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Abstract  

Medical cost modeling presents many challenges because available data are often 

right-censored due to early termination or follow-up loss of data observations. The 

prevailing methods for estimating the average of cumulative costs fall into three categories, 

(a) the inverse probability weighted (IPW) estimators; (b) the generalized survival-adjusted 

estimators; (c) the joint-modeling methods. However, under violation of independent 

censoring assumption, traditional survival analysis methods have been shown to be biased 

when employed on medical data.  

However, the prevailing methods were established under independent censoring. 

Generally, the medical costs for failure event and censoring time tend to be positively 

correlated (Etzioni et al. 1999; Lin 2003). Therefore, it is necessary to consider the joint 

distribution of survival and censoring time under dependent censoring. Copula function is 

attractive in statistical modeling because it gives a flexible and promising tool to modeling 

with dependence between survival and censoring time. For analysis of survival under 

dependent censoring, we use the copula-graphic estimator and copula-based univariate Cox 

regression employed an assumed copula. 

In this study, we evaluate the prevailing methods for estimating the medical cost under 

independent censoring assumption. Also, we proposed new estimators that are expanding 

scheme on IPW and generalized survival-adjusted estimators under dependent censoring 

assumption. The purpose of this study is to adapt the copula method to estimation medical 
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cost with survival data including dependent censoring. We evaluate our proposed 

estimators with a series of simulations. We conduct a simulation study assuming various 

scenarios to appraise the performance of bias and S.E in estimation of medical costs for 

dependent censoring. In addition, we illustrated the prevailing and proposed method using 

National Health Insurance Service National Sample Cohort (NHIS-NSC) data.    

                                                                            

Keywords: medical cost, dependent censoring, copula models, copula-graphic estimator, 

copula-based Cox regression, IPW method, generalized-adjusted survival estimation, joint-

model 
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1. Introduction 

In recent years, it has become common for hospitals, health insurers, or disease 

registries to collect data of medical cost to determine risk or economic burden and perform 

cost-effectiveness analyzes. However, medical cost modeling presents many challenges 

because available data are often right-censored due to early termination or follow-up loss 

of data observations. Considering medical cost as right-censored survival data, it is natural 

for researchers to use survival analysis technique for analysis with censored cost data such 

as the Kaplan Meier estimator, log-rank test, and Cox regression. However, under violation 

of independent censoring assumption, i.e., the medical cost at the censoring time points 

correlates with the cost of failure events, traditional survival analysis methods have been 

shown to be biased when employed on medical data. In order to solve this problem, much 

attention has been paid to the problem of estimating the average of cumulative costs. The 

prevailing methods fall into three categories, (a) the inverse probability weighted (IPW) 

estimators by Bang and Tsiatis (2000) and Lin (2003); (b) the generalized survival-adjusted 

estimators by Lin et al. (1997) and Basu and Manning; (c) the joint-modeling methods by 

Heitjan et al. (2004) and Liu (2009), Liu et al. (2007, 2008).  

However, the prevailing methods were established under independent censoring. 

Generally, the medical costs for failure event and censoring time tend to be positively 

correlated (Etzioni et al. 1999; Lin 2003). Using the most standard survival analysis 

methods for calculation cumulative medical cost provide biased results under the 
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assumption of dependent censoring. Therefore, it is necessary to consider the joint 

distribution of survival and censoring time under dependent censoring. Copula function is 

attractive in statistical modeling because it gives a flexible and promising tool to modeling 

with dependence between survival and censoring time. For analysis of survival under 

dependent censoring, we use the copula-graphic estimator instead of Kaplan-Meier 

estimator. This method employs an assumed copula. To avoid the non-identifiability, 

copula function and its dependency parameter should be completely specified. Emura and 

Chend (2016) showed the biased estimation of Cox regression due to violation of 

independent censoring assumption. So, we use the copula-based univariate Cox regression 

proposed by Emura and Chen (2016) for correctly capturing the effect of covariate under 

dependent censoring.  

In this paper, we evaluate the prevailing methods for estimating the medical cost under 

independent censoring assumption. Also, we proposed new estimators that are expanding 

scheme on IPW and generalized survival-adjusted estimators under dependent censoring 

assumption. We evaluate our proposed estimators with a series of simulations. The purpose 

of this study is to adapt the copula method to estimation of medical cost with survival data 

including dependent censoring. In Section 2, we briefly review the prevailing methods for 

estimating the medical cost under independent censoring assumption. In section 3, we 

illustrate the dependent censoring’s issues arising from medical research. The Secsion 4 

provides copula models’ mathematical infrastructures for applications to survival analysis 

under dependent censoring. In Section 5, we propose a class of estimators under dependent 
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censoring using copula model which build on the censored medical cost estimators defined 

in section 2.2 and 2.3. In Section 6, we evaluate the performance of the proposed estimators 

adopted for censored medical data via a simulation study. Section 7 illustrated the 

application of our proposed estimators with the prevailing estimators to the analysis of real 

data example. We discuss our results and provide some conclusions in Section 8.  
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2. Estimating medical cost with censored data 

Estimating medical costs have a common problem due to incompleteness of follow-

up data. Naïve summary statistics including simple average on the collected data can 

mislead to statistical inference and introduce bias. So, this section focuses on the problem 

of estimating medical costs if the cost data are right-censored. The prevailing methods fall 

into three categories, (a) the inverse probability weighted (IPW) estimators; (b) the 

generalized survival-adjusted estimators; (c) the joint-modeling methods. In this section, 

we review the methods for estimating censored medical cost under independent censoring 

assumption. 

 

2.1  Notation and assumptions 

First define a general setting and notation for our problem. Let the random variable 

𝑀 represent the total medical cost over some specified period of time and denote it as a 

random variable 𝑇  represented the survival time. If necessary, the time frame for 

evaluating each patient should be limited to 𝜏. Therefore, we should consider the costs 𝑀 

paid by a patient up to a maximum of 𝜏 units of time. In that case, the variable 𝑇 is 

bounded by 𝜏. The distribution of 𝑇 is assumed to be continuous from 0 to 𝜏. 

We can obtain the cost 𝑀 for each patient and estimate the mean cost by computing 

simple average cost denoted by 𝜇 = 𝐸(𝑀) when all patients have been observed for at 
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least 𝜏  units of time. However, in most studies, not all patient costs are completely 

observed due to different types of censoring. For instance, censoring may occur because 

patients enter the study at a time lag, in which case patients exiting the study who were not 

followed up for T units of time would be censored. This type of censoring is called 

administrative censoring. Also, censoring may occur when patients are lost to follow-up or 

leave the study. Let 𝐶 be the censoring time. In this section, the censoring is assumed to 

continuous distribution and arise in a completely random. 

𝑀(𝑢) denotes the cumulative cost up to time 𝑢 realizing that information about costs 

may be available at random points in time. Write X = min(T, C) , ∆= I(𝐶 ≥ 𝑇), 𝑆(𝑡) =

Pr(𝑇 > 𝑡) , 𝐾(𝑡) = Pr(𝐶 > 𝑡)  where 𝐼(∙)  is the indicator function. Let 𝑀𝑇 = 𝑀(𝑇) 

denotes the lifetime cost which cannot be observed for all patients due to the limitation of 

study duration. Thus, we focus on the total cost accumulated in interesting time period (0, 

𝜏]. In addition, we need to divide (0, 𝜏] into 𝐾  intervals (𝑡𝑘−1, 𝑡𝑘], (𝑘 = 1,2, … , 𝐾). 

Write 𝑇∗=min(T, 𝜏) and ∆∗= 𝐼(𝐶 ≥ 𝑇∗) where 𝐼(∙) is the indicator function. Let 𝑀𝑘 =

𝑀(𝑡𝑘) 𝑎𝑛𝑑  𝑚𝑘 = 𝑀𝑘 − 𝑀𝑘−1 . The subscript 𝑖  indicates individual patients 𝑖 =

1,2, … , 𝑛 and 𝑀𝑖 = 𝑀(𝑇𝑖
∗) denote the total cost for each patient 𝑖. In regression, 𝒁 is 

the set of 𝑝 × 1 covariates vector with parameter vector 𝜷.  
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2.2  Inverse probability weighted estimator  

The idea of weighing the complete observations by their inversed probabilities 

initiated by Horvitz and Thompson (1952) in sample survey. Bang and Tsiatis (2000) 

employed IPW method to account for informative censoring when estimating the mean of 

total medical cost. As regards independent censoring, the 𝑖th individual has a probability 

𝐾(𝑇𝑖) of not being censored at the time of death 𝑇𝑖. Thus, each person observed to die 

uncensored represents, on average, 1/𝐾(𝑇𝑖) individuals who may have been censored. 

The simple weighted complete-case estimator (𝐵𝑇) of mean of total cost 𝐸(𝑀𝑖) is 

�̂�𝐵𝑇 =
1

𝑛
∑

Δ𝑖
∗𝑀𝑖

�̂�(𝑇𝑖
∗)

𝑛

𝑖=1
. 

They proposed to estimate the unknown survivor function 𝐾(∙) by the Kaplan-Meier 

estimator (Kaplan and Meier, 1958). That estimator is 

�̂�(𝑡) = ∏ {1 −
𝑑𝑁𝑐(𝑢)

𝑌(𝑢)
}

𝑢≤𝑡

, 

where 𝑁𝑐(𝑢) = ∑ 𝐼(𝑇𝑖
∗ ≤ 𝑢, ∆𝑖= 0) and 𝑌(𝑢) = ∑ 𝐼(𝑇𝑖

∗ ≥ 𝑢). 

This is an unbiased estimate of μ, which is a result of the following equality: 

E {
1

𝑛
∑

Δ𝑖
∗𝑀𝑖

𝐾(𝑇𝑖
∗)

𝑛

𝑖=1
} = 𝐸 [

1

𝑛
∑ 𝐸 {

Δ𝑖
∗𝑀𝑖

𝐾(𝑇𝑖
∗)

|𝑇𝑖
∗, 𝑀𝑖(∙)}

𝑛

𝑖=1

] 

                        = E [
1

𝑛
∑

𝑀𝑖

𝐾(𝑇𝑖
∗)

𝐸{𝐼(𝐶𝑖 ≥ 𝑇𝑖)|𝑇𝑖
∗, 𝑀𝑖(∙)}

𝑛

𝑖=1

] 

       = E (
1

𝑛
∑ 𝑀𝑖

𝑛

𝑖=1

) = 𝜇. 
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The variance of �̂�𝐵𝑇 is given by 

Var(�̂�𝐵𝑇) =
1

𝑛
[
1

𝑛
∑

Δ𝑖
∗(𝑀𝑖 − �̂�𝐵𝑇)2

�̂�(𝑇𝑖
∗)

+
1

𝑛
∫

𝑑𝑁𝑐(𝑢)

�̂�2(𝑢)
{�̂�(𝑀2, 𝑢) − 𝐺2(𝑀, 𝑢)}

𝜏

0

𝑛

𝑖=1

], 

where 𝐺(𝑀, 𝑢) =
1

𝑛

1

�̂�(u)
∑

Δ𝑖
∗𝑀𝑖𝐼(𝑇𝑖

∗≥𝑢)

�̂�(𝑇𝑖
∗)

𝑛
𝑖=1  and �̂�(u)  is the Kaplan-Meier estimator for 

S(u) = pr(𝑇𝑖
∗ ≥ 𝑢).  Then, given 𝑇𝑖

∗𝑘 = min(𝑇𝑖
∗, 𝑡𝑘) , Δ𝑖

∗𝑘 = 𝐼{𝑇𝑖
∗𝑘 ≤ 𝐶𝑖}, 𝐾  sub 

intervals (𝑡𝑗, 𝑡𝑗+1] (𝑗 = 1,2, … , 𝐾 − 1) of (0, 𝜏], the partitioned version (𝐵𝑇𝑝) of more 

efficient estimator is 

�̂�𝐵𝑇𝑝
=

1

𝑛
∑ ∑

Δ𝑖
∗𝑘{𝑀𝑖(𝑡𝑘) − 𝑀𝑖(𝑡𝑘−1)}

�̂�(𝑇𝑖
∗𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

 

This partitioned estimator makes use of censored observation's cost history which are not 

used by the unpartitioned estimator.  

The same scheme is used when building regressions of right censored medical costs 

on covariates. Lin (2000) modified linear regression form E(𝑀𝑖|𝒁𝑖) = 𝜷′𝒁𝒊   for 

informative censoring using the IPW method. The resulting estimator for above equation 

is calculated by the weighted estimation function ∑
Δ𝑖

∗(𝑀𝑖−𝜷′𝒁𝒊)𝒁𝒊

�̂�(𝑇𝑖
∗)

𝑛
𝑖=1 = 0, where �̂�(𝑇𝑖

∗) 

is the Kaplan-Meier estimator for 𝐾(𝑇𝑖
∗), is given by 

�̂� = {∑
Δ𝑖

∗

�̂�(𝑇𝑖
∗)

𝒁𝒊𝒁𝒊
′ 𝑛

𝑖=1 }
−𝟏

∑
Δ𝑖

∗

�̂�(𝑇𝑖
∗)

𝑀𝑖𝒁𝒊
𝑛
𝑖=1 . 

The partitioned estimator including the cost history of censored patients is used under the 

model of E(𝑀𝑘,𝑖|𝒁𝑖) = 𝜷𝒌
′ 𝒁𝒊, where 𝜷𝒌 is 𝑝 × 1 vector of unknown parameter for each 

interval 𝑘. Then the estimator for 𝜷𝒌 in each partition is 
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�̂�𝒌 = {∑
Δ𝑖

∗𝑘

�̂�(𝑇𝑖
∗𝑘|𝒁𝑖)

𝒁𝒊𝒁𝒊
′ 

𝑛

𝑖=1

}

−1

∑
Δ𝑖

∗𝑘

�̂�(𝑇𝑖
∗𝑘|𝒁𝑖)

𝑚𝑘,𝑖𝒁𝒊

𝑛

𝑖=1
, 

where �̂�(t|𝒁𝑖)  could be derived via a proportional hazards model or use another 

consistent estimator that allows in that way for censoring dependent on covariates instead 

of using �̂�(𝑇𝑖
∗). 

 

2.3  Generalized survival-adjusted estimator 

In this section, the generalized survival-adjusted estimation method is performed by 

extending the Lin et al. (1997)’s work in a more direct way. To solve the informative 

censoring, we should divide time period into 𝐾 intervals. The original estimator form of 

Lin et al. (1997) is 

�̂�𝐿𝑖𝑛97 = ∑ �̂�𝑘−1�̂�𝑘

𝐾

𝑘=1
 

where �̂�𝑘  is the estimator of 𝐸𝑘 = 𝐸(𝑚𝑘|𝑇∗ > 𝑡𝑘−1)  and �̂�𝑘  is the Kaplan-Meier 

estimator of 𝑆𝑘 = 𝑃𝑟(𝑇∗ ≥ 𝑡𝑘).  

Basu and Manning (2010) extended the estimator proposed by Lin (1997) to take 

covariates into account when the cost history data is available. First, they decomposed 

𝐸𝑘 = ℎ𝑘𝜇1𝑘 + (1 − ℎ𝑘)𝜇2𝑘 which incorporate the different cost accumulation rates over 

the intervals where the patient dies and survives where ℎ𝑘 = Pr (𝑡𝑘−1 < 𝑇 ≤ 𝑡𝑘|𝑇 ≥

𝑡𝑘−1)  is the hazard rate of death during the kth interval, 𝜇1𝑘 = 𝐸(𝑚𝑘|𝑡𝑘−1 < 𝑇 ≤ 𝑡𝑘) 
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and 𝜇2𝑘 = 𝐸(𝑚𝑘|𝑇 > 𝑡𝑘) are the mean of incremental costs for patients who died during 

or after the kth interval, respectively. Then, the mean estimator on covariates proposed by 

Basu and Manning (2010) is 

�̂�(𝒁) = ∑ �̂�𝑘(𝒁) [ℎ̂𝑘(𝒁)�̂�1𝑘(𝒁) + (1 − ℎ̂𝑘(𝒁)) �̂�2𝑘(𝒁)]𝐾
𝑘=1 , 

where �̂�𝑘(𝒁) and ℎ̂𝑘(𝒁) can be derived from accelerated failure time (AFT) model and 

�̂�1𝑘(𝒁) and �̂�2𝑘(𝒁) from certain generalized linear model (GLM). 

Under the assumption of random censoring, the process of estimation follows under 

three parts: 

(a) Part-1: Estimate an individual's survival function after accounting for censoring using 

a flexible survival model, like an accelerated failure time model based on a generalized 

gamma distribution over time. Let �̂�𝑘(𝒁)  and ℎ̂𝑘(𝒁)  be the estimated survival and 

hazard functions for an interval (Notation for individuals has been suppressed for clarity.) 

We can get predictions obtained for all time periods for all patients. 

(b) Part-2: Among those subject intervals, (𝑡𝑘−1, 𝑡𝑘], where we observe the subject dying, 

i.e., where 𝑡𝑘−1 < 𝑇 ≤ 𝑡𝑘  & ∆𝑘= 𝐼(min(𝐶, 𝑇) = 𝑇) = 1 , we estimate through a 

generalized linear model (or two-part model which specification is necessary) for the 

observed costs after conditioning on covariates 𝒁 and 𝑈𝑘 (as death can occur anywhere 

in the middle of the interval, so the time of death is continuous), where 𝑈𝑘 = 𝑡𝑘 −

𝑡𝑘−1  𝑖𝑓 𝑇 = 𝑡𝑘   or  𝑈𝑘 = 𝑇 − 𝑡𝑘−1  if 𝑡𝑘−1 < 𝑇 < 𝑡𝑘. Predict the costs �̂�1𝑘(𝒁) for every 
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subject interval in the data using the parameter estimates from this model. To illustrate the 

stochastic nature of 𝑈 within that interval (i.e., to account for costs if the patient died 

within that interval but at different times), we weighted the observed distribution of 𝑈 

between intervals observed that the patient died, and then averaged the conditional 

prediction for each value of U. That is, �̂�1𝑘(𝒁) = ∫ �̂�1𝑘(𝒁, 𝑢)𝑑𝐹(𝑈|𝑡𝑘 < 𝑇𝑜𝑏𝑠 < 𝑡𝑘+1). 

(c) PART-3: Next, among the subject intervals (𝑡𝑘−1, 𝑡𝑘], where no patients are observed 

to die but only costs are observed during a partial period due to censoring is excluded, 

estimate a generalized linear model (or model if a two-part specification is required) for 

the observed cost function, conditional on the covariate 𝒁 . Parameter estimates of this 

model are used for all subject-intervals in the data to predict the costs �̂�2𝑘(𝒁). As in the 

Bang and Tsiatis (2000) estimator, the estimation of this part does not use the subject- 

interval where censoring occurs, so continuous censoring time can be effectively allowed. 

(d) The estimated cost function for interval 𝑘 for any individual is given as 

�̂�𝑘(𝒁) = �̂�𝑘(𝒁)[ℎ̂𝑘(𝒁)�̂�1𝑘(𝒁) + (1 − ℎ̂𝑘(𝒁)) �̂�2𝑘(𝒁)] and �̂�(𝒁) = ∑ �̂�𝑘(𝒁)𝐾
𝑘=1 . 

From the perspective of the approach used to estimate mean accumulated costs, it is 

necessary to re-emphasize the major differences between the IPW method described in 

Section 2.2 and the generalized survival adjustment estimates presented in this section. 

The former uses interval-based trajectories, cost histories, or total costs to accumulate 

individual specific costs and then calculate the average over patients. Thus, it is 

characterized by a minimal data case. Whereas, the methods described in this section are 
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averaged by the probability of survival after summing the cost over time intervals. To this 

end, they are generally characterized by interval data cases. 

 

2.4  Joint-modeling method 

The covariate effects on the total accumulated cost can also be realized through the 

accumulation intensity of the cost and survival. Therefore, it would be useful to integrate a 

regression model for cost with survival information. In this section, it is attempted by a 

joint modeling approach of both survival and medical costs. 

Heitjan et al. (2004) considered the joint distribution of survival and medical cost under 

the assumptions of Weibull distribution for survival and gamma distribution for medical 

cost: 

𝑓𝑇(𝑡) =
𝛼 (

𝑡
𝜆

)
𝛼−1

𝑒𝑥𝑝 [− (
𝑡
𝜆

)
𝛼

]

𝜆
, (𝑡 > 0, 𝛼 > 0, 𝜆 > 0)    𝑎𝑛𝑑  

𝑓𝐶(𝑐) =
(𝑣/𝜇)𝑣𝑐𝑣−1exp (−𝑣𝑐/𝜇)

Γ(𝑣)
, (𝑐 > 0, 𝑣 > 0, 𝜇 > 0),  

where the mean cost 𝜇 and survival time 𝑇 have a linear relationship, 𝜇 = 𝑎 + 𝑏𝑇. In 

the presence of informative censoring, the joint distribution of cost and survival time is 

derived through Bayesian method. This estimation method had a assumption that censoring 

is independent of cost and survival. So, they derived the likelihood function of the joint 

distribution for estimation under ignore of the informative censoring. 
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Liu et al. (Liu et al. 2007, 2008; Liu 2009) implemented the idea of jointly modelling 

employing a shared random effects model. Let 𝑣𝑖 be random effect which has a parametric 

distribution and affects both cost and hazard rate. The joint model of cost and death in 

interval 𝑘 for subject 𝑖  is written as 

𝑚𝑘,𝑖 = 𝜷′𝒁𝑘,𝑖 + 𝛿1𝑣𝑖 + 𝑒𝑘,𝑖 

𝜆𝑖(𝑡) = 𝜆0(𝑡)exp (𝜸′𝒁𝑖 + 𝛿2𝑣𝑖) 

where 𝜷, 𝜸, 𝛿1 and 𝛿2 are unknown parameters and 𝑒𝑘,𝑖 is the error, and 𝜆𝑖(𝑡) is the 

hazard for death with 𝜆0(𝑡) baseline hazard. Because the presence of a shared random 

effects term, 𝑣𝑖, makes it easy to see that survival and medical costs are correlated, the 

model should jointly derive estimators for both the cost and survival functions. Write 𝑚𝑖 =

{𝑚𝑖(1), … , 𝑚𝑖(𝐾)} as the observed history vector of medical cost up to 𝐾 for subject 𝑖. 

For estimation, we should construct the joint log-likelihood for new observed data 𝚶𝑖 =

{𝑚𝑖, 𝑋𝑖 , Δ𝑖} and 𝑣𝑖 as 

𝑙∗ = 𝑙𝑜𝑔𝐿 (𝑚𝑖, 𝑋𝑖 , Δ𝑖, 𝑣𝑖)  

= ∑ [𝑙𝑜𝑔𝐿(𝑚𝑖(𝑘)|𝑋𝑖, Δ𝑖, 𝑣𝑖) + 𝑙𝑜𝑔𝐿(𝑋𝑖, Δ𝑖|𝑣𝑖) + 𝑙𝑜𝑔𝑝(𝑣𝑖)]𝐾
𝑘=1 , 

where 𝑝(𝑣𝑖) is the density function. Assume that 𝑣𝑖 ~
𝑖𝑖𝑑

 𝑁(0, 𝜎𝑣
2) and use EM algorithm 

to obtain maximum likelihood estimation (MLE) for parameters 𝜃 ≡ {𝜷, 𝜸, 𝛿1, 𝛿2, 𝜎𝑣
2, 𝜎𝑒

2} 

because 𝑣𝑖s’ are unobserved. First M step, take the first derivative and second derivative 
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of 𝑙∗ with respect to parameters 𝜃. In the E-step, we can use Metropolis-Hastings (M-H) 

algorithm to generate 𝑀 random numbers 𝑣𝑖
(𝑚)

(𝑚 = 1, … , 𝑀) and then obtain estimated 

expectation value of the sufficient statistics involving frailties. For example,  �̂�(𝑣𝑖|𝚶𝑖) =

(1/𝑀) ∑ 𝑣𝑖
(𝑚)𝑀

𝑚=1 . And they used Louis’s formula to calculate the information matrix for 

likelihood of observed data. The observed information matrix 𝐼(𝜃) is 

𝐼(𝜃) = −�̂� {
𝜕2𝑙∗

𝜕𝜃𝜕𝜃′ |𝚶𝑖 , 𝜃} − �̂� {
𝜕𝑙∗

𝜕𝜃
𝜕𝑙∗

𝜕𝜃′ |𝚶𝑖 , 𝜃} + �̂� {
𝜕𝑙∗

𝜕𝜃
|𝚶𝑖, 𝜃} �̂� {

𝜕𝑙∗

𝜕𝜃′ |𝚶𝑖, 𝜃}. 

All three terms are evaluated on the last iteration of the EM algorithm where the last term 

of the MLE is zero. The first two expectations can be calculated through averaging for the 

corresponding term containing the M-H values. 
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3. Dependent censoring 

If the mechanism of censoring involves dropout or withdrawal due to worsening 

symptoms, censoring may introduce bias at the results of statistical analysis. This type of 

dropout is often mentioned to as informative dropout. Informative dropout is one of many 

causes of censoring. More generally, when the time of an event of interest is censored by a 

mechanism associated with the event, this phenomenon is referred to as dependent 

censoring. Most standard survival analysis methods provide unbiased results under the 

assumption of independent censoring. Therefore, if it is not independent censoring, it is 

necessary to pay attention to the survival analysis. 

In a cancer follow-up study, survival time may be censored because of dropout due to 

tumor progression, toxicity, and initiation of next treatment, etc. So, overall survival and 

censoring time may be positively correlated because patients may usually die soon after 

dropout. This dropout leads to informative censoring and can have a detrimental effect on 

data analysis. For example, many terminally ill patients dropped out of clinical trial for stay 

in their home. This means that data collected from clinical trials not catch many observable 

deaths. As a result, Kaplan–Meier survival curves that treat these patients as censored may 

make upward bias. 

Dependent censoring is applied to situations where the dependence between censoring 

and survival time is not accounted by observable covariate. That is, dependent censoring 

results from residual dependency which is not adjusted by covariates. In a sense, collecting 
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as many covariates as possible can reduce concerns about dependent censoring. For 

example, late-stage cancer patients are more likely to have shorter survival time and high 

possibility of dropout due to tumor progression, which confers a positive dependence 

between survival and dropout time. Therefore, cancer stage that is one of the covariates can 

achieve conditional independence between survival and dropout time. 
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4. Copula models for dependent censoring 

In this section, we introduce a mathematical background to bivariate copula models 

that used in survival analysis. Let 𝑇 is survival time, 𝐶 is censoring time, and 𝐳 is a 

vector of covariates. In addition, let 𝑆𝑇(𝑡|𝐳) = Pr (𝑇 > 𝑡|𝐳)  and 𝑆𝐶(𝑐|𝐳) = Pr (𝐶 >

𝑐|𝐳) are the marginal survival functions given 𝐳. A bivariate survival function 

Pr(T > t, C > c|𝐳) =  𝑪𝜽{𝑆𝑇(𝑡|𝐳), 𝑆𝐶(𝑐|𝐳)}, 

where a function 𝐶𝜃 is a copula (Nelsen 2006) and parameter 𝜃 describes the degree of 

dependence between 𝑇 and 𝐶.  

4.1  Bivariate copula 

This section provides a concise introduction to bivariate copulas. A bivariate copula is 

defined as a bivariate distribution whose marginal distribution is the uniform distribution 

on [0,1]. Let a bivariate copula, 𝑪𝜽: [0,1]2 ⟼ [0,1], is indexed by a parameter 𝜃. By the 

definition, any bivariate copula should be satisfying the following conditions 

(C1) 𝑪𝜽(𝑢, 0) = 𝑪𝜽(0, 𝑣) = 0,  𝑪𝜽(𝑢, 1) = 𝑢, and  𝑪𝜽(1, 𝑣) = 𝑣 for 0 ≤ 𝑢 ≤ 1 and 

0 ≤ 𝑣 ≤ 1. 

(C2) 𝑪𝜽(𝑢2, 𝑣2) − 𝑪𝜽(𝑢2, 𝑣1) − 𝑪𝜽(𝑢1, 𝑣2) + 𝑪𝜽(𝑢1, 𝑣1) ≥ 0  for 0 ≤ 𝑢1 ≤ 𝑢2 ≤ 1 

and 0 ≤ 𝑣1 ≤ 𝑣2 ≤ 1. 

(C1)  requires the two marginal uniform distributions and (C2)  requires that 𝑪𝜽 

produces a probability mass on the rectangular region [𝑢1, 𝑢2] × [𝑣1, 𝑣2]. 
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For a copula 𝑪𝜽 , we can consider a pair of random variables (𝑉, 𝑊)  such that 

Pr(V ≤ u, W ≤ v) = 𝑪𝜽(𝑢, 𝑣). If one defines a pair of random variables (𝑇, 𝐶) by setting 

𝑇 = 𝑆𝑇
−1(𝑉|𝐳)  and 𝐶 = 𝑆𝐶

−1(𝑊|𝐳) , its bivariate survival function satisfies 

Pr(T > t, C > c|𝐳) =  𝑪𝜽{𝑆𝑇(𝑡|𝐳), 𝑆𝐶(𝑐|𝐳)}. 

There are some copulas meet conditions (C1) and (C2): 

(a) the independence copula is 

𝐂(u, v) = uv. 

(b) the Clayton copula by Clayton 1978 is 

 𝑪𝜽(u, v) = (𝑢−𝜃 + 𝑣−𝜃 − 1)
−

1
𝜃, 𝜃 > 0. 

(c) the Gumbel copula by Gumbel 1960 is 

 𝑪𝜽(u, v) = exp [−{(−𝑙𝑜𝑔𝑢)𝜃+1 + (−𝑙𝑜𝑔𝑣)𝜃+1}
1

𝜃+1] , 𝜃 ≥ 0. 

(d) the Frank copula by Frank 1979 is 

 𝑪𝜽(u, v) = −
1

𝜃
𝑙𝑜𝑔 {1 +

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
} , 𝜃 ≠ 0. 

(e) the Joe copula by Joe 1993 is 

 𝑪𝜽(u, v) = 1 − {{(1 − 𝑢)𝜃 + (1 − 𝑣)𝜃 − (1 − 𝑢)𝜃(1 − 𝑣)𝜃}}

1
𝜃 , 𝜃 ≥ 1. 

(f) The Farlie-Gumbel-Morgenstern (FGM) copula by Morgenstern (1956) is 

 𝑪𝜽(u, v) = 𝑢𝑣{1 + 𝜃(1 − 𝑢)(1 − 𝑣)}, −1 ≤ 𝜃 ≤ 1. 

By Tovar Cuevas et al. (2019), the Clayton copula function models a highly 

dependent asymmetric data structure with the left tail indicating that the cloud is 
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expanding.  

 

Figure 1. Scatter plot of data under the Clayton copula with different 𝜃. 

The Gumbel copula is useful for modeling data structures that have a strong dependency 

on the upper tail and a weak dependency on the lower tail, where we expect the upper 

data to be strongly correlated and the lower data to be weakly correlated. 

 

Figure 2. Scatter plot of data under the Gumbel copula with different 𝜃. 

 

 

 



19 

 

The Frank copula is appropriate to weak dependency with positive linear trend. 

 

Figure 3. Scatter plot of data under the Frank copula with different θ. 

For example, figure 3 gives the scatter plots for (𝑇𝑖, 𝑈𝑖), 𝑖 = 1, … ,500 and 𝑇 and 

𝑈 are with the standard exponential distribution under Clayton copula model. 

Pr(𝑇𝑖 > 𝑡, 𝑈𝑖 > 𝑢) = {(𝑒−𝑡)−𝜃 + (𝑒−𝑢)−𝜃 − 1}
−1/𝜃

, for 𝜃 = 2 and 𝜃 = 8. 

By letting 𝑇𝑖 = −𝑙𝑜𝑔𝑉𝑖 and 𝑈𝑖 = −𝑙𝑜𝑔𝑊𝑖 where (𝑉𝑖, 𝑊𝑖), 𝑖 = 1, … ,500, the data set 

was generated from the Clayton copula. The plots show positive dependence, where the 

dependence’s levels are different by 𝜃. 
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Figure 4. Scatter plot of data (𝑛 = 500 pairs) generated under the Clayton copula with 

𝜃 = 2 (𝜏𝜃 = 0.5) and 𝜃 = 8 (𝜏𝜃 = 0.8) form the standard exponential distribution 

An Archimedean copula is defined as 

𝑪𝜽(𝑢, 𝑣) = 𝜙𝜃
−1{𝜙𝜃(𝑢) + 𝜙𝜃(𝑣)}, 

where 𝜙𝜃: [0,1] ⟼ [0, ∞] is called a generator of the copula that is continuous and 

strictly decreasing function from 𝜙𝜃(0) > 0 to 𝜙𝜃(1) = 0. If 𝜙𝜃(0) ≡ lim𝑡↓0𝜙𝜃(𝑡) =

∞, the generator is called a strict generator and has the inverse function 𝜙𝜃
−1: [0, ∞] ⟼

[0,1]. The Clayton, Gumbel, Frank, and Joe copulas have a strict generator but, FGM 

copula does not have a generator as it is not an Archimedean copula. 

Let (𝑉, 𝑊) be a pair of random variables that satisfy Pr (V ≤ u, W ≤ v)  =

𝐶𝜃(𝑢, 𝑣). To measure of dependence between 𝑉 and 𝑊, Kendall’s tau is defined as 

𝜏𝜃 = 𝑃𝑟{(𝑉2 − 𝑉1)(𝑉2 − 𝑉1) > 0} − 𝑃𝑟{(𝑉2 − 𝑉1)(𝑉2 − 𝑉1) < 0}, 

where (𝑉1, 𝑉2) and (𝑊1, 𝑊2) also have the same distribution as (𝑉, 𝑊). It can be 

expressed that 

𝜏𝜃 = 4 ∫ ∫ 𝐶𝜃(𝑢, 𝑣)𝐶𝜃(𝑑𝑢, 𝑑𝑣) − 1 = 4 ∫ ∫ 𝐶𝜃(𝑢, 𝑣)𝐶𝜃
[1,1](𝑢, 𝑣)𝑑𝑢𝑑𝑣 − 1

1

0

1

0

1

0

1

0

, 

where 𝐶𝜃
[1,1](𝑢, 𝑣) =

𝜕2

𝜕𝑢𝜕𝑣
𝐶𝜃(𝑢, 𝑣). Table 1 summarizes 𝜏𝜃 for copulas and 𝜏𝜃 

increases with 𝜏𝜃 → 1 as 𝜃 → ∞. 
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  Table 1. Examples of copulas 

Copula Parameter Generator: 𝜙𝜃 Kendall’s tau: 𝜏𝜃 

Clayton 𝜃 > 0 (𝑡−𝜃 − 𝜃)/𝜃 𝜃/(𝜃 + 2) 

Gumbel 𝜃 ≥ 0 {−𝑙𝑜𝑔(𝑡)}𝜃+1 1 − 1/𝜃 

Frank 𝜃 ≠ 0 −𝑙𝑜𝑔 (
𝑒−𝜃𝑡 − 1

𝑒−𝜃 − 1
) 1 −

4

𝜃
(1 −

1

𝜃
∫

𝑡

𝑒𝑡 − 1
𝑑𝑡

𝜃

0

) 

Joe 𝜃 ≥ 1 −𝑙𝑜𝑔(1 − (1 − 𝑡)𝜃) 1 − 4 ∫
𝑡(1 − 𝑒𝑡)2/𝜃−2𝑒−2𝑡

𝜃2
𝑑𝑡

∞

0

 

FGM −1 ≤ 𝜃 ≤ 1 None 2𝜃/9 

 

 

4.2  The Copula-Graphic (CG) estimator 

Zheng and Klein (1995) proposed the idea assumed copula while analyzing survival 

data subjected to dependent censoring. They saw a bivariate distribution function of 

survival and censoring time with completely specified forms of copula functions, including 

parameter values. This strong assumption about the copula is imposed to make the model 

identifiable. 

They estimated the marginal survival function with a copula-graphic (𝐶𝐺) estimator 

under assumed copula. The survival function estimated by the 𝐶𝐺 estimator is similar to 

that estimated by the Kaplan-Meier estimator. It is reduced to a Kaplan–Meier estimator 

under independence copulas. In practical applications, the 𝐶𝐺  estimator is computed 

assuming one of the Archimedean copulas. Rivest and Wells (2001) proposed a simple 
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expression of the 𝐶𝐺  estimator when the assumed copula belongs to the Archimedean 

copula. Today, 𝐶𝐺 estimators are indispensable tools for survival analysis with dependent 

censoring (Braekers and Veraverbeke 2005; Emura and Chen 2018). 

Under dependent censoring, Kaplan-Meier estimator may introduce biased information 

but a survival curve calculated form 𝐶𝐺 estimator gives unbiased information if copula 

function between death and censoring time is rightly specified. We introduce the 𝐶𝐺 

estimator proposed by Rivest and Wells (2001). Consider random variables defied as T is 

survival time and C is censoring time and an Archimedean copula model 

Pr(T > t, C > c) = 𝜙𝜃
−1[𝜙𝜃{𝑆𝑇(𝑡)} + 𝜙𝜃{𝑆𝐶(𝑡)}], 

where 𝜙𝜃: [0,1] ⟼ [0, ∞]  is generator function, which is strictly decreasing and 

continuous from 𝜙𝜃(0) = ∞ to 𝜙𝜃(1) = 0; 𝑆𝑇(𝑡) = Pr (𝑇 > 𝑡) and 𝑆𝐶(𝑐) = Pr (𝐶 >

𝑐) are the marginal survival functions. 

Let (𝑥𝑖, ∆𝑖), i = 1, … , n,  be survival data without covariates, where 𝑥𝑖 =

min {𝑇𝑖, 𝐶𝑖} , ∆𝑖= 𝐼(𝑇𝑖 ≤ 𝐶𝑖) , I(∙)  is the indicator function. All the observed times are 

assumed to distinct (𝑥𝑖 ≠ 𝑥𝑗 whenever 𝑖 ≠ 𝑗). The 𝐶𝐺 estimator is defined as 

�̂�𝑇(𝑡) = 𝜙𝜃
−1 [ ∑ 𝜙𝜃 (

𝑛𝑖 − 1

𝑛
) − 𝜙𝜃 (

𝑛𝑖

𝑛
)

𝑥𝑖≤𝑡,∆𝑖=1

] , 0 ≤ 𝑡 ≤ max
𝑖

(𝑥𝑖) 

where 𝑛𝑖 = ∑ 𝐼(𝑡ℓ ≥ 𝑥𝑖)𝑛
ℓ=1   is the number at risk at time 𝑥𝑖 ; �̂�𝑇(𝑡) = 1  if no death 

occurs up to time 𝑡; �̂�𝑇(𝑡) is undefined for 𝑡 > max
𝑖

(𝑥𝑖). 

The derivation of the 𝐶𝐺 estimator can be obtained as follows. Assume that 𝑆𝑇(𝑡) is 
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decreasing step function with jumps at death times. Then, ∆𝑖= 1  implies 𝑆𝑇(𝑥𝑖) ≠

𝑆𝑇(𝑥𝑖 − 𝑑𝑡)  and 𝑆𝐶(𝑥𝑖) = 𝑆𝐶(𝑥𝑖 − 𝑑𝑡) . Let’s set 𝑡 = 𝑐 = 𝑥𝑖  in Pr(T > t, C > c) =

𝜙𝜃
−1[𝜙𝜃{𝑆𝑇(𝑡)} + 𝜙𝜃{𝑆𝐶(𝑡)}], we have 

𝜙𝜃 Pr(T > 𝑥𝑖 , C > 𝑥𝑖) = 𝜙𝜃{𝑆𝑇(𝑥𝑖)} + 𝜙𝜃{𝑆𝐶(𝑥𝑖)}. 

In the left-side of the preceding equation, estimate Pr(T > 𝑥𝑖 , C > 𝑥𝑖) by (𝑛𝑖 − 1) 𝑛⁄ , 

where 𝑛𝑖 − 1 = ∑ 𝐼(𝑡ℓ > 𝑥𝑖)𝑛
ℓ=1  is the number of survivors at time 𝑥𝑖. Accordingly, 

𝜙𝜃 (
𝑛𝑖 − 1

𝑛
) = 𝜙𝜃{𝑆𝑇(𝑥𝑖)} + 𝜙𝜃{𝑆𝐶(𝑥𝑖)},   ∆𝑖= 1. 

Meanwhile, we set 𝑡 = 𝑐 = 𝑥𝑖 − 𝑑𝑡  in equation Pr(T > t, C > c) =

𝜙𝜃
−1[𝜙𝜃{𝑆𝑇(𝑡)} + 𝜙𝜃{𝑆𝐶(𝑡)}] and then estimate Pr(T > 𝑥𝑖 − 𝑑𝑡, C > 𝑥𝑖 − 𝑑𝑡) by 𝑛𝑖 𝑛⁄ . 

That is,  

𝜙𝜃 (
𝑛𝑖

𝑛
) = 𝜙𝜃{𝑆𝑇(𝑥𝑖 − 𝑑𝑡)} + 𝜙𝜃{𝑆𝐶(𝑥𝑖)},   ∆𝑖= 1. 

The result in the system of difference equations is 

𝜙𝜃 (
𝑛𝑖 − 1

𝑛
) −𝜙𝜃 (

𝑛𝑖

𝑛
) = 𝜙𝜃{𝑆𝑇(𝑥𝑖)} − 𝜙𝜃{𝑆𝑇(𝑥𝑖 − 𝑑𝑡)},   ∆𝑖= 1. 

When 𝑥𝑖 is the smallest, we can impose the constraint that 𝑆𝑇(𝑥𝑖 − 𝑑𝑡) = 1. Then, the 

solution of different equations is 

𝜙𝜃{𝑆𝑇(𝑡)} = ∑ [𝜙𝜃{𝑆𝑇(𝑥𝑖)} − 𝜙𝜃{𝑆𝑇(𝑥𝑖 − 𝑑𝑡)}]

𝑥𝑖≤𝑡,∆𝑖=1

    

= ∑ [𝜙𝜃 (
𝑛𝑖 − 1

𝑛
) − 𝜙𝜃 (

𝑛𝑖

𝑛
)]

𝑥𝑖≤𝑡,∆𝑖=1

, 
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which is equivalent to the 𝐶𝐺 estimator. 

When 𝜙𝜃(𝑡) = − log(𝑡) under independence copula, the 𝐶𝐺 estimator is same to 

the Kaplan-Meier estimator and given by 𝜙𝜃(𝑡) = (𝑡−𝜃 − 1)/𝜃  for 𝜃 > 0  under 

Clayton copula, the 𝐶𝐺 estimator is 

�̂�𝑇(𝑡) = [1 + ∑ {(
𝑛𝑖 − 1

𝑛
)

−𝜃

− (
𝑛𝑖

𝑛
)

−𝜃

}

𝑥𝑖≤𝑡,∆𝑖=1

]

−1/𝜃

. 

 

4.3  Copula-based univariate Cox regression 

Let 𝑇 survival time, 𝐶 censoring time, and 𝒁 = (𝑧, … , 𝑧𝑝)
′
 covariate vector. The 

joint distribution of 𝑇 and 𝐶 can have an arbitrary pattern of dependence for any given 

covariate 𝑧𝑗 . Skala’s theorem by Skalar 1959 and Nelsen 2006 assures that the joint 

survival function can expressed as 

Pr(T > t, C > c|𝑧𝑗) =  𝑪𝒋{𝑆𝑇(𝑡|𝑧𝑗), 𝑆𝐶(𝑐|𝑧𝑗)},   𝑗 = 1, … , 𝑝, 

where  𝑪𝒋 is a copula. Under independent censoring assumption,  𝑪𝒋(𝑡, 𝑐) = 𝑡𝑐 for 𝑗 =

1, … , 𝑝, that is 

Pr(T > t, C > c|𝑧𝑗) = Pr(T > t|𝑧𝑗) × Pr(C > c|𝑧𝑗). 

Emura and Chen (2016) proposed a one-parameter copula model under relaxing 

assumption of independent censoring: 

Pr(T > t, C > c|𝑧𝑗) =  𝑪𝜽{Pr(T > t|𝑧𝑗) , Pr(C > c|𝑧𝑗)}, 𝑗 = 1, … , 𝑝. 
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The assumption that every 𝑗  has one copula 𝑪  may be strong. Nonetheless, the 

copula relaxes the independent censoring assumption by allowing the user to choose the 

dependency parameter 𝜃 flexibly. For example, Clayton copula is  

 𝑪𝜽(u, v) = (𝑢−𝜃 + 𝑣−𝜃 − 1)
−

1
𝜃, 𝜃 > 0, 

where 𝜃  is related to Kendall’s tau, τ =
𝜃

𝜃+2
.  By letting 𝜃 → 0,  the Clayton copula 

model reduces to independent censoring model. 

They assumed the Cox models for marginal distribution, 

Pr(T > t|𝑧𝑗) = 𝑒𝑥𝑝{−Λ0𝑗(𝑡)𝑒𝛽𝑗𝑧𝑗}, Pr(C > c|𝑧𝑗) = 𝑒𝑥𝑝{−Γ0𝑗(𝑐)𝑒𝛾𝑗𝑧𝑗}, 

where 𝛽𝑗  and 𝛾𝑗  are regression coefficient and Λ0𝑗  and Γ0𝑗  are baseline cumulative 

hazard functions. 

The objective parameter is 𝛽𝑗 the univariate effect of the 𝑗th covariate on survival 

and other parameters which are 𝛾𝑗, Λ0𝑗 and Γ0𝑗 are nuisance. However, under the copula 

model, the estimator of 𝛽𝑗  through the partial likelihood method is not satisfied to 

consistency. For consistently estimation of parameters, the estimation method should be 

full likelihood under copula and Cox models. Let 

𝐷𝜃,1(𝑢, 𝑣) =
𝜕𝑪𝜽(𝑢, 𝑣)/𝜕𝑢

𝑪𝜽(𝑢, 𝑣)
= −

𝜕Φ𝜃(𝑢, 𝑣)

𝜕𝑢
,

𝐷𝜃,2(𝑢, 𝑣) =
𝜕𝑪𝜽(𝑢, 𝑣)/𝜕𝑣

𝑪𝜽(𝑢, 𝑣)
= −

𝜕Φ𝜃(𝑢, 𝑣)

𝜕𝑣
, 

where Φ𝜃(𝑢, 𝑣) = −𝑙𝑜𝑔𝑪𝜽(𝑢, 𝑣).  Denote {(𝑥𝑖∆𝑖𝑧𝑖𝑗), 𝑖 = 1, … , 𝑛},  where 𝑥𝑖 =

min (𝑇𝑖, 𝐶𝑖)  and ∆𝑖= 𝐼(𝑇𝑖 ≤ 𝐶𝑖), 𝐼(∙)  is the indicator function. Let  Λ0𝑗  and Γ0𝑗  are 
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increasing step functions which have jump sizes 𝑑Λ0𝑗(𝑥𝑖) = Λ0𝑗(𝑥𝑖) − Λ0𝑗(𝑥𝑖 − 𝑑𝑡) for 

∆𝑖= 1 and 𝑑Γ0𝑗(𝑥𝑖) = Γ0𝑗(𝑥𝑖) − Γ0𝑗(𝑥𝑖 − 𝑑𝑡) for ∆𝑖= 0 as by Chen (2010). Define the 

log-likelihood function for any given 𝜃. 

ℓ(𝛽𝑗, Λ0𝑗 , Γ0𝑗|𝜃)

= ∑ ∆𝑖[𝛽𝑗𝑧𝑖𝑗 + 𝑙𝑜𝑔𝜂1𝑖𝑗(𝑥𝑖; 𝛽𝑗, 𝛾𝑗 , Λ0𝑗, Γ0𝑗|𝜃) + 𝑙𝑜𝑔𝑑Λ0𝑗(𝑥𝑖)]

𝑖

+ ∑(1 − ∆𝑖)[𝛾𝑗𝑧𝑖𝑗 + 𝑙𝑜𝑔𝜂2𝑖𝑗(𝑥𝑖; 𝛽𝑗, 𝛾𝑗, 𝛬0𝑗, 𝛤0𝑗|𝜃) + 𝑙𝑜𝑔𝑑𝛤0𝑗(𝑥𝑖)]

𝑖

− ∑ Φ𝜃[𝑒𝑥𝑝{−Λ0𝑗(𝑡)𝑒𝛽𝑗𝑧𝑖𝑗}, 𝑒𝑥𝑝{−Γ0𝑗(𝑥𝑖)𝑒𝛾𝑗𝑧𝑖𝑗}],

𝑖

 

where, 

𝜂1𝑖𝑗(𝑡; 𝛽𝑗, 𝛾𝑗, Λ0𝑗, Γ0𝑗|𝜃)

= 𝑒𝑥𝑝{−Λ0𝑗(𝑡)𝑒𝛽𝑗𝑧𝑖𝑗}𝐷𝜃,1[𝑒𝑥𝑝{−Λ0𝑗(𝑡)𝑒𝛽𝑗𝑧𝑖𝑗}, 𝑒𝑥𝑝{−Γ0𝑗(𝑐)𝑒𝛾𝑗𝑧𝑖𝑗}], 

𝜂2𝑖𝑗(𝑡; 𝛽𝑗, 𝛾𝑗 , Λ0𝑗, Γ0𝑗|𝜃)

= 𝑒𝑥𝑝{−Γ0𝑗(𝑡)𝑒𝛾𝑗𝑧𝑖𝑗}𝐷𝜃,2[𝑒𝑥𝑝{−Λ0𝑗(𝑡)𝑒𝛽𝑗𝑧𝑖𝑗}, 𝑒𝑥𝑝{−Γ0𝑗(𝑐)𝑒𝛾𝑗𝑧𝑖𝑗}]. 

The maximum likelihood estimator given 𝜃  is denoted as 

(�̂�𝑗(𝜃), 𝛾𝑗(𝜃), Λ̂0𝑗(𝜃), Γ̂0𝑗(𝜃)) . The standard error 𝑆𝐸{�̂�𝑗(𝜃)}  is computed from the 

information matrix by Chen (2010). The log-likelihood function is maximized by 

optimization algorithms. 

For example, log-likelihood function can be easily computed. Under the Clayton 

copula, 
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Φ𝜃(𝑢, 𝑣) = 𝛼−1 log(𝑢−𝜃 + 𝑣−𝜃 − 1) , 𝐷𝜃,1(𝑢, 𝑣) = 𝑢−𝜃−1(𝑢−𝜃 + 𝑣−𝜃 − 1)
−1

,  and 

𝐷𝜃,1(𝑢, 𝑣) = 𝑣−𝜃−1(𝑢−𝜃 + 𝑣−𝜃 − 1)
−1

. 

Hence,  

𝜂1𝑖𝑗(𝑡; 𝛽𝑗, 𝛾𝑗 , Λ0𝑗, Γ0𝑗|𝜃) =
[𝑒𝑥𝑝{−Λ0𝑗(𝑡)𝑒𝛽𝑗𝑧}]

−𝜃

[𝑒𝑥𝑝{−Λ0𝑗(𝑡)𝑒𝛽𝑗𝑧𝑖𝑗}]
−𝜃

+ [𝑒𝑥𝑝{−Γ0𝑗(𝑐)𝑒𝛾𝑗𝑧𝑖𝑗}]
−𝜃

− 1
,  

𝜂2𝑖𝑗(𝑡; 𝛽𝑗, 𝛾𝑗 , Λ0𝑗 , Γ0𝑗|𝜃) =
[𝑒𝑥𝑝{−Γ0𝑗(𝑡)𝑒𝛽𝑗𝑧𝑖𝑗}]

−𝜃

[𝑒𝑥𝑝{−Λ0𝑗(𝑡)𝑒𝛽𝑗𝑧𝑖𝑗}]
−𝜃

+ [𝑒𝑥𝑝{−Γ0𝑗(𝑐)𝑒𝛾𝑗𝑧𝑖𝑗}]
−𝜃

− 1
. 
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5. Proposed method 

5.1  Inverse probability weighted estimator under dependent 

censoring 

In section 2.2, the simple weighted complete-case estimator (𝐵𝑇) of mean of total cost 

𝐸(𝑀𝑖) and the partitioned version (𝐵𝑃𝑝) of more efficient estimator are 

�̂�𝐵𝑇 =
1

𝑛
∑

Δ𝑖
∗𝑀𝑖

�̂�(𝑇𝑖
∗)

𝑛

𝑖=1
  𝑎𝑛𝑑  �̂�𝐵𝑃𝑝

=
1

𝑛
∑ ∑

Δ𝑖
∗𝑘{𝑀𝑖(𝑡𝑘) − 𝑀𝑖(𝑡𝑘−1)}

�̂�(𝑇𝑖
∗𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

. 

They proposed to estimate the unknown survival function 𝐾(∙)  by the Kaplan-Meier 

estimator under independent censoring. However, the consistency of the Kaplan-Meier 

estimator is not ensured since 𝑇 and 𝐶 will be in general dependent (de Uña-Álvarez and 

Veraverbeke 2013). Thus, this study proposes to estimate the unknown survivor function 

𝐾(∙) by the 𝐶𝐺 estimator. That estimator is 

�̂�(t) = 𝜙𝜃
−1 [ ∑ 𝜙𝜃 (

𝑛𝑖 − 1

𝑛
) − 𝜙𝜃 (

𝑛𝑖

𝑛
)

𝑡𝑖
∗≤𝑡,∆𝑖=0

] , 0 ≤ 𝑡 ≤ max
𝑖

(𝑡𝑖
∗) 

where 𝑛𝑖 = ∑ 𝐼(𝑡ℓ ≥ 𝑡𝑖
∗)𝑛

ℓ=1  is the number at risk at time 𝑡𝑖
∗. 

We can derive the asymptotic properties of �̂�(∙)  using martingale techniques for the 

dependent censoring model and do not assume the Archimedean copula for the joint 

distribution of 𝑇  and 𝐶 .  The proof process is derived from the survival function of 

survival time, but it can be transformed into censoring time if ∆𝑖= 0. Instead, we assume 

Pr(T > t, C > c) =  𝑪𝜽{𝑆𝑇(𝑡), 𝑆𝐶(𝑐)} which is a general copula model between 𝑇 and 𝐶 
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and define that the data is made up 𝑛 independent replications of 𝑋1 = 𝐶1 ∧  𝑇1 and ∆1=

𝐼[𝑋1 = 𝑇1]. So, 𝐶𝐺 estimator is biased under this model.  

Let 𝑁𝑖(𝑡) = 𝐼[𝑋𝑖 ≤ 𝑡, ∆𝑖= 1] , 𝑌𝑖(𝑡) =  𝐼[𝑋𝑖 ≥ 𝑡] (𝑖 = 1, … , 𝑛), �̅�(𝑡) = ∑ 𝑁𝑖(𝑡)𝑛
𝑖=1   and 

�̅�(𝑡) = ∑ 𝑌𝑖(𝑡)𝑛
𝑖=1 . Then, 

𝑀𝑖(𝑡) = 𝑁𝑖(𝑡) − ∫ 𝑌𝑖(𝑠)𝜆⋕(𝑠)𝑑𝑠
𝑡

0
  and  �̅�(𝑡) = �̅�(𝑡) − ∫ �̅�(𝑠)𝜆⋕(𝑠)𝑑𝑠

𝑡

0
 

are martingales w.r.t 𝜎-algebras ℱ𝑡
𝑖= 𝜎{𝐼[𝑋𝑖 ≤ 𝑡, ∆𝑖= 1], 𝐼[𝑋𝑖 ≤ 𝑡, ∆𝑖= 0]: 0 < 𝑢 < 𝑡} 

and ℱ𝑡 = ⋁ ℱ𝑡
𝑖𝑛

𝑖=1 , where 𝜆⋕(𝑡), the crude hazard rate, is 

𝜆⋕(𝑡) =
−

𝜕
𝜕𝑐

𝑃[𝑇 ≥ 𝑐, 𝐶 ≥ 𝑡]|𝑐=𝑡

𝑃[𝑇 ≥ 𝑡, 𝐶 ≥ 𝑐]
. 

Define the dependency between 𝑇  and 𝐶  by Pr(T > t, C > c) = 𝐶{𝑆(𝑡), 𝑆(𝑐))}  and 

then,   

𝜆⋕(𝑡) = 𝜆(𝑡)
𝑆(𝑡)𝐶10(𝑆(𝑡), 𝑆(𝑐))

𝐶(𝑆(𝑡), 𝑆(𝑐))
, 

where 𝐶10(u, v) is the partial derivative of 𝐶(𝑢, 𝑣) w.r.t 𝑢 and 𝜆(𝑡) is the net hazard 

rate which is defined by 𝜆(𝑡) = limℎ↓0
1

ℎ
𝑃[𝑡 ≤ 𝑇 ≤ 𝑡 + ℎ|𝑇 ≥ 𝑡]. The 𝐶𝐺 estimator for 

Archimedean copula using counting process notation is given by 

�̂�(t) = 𝜙−1 [∫ 𝐼[�̅�(𝑢) > 0] {𝜙 (
�̅�(𝑢) − 1

𝑛
) − 𝜙 (

�̅�(𝑢)

𝑛
)} 𝑑 �̅�(𝑢)

𝑡

0

]. 

Because of 𝜙 (
�̅�(𝑢)−1

𝑛
) − 𝜙 (

�̅�(𝑢)

𝑛
) ≈ −𝜙′[

�̅�(𝑢)

𝑛
]/𝑛, one has 

�̂�(t) ≈ 𝜙−1 [−
1

n
∫ I[�̅�(u) > 0]𝜙′[

�̅�(u)

𝑛
]d �̅�(u)

t

0

]. 
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This equation is the first estimate obtained by Zheng and Klein (1994) as the solution of 

the differential equation. For independent copula, 𝜙(∙) = −𝑙𝑛(∙) , the Zheng and Klein 

estimate is reduced by Fleming and Harrington's proposal, which is asymptotically 

equivalent to Kaplan Meyer estimate. Thus, the 𝐶𝐺 estimator for Archimedean Copulas 

and Zheng and Klein’s proposal have the same asymptotic behavior. 

Now, Rivest and Wells (2001) will deduce the large sample properties of 𝐶𝐺 estimator for 

Archimedean copula. Because the 𝐶𝐺 estimator and Zheng and Klein’s proposal have the 

same asymptotic distribution, �̂�(t) denotes Zheng and Klein’s estimator in this section. 

They do not assume that the copula for the dependence between 𝑇 and 𝐶 is Archimedean 

copula correspond to 𝜙(∙)  used to calculate the 𝐶𝐺  estimator. Therefore �̂�(t) =

𝜙−1 [∫ 𝐼[�̅�(𝑢) > 0] {𝜙 (
�̅�(𝑢)−1

𝑛
) − 𝜙 (

�̅�(𝑢)

𝑛
)} 𝑑 �̅�(𝑢)

𝑡

0
]  estimates a survival distribution 

𝑆∗ which is defined by 

𝑆∗ = 𝜙−1 [− ∫ 𝜙′(𝜋(𝑢))𝜋(𝑢)𝑑Λ⋕(𝑢)
𝑡

0

], 

where Λ⋕(𝑡) = ∫ 𝜆⋕(𝑢)𝑑𝑢
𝑡

0
  is the cumulative crude hazard function and 𝜋(𝑡) =

𝐸(�̅�(𝑡)/𝑛), 𝜋(𝑡) = 𝐶(𝑆(𝑡), 𝐶(𝑡)). If the copula for the dependency between 𝑇 and 𝐶 is 

Archimedean, 𝑆∗ = 𝑆 with the dependence given by 𝜙. The proofs involve analysis of 

the martingale �̅�(𝑢)  and the empirical process 𝑋𝑛(𝑢) ≡ (1/√𝑛) ∑ {𝐼(𝑋𝑖 ≤ 𝑢) −𝑛
𝑖=1

𝜋(𝑢)}. 

   First, we investigate the consistency of �̂�(t) = 𝜙−1 [∫ 𝐼[�̅�(𝑢) > 0] {𝜙 (
�̅�(𝑢)−1

𝑛
) −

𝑡

0
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𝜙 (
�̅�(𝑢)

𝑛
)} 𝑑 �̅�(𝑢)] and it suffices to consider 𝜙(�̂�(t)). Let 𝜓(𝑠) = −𝑠𝜙′(𝑠). One has 

𝜙 (�̂�(t)) −  𝜙(𝑆∗(𝑡))

= −
1

𝑛
∫ 𝐼[𝑌(𝑢) > 0]

𝑡

0

𝜙′ (
�̅�(𝑢)

𝑛
) 𝑑�̅�(𝑢)

+ ∫ {𝐼[𝑌(𝑢) > 0] [𝜓 (
�̅�(𝑢)

𝑛
) − 𝜓(𝜋(𝑢))]} 𝑑

𝑡

0

Λ⋕(𝑢). 

In the proof, −
1

𝑛
∫ 𝐼[𝑌(𝑢) > 0]

𝑡

0
𝜙′ (

�̅�(𝑢)

𝑛
) 𝑑�̅�(𝑢) goes to zero in probability by theorem 

3.4.2 in Fleming and Harrington (1984). Let 𝑡0 ∈ (0, ∞)  and 𝜋(𝑡0) > 0 . When 𝑛  is 

large, 𝐼[𝑌(𝑢) > 0] = 1 for 𝑢 ∈ (0, 𝑡0) except on a set with al very small probability. The 

𝑠𝑢𝑝0<𝑢<𝑡0
|

�̅�(𝑢)

𝑛
− 𝜋(𝑢)| → 0  as 𝑛 → ∞  by Clivenko-Cantelli theorem. Hence, 

∫ {𝐼[𝑌(𝑢) > 0] [𝜓 (
�̅�(𝑢)

𝑛
) − 𝜓(𝜋(𝑢))]} 𝑑

𝑡

0
Λ⋕(𝑢)  converges in probability to zero 

uniformly in 𝑡 if the derivative of 𝜓(𝑡) is bounded in (𝜋(𝑡0), 1). 

 

𝑇ℎ𝑒𝑜𝑟𝑒𝑚 1 𝑖𝑛 𝑅𝑖𝑣𝑒𝑠𝑡 𝑎𝑛𝑑 𝑊𝑒𝑙𝑙𝑠 (2001). Let 𝑡0 ∈ (0, ∞) 𝑏𝑒 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜋(𝑡0) > 0.  

𝑈𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 H(t, c) = 𝑪{𝑆(𝑡), 𝑆(𝑐)} 𝑤ℎ𝑒𝑟𝑒  

𝐻(∙) 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑗𝑜𝑖𝑛𝑡 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑡, 𝑐) 𝑎𝑛𝑑 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒  

𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑜𝑓 𝜙(𝑠) 𝑎𝑛𝑑 𝑜𝑓  𝜓(𝑠) 𝑎𝑟𝑒 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑓𝑜𝑟 𝑠 ∈ (𝜋(𝑡0), 1), 𝑡ℎ𝑒𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 

�̂�(t) 𝑖𝑠 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆∗(𝑡) 

𝑜𝑛 [0, 𝑡0). 
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𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.1 𝑖𝑛 𝑍ℎ𝑒𝑛𝑔 𝑎𝑛𝑑 𝐾𝑙𝑒𝑖𝑛 (1995). Suppose that two marginal distribution  

functions F, G, are continuous and strictly increasing  on (0, ∞), and the assumed 

copula has density function u > 0  on [0,1] × [0,1]. Then �̂�𝑛 and  �̂�𝑛 𝑎𝑟𝑒 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦  

𝑐𝑜𝑛𝑠𝑖𝑡𝑒𝑛𝑡 𝑓𝑜𝑟 𝐹 𝑎𝑛𝑑 𝐺. 𝑇ℎ𝑎𝑡 𝑖𝑠 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 𝑎𝑠 𝑛 → ∞, �̂�𝑛(𝑡)  → 𝐹(𝑡) 𝑎𝑛𝑑        

𝐺𝑛(𝑡) → 𝐺(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0, ∞). 

 

The Theorem 4.1 in Zheng and Klein (1995) about consistency assumed that copula has a 

strictly positive density on [0,1] × [0,1] . It is a restrictive condition that many 

Archimedean copulas do not meet. For example, while Clayton copula satisfies the 

assumption in Theorem 1 in Rivest and Wells (2001), this condition fails. Under 

Archimedean copula, the crude hazard rate is given by 

𝜆⋕(𝑡) = 𝜆(𝑡)
𝑆(𝑡)𝜙′(𝑆(𝑡))

𝜋(𝑡)𝜙′(𝜋(𝑡))
. 

The assumption in Theorem 1 in Rivest and Wells (2001) means that the crude ratio 
𝜆⋕(𝑡)

𝜆(𝑡)
 

of the net hazard rate is bounded at zero. The most Archimedean copulas by  𝜙(∙) 

function meet this condition.  

When censoring and survival are not independent, that is 𝜙(𝑡) ≠ −ln (𝑡), the first term of  
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𝜙 (�̂�(t)) −  𝜙(𝑆∗(𝑡))

= −
1

𝑛
∫ 𝐼[𝑌(𝑢) > 0]

𝑡

0

𝜙′ (
�̅�(𝑢)

𝑛
) 𝑑�̅�(𝑢)

+ ∫ {𝐼[𝑌(𝑢) > 0] [𝜓 (
�̅�(𝑢)

𝑛
) − 𝜓(𝜋(𝑢))]} 𝑑

𝑡

0

Λ⋕(𝑢) 

is a martingale and the second term is not asymptotically null. Hence, the asymptotic 

distribution of 𝐶𝐺 estimator depends, in the general case, on 𝐶𝑜𝑣(�̅�(𝑢), 𝑋𝑛(𝑠)) where 

empirical process 𝑋𝑛(𝑢) ≡ (1/√𝑛) ∑ {𝐼(𝑋𝑖 ≤ 𝑢) − 𝜋(𝑢)}𝑛
𝑖=1 . 

Using martingale's elementary properties, possibly evaluate 𝐶𝑜𝑣(�̅�(𝑢), 𝑋𝑛(𝑠)) . 

Because �̅�(𝑢) and 𝑋𝑛(𝑠) are summation of independent random variables, 

𝐶𝑜𝑣(�̅�(𝑢), 𝑋𝑛(𝑠)) = 𝑛1 2⁄ 𝐶𝑜𝑣(𝑀1(𝑢), 𝐼[𝑋1 > 𝑠]). 

When 𝑢 > 𝑠 as in Theorem 1.3.2 by Fleming and Harrington (1984), 

𝐸{𝐼[𝑠 < 𝑋1 < 𝑢, ∆1= 1]} = ∫ 𝑃[𝑋1 > 𝑣]
𝑢

𝑠

𝜆⋕(𝑣)𝑑𝑣. 

Hence 𝐸{𝑀1(𝑢)𝐼[𝑋1 > 𝑠]} = −𝜋(𝑠)𝛬⋕(𝑠)  in this case, while when 𝑢 ≤ 𝑠,

𝐸{𝑀1(𝑢)𝐼[𝑋1 > 𝑠]} = −𝜋(𝑠)𝛬⋕(𝑢). Thus we have proved which  

𝐶𝑜𝑣(�̅�(𝑢), 𝑋𝑛(𝑠)) = −𝑛1 2⁄ 𝜋(𝑠)Λ⋕(s ∧  u).\ 

It is used to prove the following result. 

𝑇ℎ𝑒𝑜𝑟𝑒𝑚 2 𝑖𝑛 𝑅𝑖𝑣𝑒𝑠𝑡 𝑎𝑛𝑑 𝑊𝑒𝑙𝑙𝑠 (2001). Let 𝑡0, 𝑡0 > 0, 𝑏𝑒 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜋(𝑡0) > 0. 

𝑈𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 H(t, c) = 𝑪{𝑆(𝑡), 𝑆(𝑐)} and  

𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑤𝑜 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑜𝑓 𝜙(𝑠) 𝑎𝑛𝑑 𝜓(𝑠), 𝑤ℎ𝑒𝑟𝑒  𝜓(𝑠)

= −𝑠𝜙′(𝑠), 𝑎𝑟𝑒 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑓𝑜𝑟 𝑠 ∈ (𝜋(𝑡0), 1), 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 √𝑛 {�̂�(t) − 𝑆∗(𝑡)}  
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𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑤𝑒𝑎𝑘𝑙𝑦 𝑜𝑛 𝐷[0, 𝑡0) 𝑡𝑜 𝑎 𝑚𝑒𝑎𝑛 𝑧𝑒𝑟𝑜 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑤𝑖𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒  

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 

𝑣(𝑡)

=
1

𝜙′(𝑆∗(𝑡))
2 {∫ 𝜋(𝑠)[𝜙′(𝜋(𝑠))]

2
𝑑Λ⋕(𝑠)

𝑡

0

+ 2 ∫ ∫ 𝜋(𝑢)[1 − 𝜋(𝑢)]
𝑠

0

𝑡

0

𝜓′(𝜋(𝑢))𝜓′(𝜋(𝑠))𝑑Λ⋕(𝑢)𝑑Λ⋕(𝑠)

+ 2𝜓′(𝜋(𝑠))𝑑Λ⋕(𝑢)𝑑Λ⋕(𝑠)}. 

Now, we can calculation the asymptotic distribution of new estimator using 𝛿-method. 

�̂�𝑁𝐸𝑊

=
1

𝑛
∑

Δ𝑖
∗𝑀𝑖

�̂�(𝑇𝑖
∗)

=
1

𝑛
∑

Δ𝑖
∗𝑀𝑖

𝜙−1 [∑ 𝜙 (
𝑛𝑖 − 1

𝑛
) − 𝜙 (

𝑛𝑖
𝑛

)𝑡𝑖
∗≤𝑡,∆𝑖=0 ]

,   0 ≤ 𝑡 ≤ max
𝑖

(𝑡𝑖
∗)

𝑛

𝑖=1

𝑛

𝑖=1
 

where 𝑛𝑖 = ∑ 𝐼(𝑡ℓ ≥ 𝑡𝑖
∗)𝑛

ℓ=1  is the number at risk at time 𝑡𝑖
∗. 

Let 𝜃 = 𝐶𝐺 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 and 𝑔(𝜃) =
𝑐

𝜃
, 𝑤ℎ𝑒𝑟𝑒 𝑐: 𝑐𝑜𝑛𝑠𝑡𝑛𝑎𝑡 = 1/𝑛 ∑ Δ𝑖

∗𝑀𝑖
𝑛
𝑖=1 . Then 

√𝑛 (𝑔(𝜃) − 𝑔(𝜃))
𝑑
→  𝑁(0, 𝜎2(𝜃)[𝑔′(𝜃)]2), 

where  

𝜎2(𝜃)[𝑔′(𝜃)]2 =  𝑣(𝑡)[1/𝑛 ∑ Δ𝑖
∗𝑀𝑖

𝑛

𝑖=1

]2 [𝜙−1 [ ∑ 𝜙 (
𝑛𝑖 − 1

𝑛
) − 𝜙 (

𝑛𝑖

𝑛
)

𝑡𝑖
∗≤𝑡,𝛿𝑖=0

]]

−4

. 
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5.2  Generalized survival-adjusted estimators under dependent 

censoring 

In section 2.3, Basu the and Manning (2010)’s mean estimator on covariates is 

�̂�(𝒁) = ∑ �̂�𝑘(𝒁)[ℎ̂𝑘(𝒁)�̂�1𝑘(𝒁) + (1 − ℎ̂𝑘(𝒁)) �̂�2𝑘(𝒁)]𝐾
𝑘=1 , 

where �̂�𝑘(𝒁) and ℎ̂𝑘(𝒁) can be derived from accelerated failure time (AFT) model and 

�̂�1𝑘(𝒁) and �̂�2𝑘(𝒁) from certain generalized linear model (GLM). 

ℎ𝑘 = Pr (𝑡𝑘−1 < 𝑇 ≤ 𝑡𝑘|𝑇 ≥ 𝑡𝑘−1)  is the hazard rate of death during the kth interval, 

𝜇1𝑘 = 𝐸(𝑚𝑘|𝑡𝑘−1 < 𝑇 ≤ 𝑡𝑘)  and 𝜇2𝑘 = 𝐸(𝑚𝑘|𝑇 > 𝑡𝑘)  are the mean of incremental 

costs for patients who died during or after the kth interval, respectively.  

Under the assumption of dependent censoring between survival and censoring time, 

the process of new estimation follows under three parts: 

(a) Part-1: Let �̂�𝑘(𝒁) and ℎ̂𝑘(𝒁) be the estimated survival and hazard functions for an 

interval. Estimate an individual's survival function using copula-based Cox regression. 

The Cox models for marginal distribution, 

Pr(T > t|𝑧𝑗) = 𝑒𝑥𝑝{−Λ0𝑗(𝑡)𝑒𝛽𝑗𝑧𝑗}, Pr(C > c|𝑧𝑗) = 𝑒𝑥𝑝{−Γ0𝑗(𝑐)𝑒𝛾𝑗𝑧𝑗}, 

where 𝛽𝑗  and 𝛾𝑗  are regression coefficient and Λ0𝑗  and Γ0𝑗  are baseline cumulative 

hazard functions. The cause-specific hazard is defined as 

ℎ⋕(𝑡|𝑧𝑗) = Pr(𝑡 < 𝑇 < 𝑡 + 𝑑𝑡, 𝑇 ≤ 𝐶|𝑇 ≥ 𝑡, 𝐶 ≥ 𝑐, 𝑧𝑗) /𝑑𝑡 . If independent censoring 
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holds, then 

ℎ⋕(𝑡|𝑧𝑗) = ℎ(𝑡|𝑧𝑗) ≡
Pr(𝑡 < 𝑇 < 𝑡 + 𝑑𝑡|𝑇 ≥ 𝑡)

𝑑𝑡
. 

Skala’s theorem by Skala 1959 and Nelsen 2006 assures that the joint survival function can 

expressed as 

Pr(T > t, C > c|𝑧𝑗) =  𝑪𝜽{𝑆𝑇(𝑡|𝑧𝑗), 𝑆𝐶(𝑐|𝑧𝑗)},   𝑗 = 1, … , 𝑝. 

Rivest and Wells (2001) indicated the cause-specific hazard becomes ℎ𝜃
⋕(𝑡|𝑧𝑗) =

𝑟𝜃(𝑡|𝑧𝑗)ℎ(𝑡|𝑧𝑗), where 

𝑟𝜃(𝑡|𝑧𝑗) =
𝑪𝜽,𝟏{𝑆𝑇(𝑡|𝑧𝑗), 𝑆𝐶(𝑐|𝑧𝑗)}𝑆𝑇(𝑡|𝑧𝑗)

 𝑪𝜽{𝑆𝑇(𝑡|𝑧𝑗), 𝑆𝐶(𝑐|𝑧𝑗)}
, 

and 𝑪𝜽,𝟏(𝑢, 𝑣) =
𝜕𝐶𝜃(𝑢,𝑣)

𝜕𝑢
. Emura and Chen (2014) defined the apparent effect of covariate 

𝑧𝑗 as 

𝛽𝜃
⋕ ≡ 𝑙𝑜𝑔

ℎ𝜃
⋕(𝑡|𝑧𝑗 = 1)

ℎ𝜃
⋕(𝑡|𝑧𝑗 = 0)

= 𝑙𝑜𝑔
ℎ(𝑡|𝑧𝑗 = 1)

ℎ(𝑡|𝑧𝑗 = 0)
+ 𝑙𝑜𝑔

𝑟𝜃(𝑡|𝑧𝑗 = 1)

𝑟𝜃(𝑡|𝑧𝑗 = 0)
. 

This equation shows that the apparent effects can be divided into true (net) effects and bias 

because of dependent censoring. Here, the copula structure is entered only in the bias term. 

(b) Part-2: Among those subject intervals, (𝑡𝑘−1, 𝑡𝑘], where we observe the subject dying, 

i.e., where 𝑡𝑘−1 < 𝑇 ≤ 𝑡𝑘  & ∆𝑘= 𝐼(min(𝐶, 𝑇) = 𝑇) = 1 , we estimate through a 

generalized linear model (or two-part model which specification is necessary) for the 

observed costs after conditioning on covariates 𝒁 and 𝑈𝑘 (as death can occur anywhere 

in the middle of the interval, so the time of death is continuous), where 𝑈𝑘 = 𝑡𝑘 −
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𝑡𝑘−1  𝑖𝑓 𝑇 = 𝑡𝑘   or  𝑈𝑘 = 𝑇 − 𝑡𝑘−1  if 𝑡𝑘−1 < 𝑇 < 𝑡𝑘. Predict the costs �̂�1𝑘(𝒁) for every 

subject interval in the data using the parameter estimates from this model. To illustrate the 

stochastic nature of 𝑈 within that interval (i.e., to account for costs if the patient died 

within that interval but at different times), we weighted the observed distribution of 𝑈 

between intervals observed that the patient died, and then averaged the conditional 

prediction for each value of U. That is, �̂�1𝑘(𝒁) = ∫ �̂�1𝑘(𝒁, 𝑢)𝑑𝐹(𝑈|𝑡𝑘 < 𝑇𝑜𝑏𝑠 < 𝑡𝑘+1). 

(c) PART-3: Next, among the subject intervals (𝑡𝑘−1, 𝑡𝑘], where no patients are observed 

to die but only costs are observed during a partial period due to censoring is excluded, 

estimate a generalized linear model (or model if a two-part specification is required) for 

the observed cost function, conditional on the covariate 𝒁 . Parameter estimates of this 

model are used for all subject-intervals in the data to predict the costs �̂�2𝑘(𝒁). As in the 

Bang and Tsiatis (2000) estimator, the estimation of this part does not use the subject- 

interval where censoring occurs, so continuous censoring time can be effectively allowed. 

(d) The estimated cost function for interval 𝑘 for any individual is given as 

�̂�𝑘(𝒁) = �̂�𝑘(𝒁)[ℎ̂𝑘(𝒁)�̂�1𝑘(𝒁) + (1 − ℎ̂𝑘(𝒁)) �̂�2𝑘(𝒁)] and �̂�(𝒁) = ∑ �̂�𝑘(𝒁)𝐾
𝑘=1 . 
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6. Simulation study 

In this section, we conduct various simulation studies to evaluate the performance of 

the proposed new estimators in dependent censoring data by varying type of copulas, 

dependency parameters, the relation of between covariate and censoring distribution, and 

censoring rate. 

 

6.1  Simulation setting 

We start by using Lin’s (2003) and Basu and Manning (2010) simulation design points 

to carry out extensive simulations to evaluate our proposed estimators and to compare it 

with the prevailing methods. Following Lin (2003) and Basu and Manning (2010), the 

survival times are generated from the exponential distribution with mean 𝑚 and censoring 

times are generated from the uniform (0, 𝑐 ) distribution, respectively. The maximum 

follow-up time is set to 10, (0, 10], at equal intervals and all survival time and cost 

cumulative processes are censored at the end. The medical costs for individual 𝑖 in the 𝑘 

th interval are generated using: 

𝑦𝑘𝑖 = [𝐼(𝑘 = 1)𝑢𝑖
𝑑 + 𝐼(𝑇𝑖 > 𝑡𝑘)(𝜂𝑖 + 𝑢𝑘𝑖) + 𝐼(𝑡𝑘−1 < 𝑇𝑖 ≤ 𝑡𝑘){(𝜂𝑖 + 𝑢𝑘𝑖)(𝑇𝑖 − 𝑡𝑘−1) + 𝑢𝑖

𝑓
}]𝑒𝛽′𝑋𝑖 , 

where 𝑘 = 1, … ,10, 𝑖 = 1, … , 𝑛 , 𝜂𝑖 , 𝑢𝑘𝑖 , 𝑢𝑖
𝑑  and 𝑢𝑖

𝑓
   are independent random 

variables with 𝜂𝑖 , 𝑢𝑘𝑖~  uniform (0,1) distribution and 𝑢𝑖
𝑑~ uniform (0,5) , 𝑢𝑖

𝑓
~ 

uniform (0,10), respectively. 

The scheme creates a J-shaped time pattern; each time interval in which the subject is 
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alive has some basic cost. In addition, the first interval has a relatively high diagnostic cost, 

and the interval at which the subject dies has a much higher final cost. In our simulation, 

𝑧 was set as the treatment indicator with n/2 in each of the two groups. We chose 𝑛 =

1,000 and 𝛽 was set to 1. The true value was calculated under empirical distribution with 

𝑛 = 100,000.  Standard errors are computed from the summary statistics across the 

replicates. 

We focus on the average incremental effect of the treatment on the cost. Therefore, 

interest lies in the incremental effect parameter: 

∆= ∑ (𝜇𝑘(𝑍 = 1) − 𝜇𝑘(𝑍 = 0)),10
𝑘=1  where 𝜇𝑘(𝑍) = 𝐸(𝑦

𝑘𝑖
|𝑍). 

Table 2 show the details of the simulation scenarios. For each scenario, we generated 

1,000 random datasets consisting of 1,000 random subjects. In the scenario 1-12 and 25-

36, censoring and survival time were generated regardless of covariate but, in the scenario 

13-24 and 37-48, the data was generated so that the censoring time was longer in the 

treatment group. Each scenario consisted of approximately 20, 30, 40, and 50% censored 

survival times through combination of survival and censoring time and 𝜃 = 0, 2, 10 of 

Clayton copula.  
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Table 2. Information of simulation scenarios 

Scenario 
Relation of 

𝑍 and (𝑇, 𝐶) 

𝜃 levels 

of 

Clayton 

copula 

Percentage 

of 

censoring 

Survival 

time 

Censoring 

time 

1 Independent 0 20 𝐸𝑥𝑝(5) 𝑈(0,21) 

2 Independent 0 30 𝐸𝑥𝑝(5) 𝑈(0,14) 

3 Independent 0 40 𝐸𝑥𝑝(5) 𝑈(0,11) 

4 Independent 0 50 𝐸𝑥𝑝(5) 𝑈(0,8) 

5 Independent 2 20 𝐸𝑥𝑝(5) 𝑈(0,12.5) 

6 Independent 2 30 𝐸𝑥𝑝(5) 𝑈(0,11) 

7 Independent 2 40 𝐸𝑥𝑝(5) 𝑈(0,9) 

8 Independent 2 50 𝐸𝑥𝑝(5) 𝑈(0,7.5) 

9 Independent 10 20 𝐸𝑥𝑝(5) 𝑈(0,10) 

10 Independent 10 30 𝐸𝑥𝑝(5) 𝑈(0,9) 

11 Independent 10 40 𝐸𝑥𝑝(5) 𝑈(0,8) 

12 Independent 10 50 𝐸𝑥𝑝(5) 𝑈(0,7) 

13 Dependent 0 20 𝐸𝑥𝑝(5) 𝑈𝑧=1(0,24),𝑈𝑧=0(0,19) 

14 Dependent 0 30 𝐸𝑥𝑝(5) 𝑈𝑧=1(0,17),𝑈𝑧=0(0,12) 

15 Dependent 0 40 𝐸𝑥𝑝(5) 𝑈𝑧=1(0,14),𝑈𝑧=0(0,9) 

16 Dependent 0 50 𝐸𝑥𝑝(5) 𝑈𝑧=1(0,11),𝑈𝑧=0(0,6) 

17 Dependent 2 20 𝐸𝑥𝑝(5) 𝑈𝑧=1(0,16),𝑈𝑧=0(0,11) 

18 Dependent 2 30 𝐸𝑥𝑝(5) 𝑈𝑧=1(0,13.5),𝑈𝑧=0(0,8.5) 

19 Dependent 2 40 𝐸𝑥𝑝(5) 𝑈𝑧=1(0,12),𝑈𝑧=0(0,7) 

20 Dependent 2 50 𝐸𝑥𝑝(5) 𝑈𝑧=1(0,10.5),𝑈𝑧=0(0,5.5) 

21 Dependent 10 20 𝐸𝑥𝑝(5) 𝑈𝑧=1(0,13),𝑈𝑧=0(0,8) 

22 Dependent 10 30 𝐸𝑥𝑝(5) 𝑈𝑧=1(0,11.5),𝑈𝑧=0(0,6.5) 

23 Dependent 10 40 𝐸𝑥𝑝(5) 𝑈𝑧=1(0,11),𝑈𝑧=0(0,6) 

24 Dependent 10 50 𝐸𝑥𝑝(5) 𝑈𝑧=1(0,10.5),𝑈𝑧=0(0,5.5) 

(Continued on next page) 
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Table 2. Information of simulation scenarios (continued) 

Scenario 
Relation of 

𝑍 and (𝑇, 𝐶) 

𝜃 

levels 

of 

Clayton 

copula 

Percentage 

of 

censoring 

Survival 

time 

Censoring 

time 

25 Independent 0 20 𝐸𝑥𝑝(10) 𝑈(0,31) 

26 Independent 0 30 𝐸𝑥𝑝(10) 𝑈(0,21) 

27 Independent 0 40 𝐸𝑥𝑝(10) 𝑈(0,16) 

28 Independent 0 50 𝐸𝑥𝑝(10) 𝑈(0,13.5) 

29 Independent 2 20 𝐸𝑥𝑝(10) 𝑈(0,19) 

30 Independent 2 30 𝐸𝑥𝑝(10) 𝑈(0,16) 

31 Independent 2 40 𝐸𝑥𝑝(10) 𝑈(0,13.5) 

32 Independent 2 50 𝐸𝑥𝑝(10) 𝑈(0,12.5) 

33 Independent 10 20 𝐸𝑥𝑝(10) 𝑈(0,14.5) 

34 Independent 10 30 𝐸𝑥𝑝(10) 𝑈(0,13.5) 

35 Independent 10 40 𝐸𝑥𝑝(10) 𝑈(0,12.5) 

36 Independent 10 50 𝐸𝑥𝑝(10) 𝑈(0,12) 

37 Dependent 0 20 𝐸𝑥𝑝(10) 𝑈𝑧=1(0,34),𝑈𝑧=0(0,29) 

38 Dependent 0 30 𝐸𝑥𝑝(10) 𝑈𝑧=1(0,24),𝑈𝑧=0(0,19) 

39 Dependent 0 40 𝐸𝑥𝑝(10) 𝑈𝑧=1(0,18.5),𝑈𝑧=0(0,13.5) 

40 Dependent 0 50 𝐸𝑥𝑝(10) 𝑈𝑧=1(0,15.5),𝑈𝑧=0(0,10.5) 

41 Dependent 2 20 𝐸𝑥𝑝(10) 𝑈𝑧=1(0,22),𝑈𝑧=0(0,17) 

42 Dependent 2 30 𝐸𝑥𝑝(10) 𝑈𝑧=1(0,19),𝑈𝑧=0(0,14) 

43 Dependent 2 40 𝐸𝑥𝑝(10) 𝑈𝑧=1(0,16.5),𝑈𝑧=0(0,11.5) 

44 Dependent 2 50 𝐸𝑥𝑝(10) 𝑈𝑧=1(0,15.5),𝑈𝑧=0(0,10.5) 

45 Dependent 10 20 𝐸𝑥𝑝(10) 𝑈𝑧=1(0,18),𝑈𝑧=0(0,13) 

46 Dependent 10 30 𝐸𝑥𝑝(10) 𝑈𝑧=1(0,17),𝑈𝑧=0(0,12) 

47 Dependent 10 40 𝐸𝑥𝑝(10) 𝑈𝑧=1(0,16),𝑈𝑧=0(0,11) 

48 Dependent 10 50 𝐸𝑥𝑝(10) 𝑈𝑧=1(0,15),𝑈𝑧=0(0,10) 
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Figure 5. Scatter plot of simulation data (𝑛 = 500 pairs) generated under the Clayton copula, 𝑇~𝐸𝑥𝑝(5) or 

𝑇~𝐸𝑥𝑝(10), and independence between 𝑍 and (𝑇, 𝐶) according to 𝜃 = 0,2, and 5 
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Figure 6. Scatter plot of simulation data (𝑛 = 500 pairs) generated under the Clayton copula, 𝑇~𝐸𝑥𝑝(5) or 

𝑇~𝐸𝑥𝑝(10), and dependence between 𝑍 and (𝑇, 𝐶) according to 𝜃 = 0,2, and 5 
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6.2  Results 

The results of all scenarios are summarized in Table 3-14 with bias and S.E. Table 3-6 

provides the results of simulation studies using survival time 𝐸𝑥𝑝(5) and independence 

between 𝑍 and (𝑇, 𝐶) (Table 4 and 5) and independence between 𝑍 and (𝑇, 𝐶) (Table 5 

and 6). Table 4 showed that the proposed method using IPW scheme had smaller bias under 

𝜏 = 0.5 and 20 and 30 % of censoring compared to 𝐵𝑇𝑝. But, S.E. of proposed method 

had smaller value in all conditions. In generalized survival-adjusted estimator, bias using 

proposed method is smaller than BM under 40% censoring. When the dependency between 

𝑍  and (𝑇, 𝐶 ) existed, 𝐵𝑇𝑝  had higher bias. The proposed method outperformed the 

existing method in estimation both in terms of bias and S.E. Among the estimation method 

using the CG estimator, the Gumbel function worked best (Table 5). Table 6 showed that 

generalized survival-adjusted estimator was more effective estimation method than IPW 

method regardless of 𝜏 . The generalized survival-adjusted estimator copula-based Cox 

regression had lower bias and S.E. compared to BM estimator. Regardless of the 𝜏 and 

censing percentage, the estimator calculated using the Clayton function had the smallest 

bias value.  

Table 7-10 provides the results of simulation studies using survival time 𝐸𝑥𝑝(10) 

and independence between 𝑍 and (𝑇, 𝐶) (Table 7 and 8) and independence between 𝑍 

and (𝑇, 𝐶) (Table 9 and 10). In table 7, 𝐵𝑇𝑝 was not good at estimating when expectation 

value of mean survival time is closer to 𝜏. The proposed methods have the smaller bias 

and S.E than 𝐵𝑇 when 𝜏 was above 0.5. Among the estimation method using the CG 
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estimator, the Gumbel function worked best. Table 8 showed that proposed method under 

generalized survival-adjusted estimator only had smaller bias when 𝜏 = 0.5. The proposed 

method was not work for estimating cost when expectation value of mean survival time is 

closer to 𝜏 and 𝜏 is above the 0.5. When the dependency between 𝑍 and (𝑇, 𝐶) existed, 

𝐵𝑇𝑝 had higher bias and S.E. The proposed method outperformed the existing method in 

estimation both in terms of bias and S.E. Among the estimation method using the CG 

estimator, the Gumbel function worked best (Table 9). Table 10 showed that generalized 

survival-adjusted estimator was good at bias compared to IPW method in most settings. 

The generalized survival-adjusted estimator copula-based Cox regression had lower bias 

compared to BM estimator. Regardless of the 𝜏  and censing percentage, the estimator 

calculated using the Clayton function had the smallest bias value only except 𝜏 = 0.83 

and % of censoring= 50.  

In previous simulation, we used 𝜏 = 0.5  for estimating to proposed method 

regardless of the type of copula function because we generated survival time and censoring 

time using copula function at 𝜏 = 0.5. However, we investigated the simulation according 

to different 𝜏 (Table 11-14). In survival time 𝐸𝑥𝑝(5), we found that we should choose 

the higher 𝜏 in proposed method using IPW method for aspect of bias under independence 

and dependence between 𝑍 and (𝑇, 𝐶). But the choosing the 𝜏 in the proposed method 

using copula-based Cox regression was suggested to censoring %. Under 30% of censoring, 

we should choose the lower 𝜏 for reduction of bias. Above 40 % of censoring, we should 

choose the higher 𝜏 (Table 11 and Table 12). In survival time 𝐸𝑥𝑝(10), we found that we 
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should choose the higher 𝜏 in proposed method using IPW method for aspect of bias under 

independence and dependence between 𝑍  and (𝑇, 𝐶 ) (Table 13 and Table 14). But the 

choosing the 𝜏 in the proposed method using generalized-adjusted survival was suggested 

to the type of copula function. Under Clayton and Frank copula, we should choose the 

lower 𝜏 for reduction of bias. Under Gumbel copula, we should choose lower 𝜏 under 

30 % of censoring and choose the same 𝜏 which was used to generating 𝑇 and 𝐶 above 

40% of censoring (Table 13). In Table 14, under Clayton and Frank copula, we should 

choose the lower 𝜏  under 20% censoring, choose the same 𝜏 = 0.5  under 30-40% 

censoring, and choose the higher 𝜏 above the 50% censoring. Whereas, we could not find 

some specific trend the choosing 𝜏 for reduction of bias under Gumbel copula. 
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Table 3. Simulation scenarios 1-12 results of the incremental effect (∆) using IPW scheme under independence between 𝑍 

and (𝑇, 𝐶) 

 

 

 

 

 

 ∆ under IPW estimator 

Clayton 

Copula 

% of 

cens 

True value 

of ∆ 

𝐵𝑇 𝐵𝑇𝑝 
𝐶𝐺 

Clayton 

𝐶𝐺 

Frank 

𝐶𝐺 

Gumbel 

Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0  
(𝜃 = 0) 

20 19.094 5.926 0.720 -2.698 2.801 - - - - - - 

30 18.385 6.112 0.753 -3.008 3.051 - - - - - - 

40 18.092 6.797 0.695 -3.389 3.790 - - - - - - 

50 17.205 7.155 0.630 0.413 1.940 - - - - - - 

𝜏 = 0.5 

(𝜃 = 2) 

20 19.683 6.599 0.719 -5.654 3.398 5.104 0.627 4.965 0.622 4.099 0.619 

30 19.305 7.026 0.696 -6.812 3.866 5.273 0.606 5.127 0.599 4.292 0.598 

40 18.837 7.892 0.608 -1.558 2.506 6.190 0.485 6.028 0.477 5.290 0.480 

50 18.171 7.669 0.616 -1.852 1.681 6.331 0.436 6.159 0.428 5.523 0.435 

𝜏 = 0.83 

(𝜃 = 10) 

20 19.836 8.508 0.541 -0.793 1.938 5.615 0.549 5.478 0.557 5.243 0.631 

30 19.615 8.808 0.561 -1.260 2.145 5.961 0.531 5.781 0.546 5.446 0.682 

40 19.125 8.873 0.548 -1.916 1.893 6.142 0.469 5.888 0.498 5.384 0.695 

50 18.549 8.898 0.593 -2.362 1.849 6.410 0.420 6.079 0.449 5.551 0.490 

% of cens: percentage of censoring; SE: standard deviation of estimates across 1000 replicates 

When 𝜏 = 0.5, 𝜃 of  Clayton copula=2, , 𝜃 of  Frank copula=5.736, and , 𝜃 of  Gumbel copula=2. 
When 𝜏 = 0.83, 𝜃 of  Clayton copula=10, , 𝜃 of  Frank copula=22.224, and , 𝜃 of  Gumbel copula=6. 
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Table 4. Simulation scenarios 1-12 results of the incremental effect (∆) using generalized survival-adjusted estimator under 

independence between 𝑍 and (𝑇, 𝐶) 

 

 

 

 

 

 

 ∆ under generalized survival-adjusted estimator 

Clayton 

Copula 
% of cens 

True value 

of ∆ 

𝐵𝑀 
Copula based  

Cox regression 

under Clayton 

Copula based  

Cox regression 

under Frank 

Copula based  

Cox regression 

under Gumbel 

Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0  
(𝜃 = 0) 

20 19.094 2.890 0.804 - - - - - - 

30 18.385 1.908 0.898 - - - - - - 

40 18.092 1.373 1.023 - - - - - - 

50 17.205 1.172 0.988 - - - - - - 

𝜏 = 0.5 

(𝜃 = 2) 

20 19.683 2.955 0.794 -0.519 1.330 -0.412 1.324 -0.240 1.320 

30 19.305 2.331 0.884 -0.348 1.624 -0.230 1.604 0.001 1.592 

40 18.837 1.866 0.886 1.201 1.380 1.316 1.334 1.626 1.333 

50 18.171 1.510 0.862 2.727 1.255 2.791 1.225 3.074 1.217 

𝜏 = 0.83 

(𝜃 = 10) 

20 19.836 3.958 0.752 0.911 1.405 0.935 1.388 0.938 1.386 

30 19.615 3.729 0.748 2.211 1.376 2.235 1.355 2.239 1.354 

40 19.125 3.132 0.781 3.155 1.329 3.184 1.314 3.189 1.311 

50 18.549 2.170 0.769 4.044 1.372 4.084 1.350 4.094 1.347 

% of cens : percentage of censoring ; SE : standard deviation of estimates across 1000 replicates 

When 𝜏 = 0.5, 𝜃 of  Clayton copula=2, , 𝜃 of  Frank copula=5.736, and , 𝜃 of  Gumbel copula=2. 
When 𝜏 = 0.83, 𝜃 of  Clayton copula=10, , 𝜃 of  Frank copula=22.224, and , 𝜃 of  Gumbel copula=6. 
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Table 5. Simulation scenarios 13-24 results of the incremental effect (∆) using IPW estimator under dependence between 

𝑍 and (𝑇, 𝐶) 

 

 

 

 

 ∆ under IPW estimator 

Clayton 

Copula 

% of 

cens 

True value 

of ∆ 

𝐵𝑇 𝐵𝑇𝑝 
𝐶𝐺 

Clayton 

𝐶𝐺 

Frank 

𝐶𝐺 

Gumbel 

Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0  
(𝜃 = 0) 

20 19.418 5.850 0.759 -2.897 2.792 - - - - - - 

30 19.142 5.618 0.730 -2.959 2.903 - - - - - - 

40 19.073 5.625 0.730 -4.976 2.924 - - - - - - 

50 18.884 6.519 0.666 -6.387 3.575 - - - - - - 

𝜏 = 0.5 

(𝜃 = 2) 

20 20.353 5.634 0.710 -3.175 3.013 4.463 0.632 4.399 0.631 3.533 0.651 

30 20.425 5.533 0.696 -7.177 3.010 4.233 0.623 4.128 0.618 3.146 0.616 

40 20.528 6.141 0.725 -8.815 3.471 4.359 0.625 4.233 0.619 3.204 0.617 

50 20.521 7.445 0.696 -11.251 4.039 4.703 0.603 4.572 0.591 3.528 0.590 

𝜏 = 0.83 

(𝜃 = 10) 

20 20.955 4.708 0.664 -5.367 2.695 3.337 0.648 3.315 0.661 3.414 0.702 

30 21.344 5.559 0.683 -6.845 2.951 3.236 0.649 3.265 0.657 3.275 0.690 

40 21.398 6.157 0.693 -9.436 3.188 3.098 0.663 3.086 0.668 2.972 0.708 

50 21.391 7.104 0.698 -11.150 3.856 3.212 0.648 3.137 0.653 2.914 0.700 

% of cens: percentage of censoring; SE: standard deviation of estimates across 1000 replicates 

When 𝜏 = 0.5, 𝜃 of  Clayton copula=2, , 𝜃 of  Frank copula=5.736, and , 𝜃 of  Gumbel copula=2. 

When 𝜏 = 0.83, 𝜃 of  Clayton copula=10, , 𝜃 of  Frank copula=22.224, and , 𝜃 of  Gumbel copula=6. 
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Table 6. Simulation scenarios 13-24 results of the incremental effect (∆) using using generalized survival-adjusted 

estimator under dependence between 𝑍 and (𝑇, 𝐶) 

 

 

 

 

 ∆ under generalized survival-adjusted estimator 

Clayton 
Copula 

% of cens 
True value 

of ∆ 

𝐵𝑀 
Copula-based  

Cox regression 

under Clayton 

Copula-based  
Cox regression 

under Frank 

Copula based  
Cox regression 

under Gumbel 

Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0  
(𝜃 = 0) 

20 19.418 3.310 0.805 - - - - - - 

30 19.142 2.861 0.835 - - - - - - 

40 19.073 2.448 0.919 - - - - - - 

50 18.884 1.302 0.970 - - - - - - 

𝜏 = 0.5 

(𝜃 = 2) 

20 20.353 4.440 0.752 -0.669 1.279 -0.674 1.277 -0.694 1.278 

30 20.425 4.005 0.756 -2.443 1.393 -2.390 1.392 -2.382 1.391 

40 20.528 3.676 0.875 -2.926 1.349 -2.839 1.345 -2.747 1.341 

50 20.521 2.807 0.902 -2.953 1.717 -2.886 1.675 -2.678 1.661 

𝜏 = 0.83 

(𝜃 = 10) 

20 20.955 5.227 0.678 -2.862 1.223 -2.875 1.224 -2.874 1.224 

30 21.344 5.764 0.705 -3.058 1.285 -3.065 1.285 -3.065 1.285 

40 21.398 6.155 0.735 -3.022 1.304 -3.030 1.302 -3.031 1.301 

50 21.391 6.191 0.757 -2.789 1.468 -2.803 1.463 -2.809 1.461 

% of cens : percentage of censoring; SE: standard deviation of estimates across 1000 replicates 

When 𝜏 = 0.5, 𝜃 of  Clayton copula=2, , 𝜃 of  Frank copula=5.736, and , 𝜃 of  Gumbel copula=2. 
When 𝜏 = 0.83, 𝜃 of  Clayton copula=10, , 𝜃 of  Frank copula=22.224, and , 𝜃 of  Gumbel copula=6. 

 



51 

 

Table 7. Simulation scenarios 25-36 results of the incremental effect (∆) using IPW scheme under independence between 

𝑍 and (𝑇, 𝐶) 

 

 

 

 

 

 ∆ under IPW estimator 

Clayton 
Copula 

% of 
cens 

True value 

of ∆ 

𝐵𝑇 𝐵𝑇𝑝 
𝐶𝐺 

Clayton 

𝐶𝐺 

Frank 

𝐶𝐺 

Gumbel 

Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0  
(𝜃 = 0) 

20 22.248 3.668 0.877 -23.421 5.105 - - - - - - 

30 21.598 3.698 1.018 -21.925 5.533 - - - - - - 

40 20.829 3.869 1.021 -21.338 5.326 - - - - - - 

50 20.206 4.861 1.027 -20.436 5.770 - - - - - - 

𝜏 = 0.5 

(𝜃 = 2) 

20 23.063 3.694 0.903 -29.860 5.650 3.833 0.765 3.761 0.761 3.075 0.758 

30 22.821 3.730 0.953 -31.156 5.981 4.359 0.762 4.269 0.760 3.636 0.756 

40 22.102 3.670 1.042 -33.134 6.571 4.708 0.736 4.607 0.731 4.061 0.726 

50 21.812 3.880 1.133 -34.122 6.830 4.981 0.710 4.880 0.706 4.386 0.703 

𝜏 = 0.83 

(𝜃 = 10) 

20 23.293 3.251 0.886 -43.958 6.003 0.809 0.696 0.656 0.694 0.134 0.735 

30 23.106 3.219 0.972 -50.640 6.522 1.416 0.714 1.261 0.706 0.728 0.726 

40 22.967 3.366 1.063 -56.703 6.629 2.581 0.711 2.415 0.698 1.937 0.709 

50 22.621 3.160 1.150 -60.294 6.815 2.992 0.673 2.828 0.668 2.411 0.679 

% of cens : percentage of censoring ; SE : standard deviation of estimates across 1000 replicates 
When 𝜏 = 0.5, 𝜃 of  Clayton copula=2, , 𝜃 of  Frank copula=5.736, and , 𝜃 of  Gumbel copula=2. 

When 𝜏 = 0.83, 𝜃 of  Clayton copula=10, , 𝜃 of  Frank copula=22.224, and , 𝜃 of  Gumbel copula=6. 
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Table 8. Simulation scenarios 25-36 results of the incremental effect (∆) using generalized survival-adjusted estimator 

under independence between Z and (𝑇, 𝐶) 

 

 

 

 

 

 

 ∆ under generalized survival-adjusted estimator 

Clayton 

Copula 
% of cens 

True value 

of ∆ 

𝐵𝑀 
Copula-based  

Cox regression 

under Clayton 

Copula-based  

Cox regression 

under Frank 

Copula-based  

Cox regression 

under Gumbel 

Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0  
(𝜃 = 0) 

20 22.248 1.201 0.835 - - - - - - 

30 21.598 0.308 0.953 - - - - - - 

40 20.829 -0.770 1.015 - - - - - - 

50 20.206 -1.700 1.134 - - - - - - 

𝜏 = 0.5 

(𝜃 = 2) 

20 23.063 1.226 0.857 1.043 1.371 1.111 1.372 1.226 1.373 

30 22.821 0.417 0.924 0.853 1.471 0.960 1.471 1.135 1.472 

40 22.102 -0.988 0.995 0.385 1.617 0.543 1.616 0.798 1.617 

50 21.812 -1.714 1.065 0.185 1.730 0.371 1.727 0.670 1.724 

𝜏 = 0.83 

(𝜃 = 10) 

20 23.293 -2.192 0.829 -13.170 1.760 -13.133 1.761 -13.114 1.760 

30 23.106 -3.704 0.933 -13.238 2.268 -13.182 2.267 -13.153 2.266 

40 22.967 -5.946 1.048 -13.289 3.093 -13.207 3.088 -13.168 3.085 

50 22.621 -7.684 1.181 -12.974 3.646 -12.881 3.636 -12.839 3.630 

% of cens : percentage of censoring ; SE : standard deviation of estimates across 1000 replicates 

When 𝜏 = 0.5, 𝜃 of  Clayton copula=2, , 𝜃 of  Frank copula=5.736, and , 𝜃 of  Gumbel copula=2. 

When 𝜏 = 0.83, 𝜃 of  Clayton copula=10, , 𝜃 of  Frank copula=22.224, and , 𝜃 of  Gumbel copula=6. 
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Table 9. Simulation scenarios 37-48 results of the incremental effect (∆) using IPW estimator under dependence between 

𝑍 and (𝑇, 𝐶) 

 

 

 

 

 ∆ under IPW estimator 

Clayton 

Copula 

% of 

cens 

True value 

of ∆ 

𝐵𝑇 𝐵𝑇𝑝 
𝐶𝐺 

Clayton 

𝐶𝐺 

Frank 

𝐶𝐺 

Gumbel 

Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0  
(𝜃 = 0) 

20 22.430 3.664 0.909 -23.636 5.218 - - - - - - 

30 22.257 3.737 0.989 -22.804 5.486 - - - - - - 

40 21.971 3.577 0.979 -22.075 5.325 - - - - - - 

50 21.689 2.630 1.023 -21.071 5.788 - - - - - - 

𝜏 = 0.5 

(𝜃 = 2) 

20 23.602 4.067 0.865 -27.427 5.604 3.482 0.774 3.443 0.771 2.730 0.759 

30 23.534 3.810 0.920 -28.071 5.759 3.451 0.775 3.395 0.771 2.639 0.764 

40 23.578 3.129 1.001 -28.568 6.236 3.471 0.787 3.390 0.782 2.621 0.771 

50 23.466 2.008 1.020 -28.730 6.503 3.342 0.743 3.245 0.739 2.489 0.732 

𝜏 = 0.83 

(𝜃 = 10) 

20 24.068 4.212 0.868 -15.390 5.567 2.546 0.788 2.473 0.792 2.200 0.824 

30 24.279 4.333 0.942 -13.876 6.236 2.236 0.807 2.132 0.804 1.736 0.829 

40 24.460 4.187 0.982 -14.788 6.142 1.780 0.795 1.637 0.792 1.090 0.821 

50 24.557 0.813 0.977 -48.048 5.716 0.890 0.758 0.708 0.753 0.020 0.792 

% of cens: percentage of censoring; SE: standard deviation of estimates across 1000 replicates 

When 𝜏 = 0.5, 𝜃 of  Clayton copula=2, , 𝜃 of  Frank copula=5.736, and , 𝜃 of  Gumbel copula=2. 

When 𝜏 = 0.83, 𝜃 of  Clayton copula=10, , 𝜃 of  Frank copula=22.224, and , 𝜃 of  Gumbel copula=6. 
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Table 10. Simulation scenarios 37-48 results of the incremental effect (∆) using using generalized survival-adjusted 

estimator under dependence between 𝑍 and (𝑇, 𝐶) 

 

 

 

 

 ∆ under generalized survival-adjusted estimator 

Clayton 
Copula 

% of cens 
True value 

of ∆ 

𝐵𝑀 
Copula-based  

Cox regression 

under Clayton 

Copula-based  
Cox regression 

under Frank 

Copula-based  
Cox regression 

under Gumbel 

Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0  
(𝜃 = 0) 

20 22.430 1.490 0.878 - - - - - - 

30 22.257 1.138 0.970 - - - - - - 

40 21.971 0.767 0.987 - - - - - - 

50 21.689 0.207 1.064 - - - - - - 

𝜏 = 0.5 

(𝜃 = 2) 

20 23.602 2.609 0.844 1.545 1.393 1.556 1.395 1.575 1.399 

30 23.534 2.405 0.875 1.382 1.441 1.389 1.444 1.404 1.450 

40 23.578 2.267 0.959 1.178 1.523 1.178 1.526 1.185 1.530 

50 23.466 1.945 0.996 0.798 1.644 0.808 1.646 0.816 1.648 

𝜏 = 0.83 

(𝜃 = 10) 

20 24.068 4.751 0.830 1.648 1.390 1.614 1.391 1.596 1.392 

30 24.279 5.643 0.875 1.510 1.547 1.467 1.547 1.446 1.548 

40 24.460 6.490 0.872 1.041 1.662 0.996 1.662 0.977 1.662 

50 24.557 6.622 0.909 0.140 1.805 0.106 1.805 0.094 1.805 

% of cens : percentage of censoring; SE: standard deviation of estimates across 1000 replicates 

When 𝜏 = 0.5, 𝜃 of  Clayton copula=2, , 𝜃 of  Frank copula=5.736, and , 𝜃 of  Gumbel copula=2. 
When 𝜏 = 0.83, 𝜃 of  Clayton copula=10, , 𝜃 of  Frank copula=22.224, and , 𝜃 of  Gumbel copula=6. 
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Table 11. Simulation scenarios 1-24 results of the incremental effect (∆) using IPW and generalized survival-adjusted 

estimator under independence between 𝑍 and (𝑇, 𝐶) according to different 𝜏 

 ∆  

Clayton 

Copula 

% of 
cens 

True 

value of 

∆ 

𝐶𝐺 

Clayton 

(𝜏 = 0.3) 

𝐶𝐺 

Frank 

(𝜏 = 0.3) 

𝐶𝐺 

Gumbel 

(𝜏 = 0.3) 

Copula-based 
Cox reg. 

under Clayton 

(𝜏 = 0.3) 

Copula-based 
Cox reg. 

under Frank 

(𝜏 = 0.3) 

Copula-based 
Cox reg. 

under Gumbel 

(𝜏 = 0.3) 

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0.5 

(𝜃 = 2) 

20 19.683 5.209 0.626 5.149 0.624 4.344 0.620 -0.807 1.382 -0.718 1.376 -0.338 1.365 

30 19.305 5.367 0.605 5.301 0.603 4.492 0.599 -0.786 1.635 -0.685 1.617 -0.137 1.591 

40 18.837 6.330 0.490 6.257 0.486 5.508 0.481 0.632 1.411 0.731 1.371 1.443 1.360 

50 18.171 6.473 0.431 6.392 0.427 5.705 0.426 2.265 1.285 2.318 1.259 2.961 1.241 

               

   

𝐶𝐺 

Clayton 

(𝜏 = 0.5) 

𝐶𝐺 

Frank 

(𝜏 = 0.5) 

𝐶𝐺 

Gumbel 

(𝜏 = 0.5) 

Copula-based 
Cox reg. 

under Clayton 

(𝜏 = 0.5) 

Copula-based 
Cox reg. 

under Frank 

(𝜏 = 0.5) 

Copula-based 
Cox reg. 

under Gumbel 

(𝜏 = 0.5) 

   Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0.5 

(𝜃 = 2) 

20 19.683 5.104 0.627 4.965 0.622 4.099 0.619 -0.519 1.330 -0.412 1.324 -0.240 1.320 

30 19.305 5.273 0.606 5.127 0.599 4.292 0.598 -0.348 1.624 -0.230 1.604 0.001 1.592 

40 18.837 6.190 0.485 6.028 0.477 5.290 0.480 1.201 1.380 1.316 1.334 1.626 1.333 

50 18.171 6.331 0.436 6.159 0.428 5.523 0.435 2.727 1.255 2.791 1.225 3.074 1.217 

               

Clayton 

Copula 

% of 

cens 

True 

value of 

∆ 

𝐶𝐺 

Clayton 

(𝜏 = 0.83) 

𝐶𝐺 

Frank 

(𝜏 = 0.83) 

𝐶𝐺 

Gumbel 

(𝜏 = 0.83) 

Copula-based 
Cox reg. 

under Clayton 

(𝜏 = 0.83) 

Copula-based 
Cox reg. 

under Frank 

(𝜏 = 0.83) 

Copula-based 
Cox reg. 

under Gumbel 

(𝜏 = 0.83) 

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0.5 

(𝜃 = 2) 

20 19.683 4.572 0.612 4.072 0.604 3.421 0.623 -0.171 1.394 -0.143 1.393 -0.134 1.392 

30 19.305 4.657 0.609 4.174 0.601 3.624 0.622 0.068 1.571 0.097 1.568 0.103 1.566 

40 18.837 5.578 0.482 5.157 0.482 4.751 0.506 1.772 1.445 1.800 1.434 1.802 1.433 

50 18.171 5.709 0.405 5.367 0.415 5.088 0.436 3.245 1.248 3.266 1.243 3.270 1.243 
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Table 12. Simulation scenarios 1-24 results of the incremental effect (∆) using IPW and generalized survival-adjusted 

estimator under dependence between 𝑍 and (𝑇, 𝐶) according to different 𝜏 

 

 ∆  

Clayton 

Copula 

% of 

cens 

True 

value of 

∆ 

𝐶𝐺 

Clayton 

(𝜏 = 0.3) 

𝐶𝐺 

Frank 

(𝜏 = 0.3) 

𝐶𝐺 

Gumbel 

(𝜏 = 0.3) 

Copula-based 

Cox reg. 

under Clayton 

(𝜏 = 0.3) 

Copula-based 

Cox reg. 

under Frank 

(𝜏 = 0.3) 

Copula-based 

Cox reg. 

under Gumbel 

(𝜏 = 0.3) 

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0.5 

(𝜃 = 2) 

20 20.353 4.497 0.656 4.475 0.656 3.771 0.664 -0.577 1.266 -0.581 1.265 -0.643 1.268 

30 20.425 4.281 0.644 4.241 0.643 3.406 0.643 -2.216 1.340 -2.174 1.338 -2.204 1.335 

40 20.528 4.459 0.607 4.407 0.605 3.500 0.600 -2.995 1.463 -2.927 1.458 -2.765 1.451 

50 20.521 4.808 0.563 4.759 0.559 3.796 0.557 -3.379 1.675 -3.335 1.633 -2.867 1.611 

               

   

𝐶𝐺 

Clayton 

(𝜏 = 0.5) 

𝐶𝐺 

Frank 

(𝜏 = 0.5) 

𝐶𝐺 

Gumbel 

(𝜏 = 0.5) 

Copula-based 
Cox reg. 

under Clayton 

(𝜏 = 0.5) 

Copula-based 
Cox reg. 

under Frank 

(𝜏 = 0.5) 

Copula-based 
Cox reg. 

under Gumbel 

(𝜏 = 0.5) 

   Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0.5 

(𝜃 = 2) 

20 20.353 4.463 0.632 4.399 0.631 3.533 0.651 -0.669 1.279 -0.674 1.277 -0.694 1.278 

30 20.425 4.233 0.623 4.128 0.618 3.146 0.616 -2.443 1.393 -2.390 1.392 -2.382 1.391 

40 20.528 4.359 0.625 4.233 0.619 3.204 0.617 -2.926 1.349 -2.839 1.345 -2.747 1.341 

50 20.521 4.703 0.603 4.572 0.591 3.528 0.590 -2.953 1.717 -2.886 1.675 -2.678 1.661 

               

Clayton 

Copula 

% of 

cens 

True 

value of 

∆ 

𝐶𝐺 

Clayton 

(𝜏 = 0.83) 

𝐶𝐺 

Frank 

(𝜏 = 0.83) 

𝐶𝐺 

Gumbel 

(𝜏 = 0.83) 

Copula-based 
Cox reg. 

under Clayton 

(𝜏 = 0.83) 

Copula-based 
Cox reg. 

under Frank 

(𝜏 = 0.83) 

Copula-based 
Cox reg. 

under Gumbel 

(𝜏 = 0.83) 

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0.5 

(𝜃 = 2) 

20 20.353 4.197 0.642 3.727 0.648 2.802 0.681 -0.687 1.308 -0.684 1.308 -0.680 1.307 

30 20.425 3.822 0.598 3.257 0.589 2.357 0.614 -2.425 1.382 -2.406 1.382 -2.394 1.382 

40 20.528 3.825 0.559 3.224 0.560 2.386 0.580 -2.781 1.363 -2.754 1.362 -2.740 1.362 

50 20.521 4.088 0.557 3.471 0.551 2.738 0.570 -2.627 1.538 -2.602 1.534 -2.594 1.534 
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Table 13. Simulation scenarios 25-36 results of the incremental effect (∆) using IPW and generalized survival-adjusted 

estimator under independence between 𝑍 and (𝑇, 𝐶) according to different 𝜏 

 ∆  

Clayton 

Copula 

% of 

cens 

True 

value of 

∆ 

𝐶𝐺 

Clayton 

(𝜏 = 0.3) 

𝐶𝐺 

Frank 

(𝜏 = 0.3) 

𝐶𝐺 

Gumbel 

(𝜏 = 0.3) 

Copula-based 

Cox reg. 

under Clayton 

(𝜏 = 0.3) 

Copula-based 

Cox reg. 

under Frank 

(𝜏 = 0.3) 

Copula-based 

Cox reg. 

under Gumbel 

(𝜏 = 0.3) 

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0.5 

(𝜃 = 2) 

20 23.063 3.878 0.780 3.847 0.777 3.232 0.761 0.973 1.363 1.027 1.363 1.234 1.365 

30 22.821 4.413 0.795 4.373 0.792 3.774 0.778 0.790 1.502 0.874 1.502 1.195 1.503 

40 22.102 4.745 0.716 4.697 0.713 4.154 0.703 0.028 1.635 0.155 1.634 0.652 1.633 

50 21.812 5.054 0.685 5.004 0.683 4.499 0.678 -0.129 1.709 0.020 1.705 0.617 1.695 

               

   

𝐶𝐺 

Clayton 

(𝜏 = 0.5) 

𝐶𝐺 

Frank 

(𝜏 = 0.5) 

𝐶𝐺 

Gumbel 

(𝜏 = 0.5) 

Copula-based 
Cox reg. 

under Clayton 

(𝜏 = 0.5) 

Copula-based 
Cox reg. 

under Frank 

(𝜏 = 0.5) 

Copula-based 
Cox reg. 

under Gumbel 

(𝜏 = 0.5) 

   Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0.5 

(𝜃 = 2) 

20 23.602 3.833 0.765 3.761 0.761 3.075 0.758 1.043 1.371 1.111 1.372 1.226 1.373 

30 23.534 4.359 0.762 4.269 0.760 3.636 0.756 0.853 1.471 0.960 1.471 1.135 1.472 

40 23.578 4.708 0.736 4.607 0.731 4.061 0.726 0.385 1.617 0.543 1.616 0.798 1.617 

50 23.466 4.981 0.710 4.880 0.706 4.386 0.703 0.185 1.730 0.371 1.727 0.670 1.724 

               

Clayton 

Copula 

% of 

cens 

True 

value of 

∆ 

𝐶𝐺 

Clayton 

(𝜏 = 0.83) 

𝐶𝐺 

Frank 

(𝜏 = 0.83) 

𝐶𝐺 

Gumbel 

(𝜏 = 0.83) 

Copula-based 
Cox reg. 

under Clayton 

(𝜏 = 0.83) 

Copula-based 
Cox reg. 

under Frank 

(𝜏 = 0.83) 

Copula-based 
Cox reg. 

under Gumbel 

(𝜏 = 0.83) 

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0.5 

(𝜃 = 2) 

20 23.602 3.606 0.775 3.335 0.761 2.698 0.770 1.196 1.348 1.224 1.348 1.239 1.349 

30 23.534 4.067 0.738 3.794 0.726 3.286 0.742 1.186 1.448 1.226 1.449 1.247 1.450 

40 23.578 4.330 0.714 4.087 0.707 3.715 0.722 0.607 1.689 0.664 1.689 0.690 1.690 

50 23.466 4.687 0.694 4.465 0.688 4.148 0.702 0.601 1.665 0.664 1.665 0.692 1.665 
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Table 14. Simulation scenarios 37-48 results of the incremental effect (∆) using IPW and generalized survival-adjusted 

estimator under dependence between 𝑍 and (𝑇, 𝐶) according to different 𝜏 

 ∆  

Clayton 

Copula 

% of 

cens 

True 

value of 

∆ 

𝐶𝐺 

Clayton 

(𝜏 = 0.3) 

𝐶𝐺 

Frank 

(𝜏 = 0.3) 

𝐶𝐺 

Gumbel 

(𝜏 = 0.3) 

Copula-based 

Cox reg. 

under Clayton 

(𝜏 = 0.3) 

Copula-based 

Cox reg. 

under Frank 

(𝜏 = 0.3) 

Copula-based 

Cox reg. 

under Gumbel 

(𝜏 = 0.3) 

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0.5 

(𝜃 = 2) 

20 23.602 3.472 0.794 3.457 0.793 2.858 0.782 1.457 1.408 1.466 1.408 1.501 1.413 

30 23.534 3.491 0.765 3.469 0.763 2.807 0.752 1.395 1.376 1.402 1.377 1.425 1.382 

40 23.578 3.484 0.735 3.452 0.733 2.762 0.721 1.275 1.408 1.278 1.411 1.264 1.424 

50 23.466 3.407 0.740 3.364 0.738 2.660 0.722 0.932 1.581 0.941 1.583 0.912 1.586 

               

   

𝐶𝐺 

Clayton 

(𝜏 = 0.5) 

𝐶𝐺 

Frank 

(𝜏 = 0.5) 

𝐶𝐺 

Gumbel 

(𝜏 = 0.5) 

Copula-based 
Cox reg. 

under Clayton 

(𝜏 = 0.5) 

Copula-based 
Cox reg. 

under Frank 

(𝜏 = 0.5) 

Copula-based 
Cox reg. 

under Gumbel 

(𝜏 = 0.5) 

   Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0.5 

(𝜃 = 2) 

20 23.602 3.482 0.774 3.443 0.771 2.730 0.759 1.545 1.393 1.556 1.395 1.575 1.399 

30 23.534 3.451 0.775 3.395 0.771 2.639 0.764 1.382 1.441 1.389 1.444 1.404 1.450 

40 23.578 3.471 0.787 3.390 0.782 2.621 0.771 1.178 1.523 1.178 1.526 1.185 1.530 

50 23.466 3.342 0.743 3.245 0.739 2.489 0.732 0.798 1.644 0.808 1.646 0.816 1.648 

               

Clayton 

Copula 

% of 

cens 

True 

value of 

∆ 

𝐶𝐺 

Clayton 

(𝜏 = 0.83) 

𝐶𝐺 

Frank 

(𝜏 = 0.83) 

𝐶𝐺 

Gumbel 

(𝜏 = 0.83) 

Copula-based 
Cox reg. 

under Clayton 

(𝜏 = 0.83) 

Copula-based 
Cox reg. 

under Frank 

(𝜏 = 0.83) 

Copula-based 
Cox reg. 

under Gumbel 

(𝜏 = 0.83) 

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE 

𝜏 = 0.5 

(𝜃 = 2) 

20 23.602 3.300 0.769 3.058 0.751 2.226 0.757 1.530 1.367 1.535 1.367 1.538 1.368 

30 23.534 3.262 0.736 2.975 0.720 2.203 0.731 1.389 1.395 1.394 1.397 1.399 1.398 

40 23.578 3.216 0.723 2.893 0.711 2.204 0.725 1.203 1.532 1.211 1.534 1.220 1.534 

50 23.466 3.019 0.734 2.689 0.723 2.048 0.738 0.793 1.630 0.808 1.632 0.823 1.633 
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7. Application 

7.1  National Health Insurance Service National Sample Cohort 

(NHIS-NSC) data 

In this session, we used real data examples to demonstrate the performance of the 

proposed method. Analysis was performed using the National Health Insurance Service 

National Sample Cohort (NHIS-NSC) database. The NHISNSC (2002-2010) database is a 

cohort data that connects the same subjects until 2010 by sampling about 1 million people, 

2% of the total population, as of 2002. The NHIS records have garnered academic interest 

due to the effectiveness of the system and relevance to public health and medical research. 

To meet this interest, a population database has been developed, the ‘National Health 

Information Database’ (NHID) containing personal information, demographics, and 

medical treatment data for Korean citizens, who were categorized as insured employees, 

insured self-employed individuals or medical aid beneficiaries. The NHID was generated 

using participants’ medical bill expenses claimed by medical service providers.  

Data were rearranged according to date of medical treatment rather than date of claim. 

To prevent the effects of other existing diseases, the period 2002–2003 was designated as 

a washout period. In addition, to identify newly diagnosed lung cancer cases in 2004, those 

who were diagnosed with lung cancer in 2002–2003 were excluded. After exclusion 

(International Classification of Diseases 10th revision codes: C34), the total population of 

this study was 528 individuals. This section aimed to analyze gender differences in the 

medical costs associated with lung cancer disease within 5 years after diagnosis (2004) in 
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the South Korean population. We apply both prevailing estimation method including IPW, 

generalized survival-adjusted estimator, and also our proposed estimator to this data. We 

used bootstrapping for the computation of SE of median and non-parametric bootstrap 

confidence interval for median. 

 

7.2  Results 

The analysis results of real data are summarized in Table 16 and Figure 7. The 

censoring percentage is approximately 40%. Also, we use the tree type of copula function 

and 𝜏 = 0.5. We compared the 5-years censored medical costs estimated by prevailing 

method and our proposed estimator. We find that compared with our estimator under IPW 

scheme, the 𝐵𝑇 and 𝐵𝑇𝑝 estimates for the 5-year medical costs produces lower estimates 

of mean costs for all gender. In generalized survival-adjusted method, our estimates of the 

incremental costs between gender are almost two times in magnitude that those of the BM 

estimator. Overall, it can be seen that generalized survival-adjusted method estimates the 

cost higher than the IPW method. In the IPW scheme, there is not much difference in the 

estimated value depending on the type of copula function. However, in generalized 

survival-adjusted method, it is found that there is a large difference in estimates depending 

on the type of copula function, and that the estimate is the smallest in Clayton and the 

largest in Gumbel function. 

Figure 7 summarized the results about mean cost profiles by gender predicted using 

prevailing method and proposed estimator. Regardless of gender, The IPW method 
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estimates the mean cost lower than the simple mean, and the generalized survival-adjusted 

method estimates higher. Within the same scheme, the estimated mean cost value of the 

proposed method is higher than that of prevailing methods. Looking at the results of copula 

function in both schemes, the estimated mean value is high in the order of Clayton, Frank, 

and Gumbel. In addition, in male, there is a large difference in estimated mean value 

depending on the methods used for estimation, while in female, there is little difference 

depending on the copula method within IPW or within the generalized survival-adjusted 

method. Among the prevailing methods, BM is estimated to be slightly higher only in male 

than the value obtained by simple means, and almost similar in female. 
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Figure 7. Mean cost profiles by gender predicted using prevailing method and 

proposed estimator 
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Table 15. Comparison of estimated 5-year difference costs by gender 

 Prevailing estimator  Proposed estimator 

 
𝐵𝑇 𝐵𝑇𝑝 𝐵𝑀 

 𝐶𝐺 

Clayton 
(𝜏 = 0.5) 

𝐶𝐺 

Frank 
(𝜏 = 0.5) 

𝐶𝐺 

Gumbel 
(𝜏 = 0.5) 

Cox reg. 

under Clayton 

(𝜏 = 0.5) 

Cox reg. 

under Frank 

(𝜏 = 0.5) 

Cox reg. 

under Gumbel 

(𝜏 = 0.5) 

Male 

5867805 8433645 11162712  9224106 9228097 9982585 14806947 15825979 18417896 

5992956 
(4396459, 
7102816) 

8539487 

(6653472, 
9942999) 

11180358 

(9800741, 
12414497) 

 9452226 

(6911917, 
11108349) 

9403784 

(7013897, 
10999194) 

10111471 

(7576327, 
11858258) 

15470449 

(11729269, 
18786894) 

16612162 

(11809259, 
20522707) 

19016224 

(12217231, 
24776160) 

Female 

2633623 4040209 7673656  4283604 4302063 4394687 10108290 10148977 10417704 

2650223 

(1541813, 
3641067) 

4065847 

(2788864, 
5244381) 

7713941 

(6128939, 
9118899) 

 4219184 

(2849337, 
5512662) 

4236564 

(2854903, 
5542561) 

4302418 

(2878411, 
5660696) 

10111007 

(7930769, 
12086961) 

10158370 

(7964339, 
12160822) 

10443635 

(8107332, 
12527803) 

∆ 

3234182 4393436 3489056  4940502 4926034 5587898 4698657 5677002 8000192 

3270505 

(1383101, 
4937956) 

4431180 

(2218429, 
6423156) 

3468239 

(1527922, 
5505879) 

 5085377 

(2245649, 
7417462) 

5039567 

(2317969, 
7334838) 

5683354 

(2804836, 
8129725) 

5215300 

(934484, 
9307677) 

6293935 

(981612, 
10997095) 

8450981 

(1106202, 
15008831) 

 

 

  

 

 

Note: Values are expressed as estimated mean value and median (95% CI) 
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8. Conclusion and Discussion 

This study examined how to extend the estimation of censored medical cost in 

dependent censoring data. There are the prevailing methods for estimating the right 

censored medical cost which fall into three categories, (a) the IPW estimators; (b) the 

generalized survival-adjusted estimators; (c) the joint-modeling methods. However, the 

prevailing methods were established under independent censoring. However, the medical 

costs for failure event and censoring time tend to be generally positively correlated. Using 

the prevailing methods for calculation mean medical cost provide biased results under the 

assumption of dependent censoring. The proposed estimators using copula method can 

reduce bias in inferences and return better results than the prevailing method in data under 

dependent censoring. 

Our simulation study revealed that the proposed method was either comparable or 

superior to the prevailing method in most scenarios. Especially, the proposed method using 

IPW method reduced bias and S.E. under dependence between 𝑍  and (𝑇, 𝐶 ). And the 

proposed method using generalized survival-adjusted method certainly reduced bias under 

dependence between 𝑍  and ( 𝑇, 𝐶 ) and all censoring scenarios. Also, we find that 

prevailing methods showed a significant increase in bias under dependent censoring, and 

BM method showed a smaller bias than the IPW method regardless of the dependency 

between survival and censoring time. 

This study’s simulations also examined the effects of the type of copula function and 

dependency parameter 𝜃 . In IPW method using copula graphic estimator, we should 
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choose the high 𝜃 regardless of copula’s function to have the smallest bias. However, in 

generalized survival-adjusted method using copula-based Cox regression, we should 

choose the high 𝜃 under 20-30% censoring rate and the low 𝜃 under 40-50% censoring 

rate regardless of the type of copula function. When the expected mean value of survival 

time is similar to limitation of study time, we should choose the low 𝜃 in Clayton and 

Frank function under 20-50% censoring rate under independence between 𝑍 and (𝑇, 𝐶).  

 We confirmed through real data example that the value differs significantly between the 

estimator considering the dependency of the survival and the censoring time and the 

estimator that does not. Therefore, if dependent censoring exists, the censored medical cost 

should be calculated using the proposed method considering it. 

As a result, we confirm the performance of the proposed method compared to the 

prevailing estimator based on IPW and generalized survival-adjusted method. The 

proposed estimation method showed good performance in most cases, especially in the 

context of dependence between Z and (𝑇, 𝐶). This method is expected to be a useful tool to 

estimation aspect to bias censored medical cost on dependent censoring data. Further works 

should be carried out on study results to confirm the generalizability of these results. There 

are further works, (1) when the censoring percentage in the IPW scheme is 50% and the 

mean of survival time is similar to study limitation time, the bias of estimators rapidly 

decreases, (2) survival and censoring time were generated with a clayton copula, but rather, 

the bias of the IPW estimator using the Gumbel function was smaller, and (3) Result of 

incorrect assumption of copula function and dependency parameter 𝜃. 
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국 문 요 약 

 

의존적 중도절단 데이터에서의 

코퓰라 방법을 이용한 의료비 추정 

 

 

  중도절단 된 의료비를 추정하기 위하여 기존에 제안된 모델링 방법은 크게 세 

가지 범주로 나뉜다: (1) 역확률 가중치 추정, (2) 일반화된 생존 확률 조정법, (3) 

조인트 모델링이다. 그러나 이 방법들은 독립 중도절단 가정하에 성립된 모델들이기 

때문에 이러한 가정이 위반되게 되면 그 추정량들은 편향을 발생시키게 된다.  

하지만 일반적으로 의료비 추정 시 관심 사건과 중도절단 시간은 양의 

상관관계를 가진다 (Etzioni et al. 1999; Lin 2003). 따라서 의존적 중도절단 

하에서는 생존 시간과 중도절단 시간의 결합확률분포를 고려하여 의료비를 추정할 

필요가 있다. 이 문제를 고려하여 의료비를 모델링하기에 코퓰라 방법은 아주 유용한 

도구이다. 의존적 중도절단 데이터의 생존 분석을 하기 위해 이 연구에서는 가정된 

코퓰라 방법 중 코퓰라-그래픽 추정량과 코퓰라에 근거한 콕스 회귀를 적용하였다. 

 이 연구에서는 독립적 중도절단과 의존적 중도절단 데이터에서 기존 제안된 

추정 방법들과 이 연구에서 제안한 추정 방법들을 평가하였다. 일련의 시뮬레이션과 

다양한 시나리오를 가정하여 추정 방법들의 편향과 표준 오차를 통하여 성능을 
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평가하였다. 또한 국민 건강 보험의 국가 표본 코호트를 사용하여 실제 데이터에 

적용해 보았다. 

 

                                                                                   

핵심되는 말: 의료비, 의존적 중도절단, 코퓰라 방법, 코퓰라-그래픽 추정량, 

코퓰라에 근거한 콕스 회귀, 역할률 가중치 추정, 일반화된 생존 확률 조정 방법, 

조인트 모델링 

 

 

 

 


