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ABSTRACT 

 

Prediction of immune checkpoint inhibitor response  

based on immune phenotype classification 
 

Eunyoung Kim 
 

Department of Medical Science 

The Graduate School, Yonsei University  
 

(Directed by Professor Sangwoo Kim) 
 

 

 

The immune phenotype reflects the immune response and is associated with biological 

mechanisms that can interfere with the elimination of cancer. Additionally, the immune 

phenotype is known to influence the overall survival of melanoma patients receiving 

immune checkpoint inhibitor (ICI) treatment. In order to improve the effectiveness of 

personalized immune therapy, it is essential to develop an algorithm that can accurately 

and objectively predict an individual's immune environment based on gene expression 

data from bulk RNA sequencing. 

The study aims to develop an algorithm called CLIPS (CLassification of Immune 

Phenotypes-Specific ICI response) using gene expression data from bulk RNA 

sequencing. The CLIPS predict an individual's immune phenotype and their ICI response 

based on immune phenotype. The CLIPS demonstrates a robust prediction performance 

with an AUC of 0.76, enabling the accurate prediction of patient-specific immune 

phenotypes, thereby replacing the conventional immunohistochemistry (IHC) technique. 

The accuracy of the previously published predictive tools for ICI treatment response, 

TIDE and IMPRES, were compared with CLIPS using independent validation data from 
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41 melanoma patients. The results showed that TIDE achieved an accuracy of 0.63, 

IMPRES attained an accuracy of 0.58, while CLIPS achieved a higher accuracy of 0.76 

based on predicted immune phenotypes, leading to more accurate predictions of 

individual patient's responses to ICI. In addition, CLIPS can predict responsiveness with 

high accuracy, regardless of cancer type or type of ICI treatment. 

Furthermore, this study revealed the association between immune phenotype and the 

expression of PD-1 and PD-L1 genes as well as the ICI response. The expression of PD-

1 and PD-L1 genes was significantly higher in the inflamed immune phenotype 

compared to the excluded and desert immune phenotypes. Also, the common 

upregulation of E2F target related genes in both the excluded and desert immune 

phenotypes in the ICI response group was observed. The E2F pathway appears to 

increase the expression of PD-1, thereby enhancing susceptibility to ICI . Likewise, the 

IL-6/JAK/STAT3 signaling pathway was predominantly present in the inflamed immune 

phenotype, suggesting a favorable response to ICI due to increased PD-L1 gene 

expression mediated by IL-6 secretion. 

This study provides important insights into the classification of immune phenotypes, 

facilitating the development of personalized treatment strategies. Understanding the 

immune phenotype not only aids in the comprehension of functional characteristics of 

the immune system but also expands the identification of additional subtypes that can be 

utilized to predict ICI response.  

In conclusion, this research contributes significantly to providing personalized treatment 

options based on understanding and predicting immune phenotypes. This approach has 

the potential to enhance cancer patient survival rates and optimize the efficacy of 

immunotherapies. 

 

                                                                   

Key words : immune phenotype, immune checkpoint inhibitor, immune profiling, 

immunotherapy, tumor microenvironment, immunoinformatics, next-generation 

sequencing
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I. INTRODUCTION 

1. History of cancer immunotherapy 
In the early stages of cancer immunotherapy, non-specific therapies were 

commonly used to boost the immune system’s response to cancer. These 

therapies aimed to enhance the overall immune response against cancer cells. 

Prominent among these non-specific therapies were the Bacillus Calmette-

Guérin (BCG) vaccine, int, and interleukin-2 (IL-2) cytokine. As the field of 

immunotherapy advanced, there was a shift towards more personalized and 

targeted approaches. Patient-derived cancer vaccines and immune checkpoint 

inhibitors (ICI) are examples of these personalized approaches1. The patient-

derived cancer vaccines are designed to target specific neoantigens found on a 

patient's tumor cells, which are unique to the patient and not present in healthy 

cells2. These vaccines stimulate an immune response against the tumor cells, 

allowing for a targeted and potentially more effective immune response against 

the specific cancer. The ICI treatment, such as programmed cell death protein 
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1 (PD-1) inhibitors, and programmed death-ligand 1 (PD-L1) inhibitors, are a 

type of therapy that work by blocking checkpoint proteins in the immune 

system. The mechanism of action of anti-PD-1 and anti-PD-L1 therapy 

involves blocking the interaction of PD-1 and PD-L1, which in turn abolishes 

the inhibition of CD8+ T cells, thereby enhancing the antitumor immune 

response. This mechanism helps in restoring the activity of T cells to recognize 

and target cancer cells. 

The ICI treatment has been reported to improve survival period in diverse 

cancer types, including non-small cell lung cancer and metastatic melanoma3. 

This improvement, however, does not present uniformly among all patients. 

Observations of treatment responses reveal a significant heterogeneity among 

individuals. For a substantial subset of patients receiving ICI therapies, the 

clinical benefit remains unfortunately limited. This suggests that while ICIs 

have revolutionized cancer treatment with marked success in certain cases, 

they are not universally effective. For the majority of patients undergoing ICI 

treatment, the derived benefit is notably minimal. This underlines the necessity 

for continued research to understand and overcome the mechanisms of 

resistance and to identify biomarkers capable of predicting response to ICI 

therapy. 

 

2. Comprehension of the immune microenvironment  
The Cancer Genome Atlas (TCGA) has contributed significantly to 

understanding the genomic landscape of many types of cancers, which has 

been critical in designing targeted immunotherapies. Both of these therapeutic 

advancements happened concurrently and have synergistically advanced the 

field of oncology. Nonetheless, our understanding of the biology of the 

immune microenvironment, a critical determinant of the effectiveness of such 

therapies, remains incomplete. The immune microenvironment, comprising 

various immune cells in and around the tumor, plays a pivotal role in 
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modulating the body's immune response against cancer cells. Therefore, it 

plays a significant role in determining the success of immunotherapies. 

Understanding this intricate microenvironment is key to designing more 

effective immunotherapy strategies and predicting which patients will respond 

best to these therapies. Continued research in this area is necessary further to 

optimize treatment plans and outcomes for cancer patients. The large-scale 

study conducted a comprehensive analysis of the immune tumor 

microenvironment (TME) in 33 different types of cancer using various 

immunogenomic methods4. Some of these methods included the assessment of 

total lymphocytic infiltrate, immune cell fractions from deconvolution analysis 

of mRNA sequencing data, immune gene expression signatures, neoantigen 

prediction, TCR and BCR repertoire inference, and changes in somatic DNA. 

The integration of these methods allowed for a thorough characterization of 

the TME across multiple cancer types as part of the TCGA project. Through 

this approach, the large-scale study discovered and detailed six immune 

subtypes present across various tumor types. These findings could potentially 

contribute to therapeutic strategies and have implications for predicting disease 

progression, ultimately enhancing cancer management. A comparison was 

made regarding the immune content present in various immune and cancer 

subtypes. Additionally, somatic alterations that correlated with changes in the 

TME were identified. The identification of six consistent and reproducible 

immune subtypes that cover nearly all human cancers has been made. These 

immune subtypes correlated with prognosis and displayed genetic and immune 

modulatory changes that could mold the unique immune environments 

observed. As the discovery of the significant impact of the tumor immune 

microenvironment on prognosis and treatment efficacy deepens, identifying 

the immune subtype of a tumor may become a critical factor in predicting the 

outcome of the disease. This approach has the potential to offer more reliability 

compared to only relying on the unique features of each cancer types. 
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3. Relation between the TME and ICI response 
Features of the tumor included cancer genomes and microenvironment is 

recognized as the main factors that response and resistance to ICI. Somatic 

mutations resulting from mutations at the genomic level, such as DNA 

mismatch repair genes, oncogenes and tumor suppressor genes, are considered 

biomarkers to predict the therapeutic effects of ICI5. A recent study has 

amplified our understanding of the intricate orchestration of the immune 

response within the TME of mismatch repair-deficient tumors. Deficiency in 

the DNA mismatch repair system leads to a state of microsatellite instability, 

resulting in high rates of genetic mutations. This heightened mutational profile 

can render the tumor more immunogenic, thereby eliciting a conspicuous 

immune reaction. The study demonstrated that numerous immune checkpoint 

ligands, including PD-1, PD-L1, cytotoxic T-lymphocyte-associated protein 4 

(CTLA-4), lymphocyte-activation gene 3 (LAG-3), and indoleamine 2,3-

dioxygenase (IDO), were strongly expressed in the mismatch repair–deficient 

TME. These markers play a crucial role in modulating the immune response, 

often serving as mechanisms for cancer cells to impede immune activity and 

evade destruction. The high mutation burden has proven to be more effective 

in the treatment of ICI than patients with low mutation burden6. This 

correlation further supports the notion that mutation-associated neoantigen 

recognition plays a significant role in driving the endogenous antitumor 

immune response. The observed findings suggest that the immune infiltrate 

associated with mismatch repair-deficient carcinomas is associated with 

neoantigens. Neoantigens are altered protein sequences derived from somatic 

mutations in the tumor genome, and they are recognized by the immune system 

as foreign or abnormal. The presence of a heightened immune response within 

these tumors, therefore, implies that the immune system is actively targeting 

and responding to neoantigens generated as a consequence of the genomic 
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instability associated with DNA mismatch repair deficiency. Previous studies 

have shown that mismatch repair-deficient carcinomas are associated with an 

immune infiltrate dominated by CD8+ T cells, increased levels of tumor-

infiltrating lymphocytes (TILs), and upregulation of immune checkpoint 

molecules such as PD-1 and PD-L17. These findings suggest that these tumors 

may be more responsive to anti-PD-1 and anti-PD-L1 immunotherapy. 

Although TILs such as CD8+ T cells is a potential predictive biomarker for 

patient's prognosis also carcinogenesis pathways influence the TME8. The 

ability to exclude invasive immune cells from the TME may change the 

response to immune checkpoint inhibitors by assisting or hindering the anti-

tumor immune response9. Moreover, the spatial distribution of immune cells 

within the TME, known as immune cell topography, has become a significant 

prognostic factor and indicator of therapeutic response in solid tumors10. The 

TME, conceptualized as the cellular environment in which the tumor exists, is 

a complex network comprised of various cell types including not only the 

malignant cells themselves but also blood vessels, antigen-presenting cells 

(APCs), myeloid-derived suppressor cells (MDSCs), tumor-associated 

macrophages (TAMs), fibroblasts, and indeed, the aforesaid TILs. The 

aforementioned elements are not solely present within the TME, but rather 

engage in a reciprocal interaction that influences the immune response to 

tumors11.  

Nevertheless, the complex network within the TME is not randomly distributed; 

instead, they follow distinct patterns, giving rise to what is commonly referred 

to as the immune cell topography. This spatial distribution of immune cells 

within the TME has emerged as a significant prognostic factor and plays a key 

role in indicating the therapeutic response in solid tumors. This distribution has 

predictive significance in terms of prognosis, TME, and immunotherapy for 

patients with esophageal cancer and colorectal cancer12. Overall, The immune 

cell topography within the TME plays a crucial role in predicting therapeutic 
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response in solid tumors13. These cells reflect the balance of effector and 

suppressive activity within the TME, thus influencing the clinical response to 

treatment. 

The acquisition of comprehensive understanding regarding the TME across 

different subtypes of tumors is of utmost importance in the development of 

precise therapeutic approaches. This significance arises from the diverse nature 

of the TME, its involvement in the modulation of immune responses, its 

contribution to the development of drug resistance, its potential for the 

identification of biomarkers, and the exploration of novel therapeutic targets. 

The acquisition of this augmented knowledge has the potential to incite an 

immune reaction and enhance treatment efficacy in individuals afflicted with 

solid tumors. This is achieved through the modulation of the clinical response 

to treatment, the initiation of an immune response, the optimization of 

immunotherapeutic approaches, the surmounting of immune suppression, the 

customization of treatments, the mitigation of adverse effects, the 

prognostication of therapeutic response, and the provision of insights for 

combination therapies. 

 

4. Importance of immune phenotype 
Indeed, the infiltration of T cells in the TME plays an essential part in 

determining the effectiveness of ICI treatment, a powerful class of 

immunotherapeutic agents. To further clarify, the TME is often classified into 

two distinct states known as cold tumors and hot tumors for a better 

understanding of the immune response14. The hot tumors are characterized by 

a TME that is abundant in TILs, overexpression of PD‐L1 and preexisting 

antitumor immune responses. On the other hand, cold tumors have the opposite 

characteristics, with a lack of TILs and lower levels of immune activity. In the 

case of cold tumors, the effectiveness of ICI diminishes significantly, 

predominantly due to the absence of T-cell infiltration. This obstacle not only 
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hampers overcoming these tumors but also restricts the full exploitation of the 

benefits immunotherapy can offer. To effectively overcome this hurdle and 

maximize the advantages of immunotherapy, it is important to acquire a 

comprehensive understanding of the factors that promote the infiltration of T-

cells into tumors. A promising area of research in the field of immunotherapy 

is the conversion of cold tumors into hot tumors, identified by an enhanced T-

cell presence and activity. Triumphantly actualizing this transition has 

potential to boost the efficacy of ICIs significantly. Additionally, this 

progression points towards a promising enhancement in the successful 

treatment of patients battling malignant tumors, offering a hopeful prospect in 

this area of study. 

The more comprehensive classification is based on the spatial distribution of 

TILs, known as immune phenotype, which comprises immune-inflamed, 

immune-excluded and immune-desert phenotypes15. This classification 

expands upon the previous division into cold and hot tumors. The immune 

phenotypes provide a subjective framework to profile the immune contexture 

in solid tumors e inflamed defines states in which sufficient immune cells with 

active immune response16. The immune-inflamed phenotype is characterized 

by the infiltration of CD8+ T cells into the tumor epithelium. In these cases, 

the immune cells penetrate the tumor tissue and can potentially target and 

eliminate cancer cells On the other hand, the immune-excluded phenotype is 

typified by a particular pattern where CD8+ T cells, instead of infiltrating the 

tumor epithelium, accumulate with greater prevalence in the tumor stroma. 

Implying that while immune cells are indeed present, a barrier to effective 

interaction exists. Consequently, they cannot engage with the tumor cells 

directly and exert their critical antitumor activity. Conversely, the immune-

desert phenotype is characterized by the absence or minimal presence of CD8+ 

T cells within the tumor. This insufficient immune cell infiltration hampers the 

immune response against the tumor, potentially allowing it to evade detection 
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and destruction.  

The immune-desert phenotype and the immune-excluded phenotype can both 

be considered as non-inflamed tumors, commonly known as cold tumors12. 

These tumor types share similarities in terms of lacking effective immune 

response within the TME. The immune-inflamed phenotype pertains to a 

specific type of tumors that are distinguished by significant immune cell 

presence and a prevailing pro-inflammatory condition. These tumors, 

commonly referred to as hot tumors, are defined by the conspicuous 

accumulation of immune cells and a heightened state of inflammation within 

TME.  

 

5. The tumor-immunity cycle and immune phenotype 
The description of the tumor-immunity cycle provides a comprehensive 

framework for understanding the dynamic interaction between the immune 

system, particularly CD8+ T lymphocytes, and tumor cells17. The tumor-

immunity cycle consists of a sequence of seven steps that are essential for 

mounting an effective anti-tumor immune response (Figure 1). These seven 

steps include: 1) tumor antigen release: the initial step involves the release of 

tumor-specific antigens into the TME. 2) tumor antigen processing and 

presentation: antigen-presenting cells capture the released antigens and present 

them to T cells. 3) priming and activation of T cells: tumor antigen presentation 

leads to the priming and activation of CD8+ T cells. These activated T cells 

are specific for the tumor antigens and are poised to attack tumor cells. 4) 

trafficking of T cells to tumors: activated T cells travel through the bloodstream, 

seeking out the tumor site. 5) infiltration of T cell into tumors: In this step, T 

cells must successfully infiltrate the tumor site, entering the tumor parenchyma 

from the vasculature or tumor periphery. 6) recognition of cancer cells: T cells 

recognize and bind to cancer cells that display the specific antigens they are 

primed against. 7) killing of cancer cells: T cells exert cytotoxic effects on 
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cancer cells through the release of cytotoxic molecules or through interaction 

with death receptors on cancer cells.  

 

 

Figure 1.The tumor-immunity cycle and immune phenotypes. 
The tumor-immunity cycle consists of seven steps. Step 1-3 are associated with 
desert immune phenotype (blue), step 4 and 5 are related with excluded 
immune phenotype (green), and the last two steps are linked to the immune 
inflamed immune phenotype (yellow). 
 

Importantly, the tumor-immunity cycle is a dynamic and self-perpetuating 

process. This continuous cycle is indispensable for maintaining a potent and 

consistent immune response against the tumor. The concept of immune 
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phenotypes, as described in the context of the immune-desert, immune-

excluded, and immune-inflamed phenotypes, reflects the diverse ways in 

which this cycle can be disrupted or impeded in the context of different tumors. 

Among the 7 steps of the tumor-immunity cycle, problems occur in the initial 

three stages which include the tumor antigen release, tumor antigen processing 

and presentation, as well as priming and activation of T cells. These challenges 

ultimately lead to the emergence of the immune-desert phenotype, 

characterized by the absence of immune cells in nearby of the tumor. In the 

event of complications in the 4 and 5 steps of trafficking of T cells to tumors 

and infiltration of T cell into tumors, the immune-excluded phenotype occurs 

where immune cells cannot approach the tumor. When challenges arise during 

steps 6 and 7 of the tumor-immunity cycle, which involve the recognition of 

cancer cells and killing of cancer cells, the situation can be grouped as an 

immune-inflamed phenotype. The issue arises in scenarios with the presence 

of a sufficient amount of immune cells in the area of the tumor, but the 

challenges continue due to the presence of T-cell exhaustion or activation of 

checkpoint mechanisms. Hence, it is imperative to comprehend the complex 

processes of the tumor-immunity cycle, encompassing potential perturbations 

that result from diverse immune phenotypes. This understanding is key to 

devising targeted therapeutic strategies, such as immunotherapies.  

The clinical responses to anti-PD-1 and anti-PD-L1 therapy are commonly 

observed in patients with an immune-inflamed phenotype. The overexpression 

of PD-L1 on tumor cells or TILs can induce T cell exhaustion, thus attenuated 

tumor-specific immunity accelerating tumor progression18. The immune-

inflamed phenotype indicates a possible existence of an initial anti-cancer 

immune response, which was likely hindered due to immunosuppression in the 

tumor bed. The immune-inflamed phenotype is generally associated with 

higher response rates to anti-PD-1 and anti-PD-L1 therapy. 
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6. Prediction of ICI response based on immune phenotype 
Likewise, PD-1 inhibitors and PD-L1 inhibitors work by blocking the negative 

regulatory signal pathways and allowing T cells to be released from an 

exhausted state. When patients are treated with anti-PD-1 and anti-PD-L1 

therapy, T cells associated with the stroma may show signs of activation and 

proliferation, but they do not effectively infiltrate the tumor. As a result, it is 

generally uncommon to observe clinical responses in immune-excluded 

phenotypes. These characteristics suggest that there might have been a pre-

existing anti-tumor response, however, it was made ineffectual due to an 

obstruction blocking tumor infiltration through the stroma, or due to the 

containment of immune cells within the stroma.  

The progression of T-cell migration through the tumor stroma is thus the 

pivotal phase in the cancer-immunity cycle for the immune-desert phenotype. 

The main characteristic of the immune-desert phenotype is the presence of a 

non-inflamed TME with few or no CD8-carrying T cells. As expected, the 

tumors with immune-desert phenotype rarely respond to anti-PD-1 and anti-

PD-L1 therapy. This phenotype probably reflects the absence of pre-existing 

anti-tumor immunity, which suggests that the generation of tumor-specific T 

cells is the limiting factor in this process. 

Predicting the response to ICI based on immune phenotypes is an important 

area of study in immunotherapy research. While there have been studies have 

considered the potential relationship between immune phenotypes and the 

response of ICI. However, so far it has not been studied that prediction of ICI 

response within immune phenotypes and which immune evasive processes 

underpin these immune phenotypes. An in-depth understanding the immune 

infiltrates within TME can provide valuable insights into the efficacy of ICI 

therapy. Immune infiltrates refer to the types and abundance of immune cells 

present in the tumor. Different immune cell populations play important roles 

in the anti-tumor immune response. The objective of researchers is to uncover 
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distinct immune phenotypes that are correlated with a favorable response to 

ICI treatment through the analysis of immune infiltrates. This can facilitate the 

advancement of predictive biomarkers to tailor treatment strategies to 

individual patients with diversity immune phenotypes. In summary, the 

predicting responsiveness to ICI based on immune phenotypes and tumor 

immune infiltrates is crucial for personalized treatment. This approach 

optimizes outcomes, avoids unnecessary treatments, enhances clinical trial 

design, and advances research in the field of cancer immunotherapy. By 

identifying which patients are likely to respond to a particular treatment, 

predictive biomarkers play a significant role in optimizing the use of therapies, 

improving patient outcomes, and minimizing unnecessary exposure to 

treatments with limited efficacy. This personalized approach to treatment 

based on predictive biomarkers re-envisions the approach to tailoring therapy 

for cancer. 
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II. MATERIALS AND METHODS
1. Data acquisition

In the study, a comprehensive collection of 937 samples comprising seven 

distinct types of malignancies was obtained from nine publicly available 

databases (Table 1). The samples consist of either patient-specific immune 

phenotype obtained through IHC or information about the response to ICI 

therapy. There are two datasets, resource number EGAD00001003977 (cohort 

A and B, urothelial cancer) and Moffitt center (cohort C, clear cell renal cell 

carcinoma), which include both immune phenotype and ICI responsiveness 

information that is essential for the study to predict immune phenotype-

specific responses9,19. The EGAD00001003977 dataset consists of 337 samples, 

which were divided into two cohorts, namely cohort A and cohort B. The 

cohort A with 182 samples and cohort B with 62 samples were divided using 

stratified sampling with a ratio of 0.75 to 0.25.

In order to predict the immune phenotype, six previously used datasets were 

employed, including an overall count of 809 samples gathered from five cancer 

types (Table 2). From these, 621 samples with immune phenotype information 

collected from five public data were used as training set for immune phenotype 

classification. The training set consists of cohort A with and cohort C with both 

ICI responsiveness and immune phenotype information, as well as cohort E 

(Moffitt center) with 84 samples and cohort F (EGAD00001004988) with 350 

ovarian samples, including only immune phenotype information20. The test set 

for the immune phenotype classification model comprised a total of 101 

samples, sourced from cohorts B and C consisting of urothelial cancer patients. 

For independent validation, I compiled 87 samples from three distinct datasets. 

This validation set incorporates 15 ovarian cancer patients from cohort G 

(EGAD00001006975), 51 melanoma patients from cohort H (PRJNA715643), 

and 21 colorectal cancer patients from cohort I (PRJNA727917)21-23.

For determining the immune phenotype-specific response to ICI, six publicly
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data resources were utilized (Table 3). These datasets collectively comprised 

377 samples, which were gathered across five different cancer types. 

A combined total of 187 samples with immune phenotype and ICI 

responsiveness information from cohort A and cohort C were used as the 

training set for immune phenotype-specific ICI response prediction. And 

62 samples from cohort B were applied as a test set. To verify immune 

phenotype-specific ICI response predictive models, the 128 samples were 

obtained from three cancer types consisting of cohort J from melanoma 

(ERP105482, n = 41), cohort K from gastric cancer (ERP107734, n = 

45), cohort L from lung cancer (SRP183455, n = 16) and cohort M form 

lung cancer (SRP217040, n = 26) as independent validation datasets with 

only ICI response information24-27.  
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Table 1. Cohort information of the study 

Cohort Clinical Information 
Cancer 

Type 

Sample 

Count 
Resource 

Cohort A 
Immune Phenotype & 

ICI response 

Urothelial 
182 

EGAD00001003977 
Cohort B 62 

Cohort C ccRCC 5 Moffitt center 

Cohort D 

Immune Phenotype 

Urothelial 39 EGAD00001003977 

Cohort E ccRCC 84 Moffitt center 

Cohort F 
Ovarian 

350 EGAD00001004988 

Cohort G 15 EGAD00001006975 

Cohort H Melanoma 51 PRJNA715643 

Cohort I Colorectal 21 PRJNA727917 

Cohort J 

ICI response 

Melanoma 41 ERP105482 

Cohort K Gastric 45 ERP107734 

Cohort L 
Lung 

16 SRP183455 

Cohort M 26 SRP217040 

7 cancer types 937 9 public datasets 
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Table 2. Data for immune phenotype classification 

Data Type Cohort Cancer Type Sample Count 

Training 

(n=621) 

Cohort A Urothelial 182 

Cohort C 
ccRCC 

5 

Cohort E 84 

Cohort F Ovarian 350 

Test 

(n=101) 

Cohort B 
Urothelial 

62 

Cohort D 39 

Validation 

(n=87) 

Cohort G Ovarian 15 

Cohort H Melanoma 51 

Cohort I Colorectal 21 

Table 3. Data for immune phenotype-specific ICI response prediction 

Data Type Cohort Immuno-therapy Cancer Type Sample Count 

Training 

(n=187) 

Cohort A Anti-PDL1(Atezolizumab) Urothelial 182 

Cohort C 
Anti-PD1 (Nivolumab) 

ccRCC 
3 

Anti-PD1 (Pembrolizumab) 2 

Test 

(n=62) 
Cohort B Anti-PDL1(Atezolizumab) Urothelial 62 

Validation 

(n=128) 

Cohort J 
Anti-PD1 (Pembrolizumab) 

Melanoma 
33 

Anti-PD1 (Nivolumab) 8 

Cohort K Anti-PD1 (Pembrolizumab) Gastric 45 

Cohort L Anti-PD1 (Nivolumab) Lung 16 

Cohort M Anti-PD1 (Nivolumab) Lung 26 
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2. Quantification of gene expression from bulk RNA sequencing

To calculate gene expression from bulk RNA sequencing data of samples,

transcriptome reads were aligned to the human reference using Spliced

Transcripts Alignment to a Reference (STAR, version 2.7.9a), and gene

expression values were quantified using RSEM (version 1.3.1) with

GENCODE (version 39) annotation data28,29. For normalized read counts, the

gene length is calculated using the annotation by GENCODE. The normalized

read count for each gene was converted to Transcript Per Million (TPM). In

addition, we employed a RNA-Seq normalization technique known as Gene

length corrected trimmed mean of M-values (GeTMM) to get the expression

values to enable comparisons between and within sample via eadgeR

package30,31.

3. Estimation of immune phenotype specific ICI response

The raw read count is adjusted for differential expression analysis with

ComBat-seq and RUVseq, which are used to remove unwanted variation and

batch effects from cohorts32,33. The adjusted read count of each gene was

normalized using the DESeq2 to enable comparisons between immune

phenotype-specific ICI response groups34. These ICI response groups were

aptly named as the 'Responder' (R) group, comprising patients exhibiting either

a complete (CR) or partial response (PR), and the 'Non-Responder' (NR) group,

incorporating those with stable disease (SD) or progressive disease (PD). The

differentially expressed genes (read count ≥ 3,  logFC  ≥ 1 and 0.05 > Padj)

were inferred between the R and NR groups for each immune phenotype of ICI

treatment. The classifier gene-set of immune phenotype specific ICI response

with different expression patterns in the responders compared to

nonresponders in each immune phenotype of cohort A was chosen using

differential gene expression (DE) analysis.
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Subsequently, I adopted elements of the wilcoxon rank sum test concept to 

conduct intergroup comparative analysis. I calculated the Total Rank for the 

DEGs obtained from each phenotype from training dataset within both the ICI 

response and non-response groups. Then, I calculate the ratio of the total ranks 

between the upregulated genes in response group (RGs) and the upregulated 

genes in non-response group (NRGs) and establish a set of standard answers 

to compare with unknown samples based on that ratio of total rank value. 

Ratio of total rank = ∑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅
∑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅

The Median Absolute Deviation (MAD) is a robust measurement used to 

compare the ratio of total ranks between ICI response groups. MAD calculates 

the average distance between each data point and the median of a dataset. 

Following this, I compared the differential in MAD values when the unknown 

sample was included in the standard answer sets of each the response and non-

response groups, to predict the ICI responsiveness of the unknown sample. By 

determining the group with the lowest differential MAD between responders 

and non-responders, I can predict the ICI responsiveness of the unknown 

sample. A lower differential MAD suggests that the unknown sample's 

immune phenotype align more closely with the traits exhibited by either the 

response or non-response group, indicating its potential ICI response. This 

approach allows for an objective evaluation of the unknown sample's ICI 

responsiveness, providing insights and predictions based on the observed 

changes in MAD values within the response and non-response groups. The 

CLIPS is available at https://github.com/hellokeyworld/CLIPS. 

4. Collection of immune phenotype specific features

A. Prevalence of immune cell type

The estimated immune cell fractions of the bulk RNA sequencing were

determined using the normalized TPM of each gene. The EPIC module in

immunedonv was used signature matrix designed and validated to
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quantify 8 different immune cell types for each sample35,36. The absolute 

value of immune cell fractions evaluated by EPIC allows inter-and intra-

sample comparisons and used reference gene expression profiles for 

various cell types validated low cytometry, and immunohistochemistry 

data. The absolute values of immune cells received from quantiseq were 

used to calculate the ratio value and then employed as a model generation 

feature to compare the relative distribution among immune cells.  

B. The fraction of stromal and immune cells

The tumor environment is inferred by using the ESTIMATE score based

on the level of infiltrating stromal and immune cells by single-sample

gene set-enrichment analysis (ssGSEA) on the stromal and immune

signatures37. These scores for each sample are calculated based on gene

expression data derived from RNA sequencing. In this study, the

ESTIMATE provided in the R package was used. The estimate score is

indicative of tumor purity, while the stromal score reflects the presence

of stromal components in tumor tissue. Additionally, the immune score

quantifies the level of immune cell infiltration within the tumor.

C. Immune phenotype related gene

Organize the expression of genes contained in the immune phenotype

related gene or caner-immunity cycle that can affect the immune

phenotype through literature research. From these prior investigations, I

was able to extract 47 gene datasets and 156 gene sets linked to immune

phenotypes20,38. To build the classcification model, the geomean value of

the expressed genes from the dataset was computed.

Next, six features related to gene expression associated with immune

phenotypes, were gathered alongside seven Tumor Inflammation

Signature (TIS) scores, four Immune Profiling System (IPS) scores, and

Cancer-Immunity Cycle (CYT) scores for the purpose of immune

phenotype classification39-41.
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5. Classcification model of immune phenotype

The training datasets for models that classify immune phenotypes are cohort

A, cohort C, cohort E and cohort F. The training dataset consists of 209

inflamed immune phenotype, 203 exlcuded immune phenotype and 217 desert

immune phenotype. This study utilized a multi-classification algorithm to

construct a model capable of distinguishing among three immune phenotypes

with k-fold cross validation. Five multi-class classification algorithms—KNN,

Regression Tree, Random Forest, Naïve Bayes, and Support vector machines

(SVM)—were developed for the classification of immune phenotypes. In order

to differentiate between three immune phenotypes, a model was constructed

by employing the KNN algorithm within a multi-class classification

framework. All features used for building the model were min-max scaled. The

immune cell deconvolution process was used to the bulk RNA sequencing data

to infer the patient's TME of immunological environment. The immune

phenotype classification model was evaluated using 101 samples from cohort

B and cohort D as the test dataset, while 87 samples from cohort G, cohort H

and cohort I were used as independent validation datasets to verify the model's

accuracy.

6. Generation of TIDE and IMPRES score

In the next step, the performance comparison between CLIPS (CLassification

of Immune Phenotypes-Specific ICI response), Tumor Immune Dysfunction

and Exclusion (TIDE), and IMmuno-PREdictive Score (IMPRES) was

conducted in the context of providing responsive predictions for ICI treatment

using RNA sequencing data42,43. The TIDE algorithm was applied in order to

tailor response estimates to each specific cancer type. The IMPRES score,

typically ranging from 0 to 15, provides a numerical representation of the

patient's immune response. Patients with higher IMPRES scores may be more
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likely to respond to immunotherapies. So, we used the TIDE to customize the 

response estimate for each cancer type and classified values above 9 for 

IMPRES as ICI response groups. 

7. Gene set enrichment anaylsis

Gene Set Enrichment Analysis (GSEA) was performed on a list of genes with

differences in gene expression between immune phenotype-specific ICI

responsiveness groups.

To identify of key biological processes that are relevant to the research, I used

the Hallmark gene set with version h.all.v2023.1.Hs.symbols collected from

the Human Molecular Signatures Database (MSigDB)44.

The GSEA analysis was performed with the R package fgsea (Fast Gene Set

Enrichment Analysis) with v1.26.045. Pathways having a minimum of 5 or

more genes were considered, and permutation was done 1,000 times. Only

pathways with a adjusted p-value of 0.1 or below have been determined to be

significant and included in the analysis.

8. Statistical analysis

The overall statistical analysis was performed using R version 4.3. Multiple

testing correction was performed for differential gene expression analysis

using the Benjamini- Hochberg method. The Kruskal–Wallis test was used to

evaluate differences in gene expression and immune cell proportions between

immune phenotypes and immune phenotype-specific ICI response groups. For

time-to-event analysis, I used the R survminer package v0.4.9 to generate

Kaplan–Meier (KM) plots and calculate log-rank p-values.
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III. RESULTS
1. Expression of PD-1 and PD-L1 in relation to immune phenotype and ICI

response

The PD-1 inhibitor and PD-L1 inhibitor enhance the ability of immune cells to

recognize and eliminate tumor cells by disrupting the interaction between PD-

1 and PD-L1. Consequently, the ability of immune cells to recognize and

eliminate tumor cells is enhanced, reducing the likelihood of cancer cells

evading the immune response. Moreover, PD-L1 functions as a significant

cancer biomarker since higher levels of PD-L1 expression are associated with

improved results in immunotherapy46.

Prior studies have discovered that when examining samples taken before

therapy with anti-PD-1 and anti-PD-L1, there was a notably substantial

abundance of CD8+T cells near the invasive margin in individuals who

responded positively to the treatment47. Additionally, serial sampling during

treatment demonstrated an increased infiltration of CD8+T cells into the tumor

parenchyma.

Conversely, analysis of the EGAD00001003977 resource dataset,

encompassing cohorts A and B, demonstrates a uniformity in immune

phenotype distribution with no notable variances in ICI response (Figure 2A,

fisher test p-value = 0.403). Consequently, this dataset is well-suited for the

investigation of potential correlations between immune phenotypes and ICI

responses at the genetic level. The observations in this study indicate no

significant difference in PD-1 and PD-L1 expression following ICI response

(Figure 2B and Figure 2C, wilcoxon test p-value 0.53 and 0.19). However,

significant variations are observed in immune phenotypes when considering

PD-1 and PD-L1 expression levels (kruskal test p-value 1.74e-13 and 8.19e-

13).

These findings indicate that the PD-1 and PD-L1 expression levels were higher 

in the inflamed immunophenotype and lowered in the excluded and desert
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phenotypes. Consequently, the expressions of PD-1 and PD-L1 are linked to 

the immune phenotype. As highlighted in earlier research, the inflamed 

immune phenotype tends to respond favorably to ICI treatment. 

Figure 2. The association between the immune phenotype and ICI 
response.  
(A) Distribution of immune phenotype and ICI response. The yellow indicates 
inflamed immune phenotype, green indicates excluded immune phenotype and 
blue indicates desert immune phenotype. (B) ICI response and immune 
phenotype in relation to PD-1 and (C) PD-L1 expression.



２４

2. Overview of CLIPS

The objective of study is to develop a computational model called CLIPS

(CLassification of Immune Phenotypes-Specific ICI response), which works

with patient RNA sequencing data to predict the response to immune

checkpoint inhibitors (ICI) based on immune phenotype. CLIPS features three

distinct operational modes for predicting the response to ICI tailored to specific

immune phenotypes, each differentiated by its approach to managing immune

phenotype information (Figure 3).

The first mode, CLIPS–knwon IP, represents a robust predictive model for ICI 

response, which relies on the patient specific immune phenotype information 

Figure 3. Overview of CLIPS. 
The process demonstrates predicting patient-specific immune phenotype and 
immune phenotype-specific ICI response through CLIPS from RNA sequencing 
data. The red color represents the known IP (immune phenotype), the orange 
represents the predict IP, and the pink represents the no IP. 
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gathered via IHC. The second mode, CLIPS–predict IP, employs the immune 

phenotype information predicted by CLIPS to accurately predict the 

responsiveness to ICI, rather than relying on the direct immune phenotype data 

obtained by IHC. Lastly, CLIPS–no IP offers a predictive method to determine 

patient reactivity to ICI without the need for immune phenotype information. 

All three modes of CLIPS demonstrate superior performance compared to the 

conventional methods, TIDE and IMPRES, in the test set (cohort B). The 

accuracy values were measured using the CLIPS, TIDE, and IMPRES methods, 

with results of 0.79 for CLIPS–knwon IP, 0.74 for CLIPS–predict IP, 0.56 for 

CLIPS–no IP, 0.53 for TIDE, and 0.26 for IMPRES. 

A. Classification of immune phenotype

A comprehensive set of 28 features pertaining to the tumor

microenvironment (TME) and the immune phenotype is used for the

purpose of classifying the immune phenotype. Within the set of 28

features, one was dropped as they showed no variation across different

immune phenotypes, and six were removed because of their high

similarity to other features. Then, in the process of model selection, a total

of 21 features were considered. Subsequently, feature selection was

utilized to streamline the model by reducing the number of features from

21 to 16, enhancing performance and mitigating the possibility of

overfitting. After careful evaluation and analysis, it was decided to

include only 16 of these features in the final multi-class classification

model. The selected features can be identified in Figure 4 as differences

between the individual immune phenotype.

Five distinct multi-class classification algorithms have been developed

and subjected to comprehensive performance evaluations. The KNN (K-

Nearest Neighbor) model selected for the classification of immune

phenotye multi-class has high accuracy and AUC of 0.76 (Figure 5).
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Figure 4. Selected 16 features for immune phenotype classification. 

Figure 5. Performance of five immune phenotype multi-class classification. 
Comparing the performance of five multi-class classification algorithms on 
KNN, Regression tree, Random forest, Naïve bayes and SVM. 
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B. Prediction of immune phenotype-specific ICI response 

The study utilized gene expression data obtained through RNA 

sequencing from patients in order to predict the responsiveness of ICI 

towards specific immune phenotypes. To enhance the precision of these 

predictions for ICI responsiveness, the analysis focused on comparing 

differentially expressed genes (DEG) between the responder group (R) 

and the non-responder group (NR) within each immune phenotype 

(Figure 6). To ensure specificity, DEGs shared amongst the three 

immune phenotypes were omitted from the individual lists of DEGs 

associated with each immune phenotype.  

 

 

Figure 6. Prediction of immune phenotype-specific ICI response based 
on DEGs. 
 

The classification of ICI response was performed on a set of 50 genes in 

the inflamed immune phenotype, 119 genes in the excluded immune 

phenotype, and 66 genes in the desert immune phenotype to determine 

the potential responsiveness of ICI. The heatmap analysis reveals distinct 

variations in the DEGs across immune phenotypes within the groups 

responsive to ICI (Figure 7). 
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Figure 7. Heatmap of DEGs from immune phenotype-specific ICI 
response groups.  
(Left) Heatmap of 50 DEGs from inflamed-specific ICI response group 
(Middle) 119 DEGs form excluded-specific ICI response group (Right) 66 
DEGs from desert-specific ICI response group. 
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The ratio of total rank was compared within each immunophenotype 

among the ICI response groups (Figure 8). The average value of the ratio 

of the total rank for the NR group with ICI therapy across all immune 

phenotypes is greater than 1, with desert at 1.42, excluded at 1.09, and 

inflamed at 1.34. Meanwhile, the average ratio of the total rank for the 

ICI response group is comparatively low across immune phenotypes: 0.85 

for desert, 0.79 for excluded, and 1.11 for inflamed. This comparison 

revealed statistically significant differences in immune phenotypes, 

suggesting that future predictions of sample ICI response could be made 

with high accuracy.  

After that, to ensure the robustness of the DEGs based on immune 

phenotype-specific ICI responses, an analysis was conducted to 

determine whether differences existed across melanoma (cohort J), 

gastric cancer (cohort K), and lung cancer (cohort L and M). The analysis 

revealed no significant difference in the expression levels of total DEGs 

among melanoma, gastric cancer and lung cancer (Figure 9A, kruskal test 

p-value 0.21). Upon closer inspection, it becomes evident that there is no

significant difference in the expression of DEGs associated with the

inflamed and the desert immune phenotype among the different

carcinomas(Figure 9B and Figure 9D). In the case of DEGs from

excluded immune phenotype, it shows lower expression in gastric cancer

compared to other cancers, but there is no difference in expression

between lung cacner and melanoma (Figure 9C, kruskal test p-value

0.55).

This implies that these specific sets of genes related to the immune

response are consistently expressed across various cancers without

exhibiting any notable variation. This information suggests that the

genetic characteristics underlying the immune phenotypes share

similarities in the context of different cancer types.
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Figure 8. The ratio of total rank within ICI response. 

 

 

Figure 9. Comparison of ICI response DEGs according to cancer types. 
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3. Expression of PD-1 and PD-L1 in predicted immune phenotypes

Analysis of an independent validation dataset (cohort J,K,L and M) to

determine if there are differences in the distribution of patient-specific immune

phenotypes predicted through CLIPS based on ICI responsiveness groups

showed that the inflamed immune phenotype is more prevalent in the R group

across the entire validation set (Figure 10A, fisher test p-value 2.4e-6).

Upon examination by cancer type, the incidence of the inflamed immune

phenotype was found to be 27% in the NR group and over 75% in the

responsive group for melanoma and lung cancer. This highlights a significant

disparity between the ICI response groups. In the case of gastric cancer,

although not statistically significant, a noteworthy finding was that 92% of the

R group exhibited the inflamed phenotype, while the excluded phenotype was

absent.

Furthermore, I investigated the association between the expression of PD-1

and PD-L1 mentioned in Result 1, and the ICI response groups and immune

phenotypes predicted through CLIPS (Figure 10B and Figure 10C). The

results of this study showed that both PD-1 and PD-L1 demonstrate

significantly higher expression levels in the inflamed immune phenotype

compared to other immune phenotypes. Also, a statistically significant

distinction was identified between the R and NR groups of ICI treatment,

wherein the responsive group had elevated levels of PD-1 and PD-L1

expression (wilcoxon test p-value 5.2e-6 and 3.4e-6). These results prove an

association between PD-1 and PD-L1 expression and immune phenotypes.

Increased gene expression levels of PD-1 and PD-L1 can indicate the presence

of an inflamed immune phenotype.

The results of this research add to the expanding understanding of the complex

relationship between immune phenotypes and the expression of PD-1 and PD-

L1 in relation to the effectiveness of ICI.
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Figure 10. The association between the ICI response and predicted immune 
phenotype from CLIPS.  
(A) Distribution of predicted immune phenotype and ICI response in validation 
dataset according to cancer types. (B) ICI response and predicted immune 
phenotype in relation to PD-1 and (C) PD-L1 expression.



３３ 

4. Overall survival 

The effect of ICI therapy responsiveness on patients' overall survival has been 

well established through previous studies48. The group that shows response to 

ICI treatment has a longer overall survival compared to the group that does not 

respond. This finding has also been confirmed in the separate validation dataset 

used in this study, which also verified its significance in melanoma and lung 

cancer (Figure 11 A-C).  

The patient's overall survival can be influenced by both the response to ICI 

treatment and immune phenotypes3. An analysis of immune phenotypes 

anticipated using CLIPS to determine their impact on overall survival revealed 

that the inflamed immune phenotype was correlated with improved survival 

(Figure 11D). Upon additional analysis based on the type of cancer, it was 

shown that in melanoma, those with the inflamed phenotype had a significantly 

higher median overall survival of 700 days compared to those with the other 

two immune phenotypes (Figure 11E). In gastric cancer, although no 

statistical difference was found between the immune phenotypes, the inflamed 

phenotype was observed to have a higher median overall survival value 

(Figure 11F). 

 

Figure 11. Overall survival analysis according to ICI response and 
immune phenotypes. 
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5. Evaluation of CLIPS for ICI response predction

A. Performance evaluation in test dataset

A comparison was made between the currently utilized methodologies to

evaluate the performance of CLIPS for ICI response prediction. The

TIDE and IMPRES are known as two approaches to be effective in

predicting the responsiveness of ICI.42,43

To compensate for the instability from the dataset, I compared the

performance of three modes of CLIPS, TIDE, and IMPRES with a total

of five prediction tools using MCC (Matthews correlation coefficient) and

Accuracy49. A performance comparison of the models within test dataset

(cohort B) showed that the CLIPS–known IP model achieved an accuracy

of 0.79, the CLIPS–predict IP attained an accuracy of 0.74, and the

CLIPS–no IP reached an accuracy of 0.56. The TIDE recorded an

accuracy of 0.53, while the IMPRES had an accuracy of 0.26 (Figure 12).

Figure 12. Comparison of the performance of five ICI response 
prediction tools with MCC and Accuracy in test dataset. 
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To conduct a comprehensive performance evaluation, I calculated eight 

performance evaluation indicators, namely MCC, Accuracy, F1 score, 

Area Under the Curve (AUC), Sensitivity (Recall), Specificity, Precision 

(PPV), and Negative Predictive Value (NPV). CLIPS–known IP and 

CLIPS–predict IP outperforms conventional methods, TIDE and 

IMPRES, across seven performance measures in the test dataset (Figure 

13). The IMPRES tool exhibits a sensitivity value of 1, indicating a high 

rate of correctly identified positive cases compared to other tools. 

However, it also has a specificity of 0, indicating a lack of correctly 

identified negative cases. This suggests an imbalance in the prediction 

performance of the IMPRES, as it tends to prioritize sensitivity at the 

expense of specificity.  

 

 

 

Figure 13. Comparison of the performance of five ICI response 
prediction tools with all performance measures in test dataset.  
The radar plot displays the performance parameters for each ICI response 
prediction tool, with larger colored areas indicating superior all-around 
performance. 
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Furthermore, I analyzed whether there were differences in predicting ICI 

response even within the immune phenotypes. For each prediction tools 

of TIDE, IMPRES and CLIPS, I checked for bias in prediction based on 

immune phenotypes in test dataset (Table 4). In the test dataset consisting 

of 62 samples, there are 16 samples with inflamed immune phenotype, 18 

samples categorized as excluded, and the remaining 28 samples are 

characterized by desert immune phenotype. In the examination of 

different immune phenotypes, CLIPS consistently showed better 

predicting ability than conventional methods. (Table 5). Although 

inflamed and desert immune phenotypes exhibited similar levels of 

predictive preformance, it was noted that all ICI reponse prediction tools 

as TIDE, IMPRES, and CLIPS showed a relative decline in predictive 

performance for immune phenotypes assigned as excluded.  

Indeed, through rigorous evaluation and analysis, it has been 

demonstrated that the CLIPS model possesses a remarkable capability to 

accurately predict ICI response. 
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Table 4. Confusion matrix of test dataset within immune phenotype 

Prediction 

Tool 

Predicted 

ICI 

response 

Total INLFMAED EXCLUDED DESERT 

Actual R 

(PR+CR) 

Actual 

NR 

(SD+PD) 

Actual R 

(PR+CR) 

Actual 

NR 

(SD+PD) 

Actual R 

(PR+CR) 

Actual 

NR 

(SD+PD) 

Actual R 

(PR+CR) 

Actual 

NR 

(SD+PD) 

CLIPS–

known IP 

R 10 7 3 2 2 2 5 3 

NR 6 39 2 9 2 12 2 18 

CLIPS–

predict IP 

R 7 7 3 3 2 2 2 2 

NR 9 39 2 6 4 13 3 20 

TIDE 
R 4 17 1 3 0 5 2 7 

NR 12 29 4 8 4 9 5 14 

IMPRES 
R 16 46 5 11 4 14 7 21 

NR 0 0 0 0 0 0 0 0 

Table 5. Performance indicator in immune phenotypes from IHC 
Immune 

Phenotype 

from IHC 

Predicted Tool MCC Accuracy F1 score AUC 

INFLAMED 

CLIPS–known IP 0.709 0.750 0.600 0.709 

TIDE 0.461 0.563 0.222 0.464 

IMPRES 0 0.313 0.476 0 

EXCLUDED 

CLIPS–known IP 0.679 0.778 0.500 0.679 

TIDE 0.334 0.500 0 0.346 

IMPRES 0 0.222 0.364 0 

DESERT 

CLIPS–known IP 0.774 0.821 0.667 0.763 

TIDE 0.478 0.571 0.25 0.48 

IMPRES 0 0.25 0.4 0 
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B. Performance evaluation in independent validation dataset according

to anti-PD-1 treatment

In order to evaluate the predictive performance, I utilized standard 

prediction tools, TIDE and IMPRES, along with CLIPS, on an 

independent validation dataset with 128 samples (cohort J-M). To handle 

the lack of immune phenotype information in the independent validation 

dataset, two CLIPS models were chosen for analysis. The first model, 

called CLIPS–predict IP, used predicted immune phenotypes to forecast 

the response to ICI. The second model, CLIPS–no IP, was specifically 

designed to predict ICI response without relying on any immune 

phenotype information.

The analysis aimed to determine if there were any variations in the 

performance of CLIPS's prediction of ICI responsiveness based on the 

specific type of anti-PD1 treatment. The study analyzed a total of 128 

samples from patients who received anti-PD1 treatment with Nivolumab 

or Pembrolizumab. According to the total data, the MCC of the CLIPS-

prediction IP was 0.70 and the Accuracy was 0.72. This indicates that the 

CLIPS–predict IP outperformed other tools in terms of both MCC and 

Accuracy (Figure 14A and Figure 14D). TIDE showed the second 

highest performance after CLIPS–predict IP with MCC of 0.60, and 

Accuracy of 0.65. Lastly, the performance of IMPRES and CLIPS–

predict IP is lower than 0.6. In CLIPS–predict IP, in addition to Accuracy 

and MCC, eight  performance predictor indicators can identify large 

areas of good performance with relatively high values (Figure 15A). 

Following that, for 50 patients treated with Nivolumab (cohort J, L and 

M), one of the anti-PD1 methods, CLIPS was more accurate than the other 

methods with MCC of 0.71 and Accuract of 0.72 (Figure 14B and Figure 

14E). Also, CLIPS generally has high values in other performance 

indicators, with sensitivity 0.73 and specificity 0.71 (Figure 15B). This
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suggests that CLIPS may be particularly effective in predicting the 

response to Nivolumab treatment in this group of patients. 

Subsequently, the 78 patients received with Pembrolizumab known as the 

biomarker for PD-L1 expression and worked on performance assessments 

in cohort J and cohort K, an independent validation dataset consisting of 

other tumors type. The CLIPS–predict IP model achieved an accuracy of 

0.72 and CLIPS–no IP model had an accuracy of 0.56. Meanwhile, the 

TIDE model recorded an accuracy of 0.63 and the IMPRES model had an 

accuracy of 0.40 (Figure 14C and Figure 14F). Comparison of other 

performance metrics reveals that IMPRES has a higher sensitivity of 0.96, 

which is greater than CLIPS–predict IP at 0.61 and TIDE at 0.50 (Figure 

15C). Nevertheless, it has been noted that IMPRES is making imbalanced 

predictions with a specificity of just 0.08. Apart from this finding, 

CLIPS–predict IP is confirmed to have the highest values among the other 

performance measures.  

Overall, the results of the analysis demonstrate the potential of CLIPS–

predict IP as a predictive tool for determining the responsiveness to anti-

PD1 treatment. By incorporating immunological characteristics, CLIPS–

predict IP enhance the accuracy and reliability of reactivity predictions in 

the context of ICI. 
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Figure 14. MCC and Accuracy within independent validation dataset 
according to anti-PD-1 treatment types. 

Figure 15. Performance evaluation for independent validation dataset 
according to anti-PD1 treatment types. 
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C. Performance evaluation in independent validation dataset within

cancer types

The performance assessments were undertaken to predict the

responsiveness to ICI for three different forms of cancer: melanoma, lung

cancer, and gastric cancer. These assessments considered the

heterogeneity observed within each type of cancer. The objective was to

evaluate and compare the effectiveness of ICI treatment across these

diverse cancer types, considering their unique characteristics and

variations in treatment response.

The first analysis of 41 melanoma samples assessed the effectiveness of

several prediction methods for predicting responses to ICI. The results

indicated that CLIPS–predict IP emerged as the superior prediction tool,

with an accuracy score of 0.76 and an MCC of 0.75, outperforming its

competitors (Figure 16A and Figure 16D). CLIPS–predict IP has higher

values in eight performance metrics compared to other prediction tools

for ICI response (Figure 17A). Although, IMPRES shows a bias in its

predictions with a sensitivity of 1 but a specificity of 0. On the other hand,

CLIPS–predict IP is well-balanced prediction model with sensitivity of

0.74 and specificity of 0.77. This balance in sensitivity and specificity

suggests that CLIPS-predict IP takes into account both non-

responsiveness and responsiveness to ICI treatment, resulting in a more

reliable and accurate prediction model.

Second, among the four prediction algorithms evaluated for 42 lung

cancer patients from cohorts L and M, CLIPS exhibited higher accuracy

compared to CLIPS–no IP, TIDE and IMPRES (Figure 16B and Figure

16E). CLIPS–predict IP achieved an MCC of 0.69 and an accuracy of

0.71. In contrast, CLIPS–no IP exhibited an MCC of 0.55 and an accuracy

0.55, TIDE showed an MCC of 0.55 and an accuracy of 0.71, while

IMPRES had an MCC of 0.57 an accuracy of 0.45. These results indicate
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that CLIPS–predict IP was the most accurate and yielded a higher MCC, 

suggesting better overall performance in predicting lung cancer outcomes 

for these patient cohorts. As with previous analyses, eliminating 

sensitivity and specificity, CLIPS–predict IP demonstrates higher 

predictive performance in comparison with other predictive tools (Figure 

17B). Specifically, CLIPS–predict IP has a sensitivity of 0.67 and 

specificity of 0.73, while TIDE exhibits a sensitivity of 0.33 and 

specificity of 0.87, and IMPRES shows a sensitivity of 0.83 and 

specificity of 0.30. These findings indicate that both TIDE and IMPRES 

exhibit biased predictions. 

As a final analysis, I evaluated predictive performance with 45 gastric 

cancer patient data from cohort J. The CLIPS-predict IP model attained 

an accuracy of 0.64, while its counterpart, the CLIPS-no IP registered an 

MCC of 0.62 and an accuracy of 0.64. In comparison, the TIDE model 

achieved and MCC of 0.63 and an accuracy of 0.64, and the IMPRES 

model had and MCC of 0.53 and an accuracy of 0.33 (Figure 16C and 

Figure 16F). For additional performance metrics, the precision value 

(PPV) for CLIPS-predict IP stands at 0.43, CLIPS-no IP at 0.30, TIDE at 

0.40, and IMPRES at 0.28 (Figure 17C).  

In summary, the large regions shown in Figure 17 indicate that CLIPS–

predict IP is more accurate than the other prediction models in forecasting 

patient response to ICI treatment across different kinds of cancer. 

Furthermore, CLIPS, unlike TIDE and IMPRES, takes a balanced 

approach to prediction by not only focusing on non-responsiveness to ICI 

or responsiveness, but considering both aspects. CLIPS is designed to 

provide accurate predictions for both response and non-response groups, 

resulting in a more comprehensive and well-rounded performance. Its 

balanced predictive performance makes CLIPS a valuable tool for 

determining the likelihood of response to ICI across a range of patients.
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Figure 16. MCC and Accuracy within independent validation dataset 
according to cancer types. 

Figure 17. Performance evaluation for independent validation dataset 
according to cancer types. 
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6. Genomic characteristics of ICI response based on immune phenotype

The desert and excluded immune phenotypes are reported as not anticipated to

respond to ICI treatment in previous research38 However, in actual patient data

like EGAD00001003977 data resource, ICI responsiveness from desert and

excluded can be determined. Therfore, we would like to contribute to the ICI

response prediction method by investigating the genetic characteristics of

patients who respond to ICI in excluded and desert immune phenotypes.

(Figure 18)

In the desert and excluded immune phenotypes, the Gene Set Enrichment

Analysis (GSEA) focusing on over-expressed genes in patients who responded

to ICI therapy compared to non-responders has provided evidence of a

significant difference in the E2F target (Figure 18A). The E2F family

transcription factors play significant role in DNA replication, cell proliferation, 

differentiation, cell cycle regulation, apoptosis. The finding of a significant

difference in the E2F target between responders and non-responders in both

the desert and excluded immune phenotypes suggests that dysregulation of this

pathway could be associated with the response or lack of response to ICI

therapy in these phenotypes. The group with high score of E2F pathway was

associated with significantly elevated expression of immune checkpoint

molecules, including PD-1 and PD-L150. Anti-PD-L1 treatment aims to block

the PD-1 and PD-L1 interaction, thereby enhancing the anti-tumor immune

response. Therefore, a high level of PD-L1 expression indicates a positive

response to anti-PD-L1 treatment.

In the excluded immune phenotypes, the results of the GSEA of over-exposure

genes in respondents compared to nonresponders, confirmed that the MYC

target and P53 pathway was significantly different (Figure 18B). MYC target

is included in the cell proliferation-related Hallmark gene sets. the cell

proliferation-related pathway scores may have the potential to predict drug

treatment response.51 Recently, MYC family members regulate the gene
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expression of immune checkpoints, including PD-1 and PD-L1.52 As 

previously stated, a significant amount of PD-L1 expression can serve as a 

biomarker for identifying patients who are more likely to respond positively to 

anti-PD-L1 treatment 

The ICI responders in the inflamed immune phenotype reveals an 

overrepresentation of interleukin 6/Janus kinase/signal transducer and 

activator of transcription 3 (IL-6/JAK/STAT3) signaling (Figure 18C). The IL-

6 is regarded as a potential predictive marker for ICI response. Enhance PD-

L1 expresiion through the IL-6/JAK/STAT3 signaling pathway in non-small 

cell lung cancer (NSCLC) cells53. Also, The IL-6 is associated with poor 

clinical activity of Atezolizumab (anti-PD-L1) and IL-6/JAK/STAT3 signaling 

blocks cytotoxic effector differentiation of CD8+ T cells54. Recent studies 

suggest that Interferon-γ (IFN-γ) is a critical driver of PD-L1 expression in 

cancer and host cells.55 And IFN-γ-mediated adaptive resistance is one major 

barrier to improving immunotherapy in solid tumors56. IL-6 can promote T cell 

exhaustion through IL-6/STAT3/PD-1 transcription regulation and improve the 

action of CD4+T cell57. The data from this study further substantiate the 

observation that CD4+ T cell amounts are higher in the response group, with 

an average of 0.07 compared to an average of 0.04 in the non-response group. 

(wilcoxon test p-value 0.04) 

In the excluded immune phenotype, the TNFA signaling via NFkb hallmark 

geneset is significantly enriched in the non-response group compared to the 

response group. NF-κB directly induces PD-L1 gene transcription through 

promoter binding and can modulate post-transcriptional PD-L1 expression via 

indirect pathways58. The expression of PD-L1 in tumor infiltrating 

macrophages and other myeloid cells is governed by the activity of NF-κB, a 

crucial transcription factor59. Tumor-associated macrophages (TAMs) are 

immune cells that infiltrate tumor tissues and are the most abundant immune 

cells in the tumor microenvironment. A noteworthy association that has been 
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found is between macrophage infiltration and PD-L1 expression on tumor cells. 

The macrophage infiltration is highly correlated with increased PD-L1 

expression on tumor cells. The dataset from this study shows that the mean 

value of TAMs is 0.008 in the ICI response group and 0.015 in the non-

response group. The difference in TAM levels indicates that the non-response 

group has a higher prevalence of TAMs than response group (wilcoxon test p-

value 0.78). 

Aslo, the KRAS signaling is enriched in ICI non-response groups in excluded 

immune phenotype. The activation of KRAS on cancer cells extends to the 

surrounding microenvironment, affecting the properties and functions of its 

constituents.60 The KRAS were also described to induce the downregulation of 

MHC class I molecules and the upregulation of PD-L1, reducing the ability of 

CD8+ cytotoxic T cells to recognize and kill cancer cells. Additionally, KRAS 

may drive an anti-inflammatory and pro-tumor immune suppressive 

microenvironment mediated through IL-6 secretion. Notably, when IL-6 was 

blocked, a reduction of anti-inflammatory macrophage gene expression, and a 

reduction of the immunosuppressive cytokines TGF-β and IL-10 were 

observed. Moreover, it has also been described that IL-6 induces higher levels 

of T cell exhaustion markers, such as PD-1, CTLA-4, and TIM-3. 
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Figure 18. GSEA with hallmark gene-set for immune phenotype-specific 
ICI response.  
(A) Gene Set Enrichment Analysis according to ICI response in desert, (B) 
excluded, and (C) inflamed immune phenotypes. The blue color labeled the ICI 
response group, and red labeled the ICI non-response group.   



４８ 

IV. DISCUSSION 
In order to perform more efficient patient-specific target immunotherapy, the 

patient's immune microenvironment should be considered. The immune 

environment has been determined the prevalence of immune cells based on 

Immunohistochemistry (IHC), and at the genome level, the immune 

microenvironment is relatively inferred based on immune signature for a 

representative of immune populations. The immune phenotype has been 

associated with significant differences in overall survival among cancer patients 

receiving ICI treatment. Inflamed immune phenotype may exhibit higher response 

rates and improved survival outcomes, while excluded and desert immune 

phenotypes may demonstrate lower response rates and poorer prognosis. 

Therefore, understanding an individual's immune phenotype is important in 

predicting their response to ICI therapy and optimizing treatment strategies. In 

order to increase the effectiveness of personalized immunotherapy for patients, an 

algorithm for predicting the immune environment at the individual patient based 

on absolute criteria is required. 

Classifying immune phenotypes based on morphology or IHC can be subjective 

and rely on subjective judgments, leading to reliability and consistency issues. 

Moreover, the classification criteria may not be clearly defined or compatible with 

existing diagnostic systems19,38,61. However, using bulk RNA sequencing for 

immune phenotype classification provides an objective and robust approach. RNA 

sequencing is an advanced computational technique that analyzes the gene 

expression profile of immune cells or tissues. It accurately measures the 

expression levels of hundreds or even thousands of genes, allowing distinction of 

different immune phenotypes. By analyzing the gene expression profile through 

bulk RNA sequencing, it becomes possible to objectively classify immune 

phenotypes based on distinct gene expression patterns. This approach eliminates 

the subjectivity involved in morphology-based or IHC-based classification and 

provides a more reliable and standardized method for immune phenotype 
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characterization. Hence, this study intends to develop an algorithm for predicting 

immune phenotype-specific ICI response at the individual patient level using gene 

expression data obtained from bulk RNA sequencing. 

The challenges related to the limited number of datasets for immune phenotype 

classification with bulk RNA sequencing data. These challenges can make it 

difficult to accurately classify immune phenotypes based on the available datasets. 

The immune phenotype classification algorithm has been developed with 621 

samples collected from 3 different kinds of cancer. The limited sample size 

prevented the inclusion of melanoma, the primary target of traditional ICI 

treatments, in the training dataset. Instead, melanoma data from cohort J was used 

as a validation dataset. The subsequent study aims to develop an algorithm for 

classifying immunological phenotypes that considers the characteristics of various 

cancer types, including melanoma. The training and validation datasets used for 

the construction of the CLIPS prediction model for ICI response have not been 

used as training datasets in other prediction tools. Furthermore, taking advantage 

of an independent validation dataset not exposed to any predictive tools enhances 

the dependability and fairness of the model's performance evaluation. This 

strategy improves the reliability of the model's ability to make predictions and 

enables unbiased assessment compared to other ICI response prediction tools. This 

comprehensive approach rectify the gaps in the previous study and improves the 

overall understanding of immune phenotypes across different cancer types as well 

as the accurate prediction ICI response based on the immune phenotypes. 

This study revealed that the PD-1 and PD-L1 genes, known as biomarkers of the 

ICI response, may have diversity according to the prevalence of the immune 

phenotype. Furthermore, if the distribution of immune phenotypes is not different 

between ICI responders and non-responders, then the expression of the PD-1 and 

PD-L1 genes are likewise consistent at the same level. Therefore, I discovered that 

PD-1 and PD-L1 exhibit associations not only with ICI reactivity but also with 

immune phenotypes. In previous studies, the presumption that PD-1 and PD-L1 



５０ 

are indicators for ICI response can be inferred from the results that the datasets 

used in the analysis predominantly consisted of the inflamed immune phenotype. 

This study presented an important finding about the PD-1 and PD-L1 were not 

only associated with ICI response but also with immune phenotypes. This suggests 

that PD-1 and PD-L1 have a broader influence on immune function beyond their 

involvement in ICI response. Moreover, the results that identical results were 

produced in both immune phenotypes defined by IHC and those predicted by 

CLIPS based on RNA sequencing suggests that immune phenotypes are 

biologically meaningful. 

In this research, I conducted predictions of responsiveness not only for anti-PD-1 

monotherapy but also for combination treatment with anti-PD-1 and anti-CTLA-

4. From the ERP105482 data resource, the data obtained data from six patients 

treated with a combination of Nivolumab (anti-PD-1) and Ipilimumab (anti-

CTLA-4), as well as data from twenty-five patients treated with a combination of 

Pembrolizumab (anti-PD-1) and Ipilimumab. A comparative analysis was set up 

to assess the predictive accuracy of CLIPS–predict IP, CLIPS–no IP, TIDE, and 

IMPRES with data from thirty-one patients who underwent combination therapies. 

The accuracy results varied among the different algorithms and treatment 

regimens. The accuracy of the algorithms for patients treated with Nivolumab and 

Ipilimumab was as follows: CLIPS–predict IP 0.67, CLIPS–no IP 0.67, TIDE 0.5, 

and IMPRES 0.67. The accuracy of combination treatment with Pembrolizumab 

and Ipilimumab data is 0.36 for CLIPS–predict IP, 0.64 for CLIPS–no IP, 0.48 for 

TIDE, and 0.68 for IMPRES. For the combination treatment data for all 31 

samples, the accuracy of CLIPS–predict IP was 0.42, CLIPS–no IP was 0.65, 

TIDE was 0.48, and IMPRES was 0.68.  

The CLIPS–predict IP shows accuracy levels comparable to other predictive tools 

in the treatment with Nivolumab and Ipilimumab, but it has been found to have 

lower accuracy in the combination of Pembrolizumab and Ipilimumab. The 

accuracy seems to be somewhat lacking because DEGs that did not consider the 
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reactivity to combination treatment were used for model construction. The use of 

DEGs that did not consider responsiveness to combination treatment in model 

construction appears to have led to a minor decrease in accuracy. While the 

IMPRES model might seem to have a high level of accuracy, an in-depth 

examination of Table 6 reveals that all predictions are classified as belonging to 

the response group. The performance of CLIPS–no IP shows high efficacy in 

combination treatment with Pembrolizumab and Ipilimumab, second only to 

IMPRES. This suggests that CLIPS–no IP may be a suitable tool for predicting the 

effectiveness of combination treatments. However, it is important to note that 

CLIPS–no IP, like IMPRES, has a bias in predictions when applied to combination 

treatment with Nivolumab and Ipilimumab. In the case of TIDE, the lowest 

performance compared to other predictions within combination treatment. TIDE 

has been observed to tend to generate non-response predictions, similar to the 

previous findings. This means that the predictions produced by TIDE are less 

likely to dynamically adjust to changes in the input data. This bias undermines the 

reliability and generalizability of the model's predictions, indicating a need for 

further refinement. The upcoming study aims to incorporate the combination 

treatment dataset into the training dataset to improve the accuracy of predicting 

ICI responsiveness in preparation for various ICI therapy scenarios. 

There may be doubts about whether classifying immune phenotypes into two 

distinct cases that sharply differ would lead to better discernment. However, this 

study confirmed significant differences in gene expression within the excluded 

immune phenotype and the desert and inflamed immune phenotypes. And by 

incorporating these differences in immune phenotypes, I have developed a more 

improved ICI response prediction model. As an advantage of detailed 

classification, the classification of immune phenotypes can enhance the 

application of alternative therapies for patients who fail to show a response to ICI. 

The immune phenotypes excluded and desert do not react to anti-PD-1 therapy and 

are classified as cold tumors. The excluded and desert phenotypes do not respond 
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to anti-PD1 and can be considered variants of cold tumors. In the case of the 

excluded phenotype, it is asserted that FDA-approved inhibitors of TGF-β, such 

as inhibitors of VEGF receptor kinases, have been used for the treatment for 

hepatocellular carcinoma62. Also, understanding the NF-κB-mediated expression 

of PD-L1 and its relationship with tumor-associated macrophages (TAMs) can 

provide valuable insights into the intricate interplay between tumor cells, immune 

cells, and the TME. NF-κB can directly regulate PD-L1 expression in 

macrophages and other myeloid cells when stimulated by inflammatory cytokines. 

Numerous studies have revealed the significance of NF-κB activation and TAMs 

abundance in modulating the response to ICI. Previous research suggests that the 

combined administration of NF-κB inhibitors with ICI  represents a promising 

new approach to cancer treatment63. 

In case the inflamed phenotype of ICI nonresponder, treating this phenotype with 

a combination of several ICI or priming with CSF1R inhibitors might prove to be 

beneficial. The combination of CSF1R inhibitors and ICI has been shown to boost 

the effectiveness of ICI, specifically in treating colorectal cancer64. IL-6 activates 

CD4+ T cells and interacts with TGF-β to induce differentiation into regulatory T 

cell (T reg), thereby evading immune responses. Upon reviewing our data, we 

observed that CD4+ T cells were statistically significantly higher in the response 

group, while an average amount of T reg is not statistically significant difference. 

(R 0.0137 vs NR 0.014, wilcoxon test p-value 0.99 ). This indicates that the 

response group consists of a substantial number of CD4+T cells that can initiate 

immunological reactions. So, the response group would have been more effective 

than treating with anti-PD-1. Exhausted T cells in inflamed immune phenotype 

are statistically significantly higher than other immune phenotypes (kruskal test p-

value 0.99). For patients who do not respond to treatment and have inflammation, 

combining anti-PD-1 and IL-6 blocking is presumed to be a more effective 

approach.  

In conclusion, this study will emphasize the importance of immune phenotype in 



５３ 

ICI responsiveness prediction and expand the research to help predict the treatment 

of patients. This observation implies that applying CLIPS may be beneficial in 

guiding the following design of studies related to immunotherapy and contribute 

to the overall advancement of cancer treatment. 
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Table 6. Confusion matrix of independent validation with combination treatment 

Type of  

combination treatment 
Method 

Predicted  

ICI response  

Actual 

Response 

(CR + PR) 

Actual  

Non-Response 

(SD +PD) 

anti-PD-1 +  

anti-CTLA-4  

 

(Nivolumab + 

Ipilimumab) 

 

CLIPS – 

predict IP 

Response 3 1 

Non-Response 1 1 

CLIPS –  

no IP 

Response 4 2 

Non-Response 0 0 

TIDE 
Response 1 0 

Non-Response 3 2 

IMPRES 
Response 4 2 

Non-Response 0 0 

anti-PD-1 +  

anti-CTLA-4  

 

(Pembrolizumab + 

Ipilimumab) 

CLIPS – 

predict IP 

Response 6 6 

Non-Response 10 3 

CLIPS –  

no IP 

Response 11 4 

Non-Response 5 3 

TIDE 
Response 4 1 

Non-Response 12 8 

IMPRES 
Response 16 8 

Non-Response 0 1 
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V. CONCLUSION 
The immune phenotype is an important factor affecting ICI responsiveness. It 

refers to the unique characteristics of an individual's immune system, including 

the composition and activity of immune cells, expression of immune-related genes, 

and interactions within the tumor microenvironment. The the immune phenotype 

is associated with significant differences in overall survival. The inflamed immune 

phenotype improves survival outcomes comapred to excluded and desert immune 

phenotypes.  

To improve the effectiveness of personalized immunotherapy, it is essential to 

develop an algorithm that can accurately predict ICI response based on immune 

phenotype. The study revealed that accurately predicting the response to immune 

checkpoint inhibitors (ICI) was more feasible by first identifying the immune 

phenotype of the patient, as opposed to simply predicting ICI responses. In this 

study, I have developed an immune phenotype prediction model that can 

potentially replace Immunohistochemistry (IHC). The CLIPS (CLassification of 

Immune Phenotypes-Specific ICI response) can predict immune phenotype from 

bulk RNA sequencing data with an accuracy of 0.76. The CLIPS provides three 

distinct operating modes for predicting ICI response based on specific 

immunological phenotypes. Each mode utilizes a unique approach to handle 

immune phenotypic information. According to the evaluation results on the test 

dataset, CLIPS–known IP and CLIPS–predict IP demonstrate superior 

performance compared to conventional methods such as TIDE and IMPRES. 

Within the independent melanoma test set, CLIPS–predict IP demonstrates more 

accurate results with 0.76 accuracy compared to alternative predictive tools (TIDE 

0.63 vs IMPRES 0.58). Furthermore, CLIPS exhibited superior predictive 

performance across all cancer types, outperforming other ICI response prediction 

methods, in a comparative study involving melanoma, lung cancer, and gastric 

cancer. Also, To determine whether there is bias in predictions based on different 

types of ICI treatments, the responsiveness of Nivolumab and Pembrolizumab was 
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predicted. CLIPS demonstrated outstanding performance and provided well-

balanced forecasts in both cases. 

This study presented the significant differences in PD-1 and PD-L1 expressions 

based on immune phenotype, even though there was no difference in gene 

expression depending on ICI response. These findings provide insight into the 

complex connection between immune phenotype and the absence of PD-1 and 

PD-L1, emphasizing the potential influence on the effectiveness of ICI. 

To provide further insight, I analyzed genomic characteristics associated with ICI 

response based on immune phenotype. Notably, the E2F pathways enriched in the 

ICI response group in the excluded and desert immune phenotypes. The E2F 

pathway appears to enhance PD-1 gene expression, increasing susceptibility to 

anti-PD1 treatments. In the inflamed immune phenotype, ICI response groups 

demonstrated a notable overrepresentation of the IL-6/JAK/STAT3 signaling 

pathway. IL-6 has been identified as a potential predictor of ICI responses due to 

its ability to increase the expression of PD-1. In the non-response group within the 

excluded immune phenotype, there is a notable enrichment of the TNFA signaling 

via NFκB hallmark geneset compared to the response group. The NF-κB activity 

plays an important role in modulating the expression of PD-L1 in tumor infiltrating 

macrophages and other myeloid cells. These findings highlight the importance of 

NF-κB as a key regulator in modulating the immune response. 

The notable advantage of CLIPS, which distinguishes it from existing methods, is 

that it is a more advanced model that can further refine and predict reactivity due 

to differences in reactivity by immune phenotype. In this study, we endeavored to 

innovate a novel approach towards the classification of immune phenotypes, 

circumventing the traditional reliance on IHC. By employing alternative 

methodological approaches, our objective was to expand our comprehension of 

the characteristics and functions of immune phenotypes. The findings suggest that 

partitioning ICI response across immune phenotypes yields superior results 

compared to predictions solely based on primary ICI reactivity data. 
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In conclusion, the immune phenotype acts as a filter in one of the processes of 

predicting ICI response, enabling more balanced and accurated predictions. This 

study highlights the significance of immune phenotypes in predicting ICI 

responsiveness and guiding personalized treatment strategies. 
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APPENDICES 
CLIPS – CLassification of Immune Phenotypes-Specific ICI response 
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CTLA-4 – Cytotoxic T-lymphocyte-associated protein 4 

DEG – Differential gene expression 

GeTMM – Gene length corrected trimmed mean of M-values 

GSEA – Gene Set Enrichment Analysis 

ICI – Immune checkpoint inhibitor 
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TIDE – Tumor Immune Dysfunction and Exclusion 
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면역 표현형 분류 기반 면역관문억제제 반응성 예측 
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면역 표현형은 암에 대한 면역력을 반영하며 면역 반응이 암을 

제거하는 것을 방해할 수 있는 생물학적 메커니즘과 관련이 있다. 

또한 면역 표현형은 면역관문억제제 치료를 받은 흑색종 환자의 

전체 생존율에도 영향을 미친다. 이러한 이유로 환자 맞춤형 면역 

치료의 효과를 높이기 위해서는 환자 개인의 면역 환경을 

객관적으로 정확하게 예측할 수 있는 알고리즘 개발이 필수적이다. 

본 연구의 목적은 bulk RNA 시퀀싱 데이터의 유전자 발현 데이터를 

활용하여 환자 개인의 면역 표현형을 예측하고, 이를 바탕으로 ICI 

response를 예측할 수 있는 알고리즘을 구축하는 것이다. 연구에서 

개발한 CLIPS (CLassification of Immune Phenotypes-Specific ICI 

response)는 면역 표현형 특이적 면역관문억제제 반응 예측 

알고리즘이다. CLIPS는 bulk RNA 시퀀싱 데이터로부터 0.76의 

ACU의 성능을 가지고 환자 특이적인 면역 표현형을 강건한 예측할 
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수 있어, 기존의 면역조직화학 기법을 대체할 수 있다.  

예측 모델의 검증을 위해서, 흑색종 환자 41명의 독립적인 검증 

데이터 기준으로 기존에 알려진 2개의 면역관문억제제 반응성 예측 

도구인 TIDE와 IMPRES의 정확도를 CLIPS와 비교하였다. 그 결과, 

TIDE는 0.63, IMPRES는 0.58의 정확도를 가지고 있다. CLIPS는 

면역 표현형을 예측 분류하고, 이를 기반으로 개별 환자의 

면역관문억제제 반응을 제시하여 정확도 0.76으로 보다 더 정확한 

예측이 가능하다. CLIPS는 암 종 또는 ICI 약물 종류에 구분없이 

높은 정확도를 가지고 반응성 예측이 가능하다. 

나아가 본 연구에서는 PD-1 와 PD-L1의 발현이 면역관문억제제 

반응성에 대한 지표뿐만 아니라, 면역 표현형과 연관성이 있음을 

밝혔다. PD-1 와 PD-L1 유전자의 발현은 excluded와 desert 면역 

표현형 대비, inflamed 면역 표현형에서 통계적으로 유의하게 높은 

값으로 존재하고 있다. 또한 excluded 면역 표현형과 desert 면역 

표현형의 면역관문억제제 반응 그룹에서 공통으로 Hallmark 유전자 

세트 중, E2F 경로와 관련된 발현이 증가한 것을 확인하였다. E2F 

경로는 PD-1 유전자 발현을 증가시켜서 면역 관문억제제에 대한 

감수성을 증가시키는 것으로 보인다. 그리고 IL-6/JAK/STAT3 신호 

전달은 inflamed 면역 표현형의 면역관문억제제 반응 그룹에서 

우세하게 존재한다. 이는 IL-6 분비를 통해 PD-L1의 유전자 

발현을 증가시켰기에 면역 관문억제제에 좋은 반응성을 기대할 수 

있다. 

본 연구는 면역 표현형을 구분하는 명확한 전략을 수립함으로써 

개인에 맞춤형 치료법을 개발하는 데 중요한 참고 자료가 될 것이다. 
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면역 표현형은 면역 체계의 기능적 특징을 이해하는 데 도움을 주며, 

면역관문억제제 반응을 예측하는 데 사용될 수 있는 추가적인 하위 

유형을 확장한다.  

결론적으로, 본 연구는 면역 표현형의 이해와 예측을 통해 개인에게 

맞춤형 치료법을 제공하는 것에 큰 기여를 할 것이다. 이를 통해 암 

환자들의 생존율을 향상시키고 면역 치료의 효과를 극대화할 수 

있을 것으로 기대된다. 
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