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ABSTRACT 

Discovering and validating the correlation between 
morphology and gene expression in bacterial sepsis CD8+ 

T cells using deep learning approach 
 

Jong Hyun Kim 
 

Department of Biomedical Systems Informatics 
The Graduate School, Yonsei University 

Directed by Professor by Yu Rang Park 
 

 

 

The complex interplay between the morphology and the gene expression of T cells 

plays a key role in the immune response. However, a comprehensive understanding 

of these interactions remains elusive, particularly in the context of dynamic 

immune-related diseases like sepsis. Here, we investigate the association between 

T cell gene expression profiles through single-cell RNA sequencing, and three-

dimensional cellular images obtained through holotomography. Sepsis is a dynamic 

immune-related disease with notable changes in CD8 T-cell morphology. This 

study examined the relationships in CD8 T-cells within a longitudinal cohort of 

sepsis patients using deep learning models to elucidate underlying patterns and 

relationships. We identified genes specific to morphology that exhibited a high 

association with the longitudinal morphological changes in CD8 T-cells. 

Additionally, these genes bear biological significance in relation to cellular 

structures, such as chromatin organization. The clinical relevance of the 

morphology-specific genes was validated by analyzing open sepsis and coronavirus 
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2019 (COVID-19) single-cell RNA sequencing datasets. The genes that 

consistently reflect disease severity were identified, thereby enabling the filtering 

of genes associated with disease severity. This approach deepens our understanding 

of the interrelationship between gene expression and cellular morphology and 

underscores the potential of cellular morphology as a target to advance new 

diagnostic and prognostic strategies in various immune-related diseases. 

________________________________________________________
Keywords: deep learning, single cell RNA sequencing, 3D cell images, sepsis   
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Ⅰ. INTRODUCTION 
T cell morphology undergoes significant alterations during activation characterized 

by changes in cell size, membrane fluidity, and cytoskeletal rearrangements. These 

changes are mediated by a complex series of internal events that are regulated by a 

variety of gene expression patterns to enhance immune response efficiency1,2,3,4,5. 

This relationship between cell morphology and gene expression is complex and 

bidirectional since changes in cell morphology can induce shifts in gene expression, 

just as variations in gene expression can affect cell morphology6,7. Morphological 

changes are involved in the formation of immune synapses, and these structural 

changes are essential for the interaction between T cells and antigen-presenting 

cells, and to enhance the immune response8. Moreover, variations in the 

morphological phenotypes of CD8 T cells were observed owing to genetic 
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deficiencies associated with immune functions9. Also, the chromatin structure of T 

cells undergoes dynamic shifts in response to gene expression and cellular signals. 

These changes regulate the accessibility of DNA through histone modification and 

chromatin remodeling10. This plays a central role in the immune response of T-cells 

and helps our immune system to work more effectively. These findings underscore 

the intricate relationship between cellular morphology and genetic regulation in T 

cell functions. 

  

Advanced technologies such as single cell RNA sequencing (scRNA-seq)11 and 

three-dimensional quantitative phase imaging (3D-QPI)12 have led to advances in 

biology and many immune disease research fields. Single-cell RNA sequencing 

(scRNA-seq) has enabled the unbiased categorization of cell types from a wide 

range of samples, and driven advances in many research areas including 

immunology13,14, developmental biology15,16, and oncology17,18. It allows the 

comprehensive parallel analysis of thousands of cells at the transcriptomic level and 

has enabled us to understand complex patterns of gene expression that were 

previously undetectable.  

 

Three-dimensional quantitative phase imaging is a significant development over 

traditional two-dimensional (2D) imaging technique. Unlike 2D imaging that 

provides a flat, limited view of cell morphology, 3D-QPI enables the imaging of 

living cells in three dimensions (3D) without the need for labelling at a single cell 

level12. The method does not involve staining or fixation procedures, thus 

preserving the intrinsic state of the cells and unaffecting their intracellular structure 

which offers a more detailed view of their morphological characteristics. This is 

essential to accurately capture the dynamic and complex morphological changes in 
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T cells during activation. In addition, 3D-QPI could provide quantitative 

information of cellular biochemical and biophysical properties such as cell volume 

and dry mass in high resolution19,20. Consequently, 3D-QPI was used to conduct 

research in a variety of fields, including immune cells21,22, blood cells23, and cancer 

cells24.  

 

Single cell RNA-seq provides deep insights into the gene expression profiles of 

individual cells, although these insights are limited to the gene expression 

perspective and have limitations in directly linking to cellular morphological 

changes. However, 3D-QPI cannot relate these changes directly to genetic factors 

or underlying gene expression. Therefore, understanding the changes in gene 

expression associated with T cell activation and the resulting morphological 

changes remains a challenge. 

  

This can be addressed by integrating scRNA-seq with 3D-QPI techniques to deliver 

a comprehensive understanding of the relationship between gene expression and 

morphological changes at the cellular level. Single cell RNA-seq captures a single 

cell’s gene expression in high resolution to understand its status and function, while 

3D-QPI provides a detailed view of the cell’s morphological characteristics. The 

combination of these two technologies may potentially identify specific genes 

responsible for morphological changes in cells and reveal the biological pathways 

involved in cellular structural changes. This approach may provide a new 

understanding of the interplay between gene expression and cellular morphology. 

  

This study discovered the correlations between morphological changes in CD8 T 

cells and specific gene expression patterns through deep learning algorithms by 
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combining scRNA-seq and single cell 3D cell morphology image data. We 

developed a deep learning model that integrates single-cell transcriptomics and 3D 

QPI cell imaging dataset to identify genes associated with morphological changes. 

Our model was trained by collecting longitudinal data from sepsis patients, where 

the immune shift rapidly varies based on the severity25,26,27. Specifically, we 

focused on CD8 T cells since they are known for their rapid adaptability in immune 

responses. This allowed us to closely observe the rapid immune shifts that occur in 

sepsis patients and provide a more immediate insight into the dynamic 

changes28,29,30. Subsequently, we validated the identified gene expression patterns 

using published sepsis and COVID-19 scRNA-seq datasets. These findings 

revealed the biological understanding of a potential sepsis diagnostic biomarker 

based on cellular morphology previously discovered by our research team. 

Moreover, the patient’s immune cell could reflect the patient’s immune status. This 

enables the possibility of developing new treatments targeting cellular morphology. 

 

Ⅱ. RESULTS 
Overview of the study workflow 

The design of our study is shown in Figure 1. We enrolled patients with septic 

shock from the emergency room of a tertiary academic hospital. Demographic 

attributes of the patient cohort are detailed in Supplementary Table 1. Blood 

samples were collected at three specific time points: during the acute phase of 

septic shock (T1), after the resolution of the shock (T2), and immediately prior to 

hospital discharge (T3) (Fig. 1a). Single-cell RNA sequencing (scRNA-seq) and 

the gene selection pipeline was performed following the isolation of peripheral 

blood mononuclear cells (PBMCs) from these samples, (Fig. 1b). Additionally, 
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three-dimensional images were acquired after magnetic-activated cell sorting 

(MACS) of CD8 T cells using holotomography. 

 

Gene expression levels were predicted based on a deep learning model that 

utilized 3D-QPI of cells as input data (Fig. 1c). Performance was evaluated using 

the mean absolute percentage error (MAPE), and 84 genes were selected with 

MAPE scores under 20%. 

 

Initially, gradient-weighted class activation mapping (Grad-CAM) was applied to 

our morphology-gene prediction model to corroborate the association between 

gene expression and cellular morphology (Fig. 1d). Furthermore, the selected 

genes were cross-referenced with the Rosetta Project database31, which specializes 

in gene-morphology associations. The selected morphology-specific genes 

underwent clustering and pathway analyses to assess their relevance to patient 

condition as a secondary validation step. Public datasets, including those with 

sepsis32,33 and COVID-1934 patient data were employed for further analyses. The 

relationship between these morphology-specific genes and patient severity was 

examined. 
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Figure 1. Schematic overview of the study workflow 

a. Blood samples were collected from sepsis patients at three different time points 

based on severity. Peripheral blood mononuclear cells (PBMCs) were isolated from 

blood samples and part of the sample was used for scRNA-sequencing. The other 

part of the cells were subjected to single cell sorting by MACs from PBMCs and 

used to obtain 3D-QPI cell images. b. We then processed a subset of the scRNA-

seq data to select target genes. Genes with low expression were filtered and genes 

showing a time-dependent expression pattern were identified using the Kruskal-

Wallis test. A total of 412 target genes were selected. Holotomography imaging 

technology was used to capture 3D images of CD8 T cells. Approximately 100-200 

cell images were obtained from each sample and a total of 1,639 images were 

retained for further study after a quality control pipeline. c. The deep learning model 

was developed to predict the expression levels of the selected genes using the 3D-

QPI cell images as input and gene expression values as output. The model 

performance was evaluated using the mean absolute percentage error (MAPE), and 

84 genes were selected with MAPE score of less than 20%. d. Grad-CAM was 

applied to the selected gene model and cross-referenced with the Rosetta project 

database. Further validation processes were done through scRNA-seq analysis 

using our data and public datasets (including sepsis and COVID-19 patient data) to 

assess their relevance to patient severity.  
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Morphology specific gene selection 

A total of 75,297 genes and 33,521 cells from 11 samples were generated using the 

scRNA-seq preprocess and annotation pipeline (Fig. 2a and Supplementary Fig. 1). 

CD8 T cells from the scRNA-seq data, and only genes that expressed more than 10% 

of cells were used for analysis35,36. We then identified 3,453 genes that were 

common to all time points and selected 412 target genes according to the Kruskal-

Wallis test (P < 0.05), which showed variations in gene expression patterns across 

different time points (Fig. 2b and Supplementary Fig. 2) 

 

We developed a deep learning model using 3D cell morphology as input data to 

predict the gene expression values. We conducted a patient-level leave-one-out 

cross validation test among patients to account for variance among the 3D cell 

images. We computed the mean absolute percentage error (MAPE) between the 

predicted and observed expressions of each gene, and only selected genes with a 

MAPE of 20% or lower in each patient-level leave-one-out cross validation test37,38. 

A total of 84 genes consistently met the model’s performance threshold across all 

three patient-level leave-one-out cross validation tests. The median MAPE values 

were between 2–18% for the selected genes according to the patient-level leave-

one-out cross validation tests (Fig. 2c). 

 

We also compared the results to the 3D-CNN-VIT model to further evaluate the 

performance and robustness of our current study model. The correlation of the 

MAPE and MSE from the two models demonstrated the consistency and reliability 

of our model (Supplementary Fig. 3). Our model identified 84 genes with MAPE 

values below 20%, while the 3D-CNN-VIT model identified 75 genes. This 
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comparison strengthened the validity of our model and revealed its robustness in 

gene identification in a research context. 
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Figure 2. Identification of morphology-specific genes through deep learning  

a. Uniform manifold approximation and projection (UMAP) of the septic shock 

(T1), shock resolved (T2), and before discharged (T3) condition. Each dot 

corresponds to a single cell, and only clusters of CD8 T cells are colored. b. Target 

gene selection pipeline, starting with a subset of CD8 T cells. Identification of 3,453 

common genes at all time points, and further identification of 412 target genes with 

varying expression patterns over time (Kruskal-Wallis test, P < 0.05; detailed 

expression values over time points are shown in Supplementary Fig. 2) c. Bar plot 

showing the median MAPE percentage loss of 84 selected genes using leave-one-

out cross-validation. Performance threshold with a MAPE of 20% or lower genes 

are selected, and genes are sorted in order of low MAPE percentage values.  
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Validating the association between morphology specific gene expression and 

cell morphology  

We employed the Grad-CAM algorithm to elucidates the critical regions within the 

3D images that the deep learning model prioritizes for prediction. We selected 

ARL4C, RNH1, and SKP1 as representative models, which overlapped with the 

genes listed in the Rosetta database31, with (MAPE) performances of 7.9%, 9.8%, 

and 7.6%, respectively. Fig. 3a depicts representative cellular images for each 

temporal phase accompanied by their corresponding importance heatmaps to 

describe the features critical for the model’s predictions. Notably, the heatmaps 

highlighted the interior regions of the images. Additionally, we assessed the spatial 

distribution of gradient weights throughout all 3D-QPI cell images for a quantitative 

comprehension of the cellular regions. Gradient weights were significantly 

concentrated in the central region of the image for the ARL4C gene model, 

particularly in shells 1, 2, 3, and 4 (Fig. 3b). In contrast, gradient weights for the 

SKP1 and RNH1 gene models were mainly concentrated in shells 4, 5, and 6, and 

not in the center of the cell. This suggests that the model primarily emphasizes 

intracellular structures, such as chromatin density or organizational patterns in the 

nucleus and cytoplasm. 
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Figure 3. Differential morphological regions influencing gene expression 
predictions 

a. Representative cell images at each time point and the corresponding Grad-CAM 

heatmap overlaid on the processed images highlighting crucial regions within the 

cell. Heatmaps indicate a concentration in the central regions of the cell in the case 

of the ARL4C gene model, emphasizing intracellular structures. In contrast, the 

RNH1 and SKP1 gene models show a focus on the peripheral regions of the cell 

that highlight external cellular structures. b. Boxplot illustrating the spatial 

distribution of gradient weights across all 3D cell images. The distribution of 

gradient weights indicates important cellular regions that may be associated with 

the expression of ARL4C, RNH1, and SKP1 genes. 
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Validating the association between morphology, specific genes, and patient 
status 

We conducted scRNA-seq analysis to understand the results of our deep learning 

model through biological insights. The goal was to gain a deeper understanding of 

how the expression of each of the 84 identified genes affects cell morphology and 

structure. We employed hierarchical clustering to scrutinize their expression 

patterns across three distinct temporal phases and conducted an ANOVA test for 

each gene (Supplementary Table 3). Six discrete clusters emerged from this 

analysis, with statistically significant genes denoted accordingly (Fig. 4a). We 

specifically focused on clusters 2 and 6 were of particular interest in our study. 

Cluster 2 contained genes such as TMF1, SPG7, VPS13C, CCL4, CYFIP2, KLF6, 

N4BP2L2, HP1BP33, ZNF207, HMGN3, MPHOSPH8, SSR4, SYNE1, MBP, 

NAA10, while cluster 6 composed genes with ATP6V1G1, GNG5, ARPC4, RNH1, 

GIMAP7, HCST, YWHAB, PPP4C, ARPC5L, ATP5MC2, FAU, RPL12, SDF2, 

SNHG6, RPS15A, JTB, PSMA5, H3F3B, PFN1, SMDT1, RPL34, LAPTM5, 

RPL35A, RPS8, MED4, SKP1, SIVA1. These specific genes were found to be 

involved in influencing cell morphology during the recovery phase of septic shock. 

Our morphological assessment of cells throughout the septic shock recovery 

trajectory revealed pronounced differences between T1 and both T2 and T3. No 

appreciable morphological differences were noted between T2 and T3 

(Supplementary Fig. 4). Consequently, we focused on clusters 2 and 6, which 

exhibited down- and up-regulated gene expression at T1, respectively. 

 

Pathway enrichment analysis showed that cluster 2 prominently showed an 

upregulation in biological processes related to translation recovery, like 
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cytoplasmic translation and ribosomal assembly restoration (Fig. 4b). Also, cellular 

components such as the cytosolic small ribosomal subunit, large ribosomal subunit, 

and their respective counterparts were identified. This illustrates the 

interrelationship between these biological processes and structural components in 

shock recovery39. Cluster 6 was upregulated in the septic shock phase and 

highlighted the changes in chromatin organization. This suggests that cells 

reorganize their DNA structure to cope with cellular stress40. Changes in histone 

acetylation and DNA methylation further emphasize the changes of chromatin 

organization, and response to UV-C radiation suggests that cells may also be 

processing and repairing DNA damage41,42. The results from the cellular component 

also identified the nucleus, which is the cellular component that stores and 

organizes DNA.  

 

In addition, we defined a score for each cell based on the expression of a set of 

relevant genes to characterize the translation and mRNA metabolic responses by 

time points. CD8 T cell septic shock patients decreased the translation process and 

upregulated the mRNA metabolic processes (Fig. 4c). This indicated an emphasis 

on activities associated with transcription Specifically, genes involved in translation, 

RPS843, and RPL35A44 were expressed at slightly lower levels during septic shock 

phase (Fig. 4d). HP1BP345 and SET46 are representative genes associated with 

chromatin structure that were both upregulated in septic shock patients (Fig. 4e). 

These biological findings indicate that the interplay between changes in chromatin 

structure and complex transcriptional regulation may be associated with changes in 

cell morphology during septic shock. 
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Figure 4. Genetic and morphological insights into CD8 T cells in septic shock  

a. Hierarchical clustering of 86 genes selected by deep learning model between 

septic shock (T1), shock resolved (T2), and before discharged (T3). Six distinct 

clusters were identified during the different phases of septic shock. b. Bar plots 

showing pathway enrichment analyses associated with the genes in cluster 2 and 6 

(cluster 2, n = 14, cluster 6, n = 27). The top 10 Gene Ontology (GO) terms of 

Biological Process and Cellular Component were enriched. c. Box plots of the 

median cell scores for two GO biological process terms of septic shock (T1), shock 

resolved (T2), and before discharged (T3). Horizontal lines represent median values 

of cell scores and all differences with P < 0.05 were indicated after t-test analysis. 

d. Box plots of RPS8 and RPL35A genes related to translation, and e. Box plots of 

HP1BP3 and SET structure mRNA expression (log-normalized) correlated with 

chromatin structure. 
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Comparative analysis of gene expression pattern across open sepsis and 
COVID-19 scRNA-seq data  

We aimed to investigate whether the gene expression patterns during the recovery 

phase of septic shock persisted across different sepsis severity groups in severe and 

moderate cohorts. Moreover, we sought to determine if these gene expression 

changes were exclusive to septic shock or if they also presented in other 

inflammatory conditions, such as COVID-19. Lymphocytes from patients infected 

with COVID-19 also induced cellular morphological changes, including increased 

cell volume, and altered cytoplasmic structure47,48. We therefore assessed the 

transcriptional similarity of genes in our resulting cluster 2 and 6 in two published 

sepsis datasets32,33, and one published dataset of COVID-1934.  

 

We integrated two distinct published datasets to compare gene expression patterns 

with published sepsis datasets. We also used published data for the COVID-19 

comparison, and both published data were subtracted only on the gene matrix 

corresponding to CD8 T cells. These datasets were used to analyze the expression 

patterns of 14 genes from cluster 2 that were downregulated and 27 genes from 

cluster 6 that were upregulated during the septic shock (T1) phase. Within the 

published sepsis datasets, four genes from cluster 2 showed decreased expression 

patterns in the severe group, while 16 genes from cluster 6 showed similar patterns 

(Fig. 4a). In the published COVID-19 datasets, 12 genes showed decreased 

expression in the severe group, with 15 genes showing increased expression 

patterns. To further refine our analysis of gene expression patterns in sepsis and 

COVID-19 datasets, we utilized a more advanced statistical approach. We 

employed a linear regression model to assess the differences in gene expression 
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coefficients between our study datasets and the open public datasets. Our 

comparative analysis revealed that the gene expression patterns of PTP4A2, 

TCEA1, TPM3, and YY1 genes were statistically similar in the open sepsis datasets. 

Similarly, in the open COVID-19 datasets, ACAP1, N4BP2L2, SET, and SON 

genes exhibited comparable gene expression patterns. These findings highlight 

specific transcriptional similarities in the context of different inflammatory 

conditions (Supplementary Table 4,5). 

 

The upregulation of TCEA1, YY1 and SET in the context of infection reveals an 

adaptive genetic response of T cells, suggesting their potential role in modifying 

chromatin structure49,50,51. PTP4A2 and N4BP2L2, although not directly involved 

in chromatin structure modification, appear to influence it indirectly through 

mechanisms such as histone acetylation52,53. SON potentially coordinates pivotal 

pathways that can lead to changes in cell morphology and function during septic 

shock by regulating the assembly and function of intracellular structures such as 

centrosomes and the microtubule cytoskeleton54. TPM3, while not directly 

implicated in chromatin restructuring, plays an essential role in the formation of 

actin filaments55. Lastly, ACAP1 stands out for its direct impact on cell morphology 

through the induction of membrane protrusions56.  
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Figure 5. Comparative transcriptional analysis in sepsis and COVID-19 
conditions 

a. Dot plots indicating the expression patterns of key genes from cluster 2 and 6 

across sepsis (up) and COVID-19 (down) conditions. The size of the dot indicates 

the percentage of cell expression and color represents the average expression level 

of the gene in those cells. Genes with the same expression pattern between sepsis 

and COVID-19 are highlighted. 
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Ⅲ. DISCUSSION 
We ascertained that the morphology-specific genes correlated with CD8 T cell 

morphology but also hold associations with various facets of patient status, 

including the disease’s temporal progression and severity. The deep learning 

techniques isolated genes that were intrinsically linked to alterations in cellular 

morphology. We visually demonstrated that these genes are associated with spatial 

variations in cellular morphology according to the Grad-CAM algorithm. This 

conclusion was further substantiated through quantitative analysis. Pathway 

analysis revealed that these genes also bear biological associations with cellular 

morphology and are directly linked to patient status, specifically concerning the 

severity of sepsis. Additionally, the expression patterns of these genes exhibited 

similarities in other sepsis datasets and in other infectious diseases such as COVID-

19. Our results illuminate the role of cellular morphological changes in disease 

progression and offer novel insights into the linkage between these alterations and 

gene expression. 

 

Predicting gene expression based on morphology is not a novel concept. It was 

performed in radiomics, which utilizes imaging techniques to forecast patient 

outcomes or gene expression, to recent studies in cancer research. Efforts are 

underway to predict gene expression by examining morphological characteristics 

of tissues under a microscope57,58. Furthermore, research is progressing to predict 

patient prognosis based on these tissue morphologies59. Such efforts are not 

confined to tissue-level analyses; they are also being extended to the single-cell 

level. Kerren et al. employed autoencoders to integrate disparate data modalities, 

such as RNA-seq and chromatin images60 to provide a generalized framework. Our 

research is specifically tailored to understand sepsis at the single-cell level. We have 
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demonstrated the practical relevance of single cell morphology and elucidated its 

capability to mirror molecular variations and fluctuations in patient status. 

 

Based on common expression patterns observed in published sepsis and COVID-

19 data, we identified eight up-regulated genes and five genes among those were 

involved in chromatin mechanisms. Our study observed expansion in cell volume 

and surface area during the septic shock phase, which seems to be indirectly 

influenced by the increased activity of these chromatin-related genes. Over 

expression of these genes may indirectly affect cell morphology through changes 

in transcriptional activity and subsequent functional modifications during septic 

shock given the central role of chromatin dynamics in regulating cellular responses 

to stress. PTP4A2, TCEA1, YY1, N4BP2L2 and SET are involved in 

transcriptional regulation and chromatin remodelling49,50,51,52,53. The process of 

chromatin remodeling is regulated and leads to changes in transcriptional activity 

when these genes are activated during septic shock. These changes can affect cell 

morphology and function and lead to an amplified stress response. 

 

Our study provides valuable insights into the relationship between cellular 

morphology and gene expression, particularly in the context of sepsis and its 

severity. However, there are some limitations. First, our study employed stringent 

inclusion and exclusion criteria (Supplementary Table 2), which enhanced the 

reliability of our findings, but limited the sample size and potentially restricting the 

generalizability of our results. This limitation was overcome by validating our 

findings using external datasets focused on sepsis and COVID-19, thereby 

reinforcing the robustness of our results despite the constrained sample size. 

However, we were unable to externally validate our findings in this specific domain 
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owing to the absence of publicly available datasets that combine cell morphology 

and gene expression. Nonetheless, we ascertained that the identified genes are 

reflective of patient status in existing sepsis and COVID-19 datasets. Lastly, we 

only focused on CD8 T cells. This narrow focus potentially overlooks the broader 

applicability of our findings across different cell types. 

 

Our study expands the current understanding of cellular structure at the single cell 

level and provides a basis for new diagnostic and therapeutic approach. The study 

explored the relationship between CD8 T-cell morphology and gene expression, 

providing a biological interpretation of the results of previous studies and 

establishing the basis for a potential biomarker of sepsis severity. Our results shed 

new light on the intricate interplay between cellular structure and gene expression 

patterns and suggest that changes in cellular shape may serve as early indicators of 

disease progression and the efficacy of therapeutic treatments. This research 

represents the beginning of a diagnostic method based on cell morphology that will 

improve the accuracy of personalized treatment for sepsis and several related 

immune diseases. 

 

Ⅳ. CONCLUSION 
This study revealed a strong association between CD8 T cell morphology and gene 

expression. We highlighted genes and pathways that play an important role in 

cellular structural changes during sepsis and are associated with disease severity. A 

key aspect of our findings is the role of chromatin organization in driving these 

cellular changes. We discovered that changes in chromatin structure, particularly 

during septic shock, are crucial in determining the morphological changes observed 

in CD8 T cells. The reorganization of chromatin not only reflects the cell's adaptive 
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response to stress but also seems to be a critical factor in the maintenance of cellular 

morphological changes. This understanding has provided a fundamental framework 

for further exploration in the field of immune-related diseases. Moreover, these 

findings suggest a new approach to the development of future disease diagnostics 

and treatment strategies that focuses on cellular morphological changes, which may 

lead to the development of more effective and personalized treatment. 

 

Ⅴ. METHODS 
Patient enrollment  

The study enrolled septic shock patients in the Emergency Department of Severance 

Hospital, Seoul, Korea. Eligible participants were diagnosed with sepsis according 

to the consensus definition for sepsis25. Patients who were immunocompromised or 

were receiving immunosuppressive medications were excluded. Detailed inclusion 

and exclusion criteria for patient selection are provided in Supplementary Table 2. 

Clinical data were collected for each enrolled patient, and blood was sampled at 

three distinct time points: during septic shock (T1), after shock resolution (T2), and 

immediately prior to hospital discharge (T3). 

Informed consent was obtained from all study participants. Ethical approval for this 

study was granted by the Institutional Review Board of Severance Hospital, Yonsei 

University Health System, Seoul, Korea (IRB numbers 4-2021-1236 and 4-2022-

0317) 

  

Peripheral blood mononuclear cell isolation and CD8 T cell sorting 

Peripheral blood samples were collected in EDTA tubes and processed utilizing 

Ficoll-Paque Plus separation techniques, as provided by GE Healthcare (Barrington, 

IL, USA, Catalog No. 17144002). Initially, the blood was diluted with 5 mL of 2 
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mM EDTA-PBS obtained from Invitrogen (Carlsbad, CA, USA, Catalog No. 

1555785-038). Subsequently, 10–20 mL of this diluted mixture was carefully 

layered over 15 mL of Ficoll in a 50 mL Falcon tube. Centrifugation was performed 

at 900 g for 30 min. The plasma layer was removed, and the PBMC layer was 

isolated. Subsequently, this layer was washed with EDTA-PBS and subjected to an 

additional centrifugation step at 500 g for 5 min. The resultant PBMC pellet was 

harvested, and its cell count, and viability were assessed using Trypan blue staining 

and a Countess II Automated Cell Counter (Thermo Fisher Scientific, Waltham, 

MA, USA). 

 

Magnetic-activated cell sorting (MACS) technology sourced from Miltenyi Biotec 

(Bergisch Gladbach, Germany) was employed for the sorting of CD8 T cells. To 

preserve cell viability, the cells were maintained at 4°C for 15 min, followed by the 

addition of 80 µL of isolation buffer and 20 µL of magnetic microbeads. The cells 

were incubated at 4°C for an additional 15 min. A magnetic stand and column were 

prepared prior to the sorting procedure, and the column was equilibrated with 3 mL 

of isolation buffer. The column was removed, and the lymphocytes were collected 

into a conical tube. Finally, an additional 5 mL of isolation buffer was introduced, 

facilitating the specific extraction of CD8 T cells. 

 

Quantitative phase image acquisition and preprocessing 

Three-dimensional QPI of CD8 T cells was accomplished using 3D 

holotomography technology (HT-2H; Tomocube Inc., Daejeon, Republic of 

Korea)12. This technology generates a 3D refractive index (RI) image by 

amalgamating multiple 2D QPIs. The cellular RI serves as an intrinsic optical 
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parameter indicative of the way light traverses the cellular architecture. Importantly, 

the RI is associated with cellular mass and its spatial distribution. 

 

A quality control process was initiated after image acquisition to eliminate low-

quality, low-resolution, and noisy images through manual selection. Additionally, 

images featuring two or more closely juxtaposed cells were excluded to maintain 

focus on single-cell observations. Following the quality control phase, 

preprocessing was performed to prepare the images for utilization within the deep 

learning model. Specifically, the images were center cropped from dimensions of 

210 x 276 x 276 pixels to a more concentrated 64 x 64 x 64 pixels, aimed at 

highlighting the internal cellular landscape. Lastly, min-max normalization was 

applied to each image61. 

 

Single-cell transcriptomics  

Library preparation and sequencing  

The prepared cell suspensions were used to generate a 10x Chromium Single Cell 

3’ library with Chromium Single Cell 30 v3 reagent (10x Genomics) according to 

the manufacturer’s instructions. Approximately 10,000 cells were loaded per 

sample. The library was then sequenced using Illumina Nova 6000 according to the 

manufacturer’s instructions.  

 

Data preprocessing and quality control  

Single-cell RNA (scRNA) sequencing data were processed using Cell Ranger 

Software (v6.1.3) to perform alignment, filtering, barcode separation, and unique 

molecular identifier (UMI) counting with default parameters. Raw reads were 

aligned to the human reference genome GRCh38 (GENCODE v32/Ensembl 98). 
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Feature-barcode matrices were generated for secondary analysis for each sample. 

We used CellBender software (v0.2.0) to remove background RNA contamination 

and barcode replacement from raw UMI-based scRNA-seq data. Subsequently, 

each sample was initially subjected to doublet removal using the scDblFinder R 

package (version 1.6.0)62 to ensure the quality of the data. 

 

The following criteria were used to filter the cells: (1) the number of genes 

sequenced per cell ranged between 200 to 4000, and (2) the percentage of 

mitochondrial RNA per cell was below 10%. After filtering, a total of 33,521 high-

quality cells was obtained from 11 samples. These samples included three 

longitudinal samples from three distinct patients, and samples from two additional 

patients with septic shock.  

 

Integration of scRNA-seq individual samples 

A filtered gene-barcode matrix of all samples was integrated with the Seurat R 

package (version 4.3.0) using the integration pipeline to remove batch effects across 

different samples. We first normalized the Seurat objects and identified the top 

2,000 variable features using the ‘NormalizeData’ and ‘FindVariableFeatures’ 

functions, respectively.  

Integration features were selected using the ‘SelectIntegrationFeatures’ function, 

and ‘anchors’ were identified by the ‘FindIntegrationAnchors’ function. These 

anchors were used to integrate the datasets using the ‘IntegrateData’ function, 

resulting in a new ‘integrated’ assay which was set as the default for subsequent 

analysis. Then, we scaled the data using the ‘ScaleData’ function, performed 

Principal Component Analysis (PCA) using the ‘RunPCA’ function, followed by 

uniform manifold approximation and projection (UMAP) on the top 30 principal 
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components using the ‘RunUMAP’ function. Finally, we constructed a Shared 

Nearest Neighbor (SNN) graph with ‘FindNeighbors’ and identified clusters with 

the ‘FindClusters’ function at a resolution of 1.0.  

 

Cell type identification and downstream CD8 T cell subpopulation analysis  

Cell type identification was conducted through differential gene expression (DGE) 

analysis, using the ‘FindAllMarkers’ function in Seurat with a minimum cell 

fraction of 25% and a log fold-change threshold of 0.25. This analysis resulted in 

the annotation of cell clusters corresponding to monocytes, neutrophils, 

macrophages, B cells, T cells, natural killer (NK) cells, platelets, and hemoglobin 

populations. We validated the cell type annotations result using the Azimuth tool 

by comparing our annotation to a published PBMC dataset. 

Downstream analysis was performed on the T cell population, which was divided 

into CD8 and CD4 T cell subsets using the ‘subset’ function in Seurat. This 

downstream analysis included a standard Seurat workflow: ‘FindVariableFeatures’, 

‘ScaleData’, ‘RunPCA,’ ‘FindNeighbours,’ ‘FindClusters,’ and ‘RunUMAP’. The 

‘FindClusters’ function was performed with a resolution of 0.6 and UMAP was 

performed on the top 15 principal components. 

 

Target gene selection and gene expression matrix normalization 

A gene filtering strategy was employed to mitigate the influence of noise in the 

single-cell RNA sequencing (scRNA-seq) dataset. Specifically, only genes 

expressed in a minimum of 10% of the cells were selected, thereby eliminating 

genes with low expression values35,36. Following this criterion, 3,961 genes in CD8 

T cells were identified for further analysis. A Kruskal-Wallis test was executed on 

the curated gene sets given that the primary objective was to discern genes 
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exhibiting temporal differences in expression during sepsis. A logarithmic 

transformation was applied to the gene matrix, utilizing a transformation of the form 

a→log10(1 + a) to address potential model bias favoring highly expressed genes in 

the deep learning regression analysis.  

 

Developing a gene expression prediction deep learning model 

We developed a deep learning model to predict gene expression levels from 3D QPI 

cell images. We use the architecture that integrated a Multi-Layer-Perceptron (MLP) 

with a 3D Dense Convolutional Network (DensetNet)63,64. The architecture is 

comprised of 82 dense layers, four dense blocks, and three transition layers. This 

architecture allowed for the extraction of features and optimized information 

between layers. The output of the model was compressed from high-dimensional 

feature maps to a 1-dimensional vector using adaptive average pooling. This 

compressed feature vector was then passed into the MLP for further processing. 

The MLP architecture was composed of three hidden layers, with sizes of 256, 128, 

and 64, respectively. Each layer consisted of a linear transformation, ReLU 

activation function, and dropout regularization. Finally, a MLP at the end of the 

network performed a regression task to predict the expression level of each gene.  

 

The obtained images of CD8 T cells were divided into training, validation, and test 

sets at an 8:1:1 ratio. We implemented augmentation using random rotations, and 

horizontal and vertical flips to prevent overfitting and improve the generalization 

of the model. The model was trained for 1,000 epochs, with early stopping if there 

was no improvement in the validation set for 10 epochs. A MAPE loss and the 

Adam optimizer algorithm with 16 mini-batch sizes were applied to train the model. 

The learning rate was set to an initial step size of 0.001. We used a leave one out 
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test dataset approach, where individual patients were treated as separate test sets to 

evaluate the model’s performance. This approach ensured an unbiased assessment 

of the model’s generalization capability. All deep learning processes were 

performed using PyTorch (version 2.0.0) on a server that had two NVIDIA Tesla 

V100, 16 Gb memory, with CUDA version 11.1.  

 

Validating the the association between cell morphology and gene expression 

We used Grad-CAM to identify the regions within the cell that were most important 

in predicting gene expression65. We developed 3D Grad-Cam with a customized 

3D convolutional neural network model for model interpretation. The gradients 

were combined in a weighted manner to give us an understanding of the most 

significant features. These significant features were then highlighted on a heatmap 

that can be mapped over the cell image, revealing areas of the cell that are key to 

predicting gene expression. This process was separately applied for each gene 

model of interest.   

The Grad-CAM was quantified by projecting the Grad-CAM heatmap onto a 2D 

sliced cell images by focusing on the central z axis of the 3D cell image. We then 

divided this sliced image into concentric shells based on their Euclidean distance 

from the center. We divided it into eight distinct shells, with the central and 

outermost region termed shell 1 and shell 8, respectively. Each voxel within the 

slice was classified for density analysis.  

All Grad-CAM weights were considered to calculate the density of individual 

regions within each shell. The gradient weight density of each shell was then 

calculated. This approach allowed us to identify the spatial distribution of Grad-

CAM weights across the inner cell region.  
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Pathway enrichment analysis  

Pathway enrichment analysis involves analyzing biological process and cellular 

components. The Enrichr platform provides a comprehensive gene enrichment 

analysis using databases with rich gene set annotation pathway information 

analysis66. The log (P value) was used as a parameter of enrichment. The top 10 

enriched terms were selected for analysis. The results were obtained from the REST 

APIs provided by Enrichr.  

 

Cell soring  

We used the ‘AddModuleScore’ function from the Seurat package to compute cell 

scores. We focused on the gene sets associated with “Regulation of mRNA 

Metabolic Process (GO:1903311)” and “Translation (GO:0006412)” from the Gene 

Ontology database67. The average expression of genes within these gene sets were 

calculated for each cell.  

 

Validating the association between morphology-specific genes and patient 

status 

We used public datasets that closely mirrored the sepsis severity in our patient 

cohort to compare gene expression pattern using public data. We selected data from 

Dijoia et al33 that focused on septic shock patients, and Miguel et al32 that included 

patients with bacterial moderate sepsis to match the heterogeneity of sepsis 

observed in our study. We also used PBMC samples from 68 mild/moderate and 84 

severe/critical COVID-19 patients without comorbidities from the data of Xianwen 

et al34. 

 

Statistical analysis  
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We used a comprehensive statistical approach to identify target genes for training 

our deep learning model. A statistical approach was applied after filtering and 

selecting genes that were commonly expressed at all time points. We selected genes 

that satisfied equality of variance using the Levene test (p > 0.05) and genes with 

differences in gene expression across time points using the Kruskal-Wallis test (p 

< 0.05). We found genes that significantly changed over time and had constant 

variance between groups by selecting genes that met both criteria. 

Morphological features and gene expressions were compared using Student’s t-test 

for each time point. We employed linear regression models to assess the differences 

in gene expression coefficients between our study datasets and the open public 

datasets. This comparison focused on the expression coefficients of different 

conditions in our study dataset and in the sepsis and COVID-19 groups. This test 

effectively identified statistically significant gene clusters, revealing key 

differences and similarities in gene expression between our data and open public 

datasets. 

Statistical analyses were conducted using R software (version 4.1.0). Statistical 

significance is indicated as follows: * for P < 0.05, ** for P < 0.01, and *** for  P 

< 0.001. 
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SUPPLEMENTARY INFORMATION 

Supplementary Table 1. Demographic features  

 
Sepsis 

(N = 5) 

Age, year 75 (74, 88) 

Male, n (%) 2 (40%) 

Diagnosis  

Biliary septic shock, n 

(%) 
3 (60%) 

Pneumonia septic 

shock, n (%) 
1 (20%) 

Urinary septic shock, n 

(%) 
1 (20%) 

1st time point SOFA* 9.99 (8.00, 12.00) 

2nd time point SOFA* 5.00 (1.00, 6.00) 

3rd time point SOFA* 0.00 (0.00, 1.50) 

Number of total cells 3,064 (CD8 T: 1,639) 

  

* SOFA, Sequential Organ Failure Assessment 
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Supplementary Table 2. Patient inclusion and exclusion criteria  

Criteria 
Type  No. Description 

Inclusion 1 Patients with suspected infections. 

 

2 Two or more criteria of the quick Sequential Organ Failure Assessment 
(qSOFA) were satisfied: 
  - Respiratory rate ≥22/min 
  - Altered mentation  
  - Systolic blood pressure ≤100mmHg 

 3 An acute change in total Sequential Organ Failure Assessment (SOFA) 
score ≥2 points due to the infection. 

 4 Patients who were diagnosed with sepsis. 

 
5 Vasopressor requirement for a mean arterial pressure of 65 mm Hg or 

greater and a serum lactate level greater than 2 mmol/L in the absence of 
hypovolemia. 

Exclusion 1 Age <19 
 2 Pregnant or lactating 
 3 Active cancer status 
 4 Acute stroke 
 5 Acute cardiovascular disease 
 6 Acute burns 
 7 Acute gastrointestinal bleeding or bleeding within the last three months 
 8 Taking immunosuppressive drugs after organ transplantation 
 9 Taking immunosuppressive drugs for autoimmune disease 
 10 Previously diagnosed immunodeficiency conditions, or CD4 cell counts 

below 360 G/L 
 11 Neutropenia (neutrophils < 500 G/L) or if the neutrophils were 500-1000 

G/L due to chemotherapy and were expected to decrease. 
 12 Diagnosed with adrenal dysfunction 
 13 Prescribed a steroid equivalent to or greater than 0.5 mg/kg/day prednisone 
 14 Active tuberculosis 
 15 Cystic fibrosis 
 16 Post-traumatic 
 17 Patients who needed immediate surgery 
 18 The state of Do-Not-Resuscitate (DNR) 
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Supplementary Table 3. ANOVA test results  
Gene Pr_F 
N4BP2L2 0.129509937803094 
NAA10 0.13515870581716 
ACAP1 0.000743568577274568 
ANAPC16 0.00028830568630829 
ANP32B 0.0286376480494156 
ARF1 0.00594224783218777 
ORMDL1 0.0605985543234926 
ARL4C 0.0123592833211802 
ARPC2 3.99792760995731E-06 
ARPC4 0.000407321513182995 
PABPC1 0.000159561225068408 
ARPC5L 0.000274762237626927 
PFN1 3.6378469960392E-07 
ATP5MC2 9.05061157780184E-05 
PNRC2 0.200027135303339 
ATP6V1G1 0.000492871018277362 
PPP4C 0.0569278120864736 
PSMA4 0.219514344439647 
PSMA5 0.000167093622389519 
PSMB8-AS1 0.266299386517054 
CCL4 0.00324487857992835 
CCNI 0.00488093087075932 
PTP4A2 0.00510379904443045 
RCN2 0.0666453126135416 
RGS10 0.0614784933426084 
CHURC1 0.000279958441199613 
RNASEK 4.26076555531962E-05 
COMMD6 2.05250954786738E-06 
RNH1 0.0580756173405677 
RPL12 1.14116276979324E-11 
RPL28 0.154640712094851 
RPL34 3.72727291315162E-07 
COX6A1 0.0358454248538918 
RPL35A 2.42629597034733E-10 
COX6C 0.000933406866203093 
RPS8 4.63196869273584E-10 
RPS15A 4.17186333116153E-09 
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CYFIP2 0.279524841968575 
SDF2 0.0576332732943598 
SERF2 0.00103113674372893 
SET 0.0109857997410685 
SIVA1 0.0512051976999063 
SKP1 3.71947469323142E-05 
FAM162A 0.0982239294286712 
FAU 6.97537237102098E-12 
FKBP11 7.53715515811205E-05 
SMDT1 0.000310074671209055 
GIMAP7 9.21290679845216E-08 
SNHG6 1.76227496032228E-05 
GNG5 0.00030777531816448 
GRB2 0.111247556113962 
H3F3B 1.27542118083904E-08 
SNU13 0.0752842534380501 
SON 0.00164106857050651 
HCST 0.000583612391180288 
SPCS2 0.00943242684913351 
SPCS3 0.0928473438347402 
SPG7 4.17007389474475E-05 
HMGN3 0.177328518985684 
SSR4 0.000110938640320023 
HNRNPF 0.00393016366985479 
HP1BP3 4.71784584995712E-06 
HSP90AA1 8.31720585346302E-05 
IFITM2 0.000640733443372518 
SYNE1 3.54867374568553E-07 
TCEA1 0.161650663527425 
ITGA4 0.116941888043846 
JTB 0.00129525791577293 
KLF6 0.00521520358126956 
KRT10 0.053074312056001 
TMF1 4.02132135831499E-05 
LAPTM5 0.000269835992987571 
TPM3 0.000748525725028675 
LUC7L3 1.22196664086273E-05 
MBP 0.0035492954337052 
MCL1 0.0547591110035107 
MED4 0.0614575198570707 
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MPHOSPH8 0.0170610342908387 
UQCRB 6.38843928049698E-07 
VPS13C 2.7621859328919E-05 
YWHAB 3.68461133283568E-07 
YY1 0.23633082432192 
ZNF207 8.51105816950949E-07 
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Supplementary Table 4. Open sepsis coefficient difference test result  

Gene Cluster CoefDifference PValue 

FAU Cluster2 -0.380302136459969 1.37299225050404E-16 

RPL12 Cluster2 -0.188913252413975 9.03878704002036E-05 

SDF2 Cluster2 0.076172845176035 0.0259847233168203 

RPS15A Cluster2 -0.719141694727681 1.77624432827375E-62 

JTB Cluster2 0.206314086230256 3.92678898641599E-05 

PSMA5 Cluster2 0.0751408894975305 0.111794820255433 

H3F3B Cluster2 0.00991695855161434 0.861383049109513 

PFN1 Cluster2 -0.78065099771752 3.94556626236616E-49 

SMDT1 Cluster2 0.464176013144302 5.13554066311331E-20 

RPL34 Cluster2 -0.53282676683676 2.17005776232402E-33 

LAPTM5 Cluster2 0.157807557682384 0.00365695395981103 

RPL35A Cluster2 -0.221319321778204 1.33230673971271E-06 

RPS8 Cluster2 -0.47416887751202 1.46743015605905E-27 

LUC7L3 Cluster6 -0.162367649202875 0.0017741664268277 

YY1 Cluster6 -0.0238487061977216 0.608154343745023 

TMF1 Cluster6 -0.193490240259582 4.30043931822743E-07 

SPG7 Cluster6 -0.167640103584438 2.72988529404362E-07 

VPS13C Cluster6 -0.289171814223167 5.63161959024652E-10 

CCL4 Cluster6 -0.34065879481393 3.55198131074374E-07 

CYFIP2 Cluster6 -0.118974252907071 0.00573922785181948 

KLF6 Cluster6 -0.14141633671375 0.00997839497204598 

N4BP2L2 Cluster6 0.224691385992815 5.48652417339986E-05 

HP1BP3 Cluster6 -0.378331787970582 5.2945005788179E-13 

ZNF207 Cluster6 -0.144277844913994 0.00328153269673204 

HMGN3 Cluster6 0.0367932235004628 0.426405211206594 

MPHOSPH8 Cluster6 -0.228347330441571 1.54456994716596E-05 

SSR4 Cluster6 0.222040259253636 8.99123100792678E-05 
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SYNE1 Cluster6 -0.455997134996688 4.43351930258497E-17 

MBP Cluster6 -0.267288137051014 1.57950285237774E-06 

NAA10 Cluster6 0.0600207221584709 0.114830899445066 

PTP4A2 Cluster6 -0.0925345303816842 0.100314896143556 

ANP32B Cluster6 0.107221444046102 0.0372122117495735 

TCEA1 Cluster6 -0.0232212284181047 0.61280907913221 

TPM3 Cluster6 -0.0479494395104375 0.40344165799353 

SET Cluster6 -0.222282571179688 0.000133564134198286 

SON Cluster6 -0.242001440990336 1.87814197154902E-05 

ACAP1 Cluster6 0.0832709561833287 0.107570908058275 

COX6A1 Cluster6 0.0346733452914451 0.527555622997396 

PNRC2 Cluster6 0.249335272022174 3.24087344906198E-09 

SNU13 Cluster6 0.509215707998228 1.82650213424101E-27 
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Supplementary Table 5. Open COVID-19 coefficient difference test result  

Gene Cluster CoefDifference PValue 

FAU Cluster2 0.299568896652964 3.69876633862359E-12 

RPL12 Cluster2 0.315655005118925 2.11403897566331E-12 

SDF2 Cluster2 0.0752801759312092 0.0162513217530862 

RPS15A Cluster2 0.312613359776427 1.87846046703982E-17 

JTB Cluster2 0.15825072911182 0.000583292995334726 

PSMA5 Cluster2 0.196608511324452 7.06989994271224E-06 

H3F3B Cluster2 0.266516859409179 6.20782779232051E-07 

PFN1 Cluster2 0.198132628799943 3.94196082204718E-05 

SMDT1 Cluster2 0.191717505571616 3.27108908839848E-05 

RPL34 Cluster2 0.298459643208007 9.72025715397895E-14 

LAPTM5 Cluster2 0.303463464987329 1.02816023348578E-09 

RPL35A Cluster2 0.333254910677084 5.99423144389779E-15 

RPS8 Cluster2 0.275958163341543 2.51684931517112E-12 

LUC7L3 Cluster6 -0.242139495775 6.4210400333845E-07 

YY1 Cluster6 0.0304587651798358 0.482558255374984 

TMF1 Cluster6 -0.150855732846031 2.81091407305835E-05 

SPG7 Cluster6 -0.136357729406268 8.92064536643044E-06 

VPS13C Cluster6 -0.210701412975234 1.67909283751104E-06 

CCL4 Cluster6 -0.200322673585351 0.000779488908708566 

CYFIP2 Cluster6 0.0928541907518546 0.020971592942182 

KLF6 Cluster6 -0.218676777710223 1.68665320516071E-05 

N4BP2L2 Cluster6 -0.0511740974207463 0.319477591304562 

HP1BP3 Cluster6 -0.197880479585744 4.74899016881099E-05 

ZNF207 Cluster6 -0.17640485227732 0.000115722831221811 

HMGN3 Cluster6 0.129048859447876 0.00191278710848855 

MPHOSPH8 Cluster6 -0.121899218329371 0.0138941869662596 

SSR4 Cluster6 0.218842517923478 2.7392259968899E-05 
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SYNE1 Cluster6 -0.2694062673161 9.67574125567468E-08 

MBP Cluster6 0.176000468324648 0.000522383518805063 

NAA10 Cluster6 0.0635588351362411 0.0666056695465555 

PTP4A2 Cluster6 0.172564338941341 0.000935195603043461 

ANP32B Cluster6 0.113427707325812 0.0176941934341044 

TCEA1 Cluster6 0.0887325317261027 0.0337916548207776 

TPM3 Cluster6 0.237459655216204 7.27716698591234E-06 

SET Cluster6 -0.0131731709323251 0.806319541021993 

SON Cluster6 -0.00769841289261294 0.882128953746524 

ACAP1 Cluster6 -0.0126675849289535 0.789656916466872 

COX6A1 Cluster6 0.152785770126046 0.00246977834878148 

PNRC2 Cluster6 0.0742981304013084 0.0625402216368881 

SNU13 Cluster6 0.113805857937406 0.00943755154115863 
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Supplementary Figure 1. Single-cell transcriptional profiling of PBMCs from 
sepsis patients. a. UMAP representation of cell-type annotated clusters integrated 

all samples. b. The longitudinal proportion of cell clusters within the UMAP. c. 
Dendrogram showing Pearson correlation coefficients between annotated cell types. 

d, e. Feature plot illustrating the expression of T cell specific markers. CD8A and 

CD8B are known markers of CD8 T cells, while LEF1 and IL7R are recognized as 

specific markers of CD4 T cells. 
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Supplementary Figure 2. Target gene expression pattern in sepsis progression. 
a. Heatmap illustrating the variable expression patterns of the selected 412 target 

genes in CD8 T cells across different sepsis severity. 
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Supplementary Figure 3. Comparison of MAPE and MSE score results 
between current study model and 3D CNN-VIT model. a. Comparison of MAPE 

and b. MSE score, respectively.
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Supplementary Figure 4. Cellular morphological features during shock 
recovery. a. Comparative morphological feature (Volume, surface area) analysis 

between time points T1, T2 and T3. 
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ABSTRACT IN KOREAN 

 

딥러닝 접근 방식을 사용한 세균성 패혈증 CD8+ T 세포의 형태와 유전자 

발현 간의 상관관계 발견 및 검증 

연세대학교 일반대학원 

의생명시스템정보학교실 

김종현 

 

T 세포의 형태학과 유전자 발현 간의 복잡한 상호작용은 면역 반응에서 중요한 

역할을 합니다. 그러나 이러한 상호작용에ㄴ 대한 포괄적인 이해는 여전히 

불확실하며, 특히 패혈증과 같은 역동적인 면역 관련 질병의 맥락에서 여전히 

어려운 과제입니다. 여기서 우리는 단일 세포 RNA 시퀀싱을 통한 T 세포의 유전자 

발현 프로파일과 홀로토모그래피를 통해 얻은 3차원 세포 이미지 간의 연관성을 

조사합니다. 패혈증은 CD8 T 세포의 형태 변화가 두드러지는 역동적인 면역 관련 

질환입니다. 이 연구는 딥러닝 모델을 활용하여 패혈증 환자의 종단 코호트 내 CD8 

T 세포의 관계를 조사하여 근복적인 패턴과 관계를 규명했습니다. 그 결과 CD8 T 

세포의 종단적 형태 변화와 높은 연관성을 보이는 형태 특이적 유전자를 

확인하였습니다. 또한, 이러한 유전자들은 염색질 구성과 같은 세포 구조와 

관련하여 생물학적으로 중요합니다. 형태 특이 유전자들의 임상적 중요성은 공개된 

패혈증과 코로나바이러스 2019 (COVID-19) 단일 세포 RNA 시퀀싱 데이터셋을 

분석함으로써 검증되었습니다. 질병의 중증도를 일관되게 반영하는 유전자가 

확인되어 질병의 중증도와 더불어 형태 특이적 유전자를 필터링할 수 있게 
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되었습니다. 이러한 접근 방식은 유전자 발현과 세포 형태 사이의 상호 관계에 대한 

이해를 깊게 하고, 새로운 진단을 발전시키기 위한 표적으로서 세포 형태의 

잠재력을 강조합니다. 


