proteins. The cluster finding parameters included a degree 

cutoff of 2 to exclude loops, a node score cutoff of 0.2, a kappa score of 2, and a max 

depth of 100, which limits the cluster size for co-expressing networks. Four clusters were 

identified, which were related to immune response, intracellular transportation, and 

GTPase regulation. Figure 7 and Table 4 display each cluster and its associated genes. 

 

 
Figure 7. Modules of protein-protein interaction networks. The molecular complex 

detection (MCODE) plugin of Cytoscape was used for the analysis. Node shapes indicate 

the cluster status of the nodes. A square represents the seed (highest scoring node in the 

cluster), and a circle represents clustered proteins. Node color represents the node score; a 

range from black to red indicates the MCODE computed node scores (lowest to highest, 

respectively). 
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 Table 4. Modules of protein-protein interaction networks 

Cluster Description Score Nodes Edges Node IDs 

1 Mitophagy, Immune response 3.333 4 5 
BNIP3L, CISD2, 

PARK2, TRAF3 

2 Regulation of GTPase activity 3 3 3 
DOCK9, ELMO1, 

ITSN2 

3 
Retrograde transport, endosome 

to Golgi, trans-Golgi network 
3 3 3 

RAB6A, STX16, 

YIPF6 

4 

Regulation of GTPase activity 

(closely linked to trans-Golgi 

network) 

3 3 3 
ARL4A, HMHA1, 

RASGRP2 
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5. Ontology and pathway enrichment analysis 

To further understand which aspects of the gene signature were differentially expressed 

between the NTM-PD and control groups, the DAVID functional annotation tool was 

used to analyze the GO terms (Figure 8). Notably, regulation of autophagy (GO:0010506) 

was upregulated in the case group.  

 

 

Figure 8. DAVID functional GO analysis. GO analysis with (A) 21 upregulated DEGs 

and (B) 44 downregulated DEGs. 

 



20 

 

Figure 9 presents the gene set enrichment analysis with GO terms and pathway terms. 

The connectivity of pathways in the network is determined by functional nodes and edges 

that are shared among the DEGs with a kappa score of 0.4. The enrichment shows only 

significant pathways (P ≤ 0.05). The size of the nodes represents the values of P ≤ 0.05. 

The color of the nodes indicates the specific functional class they are associated with. 

Detailed information on each node is provided in Tables 5 and 6.  
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Figure 9. Enrichment analysis. (A) Enrichment by GO terms using the 

ClueGO/CluePedia plugin from Cytoscape. Vital molecular functions and biological 

processes associated with the DEGs are shown, along with the specific gene interactions. 

B) Enrichment by pathway terms visualized using the ClueGo/CluePedia plugin from 

Cytoscape. The plugin provides a comprehensive analysis of DEGs, including KEGG, 

REACTOME, and Wiki pathways. 
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Table 5. GO enrichment analysis conducted on the DEGs between the case and control 

groups 

 

 

Source 
Node 

color 
Term Genes P value 

GO_Biological 

Process 
  

 

GO:0000245_spliceoso

mal complex assembly 

CELF1, LUC7L, RBM5, 

SFSWAP 
3.95E-0.5 

GO_Biological 

Process 
  

 

GO:0043087_regulation 

of GTPase activity 

ARHGAP45, DOCK9, ELMO1, 

ITSN2, PBXIP1, RASGRP2, 

SGSM2, TSC1 

1.10E-04 

GO_Molecular 

Function 
  

 GO:0003924_GTPase 

activity 

ARHGAP45, DOCK9, ELMO1, 

ENTPD4, ITSN2, PBXIP1, 

PLXNA1, RAB6A, RASGRP2, 

SGSM2, TSC1 

1.35E-04 

GO_Biological 

Process 
  

 GO:0006376_mRNA 

splice site selection 
CELF1, LUC7L, SFSWAP 1.49E-04 

GO_Molecular 

Function 
  

 

GO:0017111_nucleoside

-triphosphatase activity 

ARHGAP45, CHD3, DOCK9, 

ELMO1, ENTPD4, ITSN2, 

PBXIP1, PLXNA1, RAB6A, 

RASGRP2, SGSM2, TSC1 

1.67E-04 

GO_Biological 

Process 
  

 

GO:0042147_retrograde 

transport, endosome to 

Golgi 

PRKN, RAB6A, SGSM2, STX16 2.52E-04 

GO_Biological 

Process 
  

 

GO:0060589_nucleoside

-triphosphatase regulator 

activity 

ARHGAP45, DOCK9, ELMO1, 

ITSN2, PBXIP1, RASGRP2, 

SGSM2, TSC1 

2.77E-04 

GO_Biological 

Process 
  

 GO:0002275_myeloid 

cell activation involved 

in immune response 

ARHGAP45, CREG1, PTPRB, 

RAB6A, STOM, SUCNR1, 

TMEM63A, TRAF3 

5.12E-04 
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Table 6. Pathway enrichment analysis conducted on the DEGs between the case and 

control groups 

Source 
Node 

color 
Term Genes P value 

REACTOME 

_Pathways 
  

 R-HSA:2022090_Assembly of 

collagen fibrils and other 

multimeric structures 

COL4A3, COL4A4, 

PLEC 
1.43E-03 

REACTOME 

_Pathways 
  

 R-HSA:1474290_Collagen 

formation 

COL4A3, COL4A4, 

PLEC 
4.32E-03 

KEGG 

_Pathways 
  

 KEGG:05222_Small cell lung 

cancer 

COL4A3, COL4A4, 

TRAF3 
4.59E-03 

Wiki 

_Pathways 
  

 WP:4658_Small cell lung 

cancer 

COL4A3, COL4A4, 

TRAF3 
5.48E-03 
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6. Immune cell deconvolution 

The differential distribution of immune cells between the NTM-PD and control groups 

was visualized using box plots in Figure 10. Each box plot represents the interquartile 

range (IQR) of the cell proportions, with the line inside the box indicating the median. 

The whiskers extend to 1.5 times the IQR. Any individual data points beyond the 

whiskers are considered outliers.  

Neutrophil was the most common cell type in both groups (NTM-PD, 7.0% [IQR, 

5.4%–9.2%]; Controls, 6.6% [IQR, 5.5%–8.7%]; P = 0.644), followed by monocytes 

(NTM-PD, 3.3% [IQR, 2.9%–3.8%]; Controls, 3.4% [IQR, 3.1%–3.9%]; P = 0.601). The 

proportions of other immune cell types were also similar between the two groups (P > 

0.05 for all). 

 

 
Figure 10. Proportions of 22 types of immune cells between the case and control groups. 

Abbreviations: NTM-PD, nontuberculous mycobacterial pulmonary disease. 
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7. Analysis of previously reported genes related to NTM-PD 

Cowan et al.22 reported 213 DEGs in whole-blood samples from participants with 

NTM-PD compared to controls. We applied these gene sets to the current data, but no 

distinct clustering patterns were observed in the PCA (Figure 11). 

 

 
Figure 11. Principal component analysis using previously reported gene sets between the 

case and control groups. Abbreviations: NTM-PD, nontuberculous mycobacterial 

pulmonary disease; PC, principal component. 
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We also examined the expression levels of previously reported NTM-PD-related 

genes.23 We explored the FDR and P-value of 44 genes from previous studies, but none 

showed statistical significance in distinguishing between NTM-PD patients and healthy 

controls in the current data (Table 7). 

 

Table 7. Analysis of genes previously reported to be associated with NTM-PD in the 

current study samples 

Gene FDR P-value Gene FDR P-value 

GATA2 0.188 0.003 TIGIT 0.860 0.514 
LDHB 0.232 0.009 FLJ45825 0.871 0.530 
PSPH 0.311 0.019 MST1R 0.878 0.540 
NELL2 0.409 0.036 ANKRD6 0.885 0.552 
SLC29A1 0.462 0.051 XCL1 0.902 0.578 
GZMK 0.511 0.137 MAP2K4 0.919 0.610 
IFNGR1 0.511 0.117 ISG15 0.944 0.653 
MPEG1 0.511 0.074 STK17A 0.971 0.706 
MUC12 0.511 0.102 XCL2 0.975 0.714 
PPIH 0.511 0.090 TPBG 0.989 0.740 
NFATC2 0.530 0.161 CFTR 1 0.818 
IFNG 0.540 0.170 FAHD2A 1 0.862 
TTK 0.540 0.171 IFNGR2 1 0.954 
IL12RB1 0.598 0.212 IL2RB 1 0.917 
RCOR3 0.652 0.258 IRF8 1 0.834 
AK5 0.664 0.275 PMS2P1 1 0.891 
KRT83 0.683 0.293 SAMD3 1 0.806 
ORC3 0.704 0.314 SLC11A1 1 0.998 
PZP 0.722 0.332 STAT1 1 0.958 
CRTAM 0.734 0.344 TARP 1 0.989 
A2M 0.736 0.347 GUSBP14 NA NA 

FCRL3 0.841 0.488 IFNLR1 NA NA 
NA, not available. 
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8. PARK2 gene as a diagnostic biomarker 

After reviewing the results and previous studies, we found that the expression level of the 

PARK2 gene could differentiate samples with NTM-PD from healthy controls. Figure 

12A presents the expression levels of the PARK2 gene in the study samples. The ROC 

curve of the PARK2 gene is presented in Figure 12B. The AUC was 0.813 (95% 

confidence interval 0.694–0.932), suggesting a satisfactory discriminatory ability 

(sensitivity, 61.5%; specificity, 95.5%; positive predictive value, 32.3%; negative 

predictive value, 5.9%). 

 

 
Figure 12. The PARK2 gene for diagnosing NTM-PD. (A) Expression levels of PARK2 in 

individuals with NTM-PD and healthy controls (P = 0.047). (B) The receiver operating 

characteristic curves depicting the predictive potential of the PARK2 gene in classifying a 

sample as NTM-PD or control. Abbreviations: NTM-PD, nontuberculous mycobacterial 

pulmonary disease. 
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However, the expression levels of the PARK2 gene between pre-treatment and 

post-treatment samples from participants with NTM-PD were similar (Figure 13). 

 

 
Figure 13. Expression levels of the PARK2 gene between pre-treatment and 

post-treatment samples of NTM-PD. T0 indicates samples collected at the beginning of 

the treatment, while Tend represents samples collected at the end of the treatment. The 

two groups had no statistical differences (P > 0.05). 
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IV. DISCUSSION 

To the best of our knowledge, this is the first study comparing the RNA expression 

profile of whole blood between the NTM-PD and control groups in a Korean patient 

cohort. We identified 65 DEGs in the participants with NTM-PD compared to the healthy 

controls. The PARK2 gene was found to be downregulated in participants with NTM-PD, 

suggesting its potential as a diagnostic biomarker. 

Genetic predisposition profoundly impacts the development, progression, and 

morbidities of many diseases. Bronchiectasis is a common comorbidity in patients with 

NTM-PD. The onset of bronchiectasis is linked to a reduction in gene expression 

associated with cell adhesion and an increase in gene expression related to 

inflammation.24 Additionally, there is a decrease in the expression of genes in the Wnt 

signaling pathway, along with an elevation in the expression of genes related to 

ciliogenesis.24 Notably, genotype-based categorization and treatment of bronchiectasis 

substantially improve its clinical course, especially in cases of cystic fibrosis and primary 

ciliary dyskinesia.25 Chronic obstructive pulmonary disease (COPD), another common 

condition combined with NTM-PD, is a heterogeneous condition affected by early-life 

risk factors, individual and social factors, the external environment, and harmful 

exposures.26 Lung development genes, which are considered among the critical early-life 

risk factors, regulate adult lung function and contribute to the development of both 

restrictive and obstructive lung function.27 The heritability of lung function and COPD is 

estimated to be 38–50%.26 Therefore, investigating the genetic background of NTM-PD 

holds promise in explaining its pathobiology, developing biomarkers, and improving 

clinical outcomes. 

Blood-based transcriptomic analysis is widely utilized in various diseases, including 

asthma, acute leukemia, and inflammatory bowel diseases.28-30 In infectious diseases, 

diverse external stimuli also lead to changes in mRNA expression through transcriptional 

responses. As direct pathogen detection is not always possible in individuals with various 

conditions, several studies have investigated blood-based transcriptomic signatures in 
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infectious diseases, including tuberculosis.31 Whole-blood genetic signatures have shown 

promising diagnostic performance in assessing the risk of tuberculosis progression and 

monitoring treatment response.32-34 Moreover, a point-of-care triage test for tuberculosis 

using fingerstick blood has achieved the minimum target product profile set by the World 

Health Organization (at least 90% sensitivity and 70% specificity) in the interim 

analysis.35 

Only a few studies have investigated genetic signatures in NTM-PD. Matsuyama et 

al.36 conducted RNA sequencing on NTM-infected human respiratory epithelium. They 

reported that genes related to cilia were downregulated, while those related to cytokines, 

chemokines, and cholesterol biosynthesis were upregulated in NTM-infected epithelium. 

Cowman et al.22 performed a microarray analysis of whole-blood gene expression on 25 

participants with NTM-PD and 27 controls. They reported the downregulation of 213 

transcripts associated with T cell signaling, including the IFNG (IFN-γ) gene, which 

plays an essential role in antimycobacterial immunity. Cho et al.23 conducted a 

genome-wide association study on 403 participants with NTM-PD and 306 healthy 

controls in Korea. They indicated that expression levels of the proapoptotic STK17A 

(serine/threonine kinase 17a) gene may be associated with susceptibility to NTM-PD. 

However, there is limited evidence for the genetic characteristics of NTM-PD, and the 

results are inconsistent. The IFNG gene, which was found to be downregulated in the 

study by Cowman et al.,22 was not identified as a differentially expressed gene by Cho et 

al.23 (FDR = 0.709, P = 0.185). The alteration in the expression of the STK17A gene, 

reported by Cho et al.,23 was not significant in the results of Cowman et al.22 In the 

current study, the expression levels of previously reported NTM-PD-related genes, 

including IFNG and STK17A, were similar between the case and control groups (Table 7). 

Moreover, the gene lists from Cowman et al.22 could not distinguish between the case and 

control groups in the current study (Figure 11). Only one gene, DOCK9 (dedicator of 

cytokinesis 9), overlapped between the current study and the study by Cowman et al..22 

Limited commonality among genetic signatures was also observed in the studies of 
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tuberculosis; 563 out of 721 genes were detected only once among 30 previously 

published studies.32 There are several possible reasons for this inconsistency. First, 

research on human cells exhibits diversity in the types of samples used, such as peripheral 

blood mononuclear cells, broncho-alveolar lavage fluid, and whole blood.37 Second, the 

study populations show variations in age, infecting species, comorbidities, stage of 

treatment, and geographic location. Third, the substances used to stimulate cytokine assay 

studies are not consistent and include phytohemagglutinin, lipopolysaccharide, and 

neutralized bacteria.37 Therefore, caution is needed when comparing and interpreting the 

results, and further integrated analysis would be required. 

One of the notable findings from the current study is that PARK2 was downregulated in 

participants with NTM-PD. Mutations in the PARK2 gene increase the risk of developing 

Parkinson's disease.38 However, polymorphisms in the regulatory region of PARK2 lead 

to reduced expression of the PARK2 protein, known as Parkin, which has been linked to 

a higher susceptibility to intracellular pathogens such as Mycobacterium leprae, 

Mycobacterium ulcerans, and Salmonella enterica serovar Typhi.39-42  

Autophagy serves as an innate immune response mechanism for eliminating 

intracellular pathogens.43 Parkin, an E3 ubiquitin-ligase, plays a role in this process; 

Parkin-mediated ubiquitination recruits ubiquitin-adaptors, promoting autophagic 

targeting of mycobacteria.44 Parkin also influences T-cell stimulation in the mitochondrial 

antigen presentation pathway.45 Moreover, the downregulation of Parkin results in 

decreased interleukin-6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1/CCL2) 

production, suggesting an influence of Parkin in multiple immune-related pathways.46 

Therefore, the decreased expression of PARK2 may be associated with the development 

of NTM-PD. 

The expression levels of the PARK2 gene differed between the NTM-PD and control 

groups (Figure 12), but they did not change after treatment, with favorable outcomes 

(Figure 13). Therefore, the decreased levels of PARK2 could be associated with the host’s 

susceptibility rather than a response to infection or disease severity. 
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Various genes were also differentially expressed between the case and control groups 

(Tables 2 and 3). One of these genes, RAB6, a small GTPase regulating endosomal 

trafficking pathways, presents ligands from Mycobacterium tuberculosis to 

mucosal-associated invariant T cells as an early response to infection.47 RAB6A 

expression was upregulated in the case group, possibly resulting from NTM infection. 

Another upregulated gene, P2RY12, is considered to be a critical player in the 

inflammatory response.48  

A few genes were linked to COPD, a common comorbidity of NTM-PD. Type IV 

collagen, the most abundant nonfibrillar collagen in the lung, is linked to basement 

membrane integrity. The degradation of COL4A3 has been associated with the disease 

activity of asthma and COPD.49,50 As extracellular matrix proteins in the lung play a 

critical role in the adhesion and invasion of various pathogens, the decreased levels of 

COL4A3 and COL4A4 in this study may be related to NTM infection, although the 

evidence from previous studies is insufficient.51 LEPR gene polymorphisms are linked to 

lung function decline in COPD,52 and NSUN3 gene is associated with lung cancer 

development in COPD.53 HIVEP2 gene was included in a blood-based transcriptomic risk 

score for COPD, which was associated with COPD, lung function decline, and 

COPD-related traits.54 Further investigation would be required to identify the role of the 

above genes in the pathobiology of NTM-PD. 

This study has several limitations. First, the case-control, observational, cross-sectional 

design does not allow for any conclusions about causality. Second, the number of 

participants was limited to those from a single center in Korea. Therefore, further 

validation studies are needed to investigate our findings in experimental settings 

involving diverse ethnic populations. Third, we could not identify disease-specific genes 

associated with NTM-PD, as a decreased level of the PARK2 gene has been reported in 

infections caused by other intracellular pathogens.  
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V. CONCLUSION 

We have identified genetic signatures associated with NTM-PD in a cohort of Korean 

patients. The downregulated PARK2 gene could potentially serve as a biomarker for 

diagnosis, offering further development opportunities. Investigating the interaction 

between genes and metabolites may provide valuable insights for novel approaches to 

diagnosing NTM-PD.
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ABSTRACT(IN KOREAN) 

 

비결핵항산균 폐질환 특이 유전자 발현 패턴 발굴 

 

<지도교수 강 영 애> 

 

연세대학교 대학원 의학과 

 

박 영 목 

 

 

배경: 비결핵 항산균은 주로 폐 질환을 일으키는 환경 균주이다. 비결핵 

항산균 폐질환의 발생률은 전 세계적으로 증가하고 있으나 현재의 진단 및 

치료는 한계점이 많다. 본 연구에서는 비결핵 항산균 폐질환 환자에서 유전자 

발현 특성을 탐색하고 잠재적 바이오 마커를 식별하기 위해 RNA 서열 

분석을 수행하였다. 

방법: 우리는 대한민국의 3차 의료기관에서 비결핵 항산균 폐질환 환자와 

건강한 대조군의 말초 혈액 표본을 수집하였다. 비결핵 항산균 환자군에서는 

치료가 완료된 후에 추가 혈액 표본을 수집하였다. 수집한 표본에서 RNA 

서열 분석을 수행하였으며, 발현량이 차이나는 유전자(differentially 

expressed gene)를 식별하였다. 또한 면역 세포 디콘볼루션(immune cell 

deconvolution)을 활용하여 22종류의 면역 세포의 구성을 정량적으로 

분석하였다. 

결과: 비결핵 항산균 폐질환 환자 26명(나이 중앙값, 58.0세; 여성, 84.6%; M. 

avium complex, 76.9%)과 건강한 대조군 22명(나이 중앙값, 58.5세; 여성, 

90.9%)을 모집하였다. 대조군에 비해 비결핵 항산균 폐질환군에서 발현량이 
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증가한 21개의 유전자와 발현량이 감소한 44개의 유전자를 식별하였다. 

온톨로지(ontology) 및 기능 강화 분석(functional enrichment analysis)결과 

대조군에 비해 비결핵 항산균 폐질환 환자군에서 자가 포식(autophagy)과 

관련된 유전자의 상승을 확인하였다. 면역 세포 디콘볼루션 결과에 따르면, 

양 그룹 모두에서 중성구(neutrophil)의 비율이 가장 높았다. (비결핵 항산균 

그룹 7.0%, 대조군 6.6%, P = 0.644) 다른 면역 세포 유형의 비율도 두 그룹 

간에 유사하였다. (P > 0.05 for all) 

PARK2는 유비퀴티네이션(ubiquitination)과 관련되어 있는 유전자로 

비결핵 항산균 폐질환 환자군에서 발현량이 감소하였고 (Fold change –1.314, 

P = 0.047), 임상적으로 성공적 치료(microbiologic cure)를 마친 다섯 개의 

혈액 표본에서도 그 발현량이 비슷하였다. PARK2 유전자가 감염이나 염증에 

의한 결과라기 보다는 숙주의 감수성 (host susceptibility)와 관련이 있다는 

것을 시사한다. PARK2 유전자의 발현 수준은 수신자 운영 특성 곡선의 

면적(area under the receiver operating characteristic curve)이 0.813으로 

(95% 신뢰구간 0.694—0.932) 진단의 바이오 마커로서 잠재력을 보였다. 

결론: 이 연구는 한국의 비결핵 항산균 폐질환 환자의 유전적 특성을 

탐색하였다. 비결핵 항산균 폐질환 환자에서 PARK2 유전자의 발현량 저하는 

비결핵 항산균 폐질환의 진단을 위한 후보 유전자로서 바이오 마커 개발 

기회를 제공할 수 있을 것이다. 

                                                            

핵심 되는 말: 비결핵항산균, 유전자 발현, 리보핵산 
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