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Abstract

Medical cost modeling presents many challenges because available data are often
right-censored due to early termination or follow-up loss of data observations. The
prevailing methods for estimating the average of cumulative costs fall into three categories,
(a) the inverse probability weighted (IPW) estimators; (b) the generalized survival-adjusted
estimators; (c) the joint-modeling methods. However, under violation of independent
censoring assumption, traditional survival analysis methods have been shown to be biased

when employed on medical data.

However, the prevailing methods were established under independent censoring.
Generally, the medical costs for failure event and censoring time tend to be positively
correlated (Etzioni et al. 1999; Lin 2003). Therefore, it is necessary to consider the joint
distribution of survival and censoring time under dependent censoring. Copula function is
attractive in statistical modeling because it gives a flexible and promising tool to modeling
with dependence between survival and censoring time. For analysis of survival under
dependent censoring, we use the copula-graphic estimator and copula-based univariate Cox

regression employed an assumed copula.

In this study, we evaluate the prevailing methods for estimating the medical cost under
independent censoring assumption. Also, we proposed new estimators that are expanding
scheme on IPW and generalized survival-adjusted estimators under dependent censoring

assumption. The purpose of this study is to adapt the copula method to estimation medical

Vi



cost with survival data including dependent censoring. We evaluate our proposed
estimators with a series of simulations. We conduct a simulation study assuming various
scenarios to appraise the performance of bias and S.E in estimation of medical costs for
dependent censoring. In addition, we illustrated the prevailing and proposed method using

National Health Insurance Service National Sample Cohort (NHIS-NSC) data.

Keywords: medical cost, dependent censoring, copula models, copula-graphic estimator,
copula-based Cox regression, IPW method, generalized-adjusted survival estimation, joint-

model
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1. Introduction

In recent years, it has become common for hospitals, health insurers, or disease
registries to collect data of medical cost to determine risk or economic burden and perform
cost-effectiveness analyzes. However, medical cost modeling presents many challenges
because available data are often right-censored due to early termination or follow-up loss
of data observations. Considering medical cost as right-censored survival data, it is natural
for researchers to use survival analysis technique for analysis with censored cost data such
as the Kaplan Meier estimator, log-rank test, and Cox regression. However, under violation
of independent censoring assumption, i.e., the medical cost at the censoring time points
correlates with the cost of failure events, traditional survival analysis methods have been
shown to be biased when employed on medical data. In order to solve this problem, much
attention has been paid to the problem of estimating the average of cumulative costs. The
prevailing methods fall into three categories, (a) the inverse probability weighted (IPW)
estimators by Bang and Tsiatis (2000) and Lin (2003); (b) the generalized survival-adjusted
estimators by Lin et al. (1997) and Basu and Manning; (c) the joint-modeling methods by

Heitjan et al. (2004) and Liu (2009), Liu et al. (2007, 2008).

However, the prevailing methods were established under independent censoring.
Generally, the medical costs for failure event and censoring time tend to be positively
correlated (Etzioni et al. 1999; Lin 2003). Using the most standard survival analysis

methods for calculation cumulative medical cost provide biased results under the



assumption of dependent censoring. Therefore, it is necessary to consider the joint
distribution of survival and censoring time under dependent censoring. Copula function is
attractive in statistical modeling because it gives a flexible and promising tool to modeling
with dependence between survival and censoring time. For analysis of survival under
dependent censoring, we use the copula-graphic estimator instead of Kaplan-Meier
estimator. This method employs an assumed copula. To avoid the non-identifiability,
copula function and its dependency parameter should be completely specified. Emura and
Chend (2016) showed the biased estimation of Cox regression due to violation of
independent censoring assumption. So, we use the copula-based univariate Cox regression
proposed by Emura and Chen (2016) for correctly capturing the effect of covariate under

dependent censoring.

In this paper, we evaluate the prevailing methods for estimating the medical cost under
independent censoring assumption. Also, we proposed new estimators that are expanding
scheme on IPW and generalized survival-adjusted estimators under dependent censoring
assumption. We evaluate our proposed estimators with a series of simulations. The purpose
of this study is to adapt the copula method to estimation of medical cost with survival data
including dependent censoring. In Section 2, we briefly review the prevailing methods for
estimating the medical cost under independent censoring assumption. In section 3, we
illustrate the dependent censoring’s issues arising from medical research. The Secsion 4
provides copula models’ mathematical infrastructures for applications to survival analysis

under dependent censoring. In Section 5, we propose a class of estimators under dependent



censoring using copula model which build on the censored medical cost estimators defined
in section 2.2 and 2.3. In Section 6, we evaluate the performance of the proposed estimators
adopted for censored medical data via a simulation study. Section 7 illustrated the
application of our proposed estimators with the prevailing estimators to the analysis of real

data example. We discuss our results and provide some conclusions in Section 8.



2. Estimating medical cost with censored data

Estimating medical costs have a common problem due to incompleteness of follow-
up data. Naive summary statistics including simple average on the collected data can
mislead to statistical inference and introduce bias. So, this section focuses on the problem
of estimating medical costs if the cost data are right-censored. The prevailing methods fall
into three categories, (a) the inverse probability weighted (IPW) estimators; (b) the
generalized survival-adjusted estimators; (c) the joint-modeling methods. In this section,
we review the methods for estimating censored medical cost under independent censoring

assumption.

2.1 Notation and assumptions

First define a general setting and notation for our problem. Let the random variable
M represent the total medical cost over some specified period of time and denote it as a
random variable T represented the survival time. If necessary, the time frame for
evaluating each patient should be limited to . Therefore, we should consider the costs M
paid by a patient up to a maximum of t units of time. In that case, the variable T is

bounded by 7. The distribution of T is assumed to be continuous from 0 to .

We can obtain the cost M for each patient and estimate the mean cost by computing

simple average cost denoted by u = E(M) when all patients have been observed for at



least 7 units of time. However, in most studies, not all patient costs are completely
observed due to different types of censoring. For instance, censoring may occur because
patients enter the study at a time lag, in which case patients exiting the study who were not
followed up for T units of time would be censored. This type of censoring is called
administrative censoring. Also, censoring may occur when patients are lost to follow-up or
leave the study. Let C be the censoring time. In this section, the censoring is assumed to

continuous distribution and arise in a completely random.

M (u) denotes the cumulative cost up to time u realizing that information about costs
may be available at random points in time. Write X = min(T,C),A=1(C = T), S(t) =
Pr(T >t),K(t) = Pr(C >t) where I(-) is the indicator function. Let M; = M(T)
denotes the lifetime cost which cannot be observed for all patients due to the limitation of
study duration. Thus, we focus on the total cost accumulated in interesting time period (0,
7]. In addition, we need to divide (0, 7] into K intervals (tx_q,tx],(k =1,2,...,K).
Write T*=min(T, t)and A*=I(C = T*) where I(-) isthe indicator function. Let M, =
M(t,) and my, = M — Mj,_, . The subscript i indicates individual patients i =
1,2,..,n and M; = M(T;") denote the total cost for each patient i. In regression, Z is

the set of p x 1 covariates vector with parameter vector f.



2.2 Inverse probability weighted estimator

The idea of weighing the complete observations by their inversed probabilities
initiated by Horvitz and Thompson (1952) in sample survey. Bang and Tsiatis (2000)
employed IPW method to account for informative censoring when estimating the mean of
total medical cost. As regards independent censoring, the ith individual has a probability
K(T;) of not being censored at the time of death T;. Thus, each person observed to die
uncensored represents, on average, 1/K(T;) individuals who may have been censored.

The simple weighted complete-case estimator (BT) of mean of total cost E(M;) is

R _12" A M;
BT = 0 L R(T7)

They proposed to estimate the unknown survivor function K(-) by the Kaplan-Meier

estimator (Kaplan and Meier, 1958). That estimator is

R@) = n{l - dg(cg)},

ust

where N¢(u) = X I(T{ <u,A;=0) and Y(u) =X I(T; = w).

This is an unbiased estimate of p, which is a result of the following equality:
n
1IN AlM; 1 *M.
LW CORE T
nLai=1K(T;) n 4 K(T?)

i=1
1w~ M .
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The variance of figr is given by

. 1 A;(M; — figr)® fdNC (W) A
Var(dgr) = E[nZTTJ-FnL R2(w) {G(Mz,u) - GZ(M,u)} )

A;MI(T;
where G(M u) —;mzn #

and S(u) is the Kaplan-Meier estimator for
S(u) = pr(Ty = u). Then, given T* =min(T{, &), 0% = {T;* <}, K sub
intervals (t;,tj+1] G = 1,2,..,K — 1) of (0, 7], the partitioned version (BT,) of more

efficient estimator is

M () — Mi(te-1))
fipr, = Z Z R

i=1k=

This partitioned estimator makes use of censored observation's cost history which are not

used by the unpartitioned estimator.

The same scheme is used when building regressions of right censored medical costs
on covariates. Lin (2000) modified linear regression form E(M;|Z;) = B'Z; for
informative censoring using the IPW method. The resulting estimator for above equation

A;(Mi—B'Z;)z;

is calculated by the weighted estimation function I, R
i

=0, where K(T}")

is the Kaplan-Meier estimator for K(T;"), is given by

1
n — n / n
B= (St zi) gtz
The partitioned estimator including the cost history of censored patients is used under the
model of E(My;|Z;) = B}Z;, where By is p x 1 vector of unknown parameter for each

interval k. Then the estimator for B, in each partition is



n *k -1 *k
B = ZA—iz.z'. Zn Lm 7.
g R(17%|z,) """ =1 R(T7%|z;) "

i=1 t

where K(t|Z;) could be derived via a proportional hazards model or use another
consistent estimator that allows in that way for censoring dependent on covariates instead

of using K(T;).

2.3 Generalized survival-adjusted estimator

In this section, the generalized survival-adjusted estimation method is performed by
extending the Lin et al. (1997)’s work in a more direct way. To solve the informative
censoring, we should divide time period into K intervals. The original estimator form of

Lin et al. (1997) is
K ~ ~
Uping7 = Z Sk-1Ex
k=1

where E), is the estimator of E, = E(my|T* > tx_;) and S, is the Kaplan-Meier

estimator of S = Pr(T* = t).

Basu and Manning (2010) extended the estimator proposed by Lin (1997) to take
covariates into account when the cost history data is available. First, they decomposed
Ex = hypq + (1 — hy)pp which incorporate the different cost accumulation rates over
the intervals where the patient dies and survives where hy = Pr (t,_; < T < t;|T =

tx—1) is the hazard rate of death during the kth interval, pq, = E(my|ty—_1 <T < ty)



and Uy, = E(mg|T > t;) are the mean of incremental costs for patients who died during
or after the kth interval, respectively. Then, the mean estimator on covariates proposed by

Basu and Manning (2010) is
AZ) = 251 5@ @@ + (1 - (D)) i (D),

where $,(Z) and hy(Z) can be derived from accelerated failure time (AFT) model and

1k (Z) and f[i;;(Z) from certain generalized linear model (GLM).

Under the assumption of random censoring, the process of estimation follows under

three parts:

(a) Part-1: Estimate an individual's survival function after accounting for censoring using
a flexible survival model, like an accelerated failure time model based on a generalized
gamma distribution over time. Let S;(Z) and h,(Z) be the estimated survival and
hazard functions for an interval (Notation for individuals has been suppressed for clarity.)

We can get predictions obtained for all time periods for all patients.

(b) Part-2: Among those subject intervals, (t,_q, ti], where we observe the subject dying,
ie., where t_4 <T <t,&A,=I(min(C,T)=T)=1, we estimate through a
generalized linear model (or two-part model which specification is necessary) for the
observed costs after conditioning on covariates Z and U, (as death can occur anywhere
in the middle of the interval, so the time of death is continuous), where U, = t, —

tgeq If T=tg or Uy, =T —ty_q ifty_1 <T < tg. Predict the costs f1,,(Z) for every



subject interval in the data using the parameter estimates from this model. To illustrate the
stochastic nature of U within that interval (i.e., to account for costs if the patient died
within that interval but at different times), we weighted the observed distribution of U
between intervals observed that the patient died, and then averaged the conditional

prediction for each value of U. That is, f1,(Z) = [ 1x(Z, u)dF(U|tk < TOPs < tk+1).

(c) PART-3: Next, among the subject intervals (t;_q,t;], where no patients are observed
to die but only costs are observed during a partial period due to censoring is excluded,
estimate a generalized linear model (or model if a two-part specification is required) for
the observed cost function, conditional on the covariate Z. Parameter estimates of this
model are used for all subject-intervals in the data to predict the costs fi,,(Z). As in the
Bang and Tsiatis (2000) estimator, the estimation of this part does not use the subject-

interval where censoring occurs, so continuous censoring time can be effectively allowed.

(d) The estimated cost function for interval k for any individual is given as

(@) = S @D @)ne(@) + (1= h(2)) i (D] and ((Z) = Th_y 1 (2).

From the perspective of the approach used to estimate mean accumulated costs, it is
necessary to re-emphasize the major differences between the IPW method described in
Section 2.2 and the generalized survival adjustment estimates presented in this section.
The former uses interval-based trajectories, cost histories, or total costs to accumulate
individual specific costs and then calculate the average over patients. Thus, it is

characterized by a minimal data case. Whereas, the methods described in this section are

10



averaged by the probability of survival after summing the cost over time intervals. To this

end, they are generally characterized by interval data cases.

2.4 Joint-modeling method

The covariate effects on the total accumulated cost can also be realized through the
accumulation intensity of the cost and survival. Therefore, it would be useful to integrate a
regression model for cost with survival information. In this section, it is attempted by a

joint modeling approach of both survival and medical costs.

Heitjan et al. (2004) considered the joint distribution of survival and medical cost under
the assumptions of Weibull distribution for survival and gamma distribution for medical

cost:

@ ew[-@)]

fr) = 7 ,

(t>0,a>0,1>0) and

(v/w)’c’ exp (—ve/w)
I'(v) ’

felo) = (c>0,v>0,u>0),

where the mean cost y and survival time T have a linear relationship, ¢ = a + bT. In
the presence of informative censoring, the joint distribution of cost and survival time is
derived through Bayesian method. This estimation method had a assumption that censoring
is independent of cost and survival. So, they derived the likelihood function of the joint

distribution for estimation under ignore of the informative censoring.

11



Liu et al. (Liu et al. 2007, 2008; Liu 2009) implemented the idea of jointly modelling
employing a shared random effects model. Let v; be random effect which has a parametric
distribution and affects both cost and hazard rate. The joint model of cost and death in

interval k for subject i is written as
My = B'Zy; +61v; + ey
Ai(6) = Ao (O)exp (V'Z; + 6,v;)

where B,y,0; and 6, are unknown parameters and ey ; is the error, and A;(t) is the
hazard for death with A,(t) baseline hazard. Because the presence of a shared random
effects term, v;, makes it easy to see that survival and medical costs are correlated, the

model should jointly derive estimators for both the cost and survival functions. Write m; =

~.

{m;(1), ..., m;(K)} as the observed history vector of medical cost up to K for subject

For estimation, we should construct the joint log-likelihood for new observed data O; =

{ﬁ,Xi,Ai} and v; as
= lOgL (ﬁ,Xi,Ai,vi)
= Yk=1[logL(m;(k)1X;, A, v;) + logL(X;, Ailvy) + logp(v)],

where p(v;) is the density function. Assume that v; YN (0,02) and use EM algorithm
to obtain maximum likelihood estimation (MLE) for parameters 8 = {B,y, 8,8, 02,52}

because v;s’ are unobserved. First M step, take the first derivative and second derivative

12



of [* with respect to parameters 6. In the E-step, we can use Metropolis-Hastings (M-H)
algorithm to generate M random numbers vi(m) (m =1, ...,M) and then obtain estimated
expectation value of the sufficient statistics involving frailties. For example, E(v;]0;) =

a/MmyM_, vi(m). And they used Louis’s formula to calculate the information matrix for

likelihood of observed data. The observed information matrix 1(8) is

N Aol
0,0} + £ {55

0.3}

All three terms are evaluated on the last iteration of the EM algorithm where the last term
of the MLE is zero. The first two expectations can be calculated through averaging for the

corresponding term containing the M-H values.

13



3. Dependent censoring

If the mechanism of censoring involves dropout or withdrawal due to worsening
symptoms, censoring may introduce bias at the results of statistical analysis. This type of
dropout is often mentioned to as informative dropout. Informative dropout is one of many
causes of censoring. More generally, when the time of an event of interest is censored by a
mechanism associated with the event, this phenomenon is referred to as dependent
censoring. Most standard survival analysis methods provide unbiased results under the
assumption of independent censoring. Therefore, if it is not independent censoring, it is

necessary to pay attention to the survival analysis.

In a cancer follow-up study, survival time may be censored because of dropout due to
tumor progression, toxicity, and initiation of next treatment, etc. So, overall survival and
censoring time may be positively correlated because patients may usually die soon after
dropout. This dropout leads to informative censoring and can have a detrimental effect on
data analysis. For example, many terminally ill patients dropped out of clinical trial for stay
in their home. This means that data collected from clinical trials not catch many observable
deaths. As a result, Kaplan—Meier survival curves that treat these patients as censored may

make upward bias.

Dependent censoring is applied to situations where the dependence between censoring
and survival time is not accounted by observable covariate. That is, dependent censoring

results from residual dependency which is not adjusted by covariates. In a sense, collecting

14



as many covariates as possible can reduce concerns about dependent censoring. For
example, late-stage cancer patients are more likely to have shorter survival time and high
possibility of dropout due to tumor progression, which confers a positive dependence
between survival and dropout time. Therefore, cancer stage that is one of the covariates can

achieve conditional independence between survival and dropout time.

15



4. Copula models for dependent censoring

In this section, we introduce a mathematical background to bivariate copula models
that used in survival analysis. Let T is survival time, C is censoring time, and Zz is a
vector of covariates. In addition, let Sr(t|z) = Pr (T > t|z) and S:(c|z) = Pr(C >

c|z) are the marginal survival functions given z. A bivariate survival function
Pr(T >t,C > clz) = Co{Sr(tlz),Sc(cl2)},

where a function Cy is a copula (Nelsen 2006) and parameter 6 describes the degree of

dependence between T and C.

4.1 Bivariate copula
This section provides a concise introduction to bivariate copulas. A bivariate copula is
defined as a bivariate distribution whose marginal distribution is the uniform distribution
on [0,1]. Let a bivariate copula, Cg: [0,1]? — [0,1], is indexed by a parameter . By the
definition, any bivariate copula should be satisfying the following conditions
(C1) Co(u,0) = Cy(0,v) =0, Co(u,1) =u,and Cy(l,v) =v for 0 <u <1 and
0<v<1.
(C2) Co(uy,vy) — Co(uy,v1) — Co(uq,v3) + Co(uy,v1) =0 for 0<u; <u, <1
and 0 <v; <wv, < 1.
(C1) requires the two marginal uniform distributions and (C2) requires that Cg

produces a probability mass on the rectangular region [uq,u,] X [vq, v,].

16



For a copula Cg, we can consider a pair of random variables (V,W) such that
Pr(V<uW <v) = Cy(u,v). If one defines a pair of random variables (T,C) by setting
T=5S71(V|z) and C =S;'(W]|z) , its bivariate survival function satisfies
Pr(T > t,C > clz) = Cy{S;(t|z),S-(c|z)}.

There are some copulas meet conditions (C1) and (C2):

(@) the independence copula is

C(u,v) = uv.

(b) the Clayton copula by Clayton 1978 is

1
Coluv)=w9+v?9-1)9 o>0.

(c) the Gumbel copula by Gumbel 1960 is
1
Co(u,v) = exp [—{(—logu)6+1 + (—logv)9+1}9+1] , 6 > 0.
(d) the Frank copula by Frank 1979 is

g+ 0.

1 (
Co(u,v) = —5log 1+

e 0 —1)(e % - 1)}’

e 9 -1

(e) the Joe copula by Joe 1993 is

1
Couv) =1-{-w+1-v)? -1 -wa-v}°, e=1

(f) The Farlie-Gumbel-Morgenstern (FGM) copula by Morgenstern (1956) is
Co(u,v) =uv{l1+6(1 —uw)(1 —-v)}, -1<6<1.
By Tovar Cuevas et al. (2019), the Clayton copula function models a highly

dependent asymmetric data structure with the left tail indicating that the cloud is
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expanding.
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Figure 1. Scatter plot of data under the Clayton copula with different 6.

The Gumbel copula is useful for modeling data structures that have a strong dependency
on the upper tail and a weak dependency on the lower tail, where we expect the upper

data to be strongly correlated and the lower data to be weakly correlated.

Figure 2. Scatter plot of data under the Gumbel copula with different 8.
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The Frank copula is appropriate to weak dependency with positive linear trend.
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Figure 3. Scatter plot of data under the Frank copula with different 6.

For example, figure 3 gives the scatter plots for (T3, U;), i = 1,...,500 and T and
U are with the standard exponential distribution under Clayton copula model.

Pr(T; > t,U; >u) = {(e_t)_e +(e7)7f - 1}_1/9, for 8 =2 and 6 = 8.
By letting T; = —logV; and U; = —logW; where (V;,W;), i = 1,...,500, the data set
was generated from the Clayton copula. The plots show positive dependence, where the

dependence’s levels are different by 6.
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Figure 4. Scatter plot of data (n = 500 pairs) generated under the Clayton copula with

6 =2 (19 =0.5) and 8 = 8 (7¢g = 0.8) form the standard exponential distribution

An Archimedean copula is defined as
Co(u,v) = g {dg(w) + pg (1)},

where ¢g:[0,1] — [0, 0] is called a generator of the copula that is continuous and
strictly decreasing function from ¢g(0) > 0 to ¢g(1) = 0.If ¢g(0) = lim P (t) =
oo, the generator is called a strict generator and has the inverse function ¢z*: [0, 0] —
[0,1]. The Clayton, Gumbel, Frank, and Joe copulas have a strict generator but, FGM
copula does not have a generator as it is not an Archimedean copula.

Let (V,W) be a pair of random variables that satisfy Pr(V<u W <v) =
Co(u, v). To measure of dependence between V and W, Kendall’s tau is defined as

19 = Pr{(V, = V) (V; = V1) > 0} = Pr{(V, — V)(V; — V;) < 0},

where (V4,V,) and (W, W,) also have the same distribution as (V, W). It can be

expressed that

11 11
Tg =4 j J Co(u, v)Co(du,dv) — 1 = 4 f f Co(w, v)CS" M (u, v)dudv — 1,
00 00

0

2
where C(gm] (w,v) = 5095 Co (u, v). Table 1 summarizes Ty for copulas and 74

increases with 79 =» 1 as 6 — oo,
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Table 1. Examples of copulas

Copula Parameter Generator: ¢g Kendall’s tau: 74
Clayton 6 >0 t=%-0)/6 6/(6+2)
Gumbel =0 {~log(t)}°** 1-1/6
6
Frank 60 log (=1 T] PR PRI
ran > 09\ e 0 Efet—l
0
T (1 — et)2/0-2p-2t
Joe 6>1 —log(1- (1 -1)9) 1—4f ( ;2 dt
0
FGM -1<6<1 None 26/9

4.2 The Copula-Graphic (CG) estimator

Zheng and Klein (1995) proposed the idea assumed copula while analyzing survival

data subjected to dependent censoring. They saw a bivariate distribution function of

survival and censoring time with completely specified forms of copula functions, including

parameter values. This strong assumption about the copula is imposed to make the model

identifiable.

They estimated the marginal survival function with a copula-graphic (CG) estimator

under assumed copula. The survival function estimated by the CG estimator is similar to

that estimated by the Kaplan-Meier estimator. It is reduced to a Kaplan—Meier estimator

under independence copulas. In practical applications, the CG estimator is computed

assuming one of the Archimedean copulas. Rivest and Wells (2001) proposed a simple
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expression of the CG estimator when the assumed copula belongs to the Archimedean
copula. Today, CG estimators are indispensable tools for survival analysis with dependent

censoring (Braekers and Veraverbeke 2005; Emura and Chen 2018).

Under dependent censoring, Kaplan-Meier estimator may introduce biased information
but a survival curve calculated form CG estimator gives unbiased information if copula
function between death and censoring time is rightly specified. We introduce the CG
estimator proposed by Rivest and Wells (2001). Consider random variables defied as T is
survival time and C is censoring time and an Archimedean copula model

Pr(T >1t,C > ) = ¢5 " [p{Sr()} + Po{Sc(D}],
where ¢g:[0,1] +— [0,0] is generator function, which is strictly decreasing and
continuous from ¢g(0) = 0 to ¢pg(1) = 0; Sy(t) =Pr (T >t) and Sc(c) = Pr (C >

c) are the marginal survival functions.

Let (x;,4;),i=1,..,n, be survival data without covariates, where x; =
min {T;, C;}, A= I(T; < C;), 1(*) is the indicator function. All the observed times are

assumed to distinct (x; # x; whenever i # j). The CG estimator is defined as

S50=93"| > vo(" )06 ()|, 0sr<maxcy)

n
xi<t,Aj=1
where n; = Y7_, I(t; = x;) is the number at risk at time x;; Sp(t) =1 if no death

occurs up to time t; S7(t) is undefined for t > max(x;).
l

The derivation of the CG estimator can be obtained as follows. Assume that S;(t) is
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decreasing step function with jumps at death times. Then, A;=1 implies Sy(x;) #
Sr(x; —dt) and Sc(x;) = Sc(x;—dt). Let’s set t=c=x; in Pr(T>tC>c) =
ba  [Po{Sr (D)} + Po{Sc(t)}], we have
¢ Pr(T > x;,C > x;) = ¢pp{Sr(x)} + Pp{Sc(x)}.
In the left-side of the preceding equation, estimate Pr(T > x;,C > x;) by (n; —1)/n,

where n; — 1 =Y7_, I(t, > x;) is the number of survivors at time x;. Accordingly,

n;—1
B0 (Fo) = BelSrCa} + dpfSc(x}, Ai=1

Meanwhile, we set t=c=x;—dt in equation Pr(T>tC>c)=
gt [Po{ST ()} + Po{Sc(£)}] and then estimate Pr(T > x; — dt,C > x; — dt) by n;/n.

That is,

b (%) = Po{Sr(x; — d)} + Po{Sc(x)}, A= 1.

The result in the system of difference equations is

ni—l

Pe ( ) ~%s (%) = ¢o{Sr(x))} — Po{Sr(x; —dO)}, A= 1.

n

When x; is the smallest, we can impose the constraint that S;(x; — dt) = 1. Then, the

solution of different equations is

BolSr@®} = D [BelSr()} — dolSr(xi — )}

x;<CA=1
= ZA [0 (") - 00 (39)]
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which is equivalent to the CG estimator.

When ¢g(t) = —log(t) under independence copula, the CG estimator is same to

the Kaplan-Meier estimator and given by ¢g(t) = (t7% —1)/6 for 6 >0 under

Clayton copula, the CG estimator is

so=|s 3 () -6

xi<t,A;j=1

4.3 Copula-based univariate Cox regression

Let T survival time, C censoring time, and Z = (Z, ...,Zp)’ covariate vector. The
joint distribution of T and € can have an arbitrary pattern of dependence for any given

covariate zj. Skala’s theorem by Skalar 1959 and Nelsen 2006 assures that the joint

survival function can expressed as

Pr(T > t,C>c|lz) = Ci{Sr(t]z).5c(c|z)}, j=1...p,
where C; is a copula. Under independent censoring assumption, C;(t,c¢) = tc for j =
1,..,p, thatis
Pr(T > t,C > c|z;) = Pr(T > t|z;) X Pr(C > c|z).

Emura and Chen (2016) proposed a one-parameter copula model under relaxing

assumption of independent censoring:

Pr(T >t C> C|Zj) = Cg{Pr(T > tlzj),Pr(C > C|Zj)}, j=1,..,p.
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The assumption that every j has one copula € may be strong. Nonetheless, the
copula relaxes the independent censoring assumption by allowing the user to choose the

dependency parameter 6 flexibly. For example, Clayton copula is

Co(u,v) = (u‘e +v79 — 1)_%, 6 >0,
where 6 is related to Kendall’s tau, T = %. By letting 8 — 0, the Clayton copula
model reduces to independent censoring model.
They assumed the Cox models for marginal distribution,
Pr(T > t|z) = exp{—Ao;(D)ePi%},  Pr(C> c|z) = exp{-Ty;(c)e’ %},
where f; and y; are regression coefficient and Ay; and [; are baseline cumulative

hazard functions.

The objective parameter is f3; the univariate effect of the jth covariate on survival
and other parameters which are y;, Ag; and I}; are nuisance. However, under the copula
model, the estimator of f; through the partial likelihood method is not satisfied to

consistency. For consistently estimation of parameters, the estimation method should be

full likelihood under copula and Cox models. Let

0Co(u,v)/0u  0Py(u,v)
Co(u,v) ou

DG,I (u, 17) =

0Co(u,v)/0v  0Dg(u,v)
Co(u,v) ov '’

DG,Z (u, 17) =

where  ®g(u,v) = —logCe(u,v). Denote {(x;A;z;),i=1,..,n}, where x;=

min (T}, C;) and A;= I(T; < C;), I(*) is the indicator function. Let Ag; and [y; are
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increasing step functions which have jump sizes dAgj(x;) = Agj(x;) — Agj(x; — dt) for
A;j=1 and dTy;(x;) = Tpj(x;) — Tpj(x; — dt) for A;= 0 as by Chen (2010). Define the
log-likelihood function for any given 6.

2(Bj, Aoj, Toj10)

= Z N[ Bizij + logny;(xi; Bj vj, Moy Toj10) + logdAg;(x;)]
7

+ Z(l — A)[yjzij + lognai; (xi; By ¥j» Aoy Toj160) + logd Dy (x)]
7

= D Dolexp(=Noj (e, exp(~To;(re” )],

where,
Mij (& By Vj» Noji Toj10)
= exp{—Ng;(t)ePi?i}Dy 1 [exp{—NAo;(t)ePi%i}, exp{—T,;(c)e?i%i}],
N2t B, ¥j» Aoji To16)
= exp{—T,;(t)e¥i%i}Dg ,[exp{—Ao;(t)ePi%i}, exp{—T,;(c)etii}].
The  maximum  likelihood  estimator  given 0 is denoted as
(Bj(e),;?j(e),xoj(e),foj(e)). The standard error SE{,[%(H)} is computed from the

information matrix by Chen (2010). The log-likelihood function is maximized by
optimization algorithms.
For example, log-likelihood function can be easily computed. Under the Clayton

copula,
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®g(u,v) = a™t log(u_g +v7f - 1),D9,1(u, v) = u_g_l(u_e +v7f - 1)_1, and
Do1(wv) =v 0t (u ¥ +v70 - 1)_1.
Hence,

[exp{-no;@ef?}]”
[exp{—Aoj(t)eﬁizii}]_t9 + [exp{—FOj(c)erZif}]_e -1

[exp{—l"oj(t)eﬂfzif}]_g
[exp{—AOj(t)eﬁizii}]_(9 + [exp{—l"oj(c)e”fzif}]_g -1

N2ij (& B, Vj Bojy Toj16) =
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5. Proposed method

5.1 Inverse probability weighted estimator under dependent

censoring

In section 2.2, the simple weighted complete-case estimator (BT) of mean of total cost
E(M;) and the partitioned version (BF,) of more efficient estimator are

K
. lzn MM 3iZA’5"{Mi(tk)—Mi(tk_1)}
BT n Lo R(T)) BFp néd R (1) .

i

They proposed to estimate the unknown survival function K(-) by the Kaplan-Meier
estimator under independent censoring. However, the consistency of the Kaplan-Meier
estimator is not ensured since T and C will be in general dependent (de Ufia-Alvarez and
Veraverbeke 2013). Thus, this study proposes to estimate the unknown survivor function

K(-) bythe CG estimator. That estimator is

RO=03"| Y oo(")=00(2) 0=r=ma)

t;<t,A;=0 n
where n; = Y5_; I(t, = t]) isthe number at risk at time t;.
We can derive the asymptotic properties of S(-) using martingale techniques for the
dependent censoring model and do not assume the Archimedean copula for the joint
distribution of T and C. The proof process is derived from the survival function of
survival time, but it can be transformed into censoring time if A;= 0. Instead, we assume

Pr(T >t,C > c) = Co{Sr(t),Sc(c)} which is a general copula model between T and C
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and define that the data ismade up n independent replicationsof X; = C; A T; and A=
I[X; = Ty]. So, CG estimator is biased under this model.

Let N;(t) =I[X; <t A=1], Y;() = I[X; =t] (i=1,..,n),N(t) =X~ N;(t) and
7(t) = TP, Y,(0). Then,

Mi(8) = Ni(®) — [, Yi()At(s)ds and M(t) = N(t) — [, V(s)A*(s)ds

are martingales w.r.t g-algebras Fi= o{I[X; <t, A;=1], I[X; <t, A;=0]:0 <u < t}

and F, = VL, F{, where A*(t), the crude hazard rate, is

Define the dependency between T and C by Pr(T >t,C>c) = C{S5(t),S(c))} and

then,

S()C10(S®), S(0))
c(s®), ()

A = A0

where C;y(u,v) is the partial derivative of C(u,v) w.r.t u and A(t) is the net hazard
rate which is defined by A(t) = limy,, %P[t <T <t+h|T =t]. The CG estimator for

Archimedean copula using counting process notation is given by
. rt Y(u)—1 Y(u) _
s©=¢7|[ 17 > 01{p (S ) - g (S22 e WG|
0

n

Because of ¢ (@) —¢ (M) ~ —¢'[

- |/n, one has

. o1t R0
50~ 971 [ 17 > 019t MG
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This equation is the first estimate obtained by Zheng and Klein (1994) as the solution of
the differential equation. For independent copula, ¢(-) = —In(:), the Zheng and Klein
estimate is reduced by Fleming and Harrington's proposal, which is asymptotically
equivalent to Kaplan Meyer estimate. Thus, the CG estimator for Archimedean Copulas
and Zheng and Klein’s proposal have the same asymptotic behavior.

Now, Rivest and Wells (2001) will deduce the large sample properties of CG estimator for
Archimedean copula. Because the CG estimator and Zheng and Klein’s proposal have the
same asymptotic distribution, S(t) denotes Zheng and Klein’s estimator in this section.
They do not assume that the copula for the dependence between T and C is Archimedean

copula correspond to ¢(-) used to calculate the CG estimator. Therefore S(t) =
¢! [fot I[Y (u) > 0] {d) (%) —¢ (@)} dN (u)] estimates a survival distribution

S* which is defined by

)

t
5 =g [— fo ¢’ ()T (W) dA ()

where A*(t) = fot Af(u)du is the cumulative crude hazard function and m(t) =
E(Y(t)/n), m(t) = C(S(t), C(t)). Ifthe copula for the dependency between T and C is
Archimedean, S* =S with the dependence given by ¢. The proofs involve analysis of
the martingale M(u) and the empirical process X,(u) = (1/vVn) X {I(X; <u) —

m(u)}.

First, we investigate the consistency of S(t) = ¢! [ fOtI [Y(uw) > 0] {(p (7@2—1) —
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@ (Y(u))} d N(u)] and it suffices to consider ¢(S(1)). Let 1 (s) = —s¢’(s). One has
¢ (S®)— ¢(s )

1t (u)
:—EIOI[Y(u)>O]¢< )dM()

+j0t{ [Y(w) > 0] ( > llx(ﬂ(u))]}d/\#(u)-

In the proof, — % fot 1Y (u) > 0] ¢ (y(u)) dM (u) goes to zero in probability by theorem

3.4.2 in Fleming and Harrington (1984). Let t, € (0,) and m(t,) > 0. When n is
large, I[Y(u) > 0] =1 for u € (0,t,) excepton asetwith al very small probability. The

@—n(uﬂ -0 as n—->o by Clivenko-Cantelli theorem. Hence,

SUPo<u<t,

fot {I [Y(u) > 0] [1,[) (y(u)) w(n(u))]}dA#(u) converges in probability to zero

uniformly in t if the derivative of ¥ (t) is bounded in (m(t,),1).

Theorem 1 in Rivest and Wells (2001).Let t, € (0, ) be such that n(t,) > 0.
Under the dependent censoring model given by H(t,c) = C{S(t),S(c)} where
H(-) denotes the joint survival function of (t,c) and assuming that the
derivatives of ¢(s) and of Y(s) are bounded for s € (n(ty), 1), then estimate
S(t) is uniformly consistent estimate of the marginal survival function S*(t)

n [0, ty).
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Theorem 4.1 in Zheng and Klein (1995). Suppose that two marginal distribution
functions F, G, are continuous and strictly increasing on (0, ), and the assumed
copula has density functionu > 0 on [0,1] X [0,1]. Then E, and G,, are strongly
consitent for F and G.That is with probability 1 asn - o, E,(t) - F(t) and

G,(t) > G(t) for all t € [0, ).

The Theorem 4.1 in Zheng and Klein (1995) about consistency assumed that copula has a
strictly positive density on [0,1] X [0,1]. It is a restrictive condition that many
Archimedean copulas do not meet. For example, while Clayton copula satisfies the
assumption in Theorem 1 in Rivest and Wells (2001), this condition fails. Under

Archimedean copula, the crude hazard rate is given by

S®¢'(S®))

# — — T N7
BT CO))

#
The assumption in Theorem 1 in Rivest and Wells (2001) means that the crude ratio ):1(—(;))

of the net hazard rate is bounded at zero. The most Archimedean copulas by ¢ ()
function meet this condition.

When censoring and survival are not independent, that is ¢(t) # —In (t), the first term of
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¢ (3®) - o(s"®)

:_%fOtI[Y(u) > 0] ¢’ < (u )>dM(u)

( - )) (n(u))]}dA#(u)

is a martingale and the second term is not asymptotically null. Hence, the asymptotic

+ J:{I[Y(u) > 0]

distribution of CG estimator depends, in the general case, on Cov(M (u), X, (s)) where
empirical process X, (w) = (1/vn) X {I(X; < uw) —n(w)}.
Using martingale's elementary properties, possibly evaluate Cov(M(u),X,(s)) .
Because M(u) and X,,(s) are summation of independent random variables,
Cov(M(w), X,,(s)) = n¥2Cov(M, (w), I[X; > s]).

When u > s asin Theorem 1.3.2 by Fleming and Harrington (1984),
u
E{l[s < X; <uA=1]} = f P[X; > v] ¥ (v)dv.
N

Hence E{M;(w)I[X; > s]|} = —m(s)A*(s) in this case, while when u<s,
E{M;(W)I[X; > s]} = —n(s)A*(w). Thus we have proved which

Cov(M(u), X,,(s)) = —n'2m(s)A*(s A u).\
It is used to prove the following result.
Theorem 2 in Rivest and Wells (2001). Let ty, t, > 0, be such that n(ty) > 0.
Under the dependent censoring model given by H(t,c) = C{S(t),S(c)} and
assuming that the first two derivatives of ¢(s) and Y (s), where P(s)

= —s¢'(s),are bounded for s € (n(ty),1),the process Vn {f(t) — S*(t)}
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converges weakly on D[0, ty) to a mean zero Gaussian process with variance
function,
v(t)

1

([ ol Eo oo

t s
+ 2—[ j m(u)[1 —m(u)] 1/)’(n(u))lp’(n(s))dA#(u)dA#(s)
0 Jo

+ 21p’(n(s))dA# (w)dAt (s)}.

Now, we can calculation the asymptotic distribution of new estimator using §-method.

Anew
1IN0 AIM; 1o A7 M; .
=—Z = =—Z , 0 <t <max(t;)
niai-1 K(T") n n—1 i

. _ — n;
=197 [Seaeamod (M=) — ¢ (F)]
where n; = Y5_; I(t, = t]) isthe number at risk at time ¢t;.

c

Let 6 = CG estimator and g(0) = 5 where c: constnat = 1/n Y1 AiM;. Then

Vi (9(0) - 9®) > N, a2 @5 @),

where

-4

a2(6)[g'(O)) = v(t)[l/n; M%7 o (" 1)“’5(&)
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5.2 Generalized survival-adjusted estimators under dependent
censoring

In section 2.3, Basu the and Manning (2010)’s mean estimator on covariates is
A(Z) = TK_, 5@ i @i (@) + (1 = by (D)) e (D)),

where $,(Z) and hy(Z) can be derived from accelerated failure time (AFT) model and

b1, (Z) and fi;;(Z) from certain generalized linear model (GLM).

hy = Pr (ty_q <T < t|T = ty_1) is the hazard rate of death during the kth interval,
ik = E(my |t < T <t,) and pyr = E(mg|T > t,) are the mean of incremental

costs for patients who died during or after the kth interval, respectively.

Under the assumption of dependent censoring between survival and censoring time,

the process of new estimation follows under three parts:

(a) Part-1: Let S, (Z) and hj(Z) be the estimated survival and hazard functions for an

interval. Estimate an individual's survival function using copula-based Cox regression.

The Cox models for marginal distribution,
Pr(T > t|z) = exp{—Ao;(D)ePi%},  Pr(C> c|z) = exp{-Ty;(c)e’%},
where f; and y; are regression coefficient and Ay; and [; are baseline cumulative
hazard functions. The cause-specific hazard is defined as

h#(t|zj) =Pr(t<T<t+dt,T<C|T>¢C=>c z;)/dt . If independent censoring
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holds, then

Pr(t <T<t+dt|IT >t)
h*(t|z;) = h(t|z) = o :

Skala’s theorem by Skala 1959 and Nelsen 2006 assures that the joint survival function can

expressed as

Pr(T > t,C> c|z;) = Co{Sr(t|z).Sc(c|z)} j=1,...p.
Rivest and Wells (2001) indicated the cause-specific hazard becomes hj(t|z) =
ro(t|z))h(t|z), where

Co1{Sr(t|2), Sc(c|z)}Sz (t|2)
Co{Sr(t]z), Sc(c|z)}

ro(tl7) =

dCo(u,v)
~ou -

and Cg4(u,v) = Emura and Chen (2014) defined the apparent effect of covariate

Zj as

Bl =1) _ ws=1) (s =1)
hy (t|z; = 0) h(t|z; = 0) re(t|z = 0)

ﬁg = log

This equation shows that the apparent effects can be divided into true (net) effects and bias

because of dependent censoring. Here, the copula structure is entered only in the bias term.

(b) Part-2: Among those subject intervals, (tj_q, tx], where we observe the subject dying,
ie., where tp_1 <T <t,&A,=I(min(C,T)=T) =1, we estimate through a
generalized linear model (or two-part model which specification is necessary) for the
observed costs after conditioning on covariates Z and U, (as death can occur anywhere

in the middle of the interval, so the time of death is continuous), where U, =t —
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tye1 If T =ty or U, =T — ty_q ifty_q <T < t;. Predict the costs fi,;(Z) for every
subject interval in the data using the parameter estimates from this model. To illustrate the
stochastic nature of U within that interval (i.e., to account for costs if the patient died
within that interval but at different times), we weighted the observed distribution of U
between intervals observed that the patient died, and then averaged the conditional

prediction for each value of U. That is, fi1x(Z) = [ fix(Z, w)dF (U|ty < TS < tyyq).

(¢) PART-3: Next, among the subject intervals (t;_q, tx], where no patients are observed
to die but only costs are observed during a partial period due to censoring is excluded,
estimate a generalized linear model (or model if a two-part specification is required) for
the observed cost function, conditional on the covariate Z. Parameter estimates of this
model are used for all subject-intervals in the data to predict the costs fi,;(Z). As in the
Bang and Tsiatis (2000) estimator, the estimation of this part does not use the subject-

interval where censoring occurs, so continuous censoring time can be effectively allowed.

(d) The estimated cost function for interval k for any individual is given as

1 (Z) = $u (D@D () + (1 = 7e(2)) 121e(2)] and ((Z) = TK_, 1 (2).
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6. Simulation study

In this section, we conduct various simulation studies to evaluate the performance of
the proposed new estimators in dependent censoring data by varying type of copulas,
dependency parameters, the relation of between covariate and censoring distribution, and

censoring rate.

6.1 Simulation setting

We start by using Lin’s (2003) and Basu and Manning (2010) simulation design points
to carry out extensive simulations to evaluate our proposed estimators and to compare it
with the prevailing methods. Following Lin (2003) and Basu and Manning (2010), the
survival times are generated from the exponential distribution with mean m and censoring
times are generated from the uniform (0, c) distribution, respectively. The maximum
follow-up time is set to 10, (0, 10], at equal intervals and all survival time and cost
cumulative processes are censored at the end. The medical costs for individual i inthe k
th interval are generated using:

Yii = [10e = Dud + I(T; > t) (i + wi) + I(tx—q < T; < 6 {0 + ) (T; — ti_y) + ! J]eB',

f

where k=1,..,10, i=1,..,n, n;, Uy, u® and u;  are independent random

variables with 7;, ug;~ uniform (0,1) distribution and ufi~ uniform (0,5) , u{ ~

uniform (0,10), respectively.
The scheme creates a J-shaped time pattern; each time interval in which the subject is
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alive has some basic cost. In addition, the first interval has a relatively high diagnostic cost,
and the interval at which the subject dies has a much higher final cost. In our simulation,
z was set as the treatment indicator with n/2 in each of the two groups. We chose n =
1,000 and B was set to 1. The true value was calculated under empirical distribution with
n = 100,000. Standard errors are computed from the summary statistics across the

replicates.

We focus on the average incremental effect of the treatment on the cost. Therefore,

interest lies in the incremental effect parameter:
A= 332 (e (Z = 1) — e (Z = 0)), where u(2) = E(y,,|12).

Table 2 show the details of the simulation scenarios. For each scenario, we generated
1,000 random datasets consisting of 1,000 random subjects. In the scenario 1-12 and 25-
36, censoring and survival time were generated regardless of covariate but, in the scenario
13-24 and 37-48, the data was generated so that the censoring time was longer in the
treatment group. Each scenario consisted of approximately 20, 30, 40, and 50% censored
survival times through combination of survival and censoring time and 6 = 0,2,10 of

Clayton copula.
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Table 2. Information of simulation scenarios

0 levels

Scenario Relation of of Percs)rt}tage Sutvival Ceqsoring
Z and (T,C) | Clayton censoring time time
copula

1 Independent 0 20 Exp(5) U(0,21)

2 Independent 0 30 Exp(5) U(0,14)

3 Independent 0 40 Exp(5) U(0,11)

4 Independent 0 50 Exp(5) U(0,8)

5 Independent 2 20 Exp(5) U(0,12.5)

6 Independent 2 30 Exp(5) U(0,11)

7 Independent 2 40 Exp(5) U(0,9)

8 Independent 2 50 Exp(5) U(0,7.5)

9 Independent 10 20 Exp(5) U(0,10)

10 Independent 10 30 Exp(5) U(0,9)

11 Independent 10 40 Exp(5) U(0,8)

12 Independent 10 50 Exp(5) U(0,7)

13 Dependent 0 20 Exp(5) U,-1(0,24),U,-,(0,19)
14 Dependent 0 30 Exp(5) U,-1(0,17),U,-,(0,12)
15 Dependent 0 40 Exp(5) U,-1(0,14),U,-4(0,9)
16 Dependent 0 50 Exp(5) U,-,(0,11),U,-,(0,6)
17 Dependent 2 20 Exp(5) U,-1(0,16),U,-,(0,11)
18 Dependent 2 30 Exp(5) | U,-,(0,13.5),U,-,(0,8.5)
19 Dependent 2 40 Exp(5) U,-1(0,12),U,-,(0,7)
20 Dependent 2 50 Exp(5) | U,-,(0,10.5),U,-,(0,5.5)
21 Dependent 10 20 Exp(5) U,-1(0,13),U,-,(0,8)
22 Dependent 10 30 Exp(5) | U,-,(0,11.5),U,-,(0,6.5)
23 Dependent 10 40 Exp(5) U,-,(0,11),U,-,(0,6)
24 Dependent 10 50 Exp(5) | U,-1(0,10.5),U,-,(0,5.5)
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Table 2. Information of simulation scenarios (continued)

Relati 1e\?els Percentage . .
Scenario elation of of of Suvaal Ceqsorlng
Z and (T, C) Clayton | censoring time tme
copula

25 Independent 0 20 Exp(10) U(0,31)
26 Independent 0 30 Exp(10) U(0,21)
27 Independent 0 40 Exp(10) U(0,16)
28 Independent 0 50 Exp(10) U(0,13.5)
29 Independent 2 20 Exp(10) U(0,19)
30 Independent 2 30 Exp(10) U(0,16)
31 Independent 2 40 Exp(10) U(0,13.5)
32 Independent 2 50 Exp(10) U(0,12.5)
33 Independent 10 20 Exp(10) U(0,14.5)
34 Independent 10 30 Exp(10) U(0,13.5)
35 Independent 10 40 Exp(10) U(0,12.5)
36 Independent 10 50 Exp(10) U(0,12)
37 Dependent 0 20 Exp(10) U,-1(0,34),U,-,(0,29)
38 Dependent 0 30 Exp(10) U,-1(0,24),U,-,(0,19)
39 Dependent 0 40 Exp(10) | U,-,(0,18.5),U,-,(0,13.5)
40 Dependent 0 50 Exp(10) | U,-,(0,15.5),U,-,(0,10.5)
41 Dependent 2 20 Exp(10) U,-.(0,22),U,-,(0,17)
42 Dependent 2 30 Exp(10) U,-1(0,19),U,-,(0,14)
43 Dependent 2 40 Exp(10) | U,-4(0,16.5),U,-,(0,11.5)
44 Dependent 2 50 Exp(10) | U,-,(0,15.5),U,-,(0,10.5)
45 Dependent 10 20 Exp(10) U,-1(0,18),U,-,(0,13)
46 Dependent 10 30 Exp(10) U,-1(0,17),U,-,(0,12)
47 Dependent 10 40 Exp(10) U,-1(0,16),U,-,(0,11)
48 Dependent 10 50 Exp(10) U,-.(0,15),U,-,(0,10)
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Figure 5. Scatter plot of simulation data (n = 500 pairs) generated under the Clayton copula, T~Exp(5) or

T~Exp(10), and independence between Z and (T, C) accordingto 6 = 0,2, and 5
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6.2 Results

The results of all scenarios are summarized in Table 3-14 with bias and S.E. Table 3-6
provides the results of simulation studies using survival time Exp(5) and independence
between Z and (T, C) (Table 4 and 5) and independence between Z and (T, C) (Table 5
and 6). Table 4 showed that the proposed method using IPW scheme had smaller bias under
7= 0.5 and 20 and 30 % of censoring compared to BT,. But, S.E. of proposed method
had smaller value in all conditions. In generalized survival-adjusted estimator, bias using
proposed method is smaller than BM under 40% censoring. When the dependency between
Z and (T,C) existed, BT, had higher bias. The proposed method outperformed the
existing method in estimation both in terms of bias and S.E. Among the estimation method
using the CG estimator, the Gumbel function worked best (Table 5). Table 6 showed that
generalized survival-adjusted estimator was more effective estimation method than IPW
method regardless of 7. The generalized survival-adjusted estimator copula-based Cox
regression had lower bias and S.E. compared to BM estimator. Regardless of the 7 and
censing percentage, the estimator calculated using the Clayton function had the smallest

bias value.

Table 7-10 provides the results of simulation studies using survival time Exp(10)
and independence between Z and (T, C) (Table 7 and 8) and independence between Z
and (T, C) (Table 9 and 10). In table 7, BT,, was not good at estimating when expectation
value of mean survival time is closer to t. The proposed methods have the smaller bias

and S.E than BT when t was above 0.5. Among the estimation method using the CG
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estimator, the Gumbel function worked best. Table 8 showed that proposed method under
generalized survival-adjusted estimator only had smaller bias when t = 0.5. The proposed
method was not work for estimating cost when expectation value of mean survival time is
closer to T and 7t is above the 0.5. When the dependency between Z and (T, C) existed,
BT, had higher bias and S.E. The proposed method outperformed the existing method in
estimation both in terms of bias and S.E. Among the estimation method using the CG
estimator, the Gumbel function worked best (Table 9). Table 10 showed that generalized
survival-adjusted estimator was good at bias compared to IPW method in most settings.
The generalized survival-adjusted estimator copula-based Cox regression had lower bias
compared to BM estimator. Regardless of the 7 and censing percentage, the estimator
calculated using the Clayton function had the smallest bias value only except 7 = 0.83

and % of censoring= 50.

In previous simulation, we used 7 = 0.5 for estimating to proposed method
regardless of the type of copula function because we generated survival time and censoring
time using copula function at T = 0.5. However, we investigated the simulation according
to different 7 (Table 11-14). In survival time Exp(5), we found that we should choose
the higher 7 in proposed method using [IPW method for aspect of bias under independence
and dependence between Z and (T, C). But the choosing the 7 in the proposed method
using copula-based Cox regression was suggested to censoring %. Under 30% of censoring,
we should choose the lower 7 for reduction of bias. Above 40 % of censoring, we should

choose the higher 7 (Table 11 and Table 12). In survival time Exp(10), we found that we
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should choose the higher T in proposed method using IPW method for aspect of bias under
independence and dependence between Z and (T, C) (Table 13 and Table 14). But the
choosing the 7 in the proposed method using generalized-adjusted survival was suggested
to the type of copula function. Under Clayton and Frank copula, we should choose the
lower 7 for reduction of bias. Under Gumbel copula, we should choose lower t under
30 % of censoring and choose the same 7 which was used to generating T and C above
40% of censoring (Table 13). In Table 14, under Clayton and Frank copula, we should
choose the lower T under 20% censoring, choose the same 7 = 0.5 under 30-40%
censoring, and choose the higher 7 above the 50% censoring. Whereas, we could not find

some specific trend the choosing 7 for reduction of bias under Gumbel copula.
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Table 3. Simulation scenarios 1-12 results of the incremental effect (A) using [IPW scheme under independence between Z
and (T, C)

A under IPW estimator

cG cG cG
Clayton  %of  True value BT BTy Clayton Frank Gumbel
Copula cens of A Bias SE Bias SE Bias SE Bias SE Bias SE
20 19.094 5026 0720  2.698 _ 2.801 ; - - ; ; R
=0 30 18.385 6112 0753 -3.008 _ 3.051 ; - - ; ; R
@=0) 40 18.092 6797 0695 3389 3.790 ; - - ; ; -
50 17.205 7155 0.630  0.413 1.940 ; - - ; ; -
20 19.683 6599 0719 5654 3398 5104 0627 4965 _ 0.622 4099 _ 0619
T=05 30 19.305 7026 0696 6812 3866 _ 5273 _ 0.606 5127 _ 0599 4292  0.598
@=2) 40 18.837 7892 0608  -1558 2506 _ 6.190 _ 0485  6.028 _ 0477 5290 _ 0.480
50 18.171 7669 0616  -1852 1681 6331 _ 0436 6159 _ 0428 5523 0435
20 19.836 8508 0541 0793 1938 5615 _ 0549 5478 0557 5243 0.631
7= 083 30 19.615 8808 0561  -1260 2145 5961 _ 0531 5781 _ 0546 5446 0.682
0=10) _ 40 19.125 8873 0548  -1916 1893 6.142 _ 0469 5888 _ 0498 5384 _ 0.695
50 18.549 8898 0593 2362 1849 6410 _ 0420 6079 _ 0449 5551 _ 0.490

% of cens: percentage of censoring; SE: standard deviation of estimates across 1000 replicates
When 7=0.5, 8 of Clayton copula=2,, 6 of Frank copula=5.736,and, 6 of Gumbel copula=2.
When 7=10.83, 8 of Clayton copula=10,, 6 of Frank copula=22.224, and, 6 of Gumbel copula=6.
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Table 4. Simulation scenarios 1-12 results of the incremental effect (A) using generalized survival-adjusted estimator under
independence between Z and (T, C)

A under generalized survival-adjusted estimator

Copula based Copula based Copula based
Clayton o True value BM Cox regression Cox regression Cox regression
Copula o of cens of A under Clayton under Frank under Gumbel
Bias SE Bias SE Bias SE Bias SE
20 19.094 2.890 0.804 - - - _ _ -
=0 30 18.385 1.908 0.898 - - - - - R
©=0 40 18.092 1.373 1.023 - - - - - _
50 17.205 1.172 0.988 - - R i R R
20 19.683 2.955 0.794 -0.519 1.330 -0.412 1.324 -0.240 1.320
=05 30 19.305 2.331 0.884 -0.348 1.624 -0.230 1.604 0.001 1.592
6 =2) 40 18.837 1.866 0.886 1.201 1.380 1316 1334 1.626 1333
50 18.171 1.510 0.862 2.727 1.255 2.791 1.225 3.074 1217
20 19.836 3.958 0.752 0.911 1.405 0.935 1.388 0.938 1.386
T= 0383 30 19.615 3.729 0.748 2211 1.376 2.235 1.355 2.239 1.354
(6 =10) 40 19.125 3.132 0.781 3.155 1.329 3.184 1.314 3.189 1.311
50 18.549 2.170 0.769 4.044 1.372 4.084 1.350 4.094 1.347

% of cens : percentage of censoring ; SE : standard deviation of estimates across 1000 replicates
When t=0.5, 8 of Clayton copula=2,, 8 of Frank copula=5.736,and, 8 of Gumbel copula=2.
When 7 =0.83, 8 of Clayton copula=10,, 8 of Frank copula=22.224,and, 8 of Gumbel copula=6.
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Table 5. Simulation scenarios 13-24 results of the incremental effect (A) using IPW estimator under dependence between
Z and (T, C)

A under IPW estimator

cG cG cG
Clayton % of True value BT BT, Clayton Frank Gumbel
Copula cens of A Bias SE Bias SE Bias SE Bias SE Bias SE
20 19.418 5.850 0.759 -2.897 2792 - - - - - -
=0 30 19.142 5618 0.730 -2.959 2.903 - - - - - -
©=0) 40 19.073 5.625 0.730 -4.976 2.924 - - - - - -
50 18.884 6.519 0.666 -6.387 3.575 - - - - - -
20 20.353 5.634 0.710 -3.175 3.013 4.463 0.632 4399 0.631 3.533 0.651
=05 30 20.425 5.533 0.696 -7.177 3.010 4233 0.623 4.128 0.618 3.146 0.616
©®=2) 40 20.528 6.141 0.725 -8.815 3.471 4359 0.625 4233 0.619 3.204 0.617
50 20.521 7.445 0.696 -11.251 4.039 4703 0.603 4572 0.591 3.528 0.590
20 20.955 4708 0.664 -5.367 2.695 3.337 0.648 3315 0.661 3.414 0.702
7= 083 30 21.344 5.559 0.683 -6.845 2951 3.236 0.649 3.265 0.657 3.275 0.690
6 = 10) 40 21.398 6.157 0.693 -9.436 3.188 3.098 0.663 3.086 0.668 2.972 0.708
50 21.391 7.104 0.698 -11.150 3.856 3212 0.648 3.137 0.653 2914 0.700

% of cens: percentage of censoring; SE: standard deviation of estimates across 1000 replicates
When t=0.5, 8 of Clayton copula=2,, 8 of Frank copula=5.736,and, 8 of Gumbel copula=2.
When 7=0.83, 8 of Clayton copula=10,, 6 of Frank copula=22.224, and, 6 of Gumbel copula=6.
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Table 6. Simulation scenarios 13-24 results of the incremental effect (A) using using generalized survival-adjusted

estimator under dependence between Z and (T, C)

A under generalized survival-adjusted estimator

Copula-based Copula-based Copula based
Clayton y True value BM Cox regression Cox regression Cox regression
Copula o of cens of A under Clayton under Frank under Gumbel
Bias SE Bias SE Bias SE Bias SE
20 19.418 3.310 0.805 - - - - - -
=0 30 19.142 2.861 0.835 - - - - - -
©=0) 40 19.073 2.448 0.919 - - - - - -
50 18.884 1.302 0.970 - - - - - -
20 20.353 4.440 0.752 -0.669 1.279 -0.674 1.277 -0.694 1.278
=05 30 20.425 4.005 0.756 -2.443 1.393 -2.390 1.392 -2.382 1.391
©=2) 40 20.528 3.676 0.875 -2.926 1.349 -2.839 1.345 -2.747 1.341
50 20.521 2.807 0.902 -2.953 1.717 -2.886 1.675 -2.678 1.661
20 20.955 5.227 0.678 -2.862 1.223 -2.875 1.224 -2.874 1.224
7= 0283 30 21.344 5.764 0.705 -3.058 1.285 -3.065 1.285 -3.065 1.285
(6 =10) 40 21.398 6.155 0.735 -3.022 1.304 -3.030 1.302 -3.031 1.301
50 21.391 6.191 0.757 -2.789 1.468 -2.803 1.463 -2.809 1.461

% of cens : percentage of censoring; SE: standard deviation of estimates across 1000 replicates
When 7=0.5, 8 of Clayton copula=2,, 6 of Frank copula=5.736,and, 6 of Gumbel copula=2.
When 7=0.83, 8 of Clayton copula=10,, 6 of Frank copula=22.224, and, 6 of Gumbel copula=6.
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Table 7. Simulation scenarios 25-36 results of the incremental effect (A) using IPW scheme under independence between
Z and (T, C)

A under IPW estimator

G G CG
Clayton % of True value BT BT, Clayton Frank Gumbel
Copula  cens of A Bias SE Bias SE Bias SE Bias SE Bias SE
20 22.248 3.668 0877  -23.421 5.105 R - R R - -
=0 30 21.598 3.698 1018 21925 5533 R - R R - -
@ = 0) 40 20.829 3.869 1.021 21338 5326 R - R R - -
50 20.206 4.861 1027 20436 5770 R - R R - -
20 23.063 3.694 0903  -29.860  5.650 3.833 0.765 3761 0.761 3.075 0.758
=05 30 22.821 3.730 0953  -31.156  5.981 4359 0.762 4269 0.760 3.636 0.756
@=2) 40 22.102 3.670 1042 33134 6571 4.708 0.736 4.607 0.731 4.061 0.726
50 21812 3.880 1133 34122 6.830 4.981 0.710 4.880 0.706 4386 0.703
20 23.293 3251 0886  -43.958  6.003 0.809 0.696 0.656 0.694 0.134 0.735
=08 _ 30 23.106 3219 0972 -50.640 6522 1416 0.714 1.261 0.706 0.728 0.726
(6=10) 40 22.967 3366 1063 56703  6.629 2.581 0.711 2415 0.698 1937 0.709
50 22.621 3.160 1150  -60.294 6815 2.992 0.673 2.828 0.668 2411 0.679

% of cens : percentage of censoring ; SE : standard deviation of estimates across 1000 replicates
When 7=0.5, 8 of Clayton copula=2,, 6 of Frank copula=5.736,and, 6 of Gumbel copula=2.
When 7 =0.83, 8 of Clayton copula=10,, 8 of Frank copula=22.224, and, 8 of Gumbel copula=6.
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Table 8. Simulation scenarios 25-36 results of the incremental effect (A) using generalized survival-adjusted estimator
under independence between Z and (T, C)

A under generalized survival-adjusted estimator

Copula-based Copula-based Copula-based
Clayton o, True value BM Cox regression Cox regression Cox regression
Copula o of cens of A under Clayton under Frank under Gumbel
Bias SE Bias SE Bias SE Bias SE
20 22.248 1.201 0.835 - - - - - -
=0 30 21.598 0.308 0.953 - - - - - -
©=0) 40 20.829 -0.770 1.015 - - - - - -
50 20.206 -1.700 1.134 - - - - - -
20 23.063 1.226 0.857 1.043 1.371 1.111 1.372 1.226 1.373
=05 30 22.821 0417 0.924 0.853 1.471 0.960 1.471 1.135 1.472
6=2) 40 22.102 -0.988 0.995 0.385 1.617 0.543 1.616 0.798 1.617
50 21.812 -1.714 1.065 0.185 1.730 0.371 1.727 0.670 1.724
20 23.293 -2.192 0.829 -13.170 1.760 -13.133 1.761 -13.114 1.760
7= 0.83 30 23.106 -3.704 0.933 -13.238 2.268 -13.182 2.267 -13.153 2.266
(6 =10) 40 22.967 -5.946 1.048 -13.289 3.093 -13.207 3.088 -13.168 3.085
50 22.621 -7.684 1.181 -12.974 3.646 -12.881 3.636 -12.839 3.630

% of cens : percentage of censoring ; SE : standard deviation of estimates across 1000 replicates
When 7=0.5, 8 of Clayton copula=2,, 6 of Frank copula=5.736,and, 6 of Gumbel copula=2.
When 7 =0.83, 8 of Clayton copula=10,, 8 of Frank copula=22.224,and, 8 of Gumbel copula=6.
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Table 9. Simulation scenarios 37-48 results of the incremental effect (A) using IPW estimator under dependence between
Z and (T, C)

A under IPW estimator

CG CG CcG
Clayton % of True value BT BT, Clayton Frank Gumbel
Copula cens of A Bias SE Bias SE Bias SE Bias SE Bias SE
20 22.430 3.664 0.909 -23.636 5218 - - - - - -
=0 30 22.257 3.737 0.989 -22.804 5.486 - - - - - -
©=0) 40 21.971 3.577 0.979 -22.075 5.325 - - - - - -
50 21.689 2.630 1.023 -21.071 5.788 - - - - - -
20 23.602 4,067 0.865 -27.427 5.604 3.482 0.774 3.443 0.771 2.730 0.759
=05 30 23.534 3.810 0.920 -28.071 5.759 3.451 0.775 3.395 0.771 2.639 0.764
0 =2) 40 23.578 3.129 1.001 -28.568 6.236 3.471 0.787 3.390 0.782 2.621 0.771
50 23.466 2.008 1.020 -28.730 6.503 3.342 0.743 3.245 0.739 2.489 0.732
20 24.068 4212 0.868 -15.390 5.567 2.546 0.788 2473 0.792 2.200 0.824
7= 0.83 30 24.279 4333 0.942 -13.876 6.236 2.236 0.807 2.132 0.804 1.736 0.829
(6 =10) 40 24.460 4.187 0.982 -14.788 6.142 1.780 0.795 1.637 0.792 1.090 0.821
50 24.557 0.813 0.977 -48.048 5.716 0.890 0.758 0.708 0.753 0.020 0.792

% of cens: percentage of censoring; SE: standard deviation of estimates across 1000 replicates
When t=0.5, 8 of Clayton copula=2,, 8 of Frank copula=5.736,and, 8 of Gumbel copula=2.
When 7=0.83, 8 of Clayton copula=10,, 6 of Frank copula=22.224, and, 6 of Gumbel copula=6.
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Table 10. Simulation scenarios 37-48 results of the incremental effect (A) using using generalized survival-adjusted

estimator under dependence between Z and (T, C)

A under generalized survival-adjusted estimator

Copula-based Copula-based Copula-based
Clayton y True value BM Cox regression Cox regression Cox regression
Copula o of cens of A under Clayton under Frank under Gumbel
Bias SE Bias SE Bias SE Bias SE
20 22.430 1.490 0.878 - - - - - -
=0 30 22.257 1.138 0.970 - - - - - -
0 =0) 40 21.971 0.767 0.987 - - - - - -
50 21.689 0.207 1.064 - - - - - -
20 23.602 2.609 0.844 1.545 1.393 1.556 1.395 1.575 1.399
t=0.5 30 23.534 2.405 0.875 1.382 1.441 1.389 1.444 1.404 1.450
@=2) 40 23.578 2.267 0.959 1.178 1.523 1.178 1.526 1.185 1.530
50 23.466 1.945 0.996 0.798 1.644 0.808 1.646 0.816 1.648
20 24.068 4.751 0.830 1.648 1.390 1.614 1.391 1.596 1.392
7= 0283 30 24.279 5.643 0.875 1.510 1.547 1.467 1.547 1.446 1.548
(6 =10) 40 24.460 6.490 0.872 1.041 1.662 0.996 1.662 0.977 1.662
50 24.557 6.622 0.909 0.140 1.805 0.106 1.805 0.094 1.805

% of cens : percentage of censoring; SE: standard deviation of estimates across 1000 replicates
When 7=0.5, 8 of Clayton copula=2,, 6 of Frank copula=5.736,and, 6 of Gumbel copula=2.
When 7=0.83, 8 of Clayton copula=10,, 6 of Frank copula=22.224, and, 6 of Gumbel copula=6.
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Table 11. Simulation scenarios 1-24 results of the incremental effect (A) using IPW and generalized survival-adjusted

estimator under independence between Z and (T, C) according to different t

c c o O Gl Gy
True . . .
Clayton % of e of Cliyton Fiank Gu_mbel under Clayton under Frank under Gumbel
Copula cens A (r=103) (r=03) (z=1023) (=03) (=03) (t=03)
Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE
20 19.683 5.209 0.626 5.149 0.624 4.344 0.620 -0.807 1.382 -0.718 1.376 -0.338 1.365
=05 30 19.305 5367 0.605 5.301 0.603 4.492 0.599 -0.786 1.635 -0.685 1.617 -0.137 1.591
6=2) 40 18.837 6.330 0.490 6.257 0.486 5.508 0.481 0.632 1.411 0.731 1371 1.443 1.360
50 18.171 6.473 0.431 6.392 0.427 5.705 0.426 2.265 1.285 2.318 1.259 2.961 1.241
cG cG cG Copula-based Copula-based Copula-based
Cl Cox reg. Cox reg. Cox reg.
ayton Frank Gumbel nder Clayton nder Frank nder Gumbel
(t=0.5) (t=0.5) (t=0.5) u 4 u u b
(T =0.5) (T =0.5) (T =0.5)
Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE
20 19.683 5.104 0.627 4.965 0.622 4.099 0.619 -0.519 1.330 -0.412 1.324 -0.240 1.320
=05 30 19.305 5273 0.606 5.127 0.599 4292 0.598 -0.348 1.624 -0.230 1.604 0.001 1.592
6=2) 40 18.837 6.190 0.485 6.028 0.477 5.290 0.480 1.201 1.380 1316 1.334 1.626 1.333
50 18.171 6.331 0.436 6.159 0.428 5.523 0.435 2.727 1.255 2.791 1.225 3.074 1.217
Copula-based Copula-based Copula-based
T ¢G ce ¢G Cox reg Cox reg Cox reg
rue . . .
Clayttlm % of value of (tCE}S%r;) @ l:a(;l 1;33) (TG:ng)bBeé) under Clayton under Frank under Gumbel
Copula  cens A ’ ’ ’ (= 0.83) (= 0.83) (= 0.83)
Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE
20 19.683 4.572 0.612 4.072 0.604 3.421 0.623 -0.171 1.394 -0.143 1.393 -0.134 1.392
=05 30 19.305 4.657 0.609 4.174 0.601 3.624 0.622 0.068 1.571 0.097 1.568 0.103 1.566
=2 40 18.837 5.578 0.482 5.157 0.482 4.751 0.506 1.772 1.445 1.800 1.434 1.802 1.433
50 18.171 5.709 0.405 5.367 0.415 5.088 0.436 3.245 1.248 3.266 1.243 3.270 1.243
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Table 12. Simulation scenarios 1-24 results of the incremental effect (A) using IPW and generalized survival-adjusted
estimator under dependence between Z and (T, C) according to different

ce ce ce Cogl;f-rte)ased Cogl;f-rte)ased Cogl;f-rzased
Clayton % of V;{l‘;eof Clayton Frank Gumbel under Claff.ton under F I‘ilk under Guribel
Copula cens A (r=03) (r=03) (r=03) (x =0.3) (x =0.3) (r =0.3)

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE
20 20.353 4.497 0.656 4.475 0.656 3.771 0.664 -0.577 1.266 -0.581 1.265 -0.643 1.268
=05 30 20.425 4.281 0.644 4.241 0.643 3.406 0.643 -2.216 1.340 -2.174 1.338 -2.204 1.335
0 =2) 40 20.528 4.459 0.607 4.407 0.605 3.500 0.600 -2.995 1.463 -2.927 1.458 -2.765 1.451
50 20.521 4.808 0.563 4.759 0.559 3.796 0.557 -3.379 1.675 -3.335 1.633 -2.867 1.611

cG cG cG Copula-based Copula-based Copula-based

Clayton Frank Gumbel Cox reg. Cox reg. Cox reg.
(T = 0.5) (T = 0.5) (T = 0.5) under_ Clayton unde_r Frank under_Gumbel
(t=0.5) (t=0.5) (t=0.5)

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE
20 20.353 4.463 0.632 4.399 0.631 3.533 0.651 -0.669 1.279 -0.674 1.277 -0.694 1.278
=05 30 20.425 4.233 0.623 4.128 0.618 3.146 0.616 -2.443 1.393 -2.390 1.392 -2.382 1.391
©=2) 40 20.528 4.359 0.625 4.233 0.619 3.204 0.617 -2.926 1.349 -2.839 1.345 -2.747 1.341
50 20.521 4.703 0.603 4.572 0.591 3.528 0.590 -2.953 1.717 -2.886 1.675 -2.678 1.661

; cG cG cG Cogl;i(a-rlézsed Cogl;i(a-rlézsed Cogl;i(a-rl;eglsed

%ljyt(l)n % of vah?;eof CEi}g%ng F_rank GEmbel under Clayton under Frank under Gumbel

pula cens A (t =0.83) (r =0.83) (r =0.83) (z = 0.83) (r = 0.83) (r = 0.83)

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE
20 20.353 4.197 0.642 3.727 0.648 2.802 0.681 -0.687 1.308 -0.684 1.308 -0.680 1.307
=05 30 20.425 3.822 0.598 3.257 0.589 2.357 0.614 -2.425 1.382 -2.406 1.382 -2.394 1.382
©=2) 40 20.528 3.825 0.559 3.224 0.560 2.386 0.580 -2.781 1.363 -2.754 1.362 -2.740 1.362
50 20.521 4.088 0.557 3.471 0.551 2.738 0.570 -2.627 1.538 -2.602 1.534 -2.594 1.534
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Table 13. Simulation scenarios 25-36 results of the incremental effect (A) using [IPW and generalized survival-adjusted

estimator under independence between Z and (T, C) according to different 7

ce ce ce Cogl;f-rte)ased Cogl;f-rte)ased Cogl;f-rzased
Clayton % of V;{l‘;eof Clayton Frank Gumbel under Claff.ton under F I‘ilk under Guribel
Copula cens A (r=03) (r=03) (r=03) (x =0.3) (x =0.3) (r =0.3)

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE
20 23.063 3.878 0.780 3.847 0.777 3.232 0.761 0.973 1.363 1.027 1.363 1.234 1.365
=0.5 30 22.821 4.413 0.795 4.373 0.792 3.774 0.778 0.790 1.502 0.874 1.502 1.195 1.503
0 =2) 40 22.102 4.745 0.716 4.697 0.713 4.154 0.703 0.028 1.635 0.155 1.634 0.652 1.633
50 21.812 5.054 0.685 5.004 0.683 4.499 0.678 -0.129 1.709 0.020 1.705 0.617 1.695

cG cG cG Copula-based Copula-based Copula-based

Clayton Frank Gumbel Cox reg. Cox reg. Cox reg.
(T = 0.5) (T = 0.5) (T = 0.5) under_ Clayton unde_r Frank under_Gumbel
(t=0.5) (t=0.5) (t=0.5)

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE
20 23.602 3.833 0.765 3.761 0.761 3.075 0.758 1.043 1.371 1.111 1.372 1.226 1.373
=05 30 23.534 4.359 0.762 4.269 0.760 3.636 0.756 0.853 1.471 0.960 1.471 1.135 1.472
©=2) 40 23.578 4.708 0.736 4.607 0.731 4.061 0.726 0.385 1.617 0.543 1.616 0.798 1.617
50 23.466 4.981 0.710 4.880 0.706 4.386 0.703 0.185 1.730 0.371 1.727 0.670 1.724

; cG cG cG Cogl;i(a-rlézsed Cogl;i(a-rlézsed Cogl;i(a-rl;eglsed

%ljyt(l)n % of vah?;eof CEi}g%ng F_rank GEmbel under Clayton under Frank under Gumbel

pula cens A (t =0.83) (r =0.83) (r =0.83) (z = 0.83) (r = 0.83) (r = 0.83)

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE
20 23.602 3.606 0.775 3.335 0.761 2.698 0.770 1.196 1.348 1.224 1.348 1.239 1.349
=05 30 23.534 4.067 0.738 3.794 0.726 3.286 0.742 1.186 1.448 1.226 1.449 1.247 1.450
©=2) 40 23.578 4.330 0.714 4.087 0.707 3.715 0.722 0.607 1.689 0.664 1.689 0.690 1.690
50 23.466 4.687 0.694 4.465 0.688 4.148 0.702 0.601 1.665 0.664 1.665 0.692 1.665
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Table 14. Simulation scenarios 37-48 results of the incremental effect (A) using [IPW and generalized survival-adjusted
estimator under dependence between Z and (T, C) according to different

cc cc cc I e
True . . .
Clayton % of . or Clayton Frank Gumbel under Clayton under Frank under Gumbel
Copula  cens A (r=03) (r=03) (r=03) (x=03) (x=03) (x=03)
Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE
20 23.602 3.472 0.794 3.457 0.793 2.858 0.782 1.457 1.408 1.466 1.408 1.501 1.413
=05 30 23.534 3.491 0.765 3.469 0.763 2.807 0.752 1.395 1.376 1.402 1.377 1.425 1.382
=2 40 23.578 3.484 0.735 3.452 0.733 2.762 0.721 1.275 1.408 1.278 1411 1.264 1.424
50 23.466 3.407 0.740 3.364 0.738 2.660 0.722 0.932 1.581 0.941 1.583 0.912 1.586
cG cG cG Copula-based Copula-based Copula-based
Clayton Frank Gumbel Cox reg. Cox reg. Cox reg.
(T = 0.5) (T = 0.5) (T = 0.5) under Clayton under Frank under Gumbel
s e e (t=0.5) (t=0.5) (t=0.5)
Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE
20 23.602 3.482 0.774 3.443 0.771 2.730 0.759 1.545 1.393 1.556 1.395 1.575 1.399
=05 30 23.534 3.451 0.775 3.395 0.771 2.639 0.764 1.382 1.441 1.389 1.444 1.404 1.450
=2 40 23.578 3.471 0.787 3.390 0.782 2.621 0.771 1.178 1.523 1.178 1.526 1.185 1.530
50 23.466 3.342 0.743 3.245 0.739 2.489 0.732 0.798 1.644 0.808 1.646 0.816 1.648
; cG cG cG Cogl;i(a-rlézsed Cogl;i(a-rlézsed Cogl;i(a-rlézsed
rue . . .
%ljyltl(l): (:féssf value of (TCEi}g%ng) (t F_rag 153) (_[Gfrgbg :1))) under Clayton under Frank under Gumbel
P A e e e (r =0.83) (t =0.83) (t =0.83)
Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE
20 23.602 3.300 0.769 3.058 0.751 2.226 0.757 1.530 1.367 1.535 1.367 1.538 1.368
=05 30 23.534 3.262 0.736 2.975 0.720 2.203 0.731 1.389 1.395 1.394 1.397 1.399 1.398
(6 =2) 40 23.578 3.216 0.723 2.893 0.711 2.204 0.725 1.203 1.532 1.211 1.534 1.220 1.534
50 23.466 3.019 0.734 2.689 0.723 2.048 0.738 0.793 1.630 0.808 1.632 0.823 1.633
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7. Application

7.1 National Health Insurance Service National Sample Cohort

(NHIS-NSC) data

In this session, we used real data examples to demonstrate the performance of the
proposed method. Analysis was performed using the National Health Insurance Service
National Sample Cohort (NHIS-NSC) database. The NHISNSC (2002-2010) database is a
cohort data that connects the same subjects until 2010 by sampling about 1 million people,
2% of the total population, as of 2002. The NHIS records have garnered academic interest
due to the effectiveness of the system and relevance to public health and medical research.
To meet this interest, a population database has been developed, the ‘National Health
Information Database’ (NHID) containing personal information, demographics, and
medical treatment data for Korean citizens, who were categorized as insured employees,
insured self-employed individuals or medical aid beneficiaries. The NHID was generated

using participants’ medical bill expenses claimed by medical service providers.

Data were rearranged according to date of medical treatment rather than date of claim.
To prevent the effects of other existing diseases, the period 2002—-2003 was designated as
a washout period. In addition, to identify newly diagnosed lung cancer cases in 2004, those
who were diagnosed with lung cancer in 2002-2003 were excluded. After exclusion
(International Classification of Diseases 10th revision codes: C34), the total population of
this study was 528 individuals. This section aimed to analyze gender differences in the

medical costs associated with lung cancer disease within 5 years after diagnosis (2004) in
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the South Korean population. We apply both prevailing estimation method including IPW,
generalized survival-adjusted estimator, and also our proposed estimator to this data. We
used bootstrapping for the computation of SE of median and non-parametric bootstrap

confidence interval for median.

7.2 Results

The analysis results of real data are summarized in Table 16 and Figure 7. The
censoring percentage is approximately 40%. Also, we use the tree type of copula function
and T = 0.5. We compared the 5-years censored medical costs estimated by prevailing
method and our proposed estimator. We find that compared with our estimator under IPW
scheme, the BT and BT, estimates for the 5-year medical costs produces lower estimates
of mean costs for all gender. In generalized survival-adjusted method, our estimates of the
incremental costs between gender are almost two times in magnitude that those of the BM
estimator. Overall, it can be seen that generalized survival-adjusted method estimates the
cost higher than the IPW method. In the IPW scheme, there is not much difference in the
estimated value depending on the type of copula function. However, in generalized
survival-adjusted method, it is found that there is a large difference in estimates depending
on the type of copula function, and that the estimate is the smallest in Clayton and the

largest in Gumbel function.

Figure 7 summarized the results about mean cost profiles by gender predicted using

prevailing method and proposed estimator. Regardless of gender, The IPW method
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estimates the mean cost lower than the simple mean, and the generalized survival-adjusted
method estimates higher. Within the same scheme, the estimated mean cost value of the
proposed method is higher than that of prevailing methods. Looking at the results of copula
function in both schemes, the estimated mean value is high in the order of Clayton, Frank,
and Gumbel. In addition, in male, there is a large difference in estimated mean value
depending on the methods used for estimation, while in female, there is little difference
depending on the copula method within IPW or within the generalized survival-adjusted
method. Among the prevailing methods, BM is estimated to be slightly higher only in male

than the value obtained by simple means, and almost similar in female.

61



Cost

LK I B IO N B

20000000

BM

BM-CG (Clayton)
BM-CG (Frank)
BM-CG (Gumbel)
BP

BT

CG (Clayton)

CG (Frank)

CG (Gumbel)
Simple mean

15000000+

10000000 -

5000000 -

Méle Ferﬁale
Gender

Figure 7. Mean cost profiles by gender predicted using prevailing method and

proposed estimator



Table 15. Comparison of estimated 5-year difference costs by gender

Prevailing estimator Proposed estimator
cG cG cG Cox reg. Cox reg. Cox reg.
BT BT, BM Clayton Frank Gumbel under Clayton under Frank under Gumbel

(z =0.5) (t=05) (z =0.5) (t=05) (t=05) (z =0.5)

5867805 8433645 11162712 9224106 9228097 9982585 14806947 15825979 18417896

Male 5992956 8539487 11180358 9452226 9403784 10111471 15470449 16612162 19016224
(4396459, (6653472, (9800741, (6911917, (7013897, (7576327, (11729269, (11809259, (12217231,
7102816) 9942999) 12414497) 11108349) 10999194) 11858258) 18786894) 20522707) 24776160)

2633623 4040209 7673656 4283604 4302063 4394687 10108290 10148977 10417704

Female 2650223 4065847 7713941 4219184 4236564 4302418 10111007 10158370 10443635
(1541813, (2788864, (6128939, (2849337, (2854903, (2878411, (7930769, (7964339, (8107332,
3641067) 5244381) 9118899) 5512662) 5542561) 5660696) 12086961) 12160822) 12527803)

3234182 4393436 3489056 4940502 4926034 5587898 4698657 5677002 8000192

A 3270505 4431180 3468239 5085377 5039567 5683354 5215300 6293935 8450981
(1383101, (2218429, (1527922, (2245649, (2317969, (2804836, (934484, (981612, (1106202,
4937956) 6423156) 5505879) 7417462) 7334838) 8129725) 9307677) 10997095) 15008831)

Note: Values are expressed as estimated mean value and median (95% CI)
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8. Conclusion and Discussion

This study examined how to extend the estimation of censored medical cost in
dependent censoring data. There are the prevailing methods for estimating the right
censored medical cost which fall into three categories, (a) the IPW estimators; (b) the
generalized survival-adjusted estimators; (c) the joint-modeling methods. However, the
prevailing methods were established under independent censoring. However, the medical
costs for failure event and censoring time tend to be generally positively correlated. Using
the prevailing methods for calculation mean medical cost provide biased results under the
assumption of dependent censoring. The proposed estimators using copula method can
reduce bias in inferences and return better results than the prevailing method in data under

dependent censoring.

Our simulation study revealed that the proposed method was either comparable or
superior to the prevailing method in most scenarios. Especially, the proposed method using
IPW method reduced bias and S.E. under dependence between Z and (T, C). And the
proposed method using generalized survival-adjusted method certainly reduced bias under
dependence between Z and (T,C) and all censoring scenarios. Also, we find that
prevailing methods showed a significant increase in bias under dependent censoring, and
BM method showed a smaller bias than the IPW method regardless of the dependency

between survival and censoring time.

This study’s simulations also examined the effects of the type of copula function and

dependency parameter 6. In [IPW method using copula graphic estimator, we should
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choose the high 0 regardless of copula’s function to have the smallest bias. However, in
generalized survival-adjusted method using copula-based Cox regression, we should
choose the high 6 under 20-30% censoring rate and the low 6 under 40-50% censoring
rate regardless of the type of copula function. When the expected mean value of survival
time is similar to limitation of study time, we should choose the low 8 in Clayton and

Frank function under 20-50% censoring rate under independence between Z and (T, C).

We confirmed through real data example that the value differs significantly between the
estimator considering the dependency of the survival and the censoring time and the
estimator that does not. Therefore, if dependent censoring exists, the censored medical cost

should be calculated using the proposed method considering it.

As a result, we confirm the performance of the proposed method compared to the
prevailing estimator based on IPW and generalized survival-adjusted method. The
proposed estimation method showed good performance in most cases, especially in the
context of dependence between Z and (T, C). This method is expected to be a useful tool to
estimation aspect to bias censored medical cost on dependent censoring data. Further works
should be carried out on study results to confirm the generalizability of these results. There
are further works, (1) when the censoring percentage in the [IPW scheme is 50% and the
mean of survival time is similar to study limitation time, the bias of estimators rapidly
decreases, (2) survival and censoring time were generated with a clayton copula, but rather,
the bias of the IPW estimator using the Gumbel function was smaller, and (3) Result of

incorrect assumption of copula function and dependency parameter 6.
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