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ABSTRACT 

 

Language guided image generation  

to enhance fracture risk prediction using lateral spine plain radiograph 

Sang Wouk Cho 

 

Department of Integrative Medicine 

The Graduate School of Yonsei University 

 

Directed by Professor Namki Hong and Hwiyoung Kim 

 

Spine radiography along with deep neural networks is capable of detecting 

prevalent vertebral fractures and osteoporosis. However, whether the generative 

model predicts fracture risk remains uninvestigated.  

Clinical variables and lateral spine X-ray images from patients aged 50 or older 

who presented to Severance Hospital, Korea between January 2007 and December 

2018 were collected. The incident fracture was defined using follow-up X-ray 

radiographs. Our model consists of two language-guided latent diffusion models 

(LDM) to extract feature maps of morphological structure and generate new 

images with clinical prompts on training set (80% hold-out set) and test set (20% 

hold-out set). Verte-X prevalent vertebral fracture scores (pVF scores) were 

calculated on the baseline images (BpVF) and 10-year generative images (GpVF). 
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Fracture risk assessments were then conducted, categorizing them into three 

groups based on these scores: 1) low risk for both BpVF & GpVF (LL), 2) low 

risk for BpVF & high risk for GpVF (LH), 3) and high risk for BpVF regardless 

of GpVF status.low risk for both BpVF and GpVF (LL), low risk for BpVF but 

high for GpVF (LH), and high risk for BpVF regardless of GpVF status.  

A total of 29,307 lateral spine plain X-rays for 9,276 patients with (mean age 65.7 

years, women 66%; VF prevalence 18.6%) were analyzed in the derived cohort. 

Over a mean follow-up period of 34.8 months, 9.9% of patients experienced 

vertebral fractures (921 out of 9,276 in the whole dataset) after baseline. 

Generative images revealed possible changes in the spine at different time points. 

The mean (SD) error in pVF scores between real-follow up and generative X-ray 

images was 0.06 ± 0.20 with a correlation coefficient r of 0.655 (0.547,0.741). 

When stratified into the risk group, LH group and HH risk group were associated 

with 109% and 391% increased risk of fracture respectively (hazard ratio [HR], 

2.092 and 4.911; P=<0.001 for all), showing an improved model fit by adding age, 

sex, and BMI to covariates (likelihood ratio 105.7, p <0.001). The association 

between risk groups with incident fracture remained robust ([HR] 1.461; 

P=<0.001) after adjustment for FRAX major osteoporotic probability. 

In summary, generative image-based risk stratification showed its potential to 

improve clinical workflow and fracture risk assessments. 

 

Key words: Osteoporosis, Fracture risk, Deep learning, Generative AI, Survival analysis 
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Language guided image generation  

to enhance fracture risk prediction using lateral spine plain radiograph 

 

Sang Wouk Cho 

 

the Department of Integrative Medicine 

the Graduate School of Yonsei University  

 

Directed by Professor Namki Hong and Hwiyoung Kim 

 

Ⅰ. INTRODUCTION 
 
1. Background  

Osteoporotic fractures (OF) are fractures that have a high mortality and morbidity 

rate, aggravating individual health and the economy around the world. [1-3] 8.9 

million new fractures are caused by osteoporosis around the world indicating that 

a new OF occurs every 3 seconds. [4] Therefore, the prevention of osteoporotic 

vulnerable fractures is a big challenge for the growing elderly population. [5] 

Despite the high efficiency of medication to reduce fracture risk, patients with 

osteoporosis and morphological fractures who are in high risk for future fractures 

are still underdiagnosed. [6]  

Measurement of the areal bone mineral density (BMD) using dual-energy x-ray 

absorptiometry (DXA) is the gold standard for diagnosing osteoporosis and for 
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evaluating bone strength in clinical practice. However, many fractures could occur 

at osteopenia [9] which means BMD is not a reliable factor for fracture risk 

prediction. [10, 11] The fracture risk assessment tool (FRAX) is one of the 

fracture risk evaluation tools using clinical variables with BMD at the femoral 

neck. [12-16] As FRAX is the fracture risk prediction tool, the FRAX major 

osteoporotic and hip fracture scores are integrated into risk stratification 

guidelines of clinical practice in South Korea and the United Kingdom. [17, 18] 

When calculating FRAX scores, some of the factors known to be associated with 

fracture risk are excluded, such as increment of fracture risk after initial fracture. 

[19, 20] 

Medical images are important resources that provide evidence for diagnosis and 

clinical decisions. [21] Diverse modality of medical images may include potential 

biomarkers to predict patients’ prognosis [22], also providing diagnostic 

information to understand their medical issues. Recent successful deep learning 

technology has been applied to medical imaging [23-25] such as Generative 

Adversarial Networks (GANs). [26] As of today, diffusion models have gained 

attention in the field of generative model due to their ability to generate 

impressive quality images. [27] During the diffusion process, they iteratively add 

Gaussian Noise in the noising process and learn to denoise to generate sample 

image. Another advantage of the diffusion model is conditional image generation 

with guidance such as a sentence [28] and an image mask [29]. Conditioned 

models allow diverse and customized results with image editing and translation. 

Spine X-ray image is a widely available medical imaging modality in clinical 

practice which provides an amount of information, including bone density, 

morphological spine structure, and soft tissues. Especially, detection of prevalent 
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vertebral fractures using lateral spine X-ray images is recommended by the 

International Society for Clinical Densitometry (ISCD) guideline. [30] The broad 

applicability and rich information content of spine X-ray images make this 

modality a valuable resource for developing artificial intelligence models capable 

of predicting individual fracture risks. Additionally, stratifying incident fracture 

risk using spine X-ray images has the potential to facilitate preventive 

interventions in various risk groups, thereby mitigating fragility fractures and their 

associated negative consequences. 

In the field of fracture risk prediction, prior studies focused on building multi-

variable fracture risk models to predict individual risk scores. [12-16, 31-34] In 

early proposed studies [12-16], BMD was considered the primary determinant, 

and recently, studies[31-34] using images have been presented. X-ray images 

have received less attention for fracture risk prediction compared to DXA, 

computed tomography (CT), or magnetic resonance imaging (MRI) [35]. Hsieh 

and colleagues showed that convolutional neural networks could assess fracture 

risk using pelvis/lumbar spine radiographs involving 5,164 and 18,175 patients, 

respectively. [32] Additionally, Kong and colleagues demonstrated that a CNN-

based survival prediction algorithm, utilizing baseline images and clinical 

variables, outperformed the FRAX and CoxPH models in the assessment of 

lumbar spine radiographs. [31]  Two studies have shown that X-ray images can 

predict the risk of incident fractures, indicating that X-ray images contain 

diagnostic information for understanding fracture development. However, these 

studies had limitations related to using only the lumbar spine view position, and 

the potential for generating follow-up X-ray images has not yet been explored. 

Furthermore, it remains unclear whether risk stratification using personalized 
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quantified scores from generative models would lead to improvements in clinical 

interventions for incident fracture risk. 

In our previous study [36], we devised deep learning scores for osteoporosis 

detection and the identification of prevalent vertebral fractures using lateral spine 

radiography, denoted as the 'Verte-X osteo score' and 'Verte-X pVF score.' We 

also explored the potential of these scores for enhancing the referral of high-risk 

individuals for bone-density testing. 

In this study, we introduce a language-guided diffusion model designed to 

generate follow-up X-ray images of patients over aging and calculate personalized 

Verte-X pVF scores based on both baseline images and generative follow-up 

images. Our aim is to investigate whether these individualized scores, derived 

from spine X-ray images, can stratify patients into incident fracture risk groups, 

ultimately improving the clinical approach to fracture risk assessment and 

achieving patient-centered care. 

 

2. Technical related work  

Image synthesis across medical images is a very active field to facilitate clinical 

procedures and generate images of rare diseases. [37] Particularly, Generative 

Adversarial Networks (GAN) [38] had been the most popular method to solve 

those problems. Since the publication of Denoising Diffusion Probabilistic 

Models [39] in 2020, GAN has been replaced gradually by diffusion models. The 

performance of the diffusion-based model was much better and more stable than 

that of GAN in abnormal detection [40-42], multi-modality translation [43], and 

meta-data generation tasks. [44] Additionally, images could be generated by 
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conditions or text using guided diffusion models, eliminating the collapse issues 

of GAN.[45]  

A recent publication [46] has demonstrated that the latent space within the U-net, 

computed at each timestep of the Diffusion model, encompasses morphological 

information derived from the original image. In addition, another study[47] 

demonstrates that combining the feature from the Resnet block, the key and query 

utilized in Self-attention during the up-sampling process of the U-net could give 

the original image a Text guidance effect. This means that if a certain condition is 

provided in the model given as input, it could be translated to the image closest to 

the condition. However, both studies were tested with object-oriented target 

examples such as humans, animals, or buildings. Additional research is required 

to validate their applicability in complex medical images, and to assess the 

continued utility of these methodologies. 
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Ⅱ. MATERIALS AND METHODS 
 
1. Study subjects 

The language-guided future image generation model dataset – the VERTEbral 

fracture and osteoporosis detection in spine X-ray [VERTE-X] cohort was 

previously described in our work. [36] Data use and study concept were approved 

by the Institutional Review Board of Severance Hospital, Seoul, Korea, with the 

waiver of written informed consent for medical-record review (IRB no. 4-2021-

0937). The VERTE-X cohort comprises individuals who received lateral spine X-

ray examination at Severance Hospital, Seoul, Korea, between January 2007 and 

December 2018.  

 

Figure 1 Study flow 

Images n = 26,299

Images n = 15,828 Images n = 5,229 Images n = 5,242
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To improve the data quality and extend the utility of the cohort for fracture studies, 

we refined the initial dataset, which included over 140,000 spine X-ray images 

from 52,466 individuals, based on the exclusion criteria outlined in Supplemental 

Figure 1. To specifically target older individuals with high prevalence and clinical 

relevance to vertebral fractures or osteoporosis, those under the age of 50 were 

excluded (n=19,820). Exclusion criteria encompassed individuals of non-Korean 

ethnicity (n=2), those with a history of bone metastasis or hematologic 

malignancy within one year preceding the index date (n=648), as those with 

severe scoliosis, kyphosis (n=46), or missing DICOM files (n=46). To assess the 

clinical validation of future incident fractures, we retained 9,276 individuals with 

26,299 lateral spine X-ray images, all of whom underwent X-ray examination at 

least 28 days after the index date in the final derivation cohort. They were 

randomly divided into three groups: model development (n = 5,568, 60%), model 

validation (n = 1,856, 20%), and testing (a hold-out set, n = 1,852, 20%) while 

maintaining the proportions of age groups, sex and outcome prevalence. 

2. Input features 

1) X-ray images: Lateral spine X-ray images in the derivation set were obtained 

using machines from 12 different manufacturers (Supplemental Table 1).  

2) Clinical features: Clinical features of study participants were retrieved using the 

Severance Hospital Clinical Data Warehouse (SCRAP 2.0) system. Demographic 

information, including age, sex, weight, and height, was collected. In addition, we 

collected data on previous clinical fractures, the presence of rheumatoid arthritis, 

and certain causes of secondary osteoporosis (such as malabsorption, end-stage 

liver disease, and type-1 diabetes mellitus) using relevant ICD-10 diagnosis codes, 
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which were ascertained through medical record reviews. We also defined 

glucocorticoid use as any patient who had been prescribed a daily dose equivalent 

to prednisolone 5 mg or higher for at least three times of the previous six months. 

FRAX major osteoporotic score was calculated using the University of Sheffield’s 

online FRAX tool (https://frax.shef.ac.uk/FRAX/tool.aspx). During the FRAX 

score calculation, characteristics of age, sex, BMI, previous fracture, parent hip 

fracture, current smoking, use of glucocorticoids, rheumatoid arthritis, secondary 

osteoporosis, alcohol intake 3 or more units/day, and femoral neck BMD were 

used.  

 
3. Definition of outcomes 

After retrieving digital images of lateral spine radiographs from the Picture 

Archiving and Communication System (PACS), the presence of vertebral 

fractures was determined using an algorithm-based qualitative method based on 

the lateral spine X-ray images. [48, 49]  
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Figure 2 Annotation tools for spine vertebral fracture 

 

 A clinical annotation system was developed for identifying the presence of 

vertebral fractures in lateral spine radiographic images and curated by four 

independent reviewers with five years of clinical practice experience. 

Discrepancies in curated labels were checked by two expert reviewers with over 

ten years of clinical practice experience. In a subset of participants who had 

available DXA results within one year of the index date, osteoporosis was defined 

as a DXA-derived T-score ≤2.5 at the lumbar spine, femoral neck, or total hip, 

referencing NHANES III Caucasian young female mean and standard deviation. 
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[50] Two DXA machines, Discovery W and Discovery A (Hologic, MA, USA), 

were used during the study period on the derivation cohort.  

 
4. Image processing 

For VERTE-X pVF score calculation, DICOM files of the lateral spine X-ray 

images were downloaded from PACS and resized to 1024*512 pixels while 

preserving the original width and height aspect ratio. Contrast-Limited Adaptive 

Histogram Equalization (CLAHE) and normalization were applied to the lateral 

spine X-ray images. Detailed information on image processing is provided below 

the figure. 

 

Figure 3 Development and validation process of spine x-ray score to predict prevalent 

vertebral fracture and osteoporosis using machine learning algorithms 

 

In preparation for future image generation, X-ray images were resized to 512x512 

pixels and paired with relevant clinical characteristics, including age, sex, BMI, 
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the prevalence of vertebral fracture in the current image, glucocorticoid use, the 

history of previous clinical fractures, the presence of rheumatoid arthritis, and the 

occurrence of secondary osteoporosis. These attributes were used to generate 

prompts for describing the image status of each individual image. 

 

5. Prevalent fracture score (Verte-X pVF score) 

In a previous study[36], two separate deep convolutional neural network (DCNN) 

models (EfficientNet-B4)[51] were trained based on lateral spine radiography to 

detect prevalent vertebral fractures (VERTE-X pVF score) and the presence of 

osteoporosis (VERTE-X osteo score). After model optimization, scores for each 

outcome (ranging from 0 to 1) were obtained from the output layer for each spine 

X-ray image input. 

 

Figure 4 Work flow 

 
6. Diff-X: language-translated X-ray generation model 

In this study, we developed a diffusion-based X-ray image generation model using 

a language prompt-guided module named Diff-X.  The Diff-X model is a 
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modification of the Play-and-Plug model [47], which takes text-to-image 

synthesis to the realm of image-to-image translation. This modification aimed to 

enhance the preservation of the original image structure and extract more accurate 

spine structure features.  

 

Figure 5 Diff-X model structure and blocks. The model consists of two distinct LDMs: 

The first LDM extracts structure information and the second LDM generates age-

translated images 

 

We trained two distinct Latent Diffusion Models (LDMs, here we used a Stable 

diffusion structure) [28] as shown in the model structure; one for extracting the 

morphological structure of the input image and another for giving guidance on 

prompts. The first LDM extracts features, keys, and queries from the input image 

and this latent space is added to the second LDM, which then generates an age-

predicted image. 

To develop robust reconstructions on the first LDM, we followed the previous 

study[52]. The low-resolution version of the input image is concatenated channel-

wise with the input image after the DDIM (Denoising diffusion implicit models) 

Scheduler for every t timestep. This process provides the original information to 
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generate an image closer to the input image. The U-net blocks consist of three 

Resnet blocks and nine Resnet-attention blocks. Narek Tumanyan’s  study[47] 

attempted to add the features, keys, and queries of the fourth layer of the Resnet-

attention block. However, we empirically found that the fifth block contains more 

information in our case. Kwon’s study[46] showed that manipulating the latent 

space, called h-space, could edit diverse styles of images. We replaced the latent 

space, key, and query of the second LDM with those of the first LDM at the same 

location for every t timestep. Finally, the reconstruction feature is adopted to the 

text-guided age feature map and generates age-dependent images. 

Additionally, we showed the difference in the age-translated images to inspect the 

actual changes in age. The differences tell which characteristic appears as age 

changes. We also demonstrate how comprehensive the feature extraction contains 

spatial information. Tumanyan, N’s study [47] showed PCA analysis could 

visualize the most important components in RGB channels. We present all the 

features from each layer. Feature maps and examples of the future generative 

images are depicted below.  



14 

 

Figure 6 Model architecture of the Diff-X model 

 
7. Score generation and risk stratification  

1) Fracture score calculation 

Using the Diff-X model, future X-ray images were generated from the baseline 

image and the clinical prompt at 1 year, 5 years, 10 years, and the last follow-up 

duration. At each time point, these images were generated 10 times using different 

random seeds. While a constant seed allowed for reproducibility and the 

preservation of certain parts of the image across the prompt given [53], this 

approach could achieve answer coverage through repeated measurements with 

different random seeds. [54-56] In this study, using different random seeds 

enabled the model to retain the core information from the clinical prompt and 

baseline images, resulting in a range of possible future images. VERTE-X pVF 

scores were calculated for both baseline images and each generative image. For 

patient-level aggregation, future images generated from the same baseline image 

were averaged, and the maximum value within the same participant was then 
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selected. These scores from the baseline image and generative image were named 

'Baseline pVF score (BpVF)' and 'Generative pVF score (GpVF)', respectively. 

The uncertainty scores were calculated based on the variation of GpVF to reveal 

the characteristics of individuals and improve the reliability of generative risk 

scores. 

 

Figure 7 Generative images by age-guided prompt (when incident VF occurred) with 

different random seeds 

 

2) Optimal thresholds for risk stratification 

To reflect the long-term follow-up risk and ensure a fair comparison with the 

FRAX score, the generative pVF score was set as 10-year fracture score. Risk 

groups were divided into a high-risk score group and a low-risk score group for 

BpVF and GpVF. To stratify BpVF, the dichotomized classification threshold to 

determine sensitivity and specificity was set at the default of 0.5 [36] which is the 

chi-squared maximized threshold for log-rank testing. [57, 58] For GpVF, we 
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chose a cut-off point of 0.6 based on the average increment between baseline and 

generative pVF scores as well as the results of a log-rank test. [57, 58] 

 

3) Comparison between risk groups 

With the optimal threshold points, participants could be divided into three 

combinations of risk groups using the following criteria: 1) low risk for both 

BpVF & GpVF (LL risk group), 2) low risk for BpVF & high risk for GpVF (LH 

risk group), 3) and high risk for BpVF regardless of GpVF status(HIGH risk 

group). The findings informed this decision of study by Mills ES et al.[59], which 

reported that 21.9% of patients who did not receive anti-osteoporotic medications 

experienced secondary fractures after a vertebral osteoporotic compression 

fracture. This indicates that the likelihood of a subsequent fracture is significantly 

high after an initial fracture event. Therefore, high BpVF scores were considered 

high risk, regardeless of their GpVF scores, to reflect the increased likelihood of 

fractures in the future 

 

Figure 8 Risk stratification 
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8. Statistical analysis  

In the participants' characteristics, continuous variables were presented as mean ± 

standard deviation, while categorical variables were shown as counts and 

proportions. Independent two-sample t-tests were used for comparing continuous 

variables, and chi-square tests for categorical variables in clinical characteristics. 

The areas under the receiver-operating-characteristic curves (AUROCs) for 

incident fracture risk prediction were compared using the DeLong method. [60] 

To evaluate the accuracy of fracture event predictions using the optimal threshold, 

metrics such as accuracy, sensitivity, specificity, and precision were calculated 

using confusion matrices. Statistical significance was set at a two-sided p-value of 

<0.05.  

For the evaluation of Diff-X image generation, three statistical methods were 

utilized. First, the Multi-Scale Structure Similarity Index Measure (MS-SSIM) [61] 

and Peak Signal-to-Noise Ratio (PSNR) were used to evaluate the similarity and 

quality of the reconstructed image from the first LDM, respectively. Second, the 

accuracy of predicted age was evaluated following a previous study [44], using a 

regression model backboned with Efficient-net [51] to predict the age of images 

generated by the second LDM. Finally, a comparison between real follow-up X-

ray images and generative images at the last follow-up date involved a random 

sample of 10% of participants from the test set. The two scores were plotted in a 

2D space, and a Bland-Altman analysis was performed. 

For the time-dependent survival analysis, Cox proportional hazard (CoxPH) 

model and the DeepSurv model [62] were employed to examine the relationship 

between incident fracture events and risk groups. The initial model was adjusted 

for three risk groups as categorical variables, and then clinical variables, age, sex, 
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and BMI (Model1), and FRAX major osteoporotic scores (Model2) were added to 

the Cox proportional hazards model, respectively. The performance of these 

models was evaluated by the concordance index (c-index) [63] and time-

dependent AUROC with inverse probability censoring weighting (IPCW) [64]. 

Kaplan-Meier curves were plotted for the risk group for incident fractures. 

Statistical analyses were conducted using the Scipy 1.8 library [65] in Python 

(version 3.8) and R (version 3.6.3). 
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Ⅲ. RESULTS 
 

1. Clinical characteristics of the study subjects 

In this study, a total of 9,726 individuals were involved in the final analysis. The mean 

age of study participants in the derived cohort was 65.7 years, with females comprising 

66% (6,105 individuals) of the cohort. Morphometric vertebral fractures were observed in 

18.6% of the participants, while 10.3% experienced incident fractures during the follow-

up period. Due to stratified random sampling, no significant differences were observed 

between the training, validation, and test sets (p > 0.05). 

Lateral spine X-ray images were sourced from various manufacturers, predominantly 

General Electric (GE), which contributed to 70% (18,738 images) of the total. To 

enhance the generalizability of our model, these X-ray images included not just the 

lumbar spine but also the thoracic, sacrum, and cervical spine areas. The combination of 

thoracic and lumbar spine images made up 68% of the total dataset. Further details can be 

found in the table listing the manufacturers and the visualized areas of X-ray images. 

 

Table 1 Clinical characteristics of study participants 

  Derivation of cohort 
  Overall  

(n=9276) 

Train set  
(n=5568, 
60%) 

Validation set  
(n=1856, 20%) 

Test set  
(n=1852, 20%) 

Women, n (%) 6105 (66) 1219 (66) 1220 (66) 3666 (66) 
Age, years 65.7 ± 8.5 65.7 ± 8.5 65.8 ± 8.5 65.7 ± 8.5 
Height, cm 159.1 ± 8.5 159.2 ± 8.5 159.2 ± 8.4 158.8 ± 8.6 
Weight, kg 61.1 ± 10.6 61.1 ± 10.6 61.2 ± 10.6 61.0 ± 10.3 
BMI, kg/m2 24.0 ± 3.2 24.0 ± 3.2 24.1 ± 3.3 24.1 ± 3.2 
Lumbar spine BMD 
(g/cm2)* 

0.895 ± 
0.212 0.894 ±0.215 0.894 ± 0.209 0.899 ± 0.221 

Lumbar score T-score*† -1.4 ± 1.9 -1.4 ±1.9 -1.3 ± 2.0 -1.4 ± 2.0 
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Femoral neck BMD 
(g/cm2)* 

0.654 ± 
0.138 0.650 ± 0.138 0.654 ± 0.137 0.657 ± 0.141 

Femoral neck T-score*† -1.7 ± 1.2 -1.7 ± 1.1 -1.7 ± 1.2 -1.7 ± 1.2 

Total hip BMD (g/cm2)* 0.792 ± 
0.155 0.788 ± 0.153 0.792 ± 0.154 0.795 ± 0.159 

Total hip T-score*† -1.2 ± 1.3 -1.2 ± 1.3 -1.2 ± 1.3 -1.2 ± 1.3 
Osteoporosis, n (%)* 2649 (40.3) 1590 (40.3) 533 (40.1) 526 (40.1) 
Morphometric vertebral 
fracture, n (%) 1723 (18.6) 1035 (18.6) 349 (18.8) 339 (18.3) 

Any incident fracture, n 
(%) 921 (10.3) 546 (10.3) 184 (10.3) 191 (10.3) 

Vertebral fracture 705 (7.6) 426 (7.6) 139 (7.6) 140 (7.6) 
Non-vertebral fracture 291 (3.6) 159 (3.6) 65 (3.6) 67 (3.6) 

Follow up duration, days 
(median) 766 772 750 765 

History of fracture 
(clinical), n (%) 682 (7.4) 426 (7.7) 124 (6.7) 132 (7.1) 

Glucocorticoid users, n 
(%) 437 (4.7) 250 (4.5) 86 (4.6) 101 (5.5) 

Rheumatoid arthritis, n 
(%) 252 (2.7) 145 (2.6) 46 (2.5) 61 (3.3) 

Secondary osteoporosis** 188 (2.0) 119 (2.1) 31 (1.7) 38 (2.1) 

 

Table 2 Manufacturer types and visualized area of spine x-ray images in derivation 

 Derivation cohort,  
image n=26,299 

General Electric (GE) 18,738 (71) 
DongKang (DK) 2,628 (10) 
Fuji electric 2,024 (8) 
Samsung Electronics 1,371 (5) 
KODAK 1,274 (5) 
Listem 110 (<1) 
Toshiba 73 (<1) 
JSB 48 (<1) 
Carestream 14 (<1) 
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ADT 7 (<1) 
Canon Inc 6 (<1) 
SIEMENS 6 (<1) 
  
T-L 7,482 (28) 
T-L-S 4,130 (16) 
L-S 6,281 (24) 
Whole spine 6,825 (25) 
C-T-L 1,528 (6) 
T 44 (<1) 
C-T 9 (<1) 
 

 

2. Follow-up X-ray Image generation 

Diff-X Sampling 

The Diff-X model was utilized to generate future follow-up images based on baseline 

images and corresponding clinical prompts at predetermined intervals (1 year, 5 years, 10 

years, and the last follow-up date). Figure 10 illustrates the overall results of images 

produced by Diff-X, compared to a single text-based Latent Diffusion Model (LDM) [28]. 

Given that our model builds upon a text-based diffusion model, the single LDM without 

feature injection serves as a baseline for comparison.  

In our observations, images generated by Diff-X exhibited superior quality compared to 

those from the single LDM. The single LDM tended to produce partially blurry images, 

often failing to generate either accurate reconstructions or discernible age-related changes. 

In contrast, Diff-X effectively demonstrated variations in the spine across different ages. 

A notable comparison is the portrayal of fractures by both models. Interestingly, both 

models identified potential fractures at the same locations. However, the single LDM 

distorted the spine's morphological structure and produced ambiguous representations of 

fractures whereas Diff-X maintained greater fidelity to the input image's structure. 
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Figure 9 Source images of a 79 years old male and generated samples of spine X-ray 

images using our model and a single LDM 

 

Performances of Reconstruction and Age Prediction 

The reconstruction quality was quantitatively assessed by comparing the Multi-Scale 

Structure Similarity Index Measure (MS-SSIM) and Peak Signal-to-Noise Ratio (PSNR) 

between the input image and the reconstruction image from the first Latent Diffusion 

Model (LDM). Diff-X achieved an MS-SSIM score of 0.506 and a PSNR of 20.737, 

outperforming the single LDM, which scored 0.219 in MS-SSIM and 15.856 in PSNR. 

This indicates that Diff-X had superior performance in both MS-SSIM and PSNR 

compared to the single LDM.  

The age prediction accuracy of the model was evaluated using deep learning, specifically 

an Efficient-net based approach. The correlation between actual ages and predicted ages 

by Efficient-net yielded an R-square of 0.841, demonstrating high accuracy in age 

prediction. 
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Figure 10 . Model performance evaluation. (a) Box plot of PSNR and Multi-Scale SSIM 

score for the image reconstruction (b) Scatter plot of regression results for X-ray images 

 

In Figure 10, (b) illustrates the differences between two generated images, with red 

highlighting changes associated with older age. The age-translation images show 

noticeable differences, particularly in the spine. Typically, images depicting older age 

exhibit features like compression fractures or calcification. 

 

 

Figure 11 Generative future-possible X-ray images by age guided prompts with different 

random seeds. 
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Figure 12 Generated image comparison with the real follow-up image. generative images 

from a baseline image using our model with the specific age point. (A) Baseline image of 

patient 71 years old (B) Follow-up image of the patient after 4 years (75 years old) (C) 

Generative images from the baseline image using our model 

 
Feature Extraction 

To demonstrate the manipulation of latent spaces, feature maps from each layer at 

different timesteps were extracted, as depicted in Figure 13. Principal Component 

Analysis (PCA) was applied to these extracted features, and the first three principal 

components were visualized as RGB channels. To maintain consistency with X-ray 

images, these visualizations were converted to grayscale. This approach was instrumental 

in understanding how spatial information was preserved in the first LDM and determining 

the optimal layers for integration into the second LDM.  

In self-attention layer 5 and Resnet layer 5, the shape of vertebral bodies in the spine area 

began to manifest, and the surrounding soft tissues became more distinct. Furthermore, in 

self-attention layer 8 and Resnet layer 8, the edges of each individual vertebral body were 

more sharply defined and easier to identify. 
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Figure 13 Extracted 3 top components using PCA from the resnet blocks and self-

attention modules were visualized in the feature maps (a) 10 Resnet output features (b) 

Self-attention block output features from the first LDM in diffusion timesteps 900, 600, 

300, and 1 

 
3. Vertex pVF score of baseline  and generative images  

Among the 1,852 participants in the test set, there were 191 fracture cases reported over a 

median follow-up period of 765 days (Interquartile Range, IQR: 1142.5 days). The mean 

BpVF and GpVF over the 10-year period were 0.491 and 0.600 for people with new 

fractures and 0.39 and 0.52 for people without new fractures. 
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A regression analysis exploring the linear relationship between the pVF scores of real and 

generative follow-up X-ray images yielded a correlation coefficient of 0.656 in a dataset 

sampled from 10% of the test set. Furthermore, a Bland-Altman analysis revealed a mean 

difference of -0.06 and a standard deviation of 0.2, indicating a high level of concordance 

between the actual pVF scores and the generative pVF scores. 

 

Figure 14 Scores comparison between real pVF score and generative pVF score at the 

same time point. (A) Plot of linear regression analysis which indicates a linear 

relationship between the pVF score of real follow-up and generative X-ray images with 

correlation coefficient = 0.656 in the sampling dataset. (B) The Bland and Altman plot 

showing the relationship between the difference and mean of the pVF score of real 

follow-up and generative X-ray images. 

 

While there is no strong correlation between BpVF and GpVF at 10 years (correlation 

coefficient = 0.376), a high correlation was observed between GpVF at different time 

points (correlation coefficient 1 year vs 5 years 0.735; 1 year vs 10 years 0.694; 5 years 

vs 10 years 0.721). Additionally, age was found to have a high correlation with GpVF 

Fracture
No fracture

(A) (B)
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(correlation coefficient = 0.668). From baseline time points to 10 years, the scores 

increased by an average of 0.103 points.  

 

 

Figure 15 Pair plot to find the relationship between the baseline pVF score and the 

generative scores 
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Figure 16 The uncertainty of generative pVF score. (a) Distribution of generative 

fracture score variation (b) Age comparison between uncertain group and certain group 

When calculating the variation of GpVF and plotting its distribution, results similar to 

those shown in Figure 16 can be obtained, which closely resemble a normal distribution. 

When considering individuals beyond two standard deviations as out of distribution, or 

highly uncertain, it was observed that this uncertain group tended to be younger 

compared to the certain group, with a higher proportion of patients in their 50s to early 

60s. 

 
4. Incident fracture prediction model 
The DeepSurv survival models built on BpVF and GpVF (Fracture scores model) 

demonstrated comparable performance in detecting incident fractures over a 10-year 

period when compared to the FRAX score (Mean time-dependent AUROC, 0.69 and 0.69, 

respectively). The Fracture scores model exhibited superior performance to the FRAX 

model before 5 years, while the FRAX model performed better in the remaining follow-

up period (time-dependent AUROC at 1 year: Fracture scores model 0.76, FRAX model 

0.70; at 5 years: Fracture scores model 0.70, FRAX model 0.72; at 10 years: Fracture 

scores model 0.62, FRAX model 0.70). When age, sex, and BMI were added to the 

Fracture scores model, its discriminatory ability improved, surpassing both the Fracture 

scores and FRAX model (Mean time-dependent AUROC 0.74; time-dependent AUROC 
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at 1 year 0.79; at 5 years 0.76; at 10 years 0.74). These improvements remained robust 

over the entire 10-year period. 

 

Figure 17 Comparison of the time-dependent area under the curve (AUC) and receiver 

operating characteristic (ROC) curves of models by Deep learning-based Cox models 

consisted of 1) fracture scores 2) 1) with age, sex, and BMI, and 3) FRAX major 

osteoporotic at 10 years. (A) Time-dependent AUC and (B, C, D) ROC curves at 1 year, 

5 years, and 10 years. Mean AUC values are shown in the legend. 

 

The fracture scores model and clinical added model showed similar trajectories in the 

time-dependent AUROC for CoxPH and demonstrated lower performance compared to 

DeepSurv-based survival models. 
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Figure 18 Comparison of the time-dependent area under the curve (AUC) and receiver 

operating characteristic (ROC) curves of models by Cox proportional hazard function 

consisting of 1) fracture scores 2) 1) with age, sex and BMI, and 3) FRAX major 

osteoporotic at 10 years. (A) Time-dependent AUC and (B, C, D) ROC curve at 1 year, 5 

years and 10 years. Mean AUC values are shown in the legend.  

 
5. Risk stratification for fracture risk 

Based on the cut-off values for BpVF and GpVF scores, participants were divided 

into three risk groups: Low-Low (LL), Low-High (LH), and High (HIGH). The 

distribution of individuals in these groups was 1182 (63.8%), 322 (17.4%), and 

348 (18.8%), respectively. The 10-year fracture incidence rates for each group 

were 5.9% for LL, 11.2% for LH, and 24.4% for HIGH, indicating higher rates in 

groups with elevated BpVF scores. The LL group, which had the lowest BpVF 

scores, demonstrated a distinction in fracture rates when further stratified by 
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GpVF scores. Furthermore, the LL group was observed to be the youngest, with 

the highest average height and weight (160.3 cm and 62.2 kg), compared to the 

LH (156.5 cm and 59.7 kg) and HIGH (154 cm and 57.0 kg) groups (p < 0.001). 

Among those groups, bone mineral density showed a significant difference. 

Distinct clinical characteristics among these groups are detailed in Table 3.  

 

Figure 19 (A) Fracture scores distribution in our test set. (B) Time-dependent trajectory 

of image-based fracture scores in different risk groups (C) Bone mineral density in 

different risk groups 

 
Table 3 Clinical characteristics of different risk groups 

 Low/Low Low/High High 

Group n 1182(63.8) 322(17.4) 348(18.8) 
Prevalent fracture (%) 89(7.5) 41(12.7) 267(76.7) 
Incident fracture (%) 70(5.9) 36(11.2) 85(24.4) 

Woman (%) 693(58.6) 251(78.0) 276(79.3) 
Age 63 ± 7.6 71 ± 5.8 71 ± 7.7 

Height 160.3 ± 8.5 156.5 ± 7.3 155.6 ± 8.8 
Weight 62.2 ± 10.3 59.7 ± 9.5 58.0 ± 10.3 

BMI 24.1 ± 3.0 24.4 ± 3.5 23.9 ± 3.6 
FRAX MOF 0.06 ± 0.04 0.08 ± 0.05 0.1 ± 0.06 
FRAX HF 0.02 ± 0.02 0.03 ± 0.03 0.05 ± 0.04 
FNBMD 0.69 ± 0.18 0.64 ± 0.15 0.59 ± 0.14 
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Previous fracture 30(2.5) 16(5.0) 86(24.7) 
Glucocorticoid  66(5.6) 11(3.4) 24(6.9) 

Rheumatoid arthritis  34(2.9) 13(4.0) 14(4.0) 
Secondary osteoporosis  22(1.9) 5(1.6) 11(3.2) 

 

Kaplan-Meier curves and the log-rank test showed significant p-values for risk 

group comparisons (p < 0.001 for all other group comparisons). 

 

Figure 20 Kaplan Meier plot for risk stratification using pVF scores at baseline and after 

10 years. Categorization of three risk groups using the following criteria: Low-Low (LL) 

for individuals with both low BpVF and GpVF scores, Low-High (LH) for those with low 

BpVF scores but high GpVF scores, and HIGH for individuals with high BpVF scores. 

These risk groups were established by applying cutoff points of 0.5 for BpVF and 0.6 for 

GpVF. Notably, the log-rank test yielded significant p-values for group comparisons: p < 

0.001 for all other group comparisons 
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A Cox regression analysis revealed that, compared to the LL group, individuals in 

the LH and HIGH groups had 109% and 391% increased risks of fracture, 

respectively (hazard ratios [HR] of 2.090 and 4.911; P=<0.001 for all). These risk 

groups remained significant predictors of fracture risk when clinical variables (age, 

sex, and BMI) or FRAX major osteoporotic scores were included (HR of 1.598 

and 3.726 for clinical variables, and 1.643 and 3.235 for FRAX, respectively; 

P=<0.05 for all). The chi-square for the likelihood ratio in the Cox model 

improved when stratifying risk into three groups compared to using only BpVF 

with a 0.5 threshold (Likelihood ratio Chi-square 81.07 vs 97.9; p<0.001). 

 
Table 4 Univariate and multivariable analysis for Cox proportional hazard regression 

models on the predictors of incident fracture in the clinical test set 

Predictors 

of 

incident 

fracture 

Univariable model Multivariable model 1 Multivariable model 2 

  
Hazard Ratio 

(95% CI) 

P 

value 

Hazard Ratio 

(95% CI) 

P 

value 

Hazard Ratio 

(95% CI) 

P 

value 

Risk 

group 
            

LL 1.000 (Ref)  1.000 (Ref)  1.000 (Ref)  

LH 
2.090(1.396,3.1

31) 

<0.00

1 

1.598(1.044,2.4

48) 
0.031 

1.643(1.090,2.4

76) 
0.018 

HIGH 
4.911(3.574,6.7

50) 

<0.00

1 

3.726(2.622,5.2

96) 

<0.00

1 

3.235(2.289,4.5

72) 

<0.00

1 
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Age (per 

1-year 

increase) 

1.064(1.046,1.0

82) 

<0.00

1 

1.036(1.016,1.0

56) 
0.002   

SEX 

(female 

versus 

male) 

1.846(1.283,2.6

57) 

<0.00

1 

1.466(1.014,2.1

21) 
0.063   

BMI (per 

1kg/m2 

increase) 

0.986(0.943,1.0

31) 
0.542 

0.987(0.946,1.0

29) 
0.443   

FRAX 

major 

osteoporo

tic (per 1 

SD 

increase) 

1.663(1.528,1.8

1) 

<0.00

1 
    

1.461(1.324,1.6

12) 

<0.00

1 

C-index 
Clinical (Age,Sex,BMI): 0.654  FRAX: 0.690 Risk group alone: 0.675  

Model1: 0.700  Model2: 0.727 

Likelihoo

d ratio 

chi-

square 

Clinical (Age,Sex,BMI): 61.0 FRAX: 93.58 Risk group alone: 92.7  

Model1: 105.7  Model2: 137.0 

 

Inclusion of BpVF and GpVF scores as continuous variables in the Cox model 

showed that a 1 SD increase in fracture scores (0.1 point) was significantly 
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associated with increased fracture risk (HR of 1.824 with 95% CI 1.601–2.079 for 

BpVF; 1.284 with 95% CI 1.093–1.509 for GpVF; p < 0.005).  

Furthermore, GRAD-CAM analysis indicated that the DCNNs were primarily 

focused on pixel values from vertebral bone regions. Notably, in cases with high 

GpVF scores, GRAD-CAM emphasized specific fractured regions as the most 

prominently changed areas. 

 

Table 5 Univariate and multivariable analysis for Cox proportional hazard regression 

models on the predictors of incident fracture in the clinical test set 

Predictors 
of incident 

fracture 
Univariable model Multivariable score-

based model 
Multivariable clinical 

model 

  Unadjusted HR 
(95% CI) 

P 
value 

Adjusted HR 
(95% CI) 

P 
value 

Adjusted HR 
(95% CI) 

P 
value 

Baseline 
pVF (per 
0.1-point 
increase) 

1.945(1.721,2.
199) 

<0.0
01 

1.824(1.601,2.
079) 

<0.0
01 

  

Generative 
pVF (per 
0.1-point 
increase) 

1.583(1.362,1.
839) 

<0.0
01 

1.284(1.093,1.
509) 0.002   

Baseline 
pVF Risk 

group (Low 
versus 
High) 

4.033(3.029, 
5.369) 

<0.0
01     

Generative 
pVF Risk 

group (Low 
versus 
High) 

2.304(1.721, 
3.085) 

<0.0
01     
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Age (per 1-
year 

increase) 

1.064(1.046,1.
082) 

<0.0
01 

  1.063(1.044,1.
081) 

<0.0
01 

SEX 
(female 
versus 
male) 

1.846(1.283,2.
657) 

<0.0
01 

  1.748(1.214,2.
516) 0.003 

BMI (per 
1kg/m2 

increase) 

0.986(0.943,1.
031) 0.542   0.987(0.945,1.

030) 0.545 

C-index Baseline pVF Risk group: 0.648  Score-based model: 0.726  Clinical 
model: 0.654 

Likelihood 
ratio chi-

square 

Baseline pVF Risk group: 81.07  Score-based model: 111.2  Clinical 
model: 60.96 

 

 



37 

Ⅳ. DISCUSSION 
In this study, we developed a language-guided image generative model, Diff-X, to 

create future X-ray images and calculate baseline (BpVF) and generative (GpVF) 

fracture scores in a substantial hospital-based cohort. The survival model we 

employed successfully predicted incident fractures over a 10-year period. 

Furthermore, our analysis demonstrated the effectiveness of risk group 

stratification based on these scores. We found that dividing the cohort into three 

risk groups (LL, LH, and HIGH) significantly improved the likelihood ratio chi-

square values compared to binary stratification using only BpVF, alongside 

demographic information. Notably, each of these three risk groups maintained its 

predictive independence even when the FRAX score was incorporated into the 

Cox model. 

This study underscores the potential of generative models for predicting fracture 

risk from X-ray images and visualizing the possible evolution of spinal conditions. 

The use of generative models like Diff-X offers a novel approach to risk 

stratification, potentially enhancing the accuracy and utility of clinical decision-

making in the context of osteoporotic fracture risk. 

The generative model, "Diff-X", was developed by adapting the "Play and Plug" 

model [47] which is a framework for text-to-image synthesis in the context of 

image-to-image translation. We modified this model to use low-resolution images 

and different positions of feature insertion. The original model [47] highlighted 

challenges with texture-less images and latent encoding of dominant low-

frequency appearance information in the DDIM scheduler. In our experiments, we 

observed that without preserving the original semantic layout, the details in X-ray 

images, such as spine structure, soft tissues, and vertebrae count, were easily 
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altered by text prompts and random seeds. To address this, we incorporated a low-

resolution version of the original image into the first LDM, thereby improving the 

reconstruction quality of baseline X-ray images. Furthermore, the previous 

study[47] mainly focused on RGB three-channel images, such as human figures, 

buildings, and scenes. Our study investigated adapting this framework to one-

channel grayscale medical images. Through modifications, we demonstrated that 

our text-guided image generative model could produce potential future images 

based on baseline images. 

Few studies have focused on predicting temporal changes in medical images due 

to uncertainty. While GANs [66] and mathematical models [67] have been used to 

synthesize realistic data with time changes, they often pose challenges in training 

and clinical applicability. Our diffusion-based generative model approach 

addressed these issues. Pinaya [44] used diffusion models to generate different 

brain T1 MRI images and structural volumes guided by numerical data 

(coefficient 0.692). Our research also demonstrates the potential of diffusion-

based generative models for fracture risk stratification and guiding individualized 

therapies for fracture prevention. The applicability of these models in medical 

imaging is an active area of research, as seen in the proceedings of MICCAI 2023 

and advancements in Text-to-image generation techniques by OPEN AI's 

"DALLE 3" [68] and ChatGPT [69, 70]. Further studies are needed to validate 

their clinical utility. 

For input baseline X-ray images, we included extra-spinal regions to train our 

model. While spinal fractures are primary considerations, soft tissues and muscles 

are also critical for predicting fracture risk, as osteoporosis has strong correlations 

with fat and muscle. [71-74] In unpublished experiments, we observed X-ray 
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images' potential to predict body composition parameters from CT images. As 

indicated by SHAP values [75], skeletal muscle density along with the density and 

area of subcutaneous fat, are indicators of osteoporosis risk. Therefore, using 

entire X-ray images was more appropriate than focusing solely on the spine. 

 

Figure 21 SHapley Additive exPlanations (SHAP) value of prediction models using CT 

body composition parameters to predict the presence of osteoporosis. BMI, body mass 

index; SMA, skeletal muscle area; SMD, skeletal muscle density; VFA, visceral fat area; 

VFD, visceral fat density; SFA, subcutaneous fat area; SFD, subcutaneous fat density; 

BD, bone density. 

Table 6 Prediction performance of body composition using X-ray images 

  
High visceral 

fat 

Low muscle 

mass 

Low muscle 

desity 

Low bone 

density 

Low 

subcutaneous 

fat 

CXR-

Clinical 

0.921 

(0.911,0.929) 

0.799 

(0.783,0.816) 

0.862 

(0.848,0.875) 

0.863 

(0.849,0.877) 

0.923 

(0.912,0.933) 
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Deep learning models in musculoskeletal research need to be clinically applicable 

and provide added value. [35] Assessing the quality of generative models, 

including GANs and diffusion models, typically involves human evaluation. [76-

78] For our model's reliability, we employed the VERTE-X pVF model to 

compare real follow-up and generative images objectively, without human 

intervention.  

Based on the uncertainty calculated by GpVF, young age individuals showed a 

wider range of potential developments in the fucture, with scores more broadly 

distributed, whereas the certain group shows more consistenct results. Further 

research is needed to uncover the implication of the overall data distribution on 

the study results. 

Our baseline and generative pVF scores can be computed in a minute, including 

the generation of future potential images. In South Korea, the General Health 

Screening Program (GHSP) [79] covers a comprehensive assessment, including 

X-rays and clinical variables like age, sex, and BMI. Our systemized model could 

leverage these data to establish an efficient warning system for fracture risks. 

Interpretability is crucial in data-driven models, particularly in healthcare. [80] In 

our study, X-ray images were generated to visually explain potential future 

developments and the severity of spine conditions. Additionally, the pVF scores 

from baseline and generative images effectively stratify fracture risk groups, 

enhancing the clinical utility of these models. 

Communicating risks to patients is critical aspect of ensuring informed consent in 

clinical practice. [81] Clinicians often face challenges when patients’ make 

choices contrary to their long-term health goals, influenced by various factors like 

financial constraints or personal habits. [82] Fractures, as a long-term health 
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concern, require specific strategies to improve patient understanding of associated 

risks. Utilizing positive and negative case outcomes and appropriate visual aids is 

recommended. [81, 83, 84] Our generative images could serve as such aids, 

providing tangible visualizations of a patient's future health status. By aligning 

these images with a patient’s specific risk group, clinicians can offer tailored 

therapies for fracture prevention and communicate risks more effectively. 

 Our model demonstrated superior performance in predicting incident fractures 

compared to previous studies. [31, 32] Hsieh’s research, which used deep learning 

to calculate hip and spine BMD scores, did not account for time effects on 

incident fracture prediction and was limited to lumbar spine images. Kong’s 

research, while predicting incident fractures using lumbar spine radiographs (c-

index: 0.612), did not consider other spine areas such as thoracic, sacrum, and 

cervical regions. Our study’s risk stratification Cox model achieved a c-index of 

0.679, which improved to 0.729 with the addition of clinical variables. The 

likelihood ratio chi-square was also higher in our models. Although the fusion of 

image data and clinical metadata has been effective in other contexts[85], it did 

not significantly improve performance compared to image-only models for  some 

tasks.[86] Our findings suggest that while imaging data are crucial for detecting 

prevalent vertebral fractures and osteoporosis, clinical features may provide only 

minimal additional benefit. However, integrating imaging data with clinical 

metadata might improve the model's performance in predicting incident fracture 

risk, as clinical risk factors have been shown to enhance fracture risk prediction 

when added to bone density. [87]  

Kaplan-Meier plots and hazard ratios from the Cox model indicated that the 

highest risk group was HIGH, followed by LH, and LL, with significant 



42 

differences. The higher-risk groups were older, had lower BMD, and had higher 

FRAX scores, consistent with clinical expectations. [88] This suggests that our 

generative model can create age-related images aligned with clinical risk factors. 

Our results can be integrated into clinical practice to stratify patients at high risk 

of incident fractures. While BMD is a key fracture predictor, DXA scans can 

sometimes be unreliable.[89] Our findings suggest that X-ray images, a common 

diagnostic tool, could help identify future fracture risks. 

In evaluating the cost-benefits for incident fracture detection using BpVF and 

GpVF scores, it becomes evident how much the current FRAX-based fracture risk 

assessment process can be improved. Generally, in fracture risk measurement, a 

FRAX Major Osteoporotic Score above 20% indicates a very high risk of fracture. 

An examination of this in a test set of 1,852 individuals classified 53 as high-risk 

and 1,799 as low-risk for fractures. Of these, 21 fractures occurred in the high-risk 

group, while 170 fractures occurred in the low-risk group. When projected onto a 

group of 100 individuals, although 10 people experienced fractures, appropriate 

treatment was administered in only 1 case, leaving 9 untreated. However, 

additional classification of the 1,799 untreated individuals using BpVF and GpVF 

scores could potentially enable treatment for another 635 individuals. Of these, 

105 actually experienced fractures, facilitating treatment for about 70% of the 

total fracture group. Additionally, the treated group, including those without 

actual fractures, had statistically significantly lower Bone Mineral Density (BMD) 

than the untreated group, suggesting that these individuals could be considered at 

risk of fracture due to low BMD. The overall integration of GpVF into FRAX 

lowered the specificity for incident fracture detection due to the expanded 

treatment group. However, the sensitivity metric, as well as the F1 score which 
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considers both precision and sensitivity, showed a progressive increase. This 

indicates a more accurate identification of the fracture group. 

Overall, our language-guided diffusion model designed to generate follow-up X-

ray images of patients over aging and calculate personalized Verte-X pVF scores 

based on both baseline images and generative follow-up images. Based on our 

research, the calculated pVF scores represented a quantified assessment of 

fracture risk. Clinicians can use those data driven-scores to design different 

"personalized treatment plans" for each patient. While the current study has 

effectively demonstrated the use of pVF scores for stratifying risk groups, further 

research is required to determine which specific medications and treatments are 

most effective in accordance with the generated scores. 

This study has several limitations that warrant consideration. Firstly, the cohort 

was derived from spine radiography data at tertiary-level institutions, which may 

limit the generalizability of our findings. External validation in primary care 

settings is needed to confirm the applicability of our results to a broader 

population. Additionally, to ensure the clinical relevance and quality of the dataset 

labeling process, we restricted our derived set to 26,299 X-ray scans from 9,276 

individuals aged 50 and older who had follow-up spine X-rays. Consequently, 

data from about 40,000 individuals younger than 50 or without follow-up X-ray 

scans were not included. Expanding the dataset to include these individuals could 

potentially enhance the performance and robustness of the models. 

Another limitation is that the study population was exclusively Korean, so the 

models should be tested on non-Korean populations to evaluate their universal 

applicability. Moreover, we did not grade the severity of vertebral fractures at the 

current stage of our research. A more detailed labeling process for fracture 
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severity and subsequent analysis of the correlation between VERTE-X pVF scores 

could provide deeper insights into the interpretation of these scores. 

Finally, to simplify the preprocessing steps, we solely used lateral spine 

radiographs. Incorporating posterior-anterior views could unlock new possibilities 

and potentially strengthen our results; however, this aspect requires further 

investigation. [90] 
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Ⅴ. CONCLUSION 
 

In conclusion, our diffusion-based, language-guided image generative model 

successfully generated future images and calculated baseline and generative 

fracture scores in a large hospital-based cohort. The survival prediction model 

demonstrated enhanced performance in predicting incident fractures over a 10-

year period. Furthermore, our analysis revealed that a three-group division 

significantly improved the likelihood ratio chi-square values compared to a binary 

stratification based solely on BpVF and demographic information. 

This study underscores the potential of generative models in predicting fracture 

risk from X-ray images and in visualizing the potential progression of spinal 

conditions. 
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Korean Abstract 

 

언어 유도 척추 측면 X-ray 생성모델을 활용한  

환자 맞춤형 골절위험도 예측 연구 

 

<지도교수 홍남기, 김휘영> 

 

연세대학교 대학원 융합의학과 

조상욱 
 

서론: 골다공증과 골절은 고령사회에서 사망률 및 이환률, 의료비용지출을 

초래하는 주요질병 부담 중 하나이다. 효과적인 진단도구와 약물이 존재함에도 

불구하고 치료를 받지 못하고 있는 환자가 40% 달하는 만큼 치료가 필요한 

위험군을 효과적으로 스크리닝하여 낮은 진단율과 치료율에 대한 개선이 필요하다. 

본 연구는 언어를 기반으로 가이드를 줄 수 있는 측면 X-ray 생성 모델을 구축하고, 

생성된 이미지를 활용한 환자 맞춤형 골절 위험도를 예측하여, 골절 위험군을 

나누어 개선 여부를 검정하였다.  

 

연구방법: 모델구축 코호트는 2007년 1월 부터 2018년 12월까지 세브란스병원을 

방문한 환자 중 측면 X-ray를 촬영한환자로 구성되었다. 미래에 발생된 척추 골절은 

첫 방문 이후 추적관찰을 통해 정의되었다. 미래 이미지의 생성 모델은 두개의 

확산모델로 구성되어 있고, 첫번째 모듈은 기존 이미지에서의 특징을 추출하고, 

두번째 모듈에서는 언어 가이드를 입력 받아 이미지 생성한다. 초기 영상과 생성된 

10년 후 영상에서 VERTE-X pVF 점수를 계산하고 (0~1점), 이를 기반으로 4개의 
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골절 위험군 (LL, LH, HIGH)으로 나누어 콕스비례위험모델을 활용한 골절 

위험도를 예측한다.  

 

결과: 총 9,276 명의 29,307장의 영상이 수집되었고(평균나이 65.7 세, 여성비율 

66%), 평균 34.8 개월의 추적관찰기간동안 9.9%의 대상자에게서 골절이 

발생되었다 (921 명 골절 발생). 추적관찰에서 얻은 영상과 만들어진 영상 간 pVF 

값의 차이는 0.06 ± 0.2 로 0.655의 상관계수를 보이고 있다. LL그룹 대비 LH그룹, 

HIGH그룹에 속했을 때 골절발생위험도가 각각 109%, 391% 증가하였고 (위험비 

[HR], 2.092, 4.911; P=0.001), 위험 그룹을 나이, 성별, 체질량지수로 이루어진 기본 

모델에 추가하였을 때 모델의 적합도를 유의하게 개선 시켰다 (likelihood ratio  

105.7, p <0.001). 골절 위험 그룹의 골절 예측력은 기존 FRAX 점수를 보정하였을 

때에도 독립적으로 유의하였다. (위험비 [HR], 1.461; P=<0.001) 

 

결론: X-ray와 기본 임상정보를 활용한 미래영상 생성과 pVF 점수는 개별화된 골절 

위험도를 도출하고 추가비용없이 골절 예측력을 개선시킬 가능성이 있다.  

 

핵심어: 골절위험도 예측, 골절, 확산모델, 딥러닝 예측 모델 
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