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ABSTRACT 

 

Identifying cancer subtypes with aberrant DNA methylation regulation in 

specific CpG islands: a study on colorectal and thyroid cancer 

 

Yeongun Lee 

 

Department of Medical Science 

The Graduate School, Yonsei University  

 

(Directed by Professor Lark Kyun Kim) 

 

 

Despite numerous observations regarding the relationship between DNA 

methylation changes and cancer progression, only a few genes have been verified 

as diagnostic biomarkers of cancer. To more practically detect methylation changes, 

I performed targeted bisulfite sequencing. Through co-analysis of RNA-seq, I 

identified cohort-specific DNA methylation markers. I validated that these genes 

have oncogenic features in CRC and that their expression levels are increased in 

correlation with the hypermethylation of intragenic regions. The reliable depth of 

the targeted bisulfite sequencing data enabled me to design highly optimized 

quantitative methylation-specific PCR primer sets that can successfully detect 

subtle changes in the methylation levels of candidate regions. Furthermore, these 

methylation levels can divide CRC patients into two groups denoting good and poor 

prognoses. My discovery of intragenic CpG island in the PDX1, EN2, and MSX1 as 

DNA methylation markers of CRC suggests their promising performance as 

prognostic markers and their clinical application in CRC patients. In parallel, I 

identified heterogeneous cancer subgroups within papillary thyroid cancer using the 
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differentially methylated regions from targeted bisulfite sequencing of own cohort 

and TCGA cohort. Multiomics data (RNA-seq and ATAC-seq) from TCGA THCA 

project and GSE162515 were utilized to examine the molecular characteristics of 

these subgroups and to catalog the candidate biomarkers of PTC with worse 

prognosis. In this study, I present a streamlined workflow for screening clinically 

significant differentially methylated regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                   

Key words : CpG island, DNA methylation, colorectal cancer, thyroid cancer, 

targeted bisulfite sequencing



 

1 

 

Identifying cancer subtypes with aberrant DNA methylation regulation in specific 
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I. INTRODUCTION 

 

Colorectal cancer (CRC) is the third most common cancer worldwide, accounting for 

the second-highest mortality in 20201. CRC is widely known to occur due to the 

accumulation of genetic and epigenetic alterations. Several molecular pathways involved 

in the onset and development of CRC have been identified, including the adenoma–

carcinoma pathway (also called the chromosomal instability sequence), the serrated 

neoplasia pathway, and microsatellite instability (MSI)2,3. The adenoma–carcinoma 

pathway accounts for 70–90% of CRC cases and is generally initiated by APC mutations, 

followed by KRAS activation or loss of TP53 function. Conversely, the serrated neoplasia 

pathway develops via KRAS and BRAF mutations, and epigenetic dysregulation is 

uniquely distinguished by the CpG island methylator phenotype (CIMP). MSI typically 

occurs with Lynch syndrome, mainly due to mismatch repair (MMR) gene inactivation4-7. 

Early detection of CRC is highly critical because adjuvant chemotherapy is no longer 

efficient and survival rates are significantly decreased for patients with CRC diagnosed at 

late cancer stages (stage III or IV)8,9. With the clinical need for early CRC diagnosis, many 

diagnostic and prognostic markers based on genomic alterations have been 

comprehensively studied. Unfortunately, few markers are used in marker development to 

predict the probability of metastasis or recurrence despite their unmet clinical needs.  

Among the epigenetic modifications in mammals, DNA methylation plays a key role 

in regulating gene expression. This epigenetic regulation affects tumor suppressor gene and 

oncogene expression, which may lead to cancer progression. This mode of action is slightly 
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different among cancer types, and DNA methylation markers have been extensively 

established in CRC. Because of the hypomethylation and activation of repetitive sequences, 

such as long interspersed nuclear element-1 and Alu repeats, genomic instability is thought 

to occur and could boost CRC initiation10-12. Conversely, researchers also found a panel of 

genomic regions and genes aberrantly hypermethylated at the promoter regions in some 

CRCs, which was later identified as a type of CRC called CIMP13. In general, gene 

expression is decreased when DNA hypermethylation occurs in the promoter of a gene; 

thus, hypermethylated genes of the CIMP are thought to function as tumor suppressors. 

Despite numerous observations regarding the relationship between DNA methylation 

changes and cancer progression, only a few genes, such as SEPT9 (Epi proColon), NDRG4, 

and BMP3 (Cologuard), have been verified as diagnostic CRC biomarkers and have been 

approved for commercialization via diagnostic kits14-16. While the surprising lack of 

translation into commercially viable DNA methylation-based biomarkers can be explained 

by methodological and experimental hurdles17, the cornerstone of developing DNA 

methylation-based biomarkers is the selection of ideal genomic locations, that is, CpG 

islands (CGIs) and specific CpG sites18. For example, in several investigations, DNA 

methylation in the promoter region of GSTP1 has been identified as a promising diagnostic 

marker for hepatocellular carcinoma but with conflicting variation in terms of its specificity. 

It was later discovered that this variability resulted from differences in the CpG sites of the 

5′ region of the GSTP1 promoter used for measuring DNA methylation levels19. In other 

words, this suggests that detection sensitivity and clinical relevance may vary depending 

on how the CpG sites within the same CpG island are selected.  

To discover clinical biomarkers based on next-generation sequencing technology, 

Illumina Infinium 450K or 850K array-based detection methods have been used for 

massive data generation by The Cancer Genome Atlas (TCGA)20. This method enables me 

to screen and observe the methylation levels of various genes in cancer cells. Whole-

genome bisulfite sequencing has emerged as a powerful method that determines DNA 

methylation levels on a genome-wide scale but is limited by its high cost and the time 

required to obtain a statistically sufficient sample size. Targeted sequencing technology has 

emerged as a tool for the high-throughput sequencing of genomic regions of interest. To 
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increase the specificity of the quantification of DNA methylation, targeted sequencing has 

been applied to bisulfite sequencing21. In detail, targeted bisulfite sequencing utilizes 

probes designed to bind and capture target regions for PCR-based enrichment. These 

capturing and enrichment steps allow me to obtain a reliable depth of DNA methylation 

data at the CpG site level. This method has the advantage of selecting the largest difference 

in DNA methylation levels and the most clinically relevant CpG sites among CpG islands 

or other genomic regions. However, a more straightforward methylation method, 

methylation-specific polymerase chain reaction (MS-PCR, MSP), has been developed and 

used to validate the methylation status22. This method offers a time- and cost-effective way 

of observing methylation in target regions, while designing primers and optimizing PCR 

conditions are relatively laborious23,24. 

This study presents my streamlined workflow for screening clinically significant 

differentially methylated regions and proposes primer sequences for qMSP employed as a 

time- and cost- effective DNA methylation detection method for clinical applications. I 

preliminarily selected tumor-specific methylated regions from the Infinium 450k 

microarray data downloaded from TCGA. I then generated hybrid capture-based targeted 

bisulfite sequencing data from a South Korean CRC patient cohort at Seoul National 

University Hospital (SNUH). I identified cohort specific DNA methylation markers in the 

CpG islands of PDX1, EN2, and MSX1 and validated tumor-specific hypermethylation 

levels of these three genes via optimized qMSP methods with highly sensitive primer sets. 

I also assessed their prognostic prediction performance and found that subgroups based on 

the methylation status of the identified biomarkers displayed significantly different 

recurrence and survival rates in CRC patients. My discovery of methylation markers in the 

PDX1, EN2, and MSX1 genes suggests their potential as prognostic markers and their 

clinical application in CRC patients.  

According to the GLOBOCAN 2020 database, thyroid cancer is ranked as the ninth 

most common cancer worldwide25,26. Among various types of thyroid cancers, papillary 

thyroid cancer (PTC) stands out as a common variant, believed to arise from follicular cells 

and characterized by unique nuclear attributes27. While PTC typically presents a favorable 

prognosis, a subset progresses to an aggressive form, underscoring the need for precise 

prognostic indicators. Prognostic factors for PTC, such as older age at diagnosis, male 
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gender, tumor size (>40mm), extrathyroidal growth, and central/lateral neck lymph node 

metastasis, play a pivotal role in the management and therapeutic decision-making for 

PTC28,29. However, these clinicopathological indicators do not fully account for the variable 

aggressiveness in PTC cases, leading to a gap in personalized therapy approaches30. 

However, the translation of these biomarkers into practical clinical applications for 

diagnosis and management of PTC remains limited. 

The exploration of the DNA methylome of thyroid cancer has not been as extensive 

as in other cancer types. Furthermore, previous pan-cancer study focusing on DNA 

methylation patterns, particularly in promoter regions, have revealed that PTC is 

characterized by relatively low frequencies of both hypomethylation and hypermethylation 

events which can frustrate the researchers31,32. Additionally, DNA methylation-based 

research on thyroid cancer has predominantly relied on microarray platforms, constraining 

the screening genomic regions to predefined CpG sites, thereby potentially overlooking 

crucial methylation events in other genomic regions31,33-35. Furthermore, while numerous 

studies have aimed to identify biomarkers differentiating PTC from benign, normal, or 

other thyroid histology, there is a scarcity of research delving into genome-wide biomarkers 

that categorize the subtypes of PTC36-38. 

In this context, the selection of appropriate target regions for DNA methylation 

analysis becomes crucial. The accuracy in determining these regions directly impacts the 

sensitivity of both prognostic and diagnostic outcomes17. For that reason, identification of 

the CpG methylation levels in the target regions become important for drawing precise 

conclusions. Here, target enrichment bisulfite sequencing offers a viable solution. This 

method, known for its relative cost-effectiveness, allows for the detailed observation of 

targeted regions at a high read depth39-41. 

This study aims to unravel the subtypes of PTC by finding the differentially 

methylated CpG island through target enrichment bisulfite sequencing with own cohort 

composed of total 55 papillary thyroid cancer and their paired normal tissues. I selected 

potential target regions for methylation analysis based on public data (TCGA and project 

107738)34,37 following a methodology similar to a previous study42, leading to the discovery 

of 329 differentially methylated regions (DMRs). These DMRs enabled me to classify own 

cohort and TCGA samples into two distinct PTC subgroups. I then conducted a 



 

5 

 

comprehensive molecular characterization of these subgroups, integrating high-throughput 

techniques such as RNA sequencing and ATAC sequencing from public datasets (TCGA 

and GSE162515)34,43. I cataloged the 7 candidate genes by integrating and assessing the 

differential DNA methylation, RNA expression and chromatin accessibility between PTC1 

and PTC2. Finally, I introduced a sophisticated quantitative methylation-specific PCR 

(qMSP) system capable of accurately assessing the DNA methylation levels of candidate 

genes. This system utilizes carefully designed primers that specifically target regions 

exhibiting significant methylation differences between PTC1 and PTC2 subtypes. The 

precision in primer design was made possible due to the detailed resolution provided by 

targeted bisulfite sequencing, which successfully identified the single CpG dinucleotide 

methylation levels in PTC samples. 



 

6 

 

II. MATERIALS AND METHODS 

1. Analysis of the public DNA methylation data for design the panel of target regions 

 

Graphical abstract for the workflow of panel design is presented in Figure 1. 

 

A. Target selection for TBS in colorectal cancer 

 

For targeted bisulfite sequencing, candidate genomic DNA regions were 

identified using the Infinium HumanMethylation450 BeadChip data from TCGA, 

encompassing five primary gastrointestinal malignancies: colon adenocarcinoma 

(COAD), rectal adenocarcinoma (READ), liver hepatocellular carcinoma (LIHC), 

stomach adenocarcinoma (STAD), and pancreatic adenocarcinoma (PAAD). This 

data was procured from the Genomic Data Commons (GDC) Data Portal 

(https://portal.gdc.cancer.gov/). By utilizing the human genome reference (hg19), 

the beta values of individual CpG sites were averaged, designating the methylation 

status of their corresponding CpG island. Methylation values of non-tumorous 

samples were aggregated, and difference in methylation between cancerous and non-

tumorous samples were computed. My selection criteria centered on CpG islands 

reflecting methylation variations of 20% or more in at least 20% of the patient cohort. 

 

B. Target selection for TBS in thyroid cancer 

 

In the thyroid cancer study, Infinium HumanMethylation450 BeadChip data of 

TCGA-THCA and Reduced-representation bisulfite sequencing data from 

GSE107738 was downloaded and preprocessed in a manner analogous to the method 

adopted for the colorectal cancer research. In order to appropriately adjust the size 

of the target panel to capture the potential candidate marker of THCA, I applied a 

lenient threshold for the selection of DMRs. I selected CpG islands that exhibited a 

methylation variance of at least 10% between normal and tumor tissues in over 10% 

of the overall patient cohort. 
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2. Design of the hybridizing probe pool 

 

A. Probe pool design for colorectal cancer research 

The probe pool was designed according to the manufacturer’s instructions. 

Basic information regarding my target genome is as follows: Application—SeqCap 

Epi, Organism—Homo Sapiens, Genomic builds—hg19/GRCh37. This was 

followed by data input in an appropriate bed format into NimbleDesign Software 

(version 4.3; Roche Diagnostics, Rotkreuz, Switzerland). The total number of target 

regions was 18,834 (10,754 CpG islands), and the total length of the regions was 

23,533,457 bp. 

 

B. Probe pool design for thyroid cancer research 

Since the probe design tool and production method I previously adopted for 

colorectal cancer research are no longer available, I alternatively utilized a kit from 

another company with comparable performance (myBaits; Arbor biosciences, Ann 

Arbor, Michigan, USA). The probe pool was designed according to the 

manufacturer’s instructions. Basic information regarding my target genome is as 

follows: Application—SeqCap Epi, Organism—Homo Sapiens, Genomic builds—

hg19/GRCh37. This was followed by data input in an appropriate bed format into 

NimbleDesign Software (version 4.3; Roche Diagnostics, Rotkreuz, Switzerland). 

 

 

3. Tumor and adjacent healthy specimens 

 

A total of 104 colorectal tumors and their adjacent healthy tissues were obtained from 

Seoul National University Hospital (SNUH; Seoul, Korea). The use of samples was 

approved by the Institutional Review Board of Seoul National University Hospital and 

carried out in accordance with the ethical standards and guidelines of the institution (IRB 

number: 1608-040-784). 
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4. Sample preparation for targeted bisulfite sequencing 

 

A. Targeted bisulfite sequencing for colorectal cancer research 

 

1ug of genomic DNA was used to prepare a single targeted bisulfite sequencing 

library. All genomic DNA of healthy and tumor samples were sheared using a 

focused ultrasonicator (M220; Covaris, Massachusetts, USA). The quality, quantity, 

and fragment size (major peak in 250–300 bp) of sheared genomic DNA were 

verified using a 2100 Bioanalyzer system (G2939BA; Agilent Technologies, 

California, USA) prior to library preparation. Sheared genomic DNA was then 

processed through end repair, A-tailing (Kapa Library Prep Kit for Illumina NGS 

Platform, 7137974001; Roche Diagnostics), and sequencing adaptor ligation steps 

(SeqCap Adapter Kit A, 7141530001; Roche Diagnostics). After clean-up with 

Agencourt AMPure XP beads (A63880, Beckman Coulter, California, USA), the 

DNA library was bisulfite-converted using the EZ DNA Methylation- Lightning Kit 

(D5031; Zymo Research, California, USA) and amplified via precapture polymerase 

chain reaction (PCR) using KAPA HiFi HotStart Uracil+ ReadyMix (NG SeqCap 

Epi Accessory Kit, 714 519001; Roche Diagnostics) with Pre-LM-PCR Oligo. The 

quality of the amplified, bisulfite converted library samples and their sizes (main 

peak in 250–300 bp) were verified using a Bio-Analyzer. 1ug of each amplified, 

bisulfite converted library was then combined in sets of SeqCap Epi universal and 

indexing oligos and bisulfite capture enhancer (SeqCap EZ HE-Oligo Kit A, 

6777287001; Roche Diagnostics, Rotkreuz, Switzerland). Each pool was 

subsequently lyophilized using a DNA vacuum concentrator (Modulspin 31; Hanil 

Science Co, Ltd., Daejeon, South Korea). The dried components were resuspended 

in hybridization buffer (SeqCap Epi Hybridization and Wash Kit, 5634253001; 

Roche Diagnostics, Rotkreuz, Switzerland) and hybridized with the probe pool 

(SeqCap Epi Choice S, 7138938001; Roche Diagnostics, Rotkreuz, Switzerland) for 

72 h at 47 °C in a thermocycler with a heated lid at 57 °C. Following incubation, 

libraries were captured (SeqCap Pure Capture Bead Kit, 6977952001; Roche 

Diagnostics, Rotkreuz, Switzerland) in a 47 °C water bath and purified at room 
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temperature. Captured bisulfite-converted libraries were amplified via postcapture 

PCR and then washed with AMPure XP beads. The quality and size (single peak in 

250–300 bp) of the libraries were checked using a bioanalyzer, and samples that 

passed quality control were sequenced on a HiSeq2500 sequencer (Illumina, San 

Diego, California, USA) in paired-end mode. 

 

B. Targeted bisulfite sequencing for thyroid cancer research 

 

In this study, genomic DNA was extracted from the collected tissue samples 

using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany). as outlined in the 

manufacturer's recommendations and guideline. After DNA extraction, the DNA 

concentration and purity were assessed using Nanodrop (Thermo Fisher, Carlsbad, 

CA, US).  

A total 500ng of genomic DNA was fragmented using M220 Focused-

ultrasonicator (Covaris, Woburn, MA, US) with low-EDTA TE buffer. The quality, 

quantity, and fragment size (major peak in 250–300 bp) of sheared genomic DNA 

was verified using a 2100 Bioanalyzer system (Agilent Technologies, Santa Clara, 

CA, USA) prior to library preparation. The DNA library was bisulfite-converted 

using the EZ DNA Methylation-Gold™ Kit (Zymo Research, Irvine, CA, USA). 

Then, the library was prepared using the Accel-NGS®  Methyl-Seq DNA library kit 

(Swift Biosciences, Ann Arbor, MI, USA) and other specified enzymes, buffers, and 

reagents in manufacturer’s protocol. Finally, 8 libraries were pooled and incubated 

with probe pool designed for targeting the regions of interest. After clean-up, the 

libraries were sequenced on HiSeq2500 sequencer (Illumina, San Diego, CA, US) 

with 2 X 100bp pair-end reads with unique dual index and generated 2Gb of 

sequencing data from each sample. 
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5. Preprocessing of next-generation sequencing data 

 

A. Targeted bisulfite sequencing 

 

Trim Galore (version 0.5.0) was used to remove the adaptor sequences from 

the targeted bisulfite sequencing data based on the human CpG island reference hg19 

file. Bismark (version 0.19.1) was used to align sequencing reads with Bowtie2. The 

sort and index commands from SAMtools (version 1.9) were used. The number of 

methylated and unmethylated cytosines at each CpG site was listed using a Bismark 

methylation extractor from post-indexed data, and only those 10× or higher were 

selected for downstream analysis. Finally, the methylation values of CpG sites 

included in the same CpG island were calculated by averaging the methylation value 

based on the hg19 reference file. The following analyses were performed based on 

the assumption that the averaged value represents each respective CpG island. 

Targeted bisulfite sequencing data were screened for targets in which DNA 

methylation increased or decreased by >30% in tumor samples compared with 

healthy tissue samples in >50% of the 90 patients. In addition, hypermethylated CpG 

islands in tumor samples were further filtered to retrieve regions that showed <30% 

DNA methylation in the healthy tissue samples and 50% or greater DNA 

methylation in the tumor samples. Conversely, hypomethylated CpG islands, in 

which the average DNA methylation was <30% in tumor samples and greater than 

50% in the healthy tissue samples, were selected. Finally, I selected CpG islands 

where the mean DNA methylation in healthy tissue samples and tumor samples 

differed by >30%. 

 

B. RNA sequencing 

 

For TCGA RNA-seq data preprocessing, read count data which had been 

aligned by HT-seq was downloaded. Each RNA-seq data was integrated into a 

matrix. To gain a normalized gene expression data (TPM value), the scaled-estimate 

value of RNA-seq data aligned by STAR was multiplied by 10^6. 
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For preprocessing of RNA sequencing data from GSE162515, I aligned the 

paired-end sequencing data in reference genome hg19 with HISAT2 (version 2.2.1) 

and converted the result SAM file to BAM format via SAMtools. The aligned read 

was quantified via htseq-count and the data from each sample was integrated into a 

matrix, similar to the TCGA RNA-seq case. For visualization of signal track, each 

BAM file was normalized and converted to bigwig file with deeptools bamCoverage 

(version 2.2). 

 

C. Assay for Transposase-Accessible Chromatin (ATAC) using sequencing 

 

For preprocessing of ATAC sequencing data from GSE162515, I adopted the 

standardized pipeline called PEPATAC. This pipeline utilizes TRIMMOMATIC for 

read trimming, refgenie and bowtie2 for building the hg19 genome assembly, and 

MACS2 for peak calling. Furthermore, I utilized IterativeOverlapPeakMerging44 to 

generate a consensus peak set of GSE162515 cohort. 

 

6. Analysis of next-generation sequencing data 

 

A. Targeted bisulfite sequencing 

 

To analyze the CpG site methylation levels in candidate CpG islands from 

healthy tissue and tumor samples, beta values of CpG sites in candidate CpG islands 

were extracted using the tabix command of SAMtools (version 1.9), and only the 

beta values of cytosines in the same strand of adjacent genes were used in the 

subsequent analysis to identify the optimal MSP target sites. To filter out the low-

quality sequencing data, only sequencing data in which the methylation levels of 

CpG sites were present in more than 1/3 of the total CpG sites in each CpG island 

were used. Hierarchical clustering with Canberra distance was applied to the 

methylation level of each sample using the pheatmap package (version 1.0.12) in R 

software. Line graphs were also drawn with the same methylation data using ggplot2 

(version 3.3.3) and ggsci (version 2.9) in R software. To display the methylation 
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differences of candidate CpG islands between healthy tissue and tumor samples, 

hierarchical clustering with Manhattan distance was conducted using pheatmap. 

Using IGV, the data regarding the average methylation levels of genes in healthy 

and tumor tissues were visualized in tandem with the CpG island and CpG site 

information. 

 

B. RNA sequencing 

 

The correlation of each sample on the level of gene expression pattern was 

analyzed from principal component analysis (PCA) generated by ggplot2 (version 

3.3.3). For differential expression analysis, the read count data was normalized and 

compared with DESeq2 (version 3.12). The only genes with at least 1.5-fold 

expression difference and adjusted p value of less than 0.05 were selected. The total 

DEGs between each subgroup were integrated, divided with K-means clustering, 

and visualized in heatmap with ComplexHeatmap (version 2.16.0). To investigate 

the functional roles of each DEG cluster, I conducted pathway analysis by gprofiler2 

(version 0.2.2). 

 

C. ATAC sequencing 

 

For differential accessibility analysis, I utilized DiffBind (version 3.10.0) with 

DESeq2. Subsequent analytical tools employed for visualization were consistent 

with those used in the RNA sequencing data analysis. 
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III. RESULTS 

 

1. Identification of differentially methylated regions in CRC tissues by targeted 

bisulfite sequencing 

 

To observe methylation levels in CRC and other types of cancers, I collected 450K 

microarray data of five cancer types (COAD, READ, LIHC, AD, and PAAD) from 

TCGA (Figure 1). The beta value of each CpG site was averaged to represent the 

methylation value of their matched CpG island in accordance with the human genome 

reference (hg19). The selected CpG islands were further filtered using two criteria. One 

was that the difference in methylation values between healthy and tumor tissues should 

be more than 20%, and the other was that such a difference should be present in >20% 

of cancer patients. Therefore, I obtained 10,754 differentially methylated CpG islands. 

The selected CpG islands were designed to probe the pool using NimbleDesign (Roche), 

a software that predicts the coverage of the input sequence and optimizes the probe 

design according to its criteria so that the probe pool captures the target regions more 

efficiently.  

Next, I performed bisulfite sequencing using the probe pool in CRC tissues. To do 

this, I obtained genomic DNA from the tissues of 104 Korean CRC patients (90 paired 

tumors and adjacent healthy tissues, an additional two healthy tissues, and 12 tumor 

tissues). Targeted bisulfite sequencing libraries were prepared according to the 

manufacturer’s instructions (Roche) (Figure 2), and sequencing was performed. 

Through targeted bisulfite sequencing of the 194 CRC tissues, I obtained the beta values 

of each CpG site, which were averaged to constitute the methylation value of their 

matched CpG island (Figure 3). After obtaining the methylation values of CpG islands, 

I applied more stringent criteria to my data. First, the difference in the methylation values 

of CpG islands between paired healthy and tumor tissues (i.e., from the same patient) 

had to be >30%. Second, this difference had to be present in >50% of the patients. Third, 
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even if the difference in methylation values between healthy and tumor tissues was >30%, 

the lower value had to be <30%, enabling the easy optimization of MSP by maximizing 

the signal-to-noise ratio. Finally, to identify the differentially methylated regions that are 

not specific to some patients, after calculating the overall average of healthy and tumor 

tissues, the regions with a difference of more than 30% were selected (Figure 4).  

Thus, I ultimately identified 40 differentially methylated CpG islands consisting of 

35 hypermethylated regions and 5 hypomethylated regions in tumor tissues. For instance, 

the genomic location of chromosome 7:27,147,589–27,148,389 is the intragenic region 

of HOXA3, where 67 CpG sites are located. On average, the methylation level in this 

region was 29% in healthy tissues and 78.7% in tumor tissues. This difference was 

observed in 83.3% of CRC patients (75 out of 90) (Table 1). 
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Figure 1. Preprocessing of the Infinium HumanMethylation450 BeadChip data and 

RRBS data for panel design of targeted bisulfite sequencing. The public data were 

downloaded. To estimate the methylation value of CpG islands, CpG dinucleotides on the 

same CpG island according to hg19 were averaged in each array datum. The methylation 

difference between tumor and average of normal were calculated. Based on specific criteria, 

I selected CpG islands where the methylation differences were observed in a significant 

proportion of patients. 
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Figure 2. Preparation of the targeted DNA methylation sequencing library. Genomic 

DNA from healthy and tumor tissues from the colorectal and thyroid cancer cohort was 

extracted. Only QC-passed samples were used for the preparation of the targeted bisulfite 

sequencing library. Each genomic DNA was sheared to 250-300 bp, the gold standard for 

high-throughput sequencing. Single-stranded ends of sheared genomic DNA were repaired, 

followed by A-tailing, adaptor ligation, and size selection. Bisulfite conversion of genomic 

DNA was conducted to differentiate unmethylated cytosines from their methylated 

counterparts. To recover an appropriate quantity of bisulfite-converted genomic DNA, 

PCR amplification was performed before and after hybridization. After each amplification 
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step, the quality and quantity of the PCR products were confirmed using the Agilent 2100 

Bioanalyzer system. The prepped samples were then used for high-throughput sequencing 

using HiSeq2500. Detailed library preparation procedures vary depending on the selected 

kit which is described comprehensively in Materials and Methods section. 
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Figure 3. Preprocessing pipeline for targeted bisulfite sequencing data. Trimgalore 

(ver. 0.5.0) was used to trim the adaptor sequence from each targeted bisulfite sequencing 

data, and sequencing reads were aligned on the hg19 human genome reference using 

Bismark and Bowtie2. The sequencing reads were then sorted and indexed, and their 

methylation counts were extracted. CpG sites with a read depth below 10 were filtered out. 

Methylation values of CpG sites were averaged to estimate the methylation values of CpG 

islands. 
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Figure 4. Overall workflow for cohort-specific DNA methylation biomarker selection 

in colorectal cancer. (A) Illumina Infinium 450K array data of five major 

gastroenterological cancers (COAD, READ, LIHC, STAD, and PAAD) downloaded from 

TCGA were preprocessed. (B) Then, 10,754 differentially methylated CpG islands (CGIs) 

were shortlisted from processed 450 K array data based on my criteria. (C) The hybridizing 

probe pool targeting selected CGIs was designed using NimbleDesign. (D) Targeted 

bisulfite sequencing was conducted for 104 CRC patients from the South Korean cohort, 

of which 90 samples were paired tumor-adjacent healthy tissue sets, while two healthy 

samples and ten tumor samples were unpaired. (E) Generated targeted bisulfite sequencing 

data were analyzed to select differentially methylated regions (DMRs) in tumors relative 

to healthy tissues, giving rise to 40 DMRs for further examination. 
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Table 1. Candidate CpG islands and their matched genes selected from the targeted 

bisulfite sequencing data of CRC study 

 

CGI_location CGI_info Gene 30%_Diff *McoM **McaM (McaM-McoM)

chr7:27147589–27148389 intragenic HOXA3 0.833 (75/90) 29 78.7 49.7

chr7:27146069–27146600 intragenic HOXA3 0.822 (74/90) 26 74 48

chr19:49669275–49669552 intragenic TRPM4 0.811 (73/90) 24.2 73.7 49.5

chr2:54086776–54087266 promoter GPR75-ASB3 0.8 (72/90) 23.9 74.3 50.3

chr1:200010625–200010832 intragenic NR5A2 0.789 (71/90) 9.1 57.7 48.7

chr13:28498226–28499046 intragenic PDX1 0.722 (65/90) 9.1 55 45.9

chr5:140857864–140858065 intragenic PCDHGA2 0.722 (65/90) 17.3 62.8 45.5

chr7:27182613–27185562 promoter HOXA-AS3 0.711 (64/90) 21.4 62.6 41.2

chr19:48918115–48918340 intragenic GRIN2D 0.699 (58/83) 10.7 53.1 46.2

chr5:140864527–140864748 promoter PCDHGA2 0.689 (62/90) 9.1 52.3 43.1

chr5:134363092–134365146 intragenic PITX1 0.678 (61/90) 21.5 59.8 38.3

chr7:158936507–158938492 promoter VIPR2 0.656 (59/90) 12.4 50.1 37.7

chr6:62995855–62996228 promoter KHDRBS2 0.633 (57/90) 11.7 51.3 39.6

chr6:10398573–10398812 intragenic TFAP2A 0.633 (57/90) 16.1 53 36.9

chr7:27143181–27143479 intergenic - 0.633 (57/90) 26 62.6 36.7

chr7:24323558–24325080 promoter NPY 0.633 (57/90) 16.5 52.7 36.2

chr8:97171805–97172022 promoter GDF6 0.633 (57/90) 19.8 53.5 33.7

chr13:53313127–53314045 promoter CNMD 0.622 (56/90) 15.6 50.9 35.3

chrX:142721410–142722958 promoter SLITRK4 0.607 (54/89) 19.2 54.8 35.5

chr7:155255098–155255311 intragenic EN2 0.6 (54/90) 17 52.2 35.2

chr13:102568425–102569495 promoter FGF14 0.6 (54/90) 15.6 50.6 35

chrX:66766037–66766279 intragenic AR 0.589 (53/90) 20.3 55.8 35.5

chr9:37002489–37002957 promoter PAX5 0.589 (53/90) 22.1 56.3 34.1

chrX:101906001–101907017 promoter ARMCX5-GPRASP2 0.578 (52/90) 21.6 58.2 36.6

chr4:111549879–111550203 intragenic PITX2 0.578 (52/90) 22.9 53.7 30.8

chr4:4864456–4864834 intragenic MSX1 0.573 (51/89) 29.7 64.3 35.3

chr8:72753874–72754755 promoter MSC 0.567 (51/90) 26.7 58.7 32

chr19:46915311–46915802 intragenic CCDC8 0.556 (50/90) 17.7 52.1 34.5

chr8:130995921–130996149 intragenic FAM49B 0.544 (49/90) 20.9 53.1 32.1

chr2:98962873–98964187 promoter CNGA3 0.544 (49/90) 19.6 51.7 32.1

chr2:5836068–5837643 intragenic SOX11 0.544 (49/90) 20.8 51.7 30.9

chr11:65359292–65360328 intragenic EHBP1L1 0.533 (48/90) 26.6 58 31.4

chr6:108495654–108495986 intragenic NR2E1 0.533 (48/90) 21.5 52 30.5

chr1:120905971–120906396 promoter HIST2H2BA (H2BP1) 0.533 (48/90) 28.8 59.1

chr13:70681732–70682219 promoter KLHL1 0.5 (45/90) 25.1 55.5 30.4

chr16:87441387–87441671 intragenic ZCCHC14 0.789 (71/90) 77.98 28.81 −49.17

chr7:5342299–5342599 intragenic SLC29A4 0.778 (70/90) 73.15 26.4 −46.75

chr20:33762403–33762774 intragenic PROCR 0.667 (60/90) 68.94 29.9 −39.04

chr1:235805318–235805771 intragenic GNG4 0.567 (51/90) 62.69 29.03 −33.66

chr2:233925091–233925318 promoter INPP5D 0.578 (52/90) 52.94 20.31 −32.63

*McoM: the mean of control (healthy) methylation

**McaM the mean of case (cancer) methylation

Table 1. Candidate CpG islands and their matched genes selected from the targeted bisulfite sequencing data of this

study
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2. Selection of candidate genes for developing CRC biomarkers 

 

The methylation location plays an important role in the correlation between 

methylation states and gene expression18,45-47. However, while it is well accepted that 

hypermethylation in the promoter region inhibits gene expression48, the effect of 

methylation of the intragenic regions on gene expression is still controversial49-55. 

When I looked at the locations of my 40 differentially methylated CpG islands in 

terms of the promoter, intragenic, and intergenic regions, I observed that among the 35 

hypermethylated regions in the tumor, 16 CpG islands were in the promoter region, 18 

were in the intragenic region, and 1 was in the intergenic region. Among the five 

hypomethylated regions, one was in the promoter region, and four were in the intragenic 

region (Figure 5 and Table 1). 

After identifying the 40 differentially methylated CpG islands in CRC tissues, I next 

wanted to develop a system to detect methylation states in these regions in association 

with cancer status. To do this, I examined the regions whose methylation changes have 

a direct correlation with the expression changes of the related genes. I speculated that it 

would be much easier to detect the changes if both methylation and gene expression are 

increased in tumor tissues compared with healthy tissues because it is easy to determine 

what exists from what does not, but it is not easy to quantify its importance. Therefore, I 

was interested in the hypermethylated regions, particularly in intragenic regions, because 

it is difficult to connect the intergenic region to gene expression, and hypermethylation 

in the promoter is well accepted to be related to decreased gene expression. To examine 

gene expression, I took advantage of the TCGA RNA-seq dataset of colon 

adenocarcinoma (Figure 5). Among the 18 hypermethylated intragenic regions, two 

regions were contained in the HOXA3 gene, so I sought to check the expression of 17 

genes. According to the count data analyzed by DESeq2, the expression of only seven 

genes (PDX1, GRIN2D, PITX1, TFAP2A, EN2, MSX1, and NR2E1) was increased by 

more than two times in tumors (Figure 5B). To ascertain the level of upregulation of 
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these seven genes, I also checked the expression of other candidate genes along with that 

of the seven genes in terms of the TPM value and then excluded NR2E1 due to lack of 

statistical significance (Figure 5C). To further confirm the relationship between 

methylation changes and gene expression using Pearson and Spearman correlations, I 

used the Infinium HumanMethylation 450 BeadChip data and RNA sequencing data 

obtained from the same samples from TCGA-COAD. I found that the methylation level 

of the promoter CpG islands was inversely correlated with the expression of matched 

genes in tumor samples, regardless of whether it was significant (Figure 6). In contrast, 

the methylation of some intragenic CpG islands had a positive correlation with matched 

gene expression (Figure 7). That is, PDX1, EN2, and MSX1 had higher expression levels 

in tumors than in normal tissues, and methylation and expression levels were positively 

correlated (Figure 5B, 5C, and 7-8). 

Next, I examined the relationship between the expression of the six genes obtained 

and the survival rate of CRC patients. The greater the role of abnormally expressed genes 

in tumor tissues, the lower the survival rate is. According to UALCAN analysis56, high 

expression of PDX1, EN2, and MSX1 was negatively correlated with patient survival 

(Figure 5D). Therefore, I decided to focus on examining these three genes. 



 

23 

 

 

Figure 5. Streamlining of candidate DNA methylation biomarker genes based on 

differential gene expression and correlation with CRC patient survival outcomes. (A) 

Genomic location analysis of differentially methylated CGIs in targeted bisulfite 

sequencing data indicates that most hypermethylated regions are evenly distributed 

between the promoter and intragenic regions, while a larger proportion of hypomethylated 
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regions are in intragenic regions. My focus was on hypermethylated intragenic regions. (B) 

The expression data (read counts) downloaded from TCGA were examined to identify 

upregulated genes in tumor samples relative to healthy tissue samples. Downloaded RNA-

seq data were processed with DESeq2 in R. (C) Gene expression representation of seven 

upregulated candidate genes in terms of TPM. Their differential expression status was 

further verified, and genes with nonsignificant differences were omitted from downstream 

analysis. Expression data between normal and tumor tissues were downloaded from TCGA, 

and TPM values were derived by multiplying the scaled estimate value of RNA-seq data 

by 106. Significance levels are presented as ns: nonsignificant, *p < 0.05, **p < 0.01, ***p 

< 0.001. (D) Kaplan–Meier survival plots (generated by the UALCAN database) of the six 

upregulated genes indicated the difference between patients with high expression of the 

shortlisted genes (top 25%) and patients with low or medium expression (bottom 75%). 

Gene expression and clinical data were based on TCGA-COAD. 
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Figure 6. Pearson correlation between promoter CGI methylation and matched gene 

expression. To find the correlation between CGI methylation level and gene expression of 

candidate promoter CGIs, I called the Infinium humanmethylation450 data and RNA 

sequencing from TCGA-COAD (Normal = 19, Tumor = 279). RNA-Seq TPM data were 

log-transformed to reduce and correct the difference between Pearson and Spearman 

correlation coefficient [Log(TPM+1)]. Red indicates normal and blue indicates tumor. The 

correlation coefficient of tumor samples is organized in a table. 
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Figure 7. Pearson correlation between intragenic CGI methylation and matched gene 

expression. To find the correlation between CGI methylation level and gene expression of 

candidate intragenic CGIs, I called the Infinium humanmethylation450 data and RNA 

sequencing from TCGA-COAD (Normal = 19, Tumor = 279). RNA-Seq TPM data were 

log-transformed to reduce and correct the difference between Pearson and Spearman 

correlation coefficient [Log(TPM+1)]. Red indicates normal and blue indicates tumor. The 

correlation coefficient of tumor samples is organized in a table. 
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3. Overexpression of PDX1, EN2, or MSX1 promotes cell proliferation and invasion 

in human colon cancer cells 

 

Pancreatic and duodenal homeobox 1 (PDX1) is a critical transcription factor for 

pancreatic development and beta-cell maturation57. PDX1 is overexpressed in pancreatic 

cancer cells, but its role is different at each cancer stage58-60. Although PDX1 has already 

been reported as a potential cancer marker in CRC, it is based on the observation of 

PDX1 expression in cancer cells, and its role has not been studied in detail. Homeobox 

protein engrailed-2 (EN2) is a homeobox-containing transcription factor regulating many 

developmental stages61. Very recently, EN2 was reported to play an oncogenic role in 

tumor progression via CCL20 in CRC62. Msh homeobox 1 (MSX1) is also a homeobox-

containing transcription factor. MSX1 has been suggested as an mRNA biomarker for 

CRC, but this suggestion was based on observations, and to my knowledge, its role has 

never been demonstrated at the cellular level in CRC63. 

As previously mentioned, I wanted to develop a system that identifies the 

methylation changes of related genes that play a role in CRC. Although a literature search 

suggested a role for each gene in CRC, I wanted to be more confident. Thus, I transiently 

transfected each gene into the HCT116 colon cancer cell line and then checked the status 

of the cells. Proliferation was determined using CCK-8, a colorimetric reagent that 

indicates cell viability. Overexpression of PDX1, EN2, and MSX1 increased cell 

proliferation (Figure 8A). In addition, when I performed the Transwell assay, I observed 

that PDX1, EN2, and MSX1 significantly promoted HCT116 cell migration (Figure 8B). 

Overall, I concluded that since the overexpression of PDX1, EN2, and MSX1 is 

directly related to the proliferation and migration of CRC cells, if the methylation 

changes in the intragenic regions of these genes are correlated with changes in gene 

expression, the detection of methylation changes in my marker regions would be able to 

predict cellular conditions. 
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Figure 8. Selected candidate DNA methylation biomarker genes drive oncogenic 

properties by promoting cell proliferation and migration in vitro. (A) The cell 

proliferation test with CCK-8 reagent indicated that overexpression of PDX1, EN2, and 

MSX1 promotes proliferation of the HCT116 colon cancer cell line. The overexpression of 

each gene was verified through FLAG-tag capture. (B) Transwell invasion assays with 

HCT116 cells overexpressing PDX1, EN2, and MSX1 were conducted, and invading cells 

were stained with crystal violet. Overexpression of PDX1, EN2, and MSX1 was found to 

accelerate migration and confer invasive properties. 
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4. Design of MSP primers for the optimal detection of methylation changes 

 

To detect the methylation changes in my marker regions, I decided to set up a qMSP 

for each region, but factors had to be considered first. Since MSP is a PCR-based 

experiment, the choice of primer region is very important. If each of the forward and 

reverse primers has as many CpG sites as possible, the ideal methylation difference 

between healthy and tumor tissue is large. However, because it would be preferred to 

perform PCR of methylated primers with unmethylated primers in the same machine, too 

many CpG sites may cause a Tm difference between methylated and unmethylated 

primers. Last, I attempted to make the amplicon length 100–160 bp because longer 

products may not be efficiently amplified. Overall, after many trials and errors, I decided 

that the forward and reverse primers had at least six CpG sites in total, the Tm of each 

primer was 55–60 °C, and the amplicon length was 100–160 bp. 

To design MSP primers specifically for the intragenic CpG island of PDX1 

(chr13:28,498,226-28,499,046), I examined the methylation changes of 80 individual 

CpG sites in that region. Although most CpG sites had large differences in methylation 

changes between tumor and healthy tissues, in an effort to identify the region that 

satisfies my criteria, I designed MSP primers according to the heatmap and the line graph 

of the methylation level for each CpG site in the candidate CpG islands (Figure 9 and 

Figure10). Since I was interested in the methylation level of the same strand of the target 

CpG island, I mainly focused on the methylation level of CpG sites on the sense strand. 

The forward primer for PDX1 has four CpG sites, and the reverse primer has three CpG 

sites. The beta value of these seven CpG sites was approximately 10% in normal tissues 

but 70% in tumor tissues on average. The amplicon size was 126 bp and 123 bp, and the 

Tm was 55–57 °C (Figure 9A and Figure 10A). For EN2 and MSX1, MSP primers were 

designed through similar efforts. In brief, the forward primer and the reverse primer for 

EN2 had three CpG sites. The beta value of the six CpG sites was approximately 10% in 

healthy tissues but 70% in tumor tissues on average. The amplicon sizes were 127 bp 

and 112 bp, and the Tm was 57–58 °C (Figure 9B and Figure 10B). The forward primer 

and the reverse primer for MSX1 had three CpG sites. The beta value of the six CpG 
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sites was approximately 10% in healthy tissues but 70% in tumor tissues on average. The 

amplicon sizes were 151 bp and 144 bp, and the Tm was 55–57 °C (Figure 9C and 

Figure 10C). 
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Figure 9. Optimized benchmark for primer-binding site selection and primer design 

in methylation-specific PCR (MSP). (A)–(C) MSP-targeting genomic regions in the 

intragenic CpG islands of (A) PDX1, (B) EN2, and (C) MSX1 are boxed in yellow. 

Hierarchical clustering of healthy tissue and tumor samples of targeted bisulfite sequencing 
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data confirmed the hypermethylation of each target region in the tumor relative to healthy 

tissues. Each column corresponds to the cytosine of CpG sites within the respective 

intragenic CpG islands of PDX1, EN2, and MSX1. Low-quality sequencing data were then 

filtered out. (D)–(F) The efficacy of methylation detection and quantification of manually 

designed MSP primers were validated in vitro, in which three colon cancer cell lines 

(SW480, LoVo, HCT116) and one healthy colon cell line (CCD-18Co) were used. Agarose 

gel electrophoresis of quantitative MSP (qMSP) products also confirmed the methylation 

level detection efficacy of the designed primers for PDX1, EN2, and MSX1. (G)–(I) qMSP 

with varying CCD-18Co and SW480 template DNA quantities was conducted to verify 

DNA quantity dependent signal changes of (G) PDX1, (H) EN2, and (I) MSX1 methylation. 

Met: MSP primer that binds to genomic DNA where all the target CpG sites are methylated. 

Half-Met: the MSP primer that binds with genomic DNA where some of the target CpG 

sites are methylated. Unmet: MSP primer that binds with genomic DNA where all the 

target CpG sites are not methylated. nd: not determined. *p < 0.05, **p < 0.01, ***p < 

0.001.  
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Figure 10. MSP targeting genomic regions in the intragenic CpG island of PDX1, EN2, 

and MSX1. (A)-(C) Line graph indicating the average DNA methylation level of the CpG 

sites in the candidate CpG island and their targeted MSP primer binding sites. Targeted 

bisulfite sequencing data were used in the plotting process. (Left) The red line represents 
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the average methylation level of healthy samples, while the blue line corresponds to tumor 

samples. Each dot in the line graph denotes the CpG sites included in the CpG island. The 

yellow boxes indicate the MSP forward and reverse primer binding sites. (Right) DNA 

methylation status of CpG sites in healthy and tumor colon tissues where custom-made 

MSP primers anneal. Each dot represents the CpG site, and the dark portion of each dot 

represents the average methylation level. 
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5. MSP primers efficiently detect the methylation states of the region of interest 

 

Next, I wanted to confirm whether my MSP primers properly detected methylation 

levels. Since my MSP primers had a total of six or seven CpG sites, I not only made a 

primer set that retained cytosine (methylation primers) or changed all cytosine to thymine 

(unmethylated primers) but also created a primer set that changed only half of the 

cytosine to thymine (half-methylation primers). Using these primers, I performed qPCR 

with bisulfite treated genomic DNA from the CCD-18Co normal colon cell line and the 

SW480, LoVo, and HCT116 colon cancer cell lines. 

In each CpG island, the methylation primer gave a PCR product in SW480, LoVo, 

and HCT116 cells but not in CCD-18Co cells. Unmethylated primers, on the contrary, 

were detected in CCD- 18Co cells but not in SW480, LoVo, and HCT116 cells. The half 

methylation primer failed to show clear differences among CCD-18Co, SW480, LoVo, 

and HCT116 cells (Figure 9D-F). I quantitatively calculated the methylation level by 

dividing the methylation primer value or the half-methylation primer value by the 

unmethylated primer value. SW480, LoVo, and HCT116 cells showed significantly 

higher methylation levels than CCD-18Co cells when I used methylation primers but not 

when I used half-methylation primers (Figure 9D–F). I next examined how sensitively 

the methylation primers could distinguish cancer cells from healthy cells in terms of the 

amount of template DNA. I observed the differential methylation levels of CCD-18Co 

and SW480 cells via qMSP and found that even 0.5 ng of template DNA, in the case of 

PDX1, was sufficient to observe the difference (Figure 9G–I). 

From these results, I confirmed that my MSP primers could distinguish cancer cells 

from normal cells very efficiently. Interestingly, although half-methylation primers also 

have four CpG sites where methylation levels between healthy and cancer cells are 

different, they could not produce clear differences when I executed MSP, suggesting that 

only MSP primers have more than enough CpG sites to provide substantially different 

results.  
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6. The developed MSP primers could detect dynamic changes in methylation states 

 

I next examined whether my MSP primers could distinguish the dynamic changes 

in methylation levels out of concern that the data from cell lines might not sufficiently 

reflect physiological methylation changes due to fixed methylation values. To induce 

methylation changes, I used the CRISPR/dCas9-TET1 system (hereafter the dCas9-TET 

system), which enables me to decrease methylation levels in a location-specific manner 

(Figure 11A)64. 

After introducing the dCas9-TET system into the PDX1 genomic region, I detected 

a significant reduction in methylation levels using my methylation primers, which 

contain seven CpG sites. However, I could not detect this difference using half 

methylation primers (Figure 11B). I noted that PDX1 expression was significantly 

decreased according to the reduction in methylation level in the intragenic region, 

suggesting that the methylation changes are directly related to gene expression changes 

(Figure 11C). I obtained similar results with EN2 and MSX1. I successfully detected a 

reduction in the methylation levels in the intragenic regions of EN2 and MSX1 using my 

methylation primers, consistent with the reduction in gene expression (Figure 11D–G). 

Thus, I concluded that my methylation primers are sensitive enough to detect methylation 

changes that precede gene expression changes.  
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Figure 11. Customized MSP primers detect methylation changes in SW480 candidate 

biomarkers modulated by the CRISPR/dCas9-gRNA system. (A) A representation of 

my designed CRISPR/dCas9-gRNA system whereby specific gRNAs recruit the dCas9 

protein and the catalytic domain of TET1 to demethylate the targeted genomic locus. (B), 

(D), (F) qMSP with SW480 cells transfected with dCas9-TET1CD mock or gRNA specific 
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to (B) PDX1, (D) EN2, and (F) MSX1 indicates that the designed primers can distinguish 

the lack of methylation modulated by the CRISPR/ dCas9-gRNA system compared with 

controls. (C), (E), (G) qPCR with SW480 cells transfected with dCas9-TET1CD mock or 

gRNA of (C) PDX1, (E) EN2, and (G) MSX1 shows a reduction in gene expression with 

decreased methylation. Genomic DNA and RNA used in qMSP and qPCR were 

simultaneously extracted from the cell lines. 
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7. The methylation levels of PDX1, EN2, and MSX1 predict CRC metastasis 

 

Next, I examined whether the methylation levels of the intragenic CpG regions of 

PDX1, EN2, and MSX1 have clinical implications. I classified patients based on the 

methylation levels of these regions by conducting hierarchical clustering with the 

Manhattan distance. Consequently, I created two groups: the hypermethylated group 

(Group 1, N = 26) and the intermediate methylation and hypomethylated group (Group 

2, n = 61) (Figure 11A). Interestingly, these two groups showed a substantial difference 

in OS (Figure 11B) and PFS rates (Figure 11C). In addition, peripheral lymphatic, 

vascular and perineural invasions, which are characteristic events followed by cancer 

metastasis, occurred more frequently in Group 1 than in Group 2. However, differences 

in cell differentiation, microsatellite instability, and tumor location were not observed. 

When I reviewed the information of patients, I realized that the majority of stage IV (after 

metastasis) patients were included in Group 1, whereas the majority of stage III (before 

metastasis) patients were included in Group 2 (Table 2). These results suggest that PDX1, 

EN2, and MSX1 methylation levels can predict CRC patient prognosis. 

Finally, I examined whether my MSP system could distinguish between these two 

patient groups. I executed qMSP using bisulfite-treated genomic DNA from the tumor 

tissues of seven patients. Two patients in Group 1 showed higher methylation levels in 

the intragenic regions of PDX1, EN2, and MSX1 than five individual patients in Group 2 

(Figure 11D). This result suggests that my MSP detection system can be clinically 

applied to predict the prognosis and metastasis of CRC patients after surgery.  
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Figure 12. Prognostic potential of the 3-gene methylation signature is indicated 

through the classification of CRC patients. (A) Hierarchical clustering was conducted 

with DNA methylation data of intragenic CpG islands of PDX1, EN2, and MSX1, where 
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two distinct subgroups of CRC patients were observed. Kaplan–Meier plots for analyzing 

the significant differences in (B) overall survival and (C) CRC recurrence between the 

subgroups reveal the prognostic potential of the methylation data of the three biomarkers. 

The log-rank test was used to compare the significant differences between the two 

subgroups. One sample was excluded from the analysis of clinical data due to missing 

clinical data. Additionally, 31 patients were excluded from the recurrence analysis because 

they were diagnosed with stage IV CRC with metastatic cancers, and differentiating cancer 

recurrence would be challenging. (D) qMSP data generated with genomic DNA originating 

from the tumor and healthy tissues of the seven CRC patients displayed similar patterns to 

the cohort-specific methylation change analysis in a. The relative methylation levels of 

intragenic CpG islands of PDX1, EN2, and MSX1 were calculated by dividing the 

methylation level of the tumor by that of healthy tissue.
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Table 2. Clinical data of the subgroups classified by the methylation level of the 

intragenic CpG island of PDX1, EN2, and MSX1 

Parameter Subgroup 1 Subgroup 2 P

N 25 61

Age (year) 58.2 (40-74) 63.2 (36-83) 0.0343*

Sex (male:female) 13:12 39:22 0.304, ns

Stage

I 0% (0) 1.64% (1)

II 8% (2) 0% (0)

III 20% (5) 78.7% (48)

IV 72% (18) 26.2% (12)

Invasion

Lymphatic 56% (14) 45.9% (19) 0.0314*

Vascular 44% (11) 19.6% (8) 0.00172**

Perineural 80% (20) 50.8% (31) 0.0124*

Differentiation

Well 0% (0) 1.7% (1)

Moderate 91.7% (22) 93.1% (54)

Poor 8.3% (2) 5.2% (3)

Microsatellite

Stable 91.3% (21) 93.1% (54)

Instable - low 4.3% (1) 5.2% (3)

Instable - high 4.3% (1) 5.2% (3)

Site of Tumor

Ascending 20% (5) 25.9% (15)

Descending 4% (1) 0% (0)

Transverse 4% (1) 1.7% (1)

Sigmoid 40% (10) 36.2% (21)

Rectal 16% (4) 20.7% (12)

Rectosigmoid Junction 16% (4) 15.5% (9)

*p<0.05

**p<0.01

***p<0.001

2.113E-06***

0.706, ns

0.969, ns

0.667, ns

Table 2. Clinical data of the subgroups classified by the methylation level

of the intragenic CpG island of PDX1, EN2, and MSX1
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8. Differentially methylated regions of thyroid cancer clearly divide the cohort into 

two major subgroups 

 

Following the methodology used in my colorectal cancer research, I conducted 

targeted bisulfite sequencing in my prospective thyroid cancer cohort to examine the 

DNA methylation status. By employing the same approach as in the colorectal cancer 

study, I identified differentially methylated regions (Figure 3 and Figure 4). As a result, 

I detected 248 hypermethylated regions and 83 hypomethylated regions within the cohort 

(Figure 13A and Figure 13B). Utilizing the DNA methylation data from these regions 

for comparative analysis between own cohort and the TCGA cohort, both independent 

cohorts evidently bifurcated into two major subgroups. The methylation patterns in own 

cohort's Tumor 1 (T1) and Tumor 2 (T2) subgroups closely mirrored those of PTC1 and 

PTC2 subgroups of TCGA-THCA, respectively (Figure 13C). To assess the clinical 

characteristics of PTC1 and PTC2, I generated a Kaplan-Meier plot to compare the 

survival rates of each subgroup. Notably, patients in the PTC1 group exhibited a 

significantly lower overall survival than those in the PTC2 group (Figure 13D). 

Furthermore, PCA analysis using the DMRs conclusively differentiated between T1 and 

T2 (Figure 13E). In conclusion, by defining differentially methylated regions from the 

thyroid cancer cohort, I was able to delineate two distinct subgroups with differing 

prognostic outcomes. 
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Figure 13. Analysis of differentially methylated regions in thyroid cancer cohorts. (A) 

The number of DMRs and the frequency of differentially methylated patients. (B) Regional 

distribution of selected hyper/hypomethylated DMRs. (C) Heatmap representation of 

DNA methylation status for DMRs in both own cohort (left) and TCGA THCA (right). (D) 

Kaplan-Meier survival curve analysis of PTC1 and PTC2 from TCGA cohort. (E) PCA 

analysis using DMRs. 
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9. Determination of thyroid cancer subgroups through DNA methylation data 

reveals clear molecular characteristics 

 

Leveraging the differential methylation regions (DMRs) derived from targeted 

bisulfite sequencing data in own cohort, I undertook a transcriptomic assessment of 

patient subgroups within the TCGA dataset. Principal component analysis (PCA) 

unveiled a distinct segregation in the transcriptomic profiles of these subgroups (Figure 

14A). To delineate the differential gene expression landscapes between these clusters, I 

employed DESeq2, pinpointing several differentially expressed genes (DEGs) (Figure 

14B). A subsequent heatmap visualization of these DEGs segregated them into three 

primary gene clusters, each underpinned by unique expression patterns (Figure 14C). In 

my endeavor to decode the functional attributes of these clusters, a gene ontology 

analysis was executed (Figure 14D). Notably, gene cluster 1, characterized by 

diminished expression in both PTC1 and PTC2, was enriched with genes historically 

documented to exhibit suppressed expression in thyroid cancer. In contrast, gene cluster 

3, which displayed augmented expression in both PTC1 and PTC2, was enriched with 

genes previously reported to have elevated expression in thyroid cancer65. Gene cluster 

2 presented a unique scenario: heightened expression exclusively in PTC1 was 

accompanied by a preponderance of immune-related gene ontology (GO) terms, aligning 

with the well-established nexus between cancer progression and immune response. To 

identify genes among the differentially expressed genes (DEGs) that are regulated by 

DNA methylation, I annotated the DMRs and conducted a comparative analysis. As a 

result, I was able to identify 77 DEGs associated with the DMRs (Figure 15). In 

summary, it is unequivocal that the subgroups stratified on the basis of DNA methylation 

imprints manifest divergent transcriptomic hallmarks. 
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Figure 14. Analysis of transcriptomics between PTC1 and PTC2. (A) PCA analysis 

using RNA sequencing data of TCGA THCA. (B) The number of differentially expressed 

genes between each subgroup. (C) The heatmap of total differentially expressed genes (D) 

Gene ontology analysis of the DEG clusters. 
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Figure 15. Overlap of differentially methylated regions of own cohort and 

differentially expressed genes of TCGA THCA cohort. 
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10. Analysis of chromatin accessibility confirmed that PTC1 is related to immune 

response 

 

I sought to investigate the chromatin accessibility in thyroid cancer utilizing 

previously conducted RNA sequencing and ATAC sequencing data from the thyroid 

cancer cohort (GSE162515)44. Building upon my earlier findings of 77 genes that were 

both differentially methylated and expressed, I stratified the thyroid cancer patients in 

the GSE162515 cohort based on these genes. Notably, I observed a clear distinction in 

the thyroid cancer patients based on their gene expression patterns (Figure 16A and 

Figure 16B). I then identified differentially accessible regions between PTC1 and PTC2 

within the GSE162515 dataset (Figure 16C). Mirroring the results from the RNA 

sequencing data analysis, genes associated with regions exhibiting increased 

accessibility in PTC1 were enriched for those related to immune response (Figure 16D). 

This led me to infer the occurrence of aberrant immune responses in PTC1 based on 

ATAC-seq data. Concurrently, I pinpointed genes from the previously identified set of 

77, which also exhibited changes in chromatin accessibility (Table 3). These genes are 

postulated to play a pivotal role in the onset or progression of thyroid cancer. 
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Figure 16. Analysis of ATAC sequencing of thyroid cancer cohort. (A) Comparison of 

thyroid cancer cohort with differentially methylated and expressed genes in TCGA THCA 

cohort. (B) PCA analysis with differentially accessible regions. (C) Volcano plot of 

differentially accessible regions between PTC1 and PTC2. Gene ontology analysis of (D) 

open regions and (E) closed regions in PTC1 versus PTC2.
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Table 3. List of genes and genomic location where differentially methylated, 

accessible, and expressed between PTC1 and PTC2. 

Location Gene *Met **Exp padj ***Acc FDR

chr9:139901954-139902205 ABCA2 37.9 -0.67 2.69754E-21 -0.34 0.00523

chr11:65352231-65353134 EHBP1L1 34.3 0.70 4.40782E-20 0.44 0.01733

chr7:27163819-27164098 HOXA3 31.3 1.06 1.07583E-16 0.60 0.03001

chr17:46627787-46628444 HOXB3 30.5 0.89 1.00639E-15 0.61 0.01996

chr17:17465135-17465397 PEMT 30.5 -0.59 1.44107E-17 -0.38 0.00011

chr7:27179062-27179511 HOXA-AS3 29.7 0.71 0.034785118 0.99 0.0033

chr12:58132478-58132734 AGAP2 29.2 1.43 1.38311E-36 1.60 2E-05

chr4:81109887-81110460 PRDM8 28.4 1.81 1.81784E-47 0.48 0.03454

chr10:135038085-135038506 UTF1 27.9 0.84 0.002014953 0.43 0.00167

chr5:10649367-10650352 ANKRD33B 27.7 0.91 3.05992E-12 0.39 0.0477

chr7:27134097-27134303 HOXA1 27.1 1.71 2.18713E-42 0.65 0.03744

chr14:93153278-93154759 RIN3 26.4 0.82 2.59277E-28 0.39 0.00102

chr7:27153187-27153647 HOXA3 26.0 1.06 1.07583E-16 0.55 0.01914

chr11:14280741-14281164 SPON1 25.2 1.58 2.24875E-14 0.43 0.03614

chr17:46697413-46697701 HOXB8 25.1 0.78 0.005565291 1.28 0.0006

chr12:58130870-58132047 AGAP2 24.9 1.43 1.38311E-36 0.58 0.00136

chr12:58119909-58121551 AGAP2-AS1 24.4 0.61 6.49569E-07 0.36 0.00274

chr12:58119909-58121551 AGAP2 24.4 1.43 1.38311E-36 0.36 0.00274

chr17:7690145-7690411 DNAH2 23.9 0.91 3.87177E-10 -0.41 0.03224

chr7:27147589-27148389 HOXA3 23.5 1.06 1.07583E-16 0.48 0.02702

chr19:49841187-49841628 CD37 22.7 2.19 5.2369E-57 0.98 0.00022

chr5:43037259-43037520 ANXA2R 22.3 1.24 1.07086E-27 1.99 1.3E-06

chr2:11774310-11774521 GREB1 22.2 -0.87 4.6938E-05 0.72 0.00239

chr19:15563869-15564223 RASAL3 21.0 1.76 5.65964E-57 0.32 0.02826

chr19:44278273-44278777 KCNN4 20.8 0.62 0.002803386 0.42 0.01669

chr7:45002111-45002845 MYO1G 20.7 1.08 1.23836E-08 0.64 0.00161

chr19:15568027-15569227 RASAL3 20.1 1.76 5.65964E-57 0.87 1.7E-05

chr21:45789090-45789373 TRPM2 20.0 1.38 1.9613E-36 0.63 0.01813

chr1:43814305-43815277 CDC20 19.5 0.80 1.5117E-10 0.23 0.00354

chr16:67681975-67683924 CARMIL2 18.7 2.92 1.66885E-77 0.76 0.00029

chr12:54764065-54764510 GPR84 16.7 1.48 8.19556E-33 0.30 0.01611

chr17:3847999-3848570 ATP2A3 16.4 1.27 6.77505E-32 1.47 3.1E-07

chr17:14201726-14202052 HS3ST3B1 15.7 1.29 8.72421E-28 1.88 5.5E-06

chr19:49842654-49843628 CD37 15.7 2.19 5.2369E-57 0.64 0.00028

chr4:1205817-1206203 SPON2 15.5 1.11 7.99542E-20 0.70 0.00348

chr19:1070985-1071812 ARHGAP45 15.1 1.09 5.43616E-33 0.52 0.00751

chr7:5336513-5336894 SLC29A4 -16.3 -0.90 5.195E-06 2.48 7.5E-07

chr16:29675845-29676120 SPN -17.7 1.77 2.52324E-44 2.61 4.7E-08

chr11:65408344-65408631 SIPA1 -18.3 0.62 3.83801E-14 2.42 2.5E-08

chr19:13207375-13207621 LYL1 -19.7 0.94 1.00055E-16 1.84 2.6E-06

chr21:44818894-44819446 SIK1 -19.7 0.88 0.00392773 3.24 1.7E-11

chr11:67176945-67177169 TBC1D10C -21.6 0.79 9.22E-15 2.71 8.1E-09

chr17:72347924-72348322 BTBD17 -21.7 -1.76 1.11635E-05 0.70 0.01167

chr22:40057941-40058844 CACNA1I -22.8 -0.88 2.93923E-09 1.25 0.00046

chr19:3178741-3179986 S1PR4 -24.2 1.71 1.96522E-45 2.61 1.7E-10

chr12:6664425-6665336 IFFO1 -27.2 1.07 3.00958E-37 2.66 1.2E-13

chr22:40081519-40082390 CACNA1I -33.0 -0.88 2.93923E-09 0.85 0.00166

chr11:63974829-63975048 FERMT3 -37.6 1.83 2.41594E-54 2.47 6.4E-09

*Met: methylation difference between T1 and T2 (T1 - T2)

**Exp: differential expression between PTC1 and PTC2 in TCGA THCA

***Acc: difference of chromatin accessibility between PTC1 and PTC2 in GSE165212

Table 3. List of genes and genomic location where differentially methylated, accessible, and

expressed between PTC1 and PTC2
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IV. DISCUSSION 

 

In this study, I present my discovery of novel CRC prognostic markers based on a 

comprehensive analysis of multiomics data and the validation of their functional impact in 

vitro. First, I used a public database for the preliminary screening of CRC-specific 

differentially methylated regions. In addition, I generated deep depth of targeted bisulfite 

sequencing data from the South Korean CRC cohort. For functional validation, I analyzed 

RNA-seq data and generated CRISPR/dCas-based cell lines. Finally, I established qMSP-

based primer sequences and protocols for the quick and easy prediction of CRC prognosis.  

I aimed to identify intragenic CGIs in which methylation changes were significantly 

related to gene expression and further cancer progression. By examining the differences in 

the methylation levels observed in tumors and adjacent healthy tissues via hybrid capture-

based targeted bisulfite sequencing, I discovered significantly hypermethylated intragenic 

CGI regions in PDX1, EN2, and MSX1 in the tumor samples. Therefore, I selected genomic 

locations targeted by MSP and designed primers to validate the hypermethylated status of 

the target CGIs. My primer design system for the candidate methylation biomarkers 

provided the strength that enabled the effective detection of methylation changes. In other 

words, since the targeted bisulfite sequencing data showed the methylation level of almost 

all CpG sites in certain genomic regions of interest, I could select the optimal MSP target 

sites efficiently, where the differences in methylation levels between healthy and tumor 

tissues were significant (Figure 9A–C and Figure 10A-C). Hence, I successfully 

identified tumor-specific differentially methylated CGIs as prognostic markers of CRC and 

developed optimized qMSP methods to detect these methylation markers effectively.  

Despite extensive efforts to discover CRC prognostic markers, technical drawbacks 

have challenged many researchers in developing systems for the clinical application of 

these biomarkers. One of the most important reasons is the difficulty in optimizing the 

qMSP. Specifically, the methylation level is difficult to quantify when discriminating 

between bisulfite-treated cytosine (methylated C) and uracil (unmethylated C) 

simultaneously. Increasing primer sensitivity while removing nonspecific bands is the key 

hurdle for optimizing qMSP. Based on high-coverage targeted bisulfite sequencing data, I 
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identified well-performing primer sets that included six or seven CpG sites in the forward 

and reverse primers that significantly distinguished healthy tissues from tumor tissues, 

although these primer sets were not tested in a multiplexing mode of action. I assume that 

more CpG sites can increase the annealing temperature, which could be more effective in 

precisely binding primers to their target sites. The qMSP technique established in this study 

may be used in additional and more feasible clinical applications for prognosis prediction 

if it is further developed and optimized as a multiplex qMSP technique. After inspecting 

the DNA methylation levels of the genes of interest, I then investigated the correlation 

between epigenetic regulation and the subsequent gene expression changes that ultimately 

lead to DNA methylation. However, even if there are significant epigenetic changes, one 

cannot conclude that these changes are correlated with gene expression. For example, I 

found two CpG islands of the HOXA3 gene as the top 1 (chr7:27,147,589-27,148,389; 

hereafter HOXA3_CGI 7) and 2 (chr7:27,146,069-27,146,600; hereafter HOXA3_CGI 6) 

candidates that satisfied my criteria, but I failed to determine whether the expression of 

HOXA3 was significantly changed in CRC patients (Table 1). I suppose that even if it is 

technically possible to detect the methylation changes of a particular gene of interest, it is 

still not a suitable epigenetic marker unless there is confidence in its expression effects. 

While it is well known that hypermethylation of promoter CpG islands leads to decreased 

gene expression, the mechanism and regulatory roles with respect to the gene expression 

of hypermethylated intragenic CGIs are still debated. One of the arguments supporting the 

idea of tumorigenesis caused by the hypermethylation of intragenic CGIs is that it leads to 

the hypermethylation of certain homeobox genes in their gene body66. This phenomenon 

was also confirmed in my study because PDX1, EN2, and MSX1 are members of the 

homeobox family of genes. In addition to the PDX1, EN2, and MSX1 CGIs, several CGI 

regions in other genes are worth examining. Many researchers have found methylated 

biomarkers in BCAT1, NDRG4, SEPT9, BMP3, and IKZF167-70, which correlates with my 

findings. Therefore, I provide evidence supporting the role of intragenic CGIs, which 

warrants further research.  

In this study, I propose a practical method for identifying CRC prognostic markers. I 

utilized public databases and generated suitable high-depth targeted bisulfite sequencing 

data to define South Korean-specific differentially methylated regions (DMRs). I also 
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validated the proliferative aspect of the intragenic CGIs of PDX1, EN2, and MSX1 in vitro, 

and I present optimized qMSP methods for further application in clinical fields. Based on 

the follow-up data of the patients in the cohort, I found a significant decrease in OS and 

higher recurrence rates in CRC patients with hypermethylated target CGIs. Along with 

surgical biopsy, adjuvant chemotherapy, and other proper care, regular tracking of 

prognostic factors could be helpful for patients with late-stage CRC. I also expect that my 

proposed methods and biomarkers could be applied to other cancers. 

My study has made a significant stride in uncovering the epigenetic landscape of PTC 

by identifying 329 DMRs (Figure 13A). This discovery, achieved through TBS, unveils the 

considerable epigenetic heterogeneity within PTC (Figure 13C). Notably, the classification 

of PTC into two distinct subgroups based on their DMR profiles suggests the existence of 

divergent epigenetic mechanisms driving tumor development. This aligns with the current 

trajectory towards precision medicine in oncology, underscoring the necessity of 

personalized treatment modalities that are informed by molecular profiles rather than solely 

relying on traditional histopathological criteria. 

My analyses involving transcriptomics and chromatin accessibility have shed light on 

the distinct characteristics of the PTC1 subgroup, particularly its association with immune-

related pathways and a tumorigenic gene expression profile. These observations hint at a 

more aggressive molecular phenotype in PTC1, possibly linked to mechanisms of immune 

evasion or immunotolerance. Such insights are crucial for understanding the progression 

dynamics of PTC1 and its potential resistance to standard treatments.  

In summary, my study marks a significant advancement in the understanding of PTC 

by identifying 329 DMRs and delineating two distinct PTC subgroups with unique 

epigenetic profiles. Notably, the PTC1 subgroup exhibits a more aggressive phenotype, 

potentially linked to immune-related pathways and tumorigenesis, as suggested by my 

analyses of chromatin accessibility and gene expression patterns. While my methodological 

approach using TBS and MSP provides a comprehensive view of PTC's epigenetic 

landscape, future research necessitates longitudinal studies for deeper insights into the 

clinical implications of these findings, particularly in advancing personalized treatment 

strategies in oncology. 
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V. CONCLUSION 

 

In my study on CRC, I identified specific DNA methylation markers in the genes 

PDX1, EN2, and MSX1 using targeted bisulfite sequencing. I discovered that these genes 

expression is linked with hypermethylation, highlighting their potential roles in CRC. 

Moreover, using a similar methodology and multiomics data, I was able to define two 

distinctly different subgroups within PTC. My findings suggest these genes as promising 

prognostic markers, offering a new direction for clinical diagnosis and treatment strategies. 
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ABSTRACT(IN KOREAN) 

 

특정 CpG 섬에서의 비정상적인 DNA 메틸화를 가진 암의 아형 식별: 

대장암 및 갑상선 암 연구 

 

<지도교수 김 락 균> 

 

연세대학교 대학원 의과학과 

 

이 영 운 

 

 

DNA methylation의 변화와 암 진행의 관계에 대한 수많은 연구가 진행 

되어오고 있지만 실제 암의 진단 바이오마커로 검증된 유전자는 몇 개에 

지나지 않는다. DNA methylation의 변화를 더 효과적으로 검출하기 위해 

targeted bisulfite sequencing (TBS)을 수행했다. RNA-seq과의 통합 분석을 통해 

PDX1, EN2, MSX1 내부의 CpG island가 대장암에서 DNA methylation의 유의미한 

차이를 보이는 것을 확인했다. 이 유전자들이 암 유발 특성을 가지고 있으며  

발현량이 DNA methylation과 양의 상관관계를 갖는 것을 확인했다. TBS의 높은 

read depth 덕분에 관심 유전체 영역에서 단일 CpG 수준의 미세한 DNA 

methylation 차이를 감지할 수 있는 quantitative MSP primer를 제작할 수 있었다. 

이 유전자들의 DNA methylation 수준을 통해 대장암 환자들을 좋은 예후와 

나쁜 예후를 보이는 두 그룹으로 나눌 수 있었다. 이는 PDX1, EN2, MSX1의 

DNA methylation 수준이 예후 예측의 바이오마커로써 유망한 성능을 보이고 

대장암 환자들에 임상적으로 응용될 수 있음을 암시한다. 또한, TBS를 

갑상선암에도 적용하여 차등적인 수준을 보이는 DNA methylation 

바이오마커를 동정했다. 해당 바이오마커를 통해 자체 코호트와 TCGA 

코호트에서 갑상선 유두암의 이질적인 그룹을 동정하였고, 다중 오믹스 

데이터를 통합하여 이들의 분자적 특성을 분석하였다. 이 연구를 통해 우리는 

임상적으로 중요한 유전체 영역을 찾기 위한 간소화된 작업 흐름을 제시한다. 

                                                                   

핵심되는 말 : CpG island, DNA methylation, 대장암, 갑상선암, Targeted 
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