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ABSTRACT

Identification of colon cancer intrinsic immune evasion regulons and
development of reversal strategies using colon cancer organoids
Minjee Kim
Department of Medical Science
The Graduate School, YonseiUniversity

(Directed by Professor Hyun Seok Kim)

Colorectal cancer (CRC) 1s a type of cancer that 1z known to be
immune-suppressive, with only 5% of patients responding to immunotherapy. While 1f 1s
important to understand how the tumor immune microenvironment (TIME) affects the
effectiveness of immunotherapy, we still have lhimited knowledge on how cancer cells
ufilize certain immune-modulatory proteins to establish the surrounding immune profile.
However, growing evidence suggests that the development of immunotherapy resistance
in CRC cccurs through distinet mechanisms depending on the mtrinsic features of the
cancer cells. Therefore, 1t 15 crucial to have a comprehensive understanding of the diverse
immune-modulatory mechanisms that exist within the heterogeneous nature of cancer
One promising model for studying the heterogeneity of cancer is patient-derived tumor
organoids, which reflect the features of the original tumor tissue.

In thus study, we aim to mterpret how distinct subtypes of CRC co-regulate
different sets of immune-modulatory proteins, including chemokines, cytokines, and
immune checkpomt hgands. By analyzing collections of CRC organoids dernived from
over 100 patients, along with their matched tumor tissue omacs data, 1t 1s anticipated to
decode the regulons of these immune-modulatory proteins and their upstream master

regulators, revealinga novelapproach for more effective immunotherapy treatments.

Key words :Cancer intrinsic. Immune- modulatory regulon, Colon cancer, Organoid
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Identification of colon cancer intrinsic immune evasion regulons and
development of reversal strategies using colon cancer organoids
Minjee Kim

Department of Medical Science
The Graduate School, Yonsei University

(Directed by Professor Hyun Seok Kim)

I INTRODUCTION

Colorectal cancer (CRC) is one of the most representative immune suppressive
cancer subtypes, with only 3% of immunotherapy responsive group of patients’ Indeed,
the mismatch repair proficient (pMMR) type CRC which accounts for 84% of CRC
incidence is immune-excluded while the mismatch repair deficient (dMME) type CRC,
accounting for 11% of CRC mcidence, harbors T cells and NK cells exhibifing hagh
exhaustion status albeit increased infiltration of tumor-infiltrating lymphocytes (TIL).

Recent studies have identified key factors confributing to an immunosuppressive
tumor microenvironment, thereby reducing the effectiveness of immunotherapies. For
instance, in case of immune-exclusive pMME type CRCs, one study found that the
WNT/beta-catenin pathway's intrinsic activation in cancer cells can suppress the expression
of chemokines associated with T cell recruitment™ . Additionally, cancer cells can exploit
cytokines and chemokines to attract immune-suppressive myeloid cells, which indirectly
inhibit anti-tumorigenic T cell activity. Of another note, in immune-infiltrated tumors, the
interactions between tumor-infiltrating lymphocytes (TILs) and cancer cells can give nise
to immune-evasive capacity. For instance, these cancer subtypes tend to express immune-
checkpoint ligands—including PD-L1, PD-L2, CEACAM-1. CD1535, B7-H3. B7-H4,
CD112, CD113—which can lead to T cell exhanstions**®. They could also downregulate



MHC1 antigen presentation, hindering immune cells from recogmizing and targeting
malignant cells”. While further research is required to fully comprehend the exact
mechanizms, these findings suggest that improving the effectiveness of immunotherapies
for CRC patients could mvelve targeting the immune-modulatory pathways explosted by
cancer.

CR.C develop immunoctherapy resistance through diverse mechanisms that depend
on the intrinsic features of the cancer cells. These features include not only the distinct
imumune-evasive capacity, but also invasiveness, ability to metastasize, and the degree of
exhibiting epithehal-to-mesenchymal (EMT)-like features. Therefore, i1t i3 essential to
comprehensively understand the distinct immune modulatory mechamsms in the context
of the heterogenecus nature of cancer. However, this cannot be aclieved by relying on
models that do not reflect the heterogeneity of cancer such as cancer cell line-based
approaches. To address this challenge, a systems-level approach with the use of mere
complex models would be necessary to better capture the heterogeneity of cancer cells and
identify key immune modulatory mechanisms that are relevant to specific subtypes of CRC.

In recent years, technical advances have addressed some limitations of simple
two-dimensional cancer cell culture models by establishing a model known as three-
dimensional organoid culfure systems. These systems have greater similanties to the
original tumor tissue in terms of their genetic features and histology’. In light of this,
analyzing collections of cancer organocids with theiwr matched tomor tissue would serve as
an efficient means of revealing the sigmificant factors responsible for cancer progression
and immune evasion. The reason for this 15 the approach may provide data at the individual
patient level, well-reflecting the context of cancer cell heterogeneity.

Growing evidence in the literature 1s suggesting a strong link between intrinsic
features of cancer and the formation of the tumor immune micro-environment (TIME)
surrounding it. Despite the necessity of understanding the nature of TIME to ephance the
effectiveness of immunotherapies, the mechanism by which and how cancer cells exploat
distinet sets of immune-modulatory proteins to alter thewr sumounding immune profile



remain poorly understood. It 15 therefore crucial to use a systemic approach with a model
that could reflect the distinct characteristics of tumor tissues. This will aid in understanding
the mechanisms by which an immune-suppressive TIME is established and help to
overcome resistance to immunctherapy in CRC.

Therefore, 1n this study, [ examined 103 CRC patient-derived tumor organoids
that recapitulate gene expression pattern of therr matched tumor fo interpret the co-
regulation of distinct sets of secretory proteins such as chemokines and cytokines, as well
as the immune checkpoint ligsands, depending on the differing intrinsic features of
colorectal cancer cells. Subsequently, the co-regulation of these proteins, referred to as
regulons, harboring association with distinct features of 103 colorectal cancer samples was
identified. Finally, the likely upstream master-regulators that could simultanecusly mitigate

multiple immune modulators were suggested.



II. MATERIALS AND METHODS

1. Tumor infiltrating immune cell analysis

To estimate the abundance of distinct immune and stromal cells 1n 103 pnmary
tumors, xCell was used to calculate scores for 64 types of immune and stromal cell
components from tumor transcriptomics data® Cell type enrichment scores were
calculated with the “xCell’ package in R Additionally, single-sample Gene Set
Enrichment Analysis (ssGSEA) was utilized to calculate the enrichment score of 37
tumor microenvironment cell-associated gene signatures, which were manually collected
from a literature review™ '™ 1213 Additionally, to predict the immune cell activity highly
relevant to immune responses against cancer, including T cell inflamed, dysfunction,
exclusion status and imfiltration of T cell suppressive immune cell components, Tumeor
Immune Dysfunction and Exclusion (TIDE) scoring method was utilized to analyze
tumor transcriptomics data®.

2. Immune subtype classification of primary tumor

103 primary tumors were classified using the Nearest Template Prediction module
from Gene Pattern, following the previous report'’. In detail, the immunogenic and non-
mmmunogenic groups were identified based on their immune featore genes. Additionally,
single-sample gene set emrichment analysis (ssGSEA) scores were calculated for
manually curated mmmune and stromal signature gene sets. Using the ‘Pheatmap’
package mn B hierarchical clustering was performed with 103 samples, clustered using
Euclidean distance based on the ‘complete’ method. The resulting tree was cut info two
classes: one with hugh s3GSEA scores labeled as 'High immune-stromal infiltration’ type
and the other with low s3GSEA scores labeled as '"Low immune-stromal infiltration' type.
Low immune-stromal infiltration' type tumors were designated as 'cold' fumors, while
high immune-stromal infiltration' type tumors were further classified into 'exhausted'
and ‘active' groups, with the exhausted group being immunogenic and the active group



being non-immunogenic.

3. Immune-modulatory regulon identification

A list of immune related genes was manually selected by a thorough review of
literatures and total 98 mmmune-modulatory genes were finally selected based on the
three criteria. These mcluded genes encoding proteins discovered with clear immune
modulatory functions hence being studied as a target of immune checkpoint inhibitors
such as CD274, genes with coefficient of vanation valoe over 0.03, and finally, genes
that are expressed in at least 50% of CRC patients. With these genes, spearman
correlation coefficient was calculated and visualized with “pheatmap’ package in R.
After confirming the immunomodulatory functions and correlation with distinct types of
immune cell components, 6 different immune modulatory regulons were 1dentified.

4. Identification of candidate master regulators of immune-modulatory regulons
Lists of transcription factor (TF) and target gene (T'G) pairs has been collected
from Omnipath and Human Trust databased (TERUST v2). Transcription factors that
have at least one of the immune modulatory genes as theirr downstream target were
selected. Then hypergecmetric test was conducted to determine the extent of overlap
between genes identified within the regulon obtained through Spearman correlation
analysis and the group of downstream TGs of each TF.

5. Statistical analysis
All graphs were drawn and statistical significances were tested using the E
software (ver. 4.0.3).



IIT. RESULTS

1. Clinical features of 103 patients with colorectal cancer and the overall flow of the

research

To identify and deconstruct the cancer intrinsic reguolatory mechamsms of
immune-related gene expression, contributing to the establishment of heterogeneous
immune profiles. I conducted a comprehensive analysis using data from 103 cancer patients.
Each patient was charactenized by unigue clinical features, including tumor location,
microsatellite instability (MSI) status, stages, and recumrence (Figure la). Notably, the
samples covered patients across various stages of CEC, ensunng a comprehensive
representation from early to advanced phases of CRC tumorigenesis. Furthermore,
consistent with previous findings in the colorectal cancer population, I observed a
prevalence of patients with microsatellite-stable (MSS) type colorectal cancer compared to
those with microsatellite instability (MSI) (Figure 1a). This suggests that the patient cohort
used in our study likely reflects the commeon characteristics of colorectal cancer without
bias.

To imnvestigate cancer-intrinsic immune evasion mechamsms across distinct
subtypes of CRC, I opted to dissect the unique immune status of CRC patients and the
underlying cancer-intrinsic features contributing to it. This multifaceted analysis mvolved
two fundamental steps: a comprehensive examination of transcriptomic data extracted from
colorectal cancer patient tissues and their corresponding organoids (Figure 1b), and the
identification of co-regulated set of immune regulatory genes—referred to as regulons—
within cancer, along with their candidate master regulators (Figure 1c).



(a)

Tumar ocation M5 status
15T A8 5 A%
1. 98%
O s """""
l'
e

' {b} Colprectal cancer patient-derived tumor organcids and fwmor tissue
franscriptomics data analysis

a2 FIEm Identification of regulons
- :F S : and their candidate master
. b Celbsurface proten regulators
B enprension profils al
. . as | - single-organcid level
=
CRE patsania (n=104)
L FEMb-2eg
i.f C.! arslysis Examples of regulons
e i — Sacretony proten
J'H'!h" iE I expression profile at 3
ki darond - SR CYSN A e S,
1urm::atr::| i*]nds - ‘4_ S st
=il Folop L |
_. - b bl T
(¢} Immune-modulatory protein expression profile analysis . - ~EEELY
Rkt
Exzreasion prodile & . Eupeescinn prafie f‘-
i the prganaids e fr callsurface  9f the organaids ol o
A profeine Chemickines f"ﬁ (=] $
SRHE
PR ! %
'\.l. § oigansid 1 § £ P gy B
= . i = CF Master e
E% i | qiganGid n] ] i 'rrl:JfCﬁUH"\-':r £ 1
EE ) ::-garﬂda. . I m tﬂ.u .......... kbt
Regulan 2

5 | (3 o ii:il B oNEED YEN
Figure 1. Characteristics of 103 Colorectal cancer (CRC) and the overall flow of the
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representation of the research flow.




2. The gene expression patterns of organocids match their respective tumeor tissues

For further analyses, I first examined the concordance of gene expression patterns
between organcids and tissues. I imbally selected the top 5000 genes with the highest
standard deviation in organoids. Subsequently, the Spearman correlation coefficient values
between their expression levels in organcids and their corresponding fumor tissues were
calcuolated. The results revealed a significant correlation in the expression patterns of the
majority of these gene (Figure 2a). In addition to explonng genes with high varability in
organoids, my focus extended to genes associated with major carcinogenesis signaling
pathways, referred here fo as hallmark genes. These genes were collected from the
carcinogenesis-related gene sets within the hallmark gene seis v0, including DNA repair,
ERAS signaling, MYC targets, PBE/AKT/mTOE, WNT/B-catenin, NOTCH signaling,
and the P33 pathway (n=1092). Again I found a significant correlation in the expression
of hallmark genes (Figure 2b). Notably, only 278 genes overlapped between the top 3000
highly variable genes and the curated hallmark genes (Figure 2¢). Interestingly, a higher
cofrelation between organoids and thewr matched tissues was observed with genes mvolved
in major carcinogenesis pathways compared to the top variable genes, suggesting the
conservafion of oncogenic gene expression patterns of tumor tissue 1n the organocids (Figure
2d).

Moreover, I explored the conservation of carcinogenesis-related pathways within
the organoids. Employing the hallmark gene set v6 from MSigDB, ssGSEA analysis was
conducted, scoring both organoids and fumor tissues for each gene set. The Spearman
comrelation analysis between organoids and tissues revealed sigmficant and positive
comrelations within cancer signaling pathways. such as P53, MYC, WNT/beta-catemn,
epithelial-to-mesenchymal transition, DNA repair. and PI3K/AKT/MTOR signaling
pathways (Figure 3). These findings collectively suggest that the intrinsic gene expression
features of cancer cells in organoids effectively recapitulate those of corresponding tumors
in the primary tissues.
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Figure 1. The gene expression patiern of organcids matches with the corresponding
tumor tissue. Histogram showmng correlation in the expression of individual genes
included in the top 5000 variable gene set (a) and genes collected from cancer hallmark
gene set (b). The Spearman correlation value was assessed between the organoids and
tumor tissues, representing the relationship between the expression of a specific gene in
organoids and their corresponding gene in tumor tissues. (c¢) Diagram showing the overlap
between the top 5000 vanable genes and cancer hallmark genes. (d) Histogram showing
the gene expression values of all the genes within each gene sef 1n a cerfain cancer patient-
derived organoid to the gene expression values of the same set of genes in the matched
tumor tissue, reflecting the relationship between the overall expression patterns of gene sets
in each organocid compared to its matched tumor tissue across the entire dataset of 103
samples. (Wilcoxon rank-sum test was used to calculate the significance).
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3. Immune subtype classification of 103 colorectal cancer (CRC) patients

After confirming that the oiganoids accuorately replicated the oncogenic
charactenistics of fomor fissue, I proceeded fo analyze the fumor immune
microenvironment { TIME) profiles of 103 tumor tissues. Imtially, patients were categonized
into immunogenic and non-immunogenic groups based on their immune signature gene
expression patterns (see Figure 4a). As anticipated, the immunogenic groups displayed a
higher proportion of immune cell components compared to the non-immunogenic groups,
as evidenced by the elevated 'immuneScore' calculated through xCell analysis (refer to
Figure 4b). Remarkably, tumors classified as immunogenic exhibited notable ennchment
in stromal cell subsets, as well as both innate and adaptive immune cell types (Figure 4b),
indicating the overall active mterplay among non-epithelial cell components.

To further characterize the TIME status of each tumor based on an approach that
could reflect distinct TIME cell compartments, gene expression signatures associated with
major TIME cell components were collected for ssGSEA score calculation. 30 TIME
signature gene sets with the highest standard deviation scores were selected, encompassing
both immune and stromal cell populations. This ensured the comprehensive evaluation of
TIME components, mvolving multiple players crucial for unique TIME formation
Subsequently, hierarchical clustering analysis revealed two distinet groups: one with
overall high immune-stromal cell scores, and the other group with relatively lower scores
(Figure 3a). Given the immune-suppressive roles of stromal compartments, the group
highly enniched with both immune and stromal cells was labeled as the "exhaunsted’ group.
The remaining patients, with a relatively lower degree of non-epithelial cell infiltration
were further classified into two distinct subgroups: those with an immunogenic tumor
designated as the 'active' group and those exhibiting a non-immunogenic feature labeled as
the 'desert’ group (Figure 5b). Intriguingly, the 'immune desert’ group was mainly composed
of advanced-stage cancer, while the 'active' group predomunantly included early-stage
tumors, demonstrating that the classification system could effectively reflect clinical

11



features of CRC (Figure 5c).

Considering the complexity of cellular compositions i the Tomor Immune
Microenvironment (TIME) and their dynamic interactions leading fo distinct immune
responses against tumors'®, I examined the key features relevant to the anti-cancer immune
responses in each immune subtype. These features included levels of CDE+ T cell
infiltration, activation, dysfunction, as well as the infiltration of T-cell suppressive myelowd-
derived suppressor cells (MDSC) and cancer-associated fibroblasts (CAF) in each patient
group (Figure 6a). Consistent with data observed in ssGSEA analysis for TIME cell
components (Figure 5a), the findings revealed that the immune exhausted group exhibited
the highest CAF score and CD8+ T cell infiltration, indicated by high CD28+ T cell and T
cell inflamed scores (Figure 6a). Intnguingly, this group also showed the highest T cell
dysfunction score and CD274 score, suggesting that infiltrating T cells had been activated
and tended toward a dysfunctional state (Figure 6a). In contrast, the immune desert group
exhibited the lowest CD8+ T cell and T cell inflamed scores, implying a lack of T cell
infiltration. which may underlie the lowest scores for indicators of T cell dysfunction status
(Figure 6a). Notably, this group had the highest MDSC score, demonstrating an enrichment
of immune-suppressive cell components 1n 1its TIME (Figure 6a). Additionally, the patient
group with tumors exhibiting a median level of non-epithelial cell infiltration (active group)
was observed to have lower T cell dysfunction and inflamed score as well as lower CAF
score, despite similar level of CDE+ T cell score compared to the exhaunsted group (Figure
Ga). These results suggest that CAF enrichment likely contributes to impammng functions of
cytotoxic lymphocytes, consistent with previous reports’’.

Aligned with the fact that the immune active group showed ugh T cell infiltration
CAF components, and T cell dysfunction status, CMS4 cancers known for their immune-
suppressive TIME enriched with both immune and stromal components were prevalent
among these groups (Figure 6b). Conversely, patients with CMS2 cancers, the least
immune-infiltrated among the four CMS types, were predominant in the desert group
(Figure 6b). Cancer patients with an active immune statos lacked CMS4-type tumors,

12



supporting the observations of lower immune dysfunction scores compared to exhaunsted
groups (Figure 6b). Collectively, stratifying CRC patients into three distinet immune
statuses based on signature genes representing inflammatory stromal response and patterns
of infilirated TIME components effectively captured the diverse immune landscapes of
tumors, aligning with the established CRC classification system (Figure 6c).

13
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4. The three different immune subtypes of CRC exhibit distinct tumor-intrinsic

features

After charactennzing 103 CRC patients into three disfinct classes based on theiwr
TIME states, I investigated their differences in cancer-intrinsic molecular features. I first
opted to examine vanations in tumor-intrinsic signaling pathway activation across the three
immune subtypes. Activation levels of pathways related to hallmark gene sets and KEGG
pathways were assessed through single-sample gene set enrichment analysis (ssGSEA)
using transcriptomics data from patient-derived organoids (PDOs). Subsequently, pathways
that exhibited differential activation in at least one of the immune subtypes were selected,
employing the One-way ANOVA fest fo discern their activation patterns across these
subtypes (Figure 7a). PDOs denived from the immune active group tended to be enriched
in genes related to the p533 pathway (HALILMARK P33 PATHWAY) while showing low
activation in spermatogenesis (HALTIMARK SPERMATOGENESIS) and SNARE-
mediated wvesicular transport (KEEGG SNARE INTERACTIONS IN VESICULAR
TEANSPORT) pathways (Figore 7a). In the case of exhausted group PDOs, they exhibited
activated hedgehog signaling pathways compared to other immune subtypes (Figure 7Ta).
Intrigumngly, KEGG pathway enrichment analysis revealed PDOs of immune desert type
tumors exhibit active glycerolipid metabolism pathways (Figure 7a). Taken together, these
observations indicate that the distinct immune subtypes of tumors harbor a differential
cancer-infrinsic signaling pathway activation pattern.

To further examine whether the signaling pathways showing distinct activation
patterns within the cancer cells of different immune subtype tumors correlate with the
immune response, I investigated the correlation between TIDE scores obtained from the
primary tumor and enrichment scores of these pathways calculated in PDOs (Figure 7b).
Notably, cancer-intrinsic P33 pathway activation exhibited a positive correlation with the
T cell infiltration level of the tumor, as denoted by a significant and positive comrelation
with both T cell inflamed score and T cell dysfunction score (Figure 7b). Additionally,



cancer-infrinsic p33 pathway activation showed a positive correlation with the MSI
signature of the tumor, suggesting an association with cancer antigemicity and the
comtesponding T cell antigen recogmition responmse (Figure 7b). In contrast, the
spermatogenesis pathway m cancer cells showed a clear negative correlation with the
predicted MSI signature in tumor tissue, possibly explaining the lower enrichment scores
in PDOs of the immune active group (Figure 7b). Of particular note, the cancer-intrinsic
hedgehop signaling pathway, which had been activated in exhausted group tumor tissues,
positively and significantly correlated with CD8+ T cell infiltration, CD274 level, and more
critically, CAF level (Figure 7b). In consistent with previous observations that suggested
the contribution of CAF to impairing cytotoxic lymphocytes (Figure 6a), these results again
demonstrate the association between high CAF and T dysfunction levels in exhaunsted
TIME. In the case of the glycerolipid metabolism pathway within CRC cells, associated
with immune desert type tumors (Figure 7a), it exhibited a negative correlation with overall
T cell activity, denoted by negative correlations with IFNG, T cell inflamed, and CD274
scores, while positively correlating with MDSC infiltration (Figure 7b). Overall these
findings effectively supported my hypothesis that the cancer-intrinsic features may have
associafion with the development of umque TIME and comrespondingly, the immune
responses i CEC.

18



L] FIALLMARE, FLALLMARE HEGO_GLYCERCLPl KEGE_SHARE NTERACTIONS

I'\-I-l_':l.frfh“T HE[HIEHCHE_ S L SPERISIGRE BRE TS s H_:rtﬂﬁm_l'm-l‘m'r
"-'| fwuhs = DIT ei| B IM — v = 1T T TELEE . vl = OO
| ToHN
i e
| ; T - P == i i
bl S 7 S B R ;e Pl o
- I_I ¥ e __-_I ¥ i e El [ i i
WEER ] T R R
: 4 | ey — B
|1 * ; e} . = g B g |
' [} i | e
=i 3 D 1 i | |5k I ]
: v - L L 0 I o ] o
o | | B g | b
b 2 g v e T bt Bk A T R B e Raltyr  Doef Esianrded
W DT i iy LS TR e i e b i
1= Tha s o] e | o gerwinil) gt p—vslus
FALLPANER, ST TOGEE mq.n = -po@e o
HeELWA rEneEs saec 10 0 Do@co - ()0
e e v | o SIS o o @ ol o By
ros ancehuro veTvossEs (DR @ o @ aE @ —
R AR TEEACTER AR TRARSEEET (@ o @ a @ - = & -« o o3
STl e 0 bR i i
...... T -
By or

Figure 7. Distinct cancer-intrinsic features across the three immune subtypes. (a)
Graphs depicting enrichment scores calculated from ssGSEA analysis with transcriptomics
data of 103 patient-derived organoids. A one-way ANOVA test was conducted for
significance, and the data represent mean £ 5D. (b) Bubble plot showing the correlation
between gene set enrichment scores calculated from the transcriptomics data of 103 patient-
derived organoids and TIDE scores computed with the transcnptomics data of
cotresponding tumor tissues.
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5. Identification of cancer-intrinsic immune-modulatory regulons

Based on the observed correlation between vanable tumor-infrinsic transcriptomic
features and the onigque tumor immune microenvironment (TIME) along with immune
responses, I investigated whether colorectal cancer (CRC) cells mamifest distinct patterns
of cancer cell-intnnsic immune-modulatory genes. Imtially, I curated genes associated with
TIME establishment and the modulation of immune cell activities, encompassing MHC
class I (MHC1) and class II (MHC2) alleles, immune checkpoint receptor ligands,
Interferon-stimulated genes (I5Gs), chemokines, cytokines, and oncology-related protein-
coding genes. To ensure relevance, I excluded genes with minimal vanation or those
expressed i less than 50% of cancer organoids (see methods), resulting 1n a refined set of
08 genes of interest (Table 1).

The global expression pattern of selected immune regulatory genes was then
examined in the organoid and their matched tumor tissue, revealing extreme heterogeneity
across patients (Figure 8a and 8b). Notably, despite the typical restniction of MHC2
molecule expression to specific antigen-presenting cells, certain subgroups of cancer cells
exhibited relatively higher levels of MHC2 molecules compared to others (Figure 6a).
Additionally, most of the genes encoding MHC]1 alleles or MHC?2 alleles clustered together,
as expected, aligning with the well-established notion of their tightly associated
regulation’® (Figure 8a and 8b). In addition to MHC alleles, CXCL9, CXCL10, and
CXCL11, chemokines identified with their roles in recruiting anti-tumorigenic T cells!®2%
also clustered together (Figure 8a and 8b). These observations suggested that specific
immune modulatory genes could be subject to simultaneous regulation within cancer cells,
which may contribute in shapmng distinct fumor microenvironments (TMEs).

To explore the co-regulatory relationships among these genes, I calculated the
Spearman cotrelation coefficient between the selected genes in the organoids, revealing an
overall positive correlation relationship (Figure 9). Again, penes responsible for encoding
MHC1 molecules, MHC2 molecules, and chemokines with anti-tumor properties exhibited

[
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robust correlations with other genes in the same category, likely indicating a shared
regulatory mechamism. Of particular note, the clear correlation was observed between
CD74 and the genes encoding MHC2 molecules (Figure B), aligning with the previouns
report that confirmed a significant correlation in the expression of CD74 and MHC2-
pathway genes in the tumor tissue of triple-negative breast cancer™. Given the known
functions of each gene and the sigmificance of their co-regulatory relationships, 6 immune-
modulatory gene expression sets were defined, namely NK-cell related regulons, MHC?2
related regulons, LGALS9-related regulon, MHC]1 related regulon, suppressive chemokine
related regulon, and VICN]1-related regulon (Figure 9 and Table 2).

To investizate the expression pattern of the regulons, ennchment scores were
calculated in both organoids and tissue samples with ssGSEA analysis. Interestingly, the
regulon scores in organoids and their corresponding fissues showed no sigmficant
correlation, except for the MHCI1- and MHC2- related regulon (Figure 10a). This
observation led to two hypotheses. Fust, the expression of immune modulatory genes in
cancer cells may necessitate interactions with other cell components withun the TME.
Second, immune modulatory genes are primarily expressed by non-cancerous cells within
the TME. Indeed, a higher correlation coefficient was observed for genes included 1n all
six regulons i the immune desert group (Figure 10b), highlighting the sigmficant role of
tumor-infiltrating cell components in shaping the overall immune-related gene expression
patterns of tumer tissue.
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Figure 8. The expression patterns of immune modulatory genes in 103 organocids and
corresponding tissues. Heatmap illustrating the heterogeneous inmmune-modulatory gene
expression pafterns in 103 (a) organcids and (b) fissnes. The data has been row-wise
centered, and hierarchical clustering was performed using complete linkage Genes were
clustered based on the Spearman correlation, while samples were clustered using the
Euclidean distance metric. The order of patients and genes in the tissue heatmap directly
cottesponds to the their order established in the organoid heatmap, allowing for direct
comparison of gene expression patterns between organoids and tissues.
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(a)

()

Figure 9. Identification of immune-modulatory regulons with genes in significant
correlations. (a) Heatmap showing correlation between each immune-modulatory gene.
Spearman cotrelation coefficient value was calculated to examine the co-regulatory
relationships. Black box represents 6 different regulons including NK cell related regulon,
MHC2 related regulon, LGALS9 related regulon, MHC]1 related regulon, suppressive
chemokine related regulon, and VTCN1 related regulon, starting from the left. (b) Heatmap
illustrating FDR adjusted p-value for spearman correlation test between each immune-
modulatory gene.
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Figure 10. Correlation analysis of global regulon expression patterns in organoids and
their corresponding tumeor tissues. (a) A plot displaying ssGSEA score correlations for
each regulon between orpancids and tumor tissue, assessed using Spearman correlation

analysis. (b) A plot showing Spearman correlation coefficient values for immune
modulatory genes in 103 patients (left), with sigmificance assessed using Wilcoxon rank-
sum test (***p < 0.001) to compare differences between TIME groups (nght). Data

represents mean = 5D
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Table 1. A list of curated immune-modulatory genes

Group Genes
HIA-A HLA-B HLA-C HLA-E. HLAF HLA-G BIM
Lﬂ_lﬂ I:Il= ﬂ} TAPE 3 ] ] H ¥ 3 3
HLA-DRA, HLA-DRBS, HLA-DRBl. HLA-DQBI,
MHC? (n=12) HLA-DOB, HLA-DMB, HLA-DMA, HLA-DOA, HLA-
DPA1, HLA-DPB1, CIITA, CD74
NECTING, PDCDILG2, PVR. CD276, VTCNI,
Imnmne checkpoint lizand NECTIN3, NECTIN2, CEACAMI1. CEACAMS,
(m=19) LGALS9, LGALS3, TNFRSF14, FGL1, CD86, CD274,
CLEC2D, HHLA?, NCR3LG1, NID1
I“*ﬂf“m“'“‘?;ﬂ:ﬂ"ﬁd gene (ISG) 19615 15G20. IFI6, IFI44, OASL, IFIT1. IFIT?, IFIT3

Chemokme (n = 30)

Cytokine (n = 14)

Secretory protein (n =4)

Oncology related proten (n = 3)

CCL2, CCL5, CCL14, CCL15, CCL20, CCL22, CCL24,
CCL25, CCL26, CCL28, RARRES?. CX3CL1, CXCLI,
CXCL2, PF4. CXCL35, CXCL6, PPBP. CXCL9, CXCL10,
CXCL11,CXCL14, CXCL16, CXCL8, CSF2, MDK_ MIF,
CXCL17, CXCL3, CXCL12

1110, IL16, BDNF, FSTL1, IL15, LIF, SPARC, IL1B,
CHI3L1, IL18, CSF1, TNE, TNFSF10, IL1A

TGFB1, TGFA, VEGFA, GDF15

IDO1, MICA, MICB




Table 2. Lists of immune-regulatory genes included in 6 distinct regulons

NK cell LGALSY MHC1 MHC2 Suppressive VICNI
related related related related chemokine related
regulon regulon regulon regulon related regulon regulon
MICA IDO1 HLA-G HLA-DQBE1 CCL2 CD74
CCL28 IL15 CSF2 HLA-DEB3 TNF RARRES2
TNFESF14 CSF1 HLA-A HLA-DEEI1 CCL20 CXCLé6
LGALS3 ISG15 B2M HLA-DMB CXCL2 VTCN1
HHLA? CXCL1 TAP2 HLA-DMA CXCLE
CEACAMS CXCL9 HLA-E HLA-DPEI CXCL1
CEACAMI CXCL10 HLAC HILA-DRA CXCL3
ISG20 CCL3 HLA-B HILA-DPAL
GDF15 OASL HLA-F CIOTA
CD276 IF144
SPARC IFIT1
IL1B IFIT2
IL1A IFIT3
MDE IFI6
CD274 TNFSF10
TGFA LGALS9
NECTIN2
TGFB1
LIF
IL18
CXCL17
CX3CL1
CCL22
CXCL16
CHIZL1
CCL26
NECTING
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6. Correlation between immune-modulatory regulon expression patterns in distinct
types of CRC and their unique TIME

To elucidate the role of cancer infrinsic immune modulatory regulons mn shaping
TIME, association between the expression of each regulon 1n organoids and distinct tumor
immune microenvironment ( TIME) compositions of their corresponding tumor fissue was
investigated. First, I examined whether the expression pattern of each regulon in organoids
correlate with the abundance of immune cells 1 their matched tumor tissue. The ssGSEA
scores calculated in the organcids were used to represent the cancer intrinsic expression
level of each regulon. The discrepancies in regulon scores across three immune subtypes
were examined, revealing the sigmificant difference between immune active and exhausted
group m MHC2 regulon score (Figure 11a). This finding indicated that MHC?2 regulon
expression within cancer cell has association with immunclogically active tumor tissue.
Considering that distinet CMS types of tumors harbors different TIME features, a
comparative analysis of regulon scores across 103 organoids representing different CMS
types of tumors was conducted to elucidate the contribution of cancer intrinsic regulon
expression in TIME composition. Among the 6 immune-modulatory regulons, the MHC2-
related regulon score was sigmficantly higher in CMSI type compared to CMS4 type
tumors (Figure 11b). As the key distinction between the heavily immune mnfiltrated CMS1
type tumeor and CMS4 type tumor lies 1n the immune-exhansted features of CMS4 tumors,
this again demonstrates that the vpregulation of the MHC2-related regulon in colorectal
cancer cells 15 associated with the ephanced anti-tumor immunity. Collectively, these
observations reveal the distinct expression patterns of regulon expression within cancer
cells have correlation with the unique TIME of CEC.

Furthermore, the direct association between cancer intrinsic immune-modulatory
regulon expression and the abundance of distinct immune cell populations was investigated.
The Spearman correlation coefficient values between regulon scores obtained from the
organoids and immune cell scores estimated from thew matched tissues were calculated,

[
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revealing noteworthy relationships. For instance, VICNI regulon expression exhibited a
clear positive correlation with naive B cells, while displaying an apparent negative
correlation with memory B cells (Figure 12). Intriguingly, the expression of MHC2-related
regulon in cancer cells showed no association with conventional CD4+ T cell activity but
demonstrated a significant correlation with gamma delta T (T,;) cells, reported for their
unique role in building an anti-tumongemic TME by displaying MHC-independent
cytotoxicity™ (Figure 12). In addition, four of the immune-modulatory regulons (NK cell-
related regulon, LGALS59-related regulon, MHC2-related regulon, suppressive chemokine-
related regulon), which collectively encompassed more than half of the curated immune
modulatory genes (n=58), all exhibited negative correlations with activated memory CD4+
T cells (Figure 12). This implies that the CD4+ T cell-unfavorable TME in CRC does not
stem from a single factor but results from a complex interplay of various elements. Taken
together. these observations reveal the dynamic interactions between individual regulons
and distinct immune cell components, underscoring the importance of understanding the
collective roles of cancer-derived immune modulatory proteins in CRC.
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Figure 11. The expression of immune modulatory regulon in tumors of distinct
immune status. (a) Plot showing the cancer-intrinsic expression level of the MHC2-related
regulon, represented by the ennichment score calenlated from the ssGSEA analysis with the
transcriptomics data of 103 organoids across distinet immune subtypes (a) and distinct
CMS types (b). CMS types were defined using bulk tumor tissue data. (a, b) Significance
was assessed using Wilcoxon rank-sum test (*p < 0.05, **p < 0.01) to compare differences
between the immune cold and immune hot groups (right). Data represents mean £ SD.
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populations. A bubble plot showing the correlation between the regulon s3GSEA scores
computed for 103 organoids and the scores for 22 distinct immune cells calculated 1o 103

tumor fissues using CIBEESORT analysis.
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7. Identification of candidate master regulators of immune-modulatory regulons

Focusing on the distinctive association of cancer-intrinsic MHC2 regulon
expression with immune active group, CMS4 type tumors and T,z cells, subsequent
analysis was conducted to idenfify the candidate master regulator responsible for
modulating the cancer inirinsic expression of this regulons. To do so, lists of transcniption
factors and their target gene pairs were collected from the Omnipath and Troust (v2, human)
database. In case of TFs collected from Trrust database, regulator, target protein paurs in
both activation or suppression relationship were included. Target genes that share their
upstream regulator were clustered as co-regulated regulon. Then a hypergeometric test was
conducted to determine the extent of overlap between genes identified within the MHC2-
related regulon and the curated co-regulated regulons, revealing total 140 candidate master
regulators (Table3).

Based on the assumption that the expression of master TFs of a given regulon
would exhibit significant correlations with the expression patterns of genes comprising this
regulon, I examined the correlation between the expression of 140 candidate master TEs
and that of genes included in the MHC2-related regulon (Figure 13). Among various
candidate TFs, a well reported TF of MHC2 encoding genes, CIIT4 showed overall
significant and positive correlation with genes of MHC2-related regulon, supporting the
validity of analysis (Figure 13). In addition to CIITA. MITF and JUNB expression in CRC
organoids showed clear and positive correlation with MHC2-related regulon genes (Figure
13). Notably, the correlation analysis revealed SOX2 as the most likely candidate TF that
suppresses the expression of cancer mtrinsic MHC2-related regulon, indicated by the
significant and negative correlation with multiple MHC?2-related regulon comprnising genes
(Figure 13). Given the established notion in pro-tumorigenic function of SOX2 by inducing
proliferation and drug resistance in cancer”, the data from current study and accumulating
reports rationalize forther investigation on SOX2 as a potential targetable master regulator

to enhance anti-tumor immune responses in CRC.
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Table 3. Lists of candidate master regnlatnrs of MHC2-related I‘EE‘IIII]-II

Dverlapped gens
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HLA-DOE, HLA-DRES, HLA-DREB], HLA-DRE, HLA DA, HLA-DPEL HLA-DRA, ELA-DRAL CTTA
HLA-DOE, HLA-DRBS, HLA-DEE], HLA-DRE, HLA DA, HLA-DFEL HLA-DRA, HLA-DRAL, COTA

HLA-DOE, HLA-DREL, HLA-DME, HL A-DiiA, HLA-DFE1, HLA-DEA, HLA-DPA], CIITA

HLA-DNE], HLA-DRES, HLA-DRE], HLA-DRE, HLA-DRA, HLA-DPE], HLA-DRA, HLA-DRAT, CITA

HLA-DEL, HLA-DRE, HLA-DME, HLA- DA, HLA-DPR], HLA-DEA, HLA-DPAL, CIITA
HLA-DGEL, HLA-DRE, HLA-DME, HLA-DRA, HLA-DPR1, HLA-DEA, HLA-DPA], CITA
HLA-DE], HLA-DREL, HLA-DME, LA DA, HLA-DPR1, HLA-DEA, HLA-DPA], CITA
HLA-DE], HLA-DRE L, HLA-DME, HLA-DhLA, HLA-DPR1, HLA-DEA, HLA-DPAL, CIITA
HLA-DNJEL, HLA-DRE L, HLA-DAE. HLA-THAS, HLA-DPE1, HLA-DRA, HLA-DPA1, CTIITA
HLA-DOEL, HLA-DREL, HLA-DAE, HLA-DAA, HLA-DPE1, HLA-DEA, HLA-DPA1, CIITA
HLA-DEL, HLA-DRB L, HLA-DME, HLA-DRA, HLA-DPE1, HLA-DEA, HLA-DPA], CIITA
HLA-DQE], HLA-DREL HLA-DME, HLA-DAA, HLA-DFE1, HLA-DEA, HLA-DPAL, CIITA
HLA-DGEL, HLA-DRET, HLA-DME, HLA-DRA, BLA-DFR1, HLA-DEA, HLA-DPAL, CIITA
HLA-DNJE], HLA-DRET, HLA-DME, HLA-THAA, HLA-DFE1, HLA-DRA, HLA-DP&]
HLA-DOE], HLA-DRET, HLA-DAE, HLA-THAA, HLA-DFE1, HLA-DRA, HLA-DPA 1, CTIITA
HLA-DGEL, HLA-DRBE, HLA-DME, HLA-THLA, HLA-DFR1, HLA-DREA, HLA-DPA], CIITA
HLA-DQE], HLA-DRES, HLA-DRE], HLA-DE, HLA-DRA, HLA-DFEL, HLA-DRA
HLA-DE], HLA-DRE L, HLA-DME, HLA-DRLA, HLA-DFR1, HLA-DEA, HLA-DPAL, CIITA
HLA-DNE], HLA-DRE], HLA-DAE, FHLA-DLA, HLA-DPR1, HLA-DRA, HLA-DP&1
HLA-DEL, HLA-DRE |, HLA-DME, HLA- DA, HLA-DPR], HLA-DEA, HLA-DPAL, CITA
HLA-DEL, HLA-DRE |, HLA-DME, HLA-DRL, HLA-DFR1, HLA-DEA, HLA-DPAT, CIITA
HLA-DOE], HLA-DREL, HLA-DME. FLA-DHAA, HLA-DPE1, HLA-DEA, HLA-DPAL, CITA
HLA-DQE], HLA-DRE], HLA-DAE. HLA-TRAA, HLA-DPE1, HLA-DEA, HLA-DPA1, CTITA
HLA-DORL, HLA-DRE, HLA-DEJE, HLA-Thds, HLA-DFB1, HLA-DRA, HLA-DRA1, CIITA
HLA-DOE], HLA-DRE], HLA-DAE, HLA-Tds, HLA-DPE1, HLA-DEA, HLA-DFA1
HLA-DGEL, HLA-DRE, HLA-DME, HLA-DRA, HLA-DPR1, HLA-DEA, HLA-DPAT, CUTA
HLA-DOE], HLA-DREL, HLA-DME, FLA-DiA, HLA-DPE1, HLA-DEA, HLA-DFA], CITA
HLA-DRE1, HLA-DME, HLA-TIWA, HLA-DRA, HLA-DPA 1, CIITA

HLA-TME, HLA-DFR1, HLA-TFAL, COTA

HLA-DME, HLA-DFR1, HLA-DRA, CIITA

HLA-DE, HLA-DPR1, HLA-DRAL, CITA

HLA-DkES, HLA-TFE], HLA-DPA], CIITA

HLA-DWEA, COTA
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IV. DISCUSSION

While immunotherapies, including immune checkpoint ligands, have garnered
significant interest in cancer treatment in both clinical practice and academia, their
application in colorectal cancer (CRC) remains challenging™ Extensive research has
confirmed that the majority of CRC cases exhibit tumor fisspe with himited immune
infiltration within the tumor immune microenvironment (TIME), contributing to the
pronounced resistance of CRC to immunotherapies™. Therefore, understanding the cancer
intrinsic features that contnbute to the formation of an immune-unfavorable TIME would
lay the foundation for enhancing the therapeutic efficacies of immunotherapy 1 CRC.
However, due to the heterogeneous immune cell profiles within the tumor
microenvironment (TME) among CRC patients and the complex interplay of multiple
factors in TIME formation™, targeting a single component or gene may not be sufficient to
induce an immune-favorable TME.

In thiz research, the co-regulatory relationships among multiple cancer-intninsic
immune-modulatory genes were studied by analyzing gene expression data from 103
colorectal cancer patient-derived organoids and their corresponding tumor tissues. After
confirming the correspondence of gene expression patterns related to carcinogenesis
between the organoids and thew matched tumor tissues, CRC fumors were classified into
three immune subtypes based on their bulk fomoer transeriptomic profiles and the infiltration
levels of mmmune-stromal components. Intrigningly, the examination of CEC organoids
across immune subiypes revealed distinct cancer-associated signaling pathway activation
patterns 1n each immune subtype. Furthermore, co-regulatory relationships between
immune response-related genes within CRC cells were investigated, leading to the
identification of six different co-varying sets of immune gene modules. After confirming
the associations with distinct immune cells for these regulons, the investigation extended
to discover the upstream master regulator, revealing candidate targets that could be further
studied for their cancer-intrinsic role in eliciting anfi-tumor immumty m CRC.

While the current focus on enhancing anti-tumor immumity in CRC predominantly



revolves aronnd the activation of CDE+ T cells, recent studies have underscored the
multifaceted roles of various immune cell types. including gamma delta T (Ty3) cells”,
myeloid-derived suppressor cells (MDSCs)®, NE cells®, and tumor-associated
macrophages (TAMs)*? in cancer. Together with these findings, the observations in the
current study revealed a consistent negative correlation between overall regulons and the
subset of activated memory CD4+ T cells, suggesting a prevailing T cell-unfavorable tumor
immune microenvironment (TIME) in CRC (Figure 12). Given the well-established role of
CD4+ T cells in bridging innate and adaptive immune responses, these results propose a
plansible hypothesis for comprehending the anti-inflammatory nature of CRC.

Notably, the counterintuitive role of both anti-tumorigenic and pro-tumorigenic
immune cells may underlie comparable expressions of immune-modulatory regulons 1n
immune-cold and mmune-hot types of umors. Although the association of each cancer
intrinsic immune modulatory regulon with the specific types of immune cell components
harboring a distinct role was assessed, limitations in the type of immune cell estimation
necessitate further research into how the regulons are mmvolved in the recruitment and
differentiation of the distinct subclasses of both innate and adaptive immune cell
components. Additionally, despite the discovery of SOX2 as a potental target mn
overcoming challenges in CRC treatment with mmmunotherapies by modulating the
expression of MHC2-related regulon, further experimental validation is yet required. This
entails confirming the molecular-level expression of the regulon in the organoids and
validating the regulator-regulon relationship between SOX2 and genes comprising MHC2-
related regulon within CRC cells. In addition to molecular-level validations, further
investigations into the specific outcomes of interactions between the identified regulon and
distinct immune cell populations, which collectively shape a unmigque TIME, may bridge the

zap between current research and clinical applications in immunotherapy.
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V. CONCLUSION

In this study, the analysis of gene expression in fumor tissues identified three
immune subtypes—exhausted, active, and cold—each associated with nmque tumor stages
and immune responses. By incorporating transcriptomics data from colorectal cancer (CRC)
patient-derived organoids (PDOs), I discovered distinct cancer-associated signaling
pathway activation patterns across immune subtypes. Investigating co-regulatory
relationships among immune-modulatory genes within CRC PDOs identified six immune
modulatory regulons associated with distinet immune subtypes and components of tumor
tissues. Finally, I proposed a potential targetable master regulator of the MHC2-related
regulon, suggesting a promising avenue for the concurrent modulation of cancer-derived
immune mhibitory proteins and the comprehension of the immune microenvironment in
heterogeneous CRC.
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ABSTRACT(IN KOREAN)

Aad 27tolE 7R GHE WA HH9E HEE 7% 2
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Fo HY rp|4 B3 (Tumor immune microenvironment, TIME)e] W9 2] 57
Hh5dd oHF FHE mA=A AF ol#rt gasATw FF dAAH
449 g8 deold dHY =3 d9d g¥F oFH¢] RS HE AXE
A4 diF oldle <la fAFHeldk credAs HE 88 dld gEs
FHES] 1T 549 wE o dAUFE F9 A% b7 29 A
k. ol ¥2 S4d wE odd 19 23 AFAUFE EEHLE
olgfsle Aol FaFE AAMgc wekd, B d7e d3EYE WAdE S43%
o] g3 5o1H F% o] d(beterogeneity) i HETH ATE HAH A
w8 27txel=s #FEEnA SFEc 1006F8 832 48 27ikel= 2
Aeete FFHEALY HAAMAA E4% T ES AAFH d9=2dd4 2
sHEg9dn T I dHYzdddd JFAE FEFLE EZFcE
regulon® EFLR stHoH, © Uolrt olEifl AHE=ERWAES] H4H
AAIAlE wHEEcES dFdddsd Ed £33g d9@E ASHE
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