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Abstract  

 

A Unified Parametric Approach to the Estimation of Dependence and 

Marginal Distributions in Bivariate Competing Risks Survival Data 

 

In bivariate competing risks survival data where only the minimum of the time-to-

events is observed and never both, dependence between the survival endpoints is known to 

be non-identifiable. If dependence or correlation exists between the time-to-events, cause-

specific hazards analysis under independent censoring or inference under incorrectly 

assumed correlations become biased. Arguably, the most important parameter for 

estimation when dependence exists is the correlation between the time-to-events. However, 

maximum likelihood estimation (MLE) is known to be biased with large variance, and no 

practical methods to estimate the correlation exist. 

Using the fact that bivariate normally (BVN) distributed competing risks data is 

identifiable, we propose a unified parametric approach where the bivariate central limit 

theorem provides a connection between a given bivariate competing risks data and the 

identifiable BVN distribution. We demonstrate that the correlation in the given data is 

estimable by finding a BVN distribution that produces the same sample mean information 
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as that of the given data. Estimating the correlation subsequently enables an unbiased 

estimation of the marginal survival or hazard functions of the event of interest. Simulations 

showed that the proposed method works well over various marginal distributions, copulas, 

and sizes of the correlation. 

Our study provides a potential contribution to the existing literature in that the 

proposed method is applicable to any parametric bivariate competing risks data, requires 

no covariate information to estimate the correlation, and shows accurate and precise results 

where the conventional MLE fails to do so. We expect the current study to have further 

applications in biomedical time-to-event analyses where dependence between the survival 

endpoints exist such as disease etiology research or RCTs of drug efficacy. 

                                                                            

Keywords: Competing risks survival analysis, Correlation, Dependence, Identifiability, 

Bivariate central limit theorem.
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Chapter 1  

Introduction 

1.1 Basic Quantities in Survival Analysis 

In the biomedical setting, a cohort of patients with some disease are often followed 

longitudinally until the occurrence of some disease-related event. Survival analysis is the 

statistical inference of the time to such an event, which differs from other longitudinal 

studies in that subjects may drop out or become lost to follow-up (f/u) during the study 

period. This is called ‘(right-)censoring’, and many methods unique to survival analysis are 

related to dealing with such censoring.  

In this regard, we first start with some basic quantities in survival analysis, for which 

the following notations will be used:  

X: the time to some biomedical event of interest, which is a random variable 

FX(x): the cumulative distribution function (cdf) at time X=x. A related quantity is the 

probability density function (pdf) of X, f X(x) 

S(x): the survival function at X=x, which is equal to 1 – F X(x) 

h(x): the hazard rate (or function) at X=x. A related quantity is the cumulative hazard 

function H(x) at X=x 
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Since censoring occurs during or at the end of the study (some patients become right-

censored if they do not experience the event of interest until the end of study), the time-to-

event random variable X is not always fully observed, i.e. we observe the minimum of two 

times T: time to the actual event of interest, and C: time to either (right-) censoring or some 

other competing event(s). Assuming we know each patient’s event status of whether he/she 

has experienced the event of interest during the study, the time-to-event X = min(T, C), and 

a status indicator variable δ = I(T ≤C) is defined. Similarly, we define the other basic 

quantities above as follows:  

The cdf F X(x) = Pr(X ≤x) 

The pdf f X(x) = 
d

dx
F𝑋(𝑥) 

The survival function S(x) = Pr(X >x) = 1- Pr(X ≤x) = 1- F X(x) 

The hazard function h(x) = lim
∆𝑥→0

Pr(𝑥≤𝑋≤𝑥+∆𝑥 |𝑋≥𝑥)

∆𝑥
  

= lim
∆𝑥→0

𝐹𝑋(𝑥+∆𝑥)−𝐹𝑋(𝑥)

∆𝑥
×

1

(1−𝐹𝑋(𝑥))
=

𝑓𝑋(𝑥)

𝑆(𝑥)
, where any h(x) ≥0 

The cumulative hazard function H(x) = ∫ ℎ(𝑢)𝑑𝑢
𝑥

0
 

These basic quantities characterize the (probability) distribution of the time-to-event 

X (Klein & Moeschberger, 2003), and thus have inter-relationships such as h(x) = f(x)/S(x) 

(foregoing the random variable subscript X notation in the pdf fX(x)), S(x) = exp[-H(x)] 

and vice versa H(x) = -log[S(x)], where ‘log’ is the natural log with base e. 



3 

 

Among these basic quantities, we can non-parametrically (or empirically) estimate the 

survival function S(x) and cumulative hazard function H(x), which are the well-known 

Kaplan-Meier (K-M) product limit estimator of survival and the Nelson-Aalen (N-A) 

estimator of cumulative hazard. For notation, let the events of interest occur at D distinct 

times xi (i = 1, 2, …, D), x1 < x2 < … < xD, and di be the number of such events occurring 

among Yi number of subjects at risk (the risk-set), at each time xi. Then, 
𝑑𝑖

𝑌𝑖
=

Pr(𝑋 = 𝑥𝑖 | 𝑋 ≥ 𝑥𝑖), a crude estimate of the hazard rate at an event time xi, is the basic 

quantity from which the K-M survival estimator 𝑆(𝑥)̂  and the N-A cumulative hazard 

estimator H(t)̃ are constructed. 

The K-M survival estimator 𝑆(𝑥)̂ = 1, if x < x1,  

       = ∏ (1 −
𝑑𝑖

𝑌𝑖
)𝑥𝑖≤𝑥 , if x ≥ x1. 

The N-A cumulative hazard estimator H(x)̃ = 0, if x < x1,  

        = ∑
𝑑𝑖

𝑌𝑖
𝑥𝑖≤𝑥 , if x ≥ x1. 

From 𝑆(𝑥)̂  we can calculate 𝐻(𝑥)̂  as –log[ 𝑆(𝑥)̂ ], and similarly, from H(x)̃ 

calculate S(x)̃  as exp[-H(x)̃] . A point to be stressed is that any (right-)censoring is 

considered to be non-informative, or independent, of the main event of interest when 

estimating survival or cumulative hazard. Thus, any censored subjects can be conveniently 

subtracted from the denominator Yi with no contribution to the numerator di in the 𝑆(𝑥)̂ 
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and H(x)̃ estimations above. 

Using these basic quantities (cdf, pdf, survival, hazard, cumulative hazard) and non-

parametric estimators of survival and cumulative hazard, we can expand our case into two 

or more survival outcomes (time-to-events) that compete with each other, i.e. only the first 

occurring event’s event type and its time-to-event are observed. 

 

1.2 Competing Risks in Survival Analysis 

Expanding our perspective to allow more than one event type when observing the time 

to occurrence of an event, two or more types of events may “compete” with each other to 

be the first-occurring, and hence, the term “competing risks”. Such situations occur 

frequently in the biomedical setting, where deaths from other causes (heart disease etc.) are 

competing risks to the time to death from cancer, or death without relapse being a 

competing risk to the time to relapse in leukemia patients. 

Here, we would like to distinguish between the two competing risk situations described 

above. While theoretically, one can die of only one cause (either from heart disease or from 

cancer in the above example) such that the two types of events are mutually exclusive, 

time-to-death and time-to-relapse among leukemia patients are not so. A patient can 

experience disease relapse and subsequently die, such that both event times may be 

observed. This situation is termed “semi-” competing risks, while we shall call the situation 
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of only one type of event and its time-to-event being observable as “classical” competing 

risks. In the current study, we will focus on this “classical” competing risks situation. 

Analogous to the basic quantities described in 1.1, we now define such quantities under 

competing risks. Notation-wise, the events occur at D distinct times xi (i = 1, 2, …, D), x1 

< x2 < … < xD, di is the number of events occurring among Yi number of subjects at risk 

(the risk-set), at each time xi, but now there are k = 1, 2, …, K different types of “competing” 

events such that dik is the number of events of type k occurring at time xi. The quantities 

defined below thus pertain to a specific event of type or cause k among K total types or 

causes possible (such as death due to 1. old age, 2. an accident, 3. heart disease, or 4. cancer, 

corresponding to four types or causes of death). 

The cumulative incidence function (CIF; also called a “sub-” distribution function) of 

the kth event type Fk(x) = Pr(X ≤x, type=k) 

The derivative of the CIF (also called a “sub-” density function) fk(x) = 
d

dx
F𝑘(𝑥) 

The survival function S(x) = Pr(X >x) = 1- Pr(X ≤x) = 1 − ∑ 𝐹𝑘(𝑥)
𝐾
𝑘=1  

The “cause-specific” hazard function hk(x) = lim
∆𝑥→0

Pr(𝑥≤𝑋≤𝑥+∆𝑥,𝑡𝑦𝑝𝑒=𝑘 |𝑋≥𝑥)

∆𝑥
  

= lim
∆𝑥→0

𝐹𝑘(𝑥+∆𝑥)−𝐹𝑘(𝑥)

∆𝑥
×

1

(1−∑ 𝐹𝑘(𝑥)
𝐾
𝑘=1 )

=
𝑓𝑘(𝑥)

𝑆(𝑥)
,  

while the “overall” hazard h(x) = ∑ ℎ𝑘(𝑥)
𝐾
𝑘=1  = 

∑ 𝑓𝑘(𝑥)
𝐾
𝑘=1

𝑆(𝑥)
 = 

𝑓(𝑥)

𝑆(𝑥)
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The cumulative “cause-specific” hazard function Hk(x) = ∫ ℎ𝑘(𝑢)𝑑𝑢
𝑥

0
 

Using the sub-density function fk(x) and the cause-specific hazard hk(x), the CIF Fk(x) 

can be expressed as  

Fk(x) = ∫ 𝑓𝑘(𝑢)𝑑𝑢 = ∫ 𝑆(𝑢) × ℎ𝑘(𝑢)𝑑𝑢
𝑥

0

𝑥

0
,  

and since ∫ 𝑆(𝑢) × ℎ𝑘(𝑢)𝑑𝑢
∞

0
  is always < 1 due to the cause-specific hazard hk(x) 

pertaining only to the kth event type, the CIF is thus also known as a (cumulative) “sub-” 

distribution function. 

From the CIF (or sub-distribution function), Gray (1988) proposed a sub-distribution 

hazard, from which a semi-parametric regression model of the CIF was developed later on 

by Fine & Gray (1999). To distinguish between the cause-specific hazard, sub-distribution 

hazard, and marginal hazard (to be introduced shortly), we will use superscript notation as 

ℎ𝑘
𝑐−𝑠(𝑥)  for the cause-specific hazard, ℎ𝑘

𝑠−𝑑(𝑥)  for the sub-distribution hazard, and 

ℎ𝑘
𝑚𝑎𝑟𝑔(𝑥) for the marginal hazard of event type (or cause) k at time X=x. Recalling that 

ℎ𝑘
𝑐−𝑠(𝑥) = lim

∆𝑥→0

Pr(𝑥≤𝑋≤𝑥+∆𝑥,𝑡𝑦𝑝𝑒=𝑘 |𝑋≥𝑥)

∆𝑥
, the “sub-distribution” hazard is defined as 

ℎ𝑘
𝑠−𝑑(𝑥) = lim

∆𝑥→0

Pr(𝑥≤𝑋≤𝑥+∆𝑥,𝑡𝑦𝑝𝑒=𝑘 |𝑋≥𝑥∪(𝑋<𝑥∩𝑡𝑦𝑝𝑒≠𝑘))

∆𝑥
  = 

𝑓𝑘(𝑥)

(1−𝐹𝑘(𝑥))
  

= −
d

dx
log [1 − F𝑘(𝑥)] (Gray, 1988),  

where the relationship between the hazard, cumulative hazard, and survival functions are 
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invoked in the last expression of ℎ𝑘
𝑠−𝑑(𝑥) . Intuitively, the sub-distribution hazard adds 

back to the denominator (or the risk-set) at time x those subjects who had experienced an 

event, but not of type k, before time x. As the denominator becomes larger due to subjects 

added back, the calculated hazard becomes smaller, and thus ℎ𝑘
𝑠−𝑑(𝑥) < ℎ𝑘

𝑐−𝑠(𝑥). From 

this sub-distribution hazard function, the cumulative sub-distribution hazard function 

follows as 𝐻𝑘
𝑠−𝑑(𝑥) = ∫ ℎ𝑘

𝑠−𝑑(𝑢)𝑑𝑢
𝑥

0
. 

We now examine a non-parametric (or empirical) estimator of the CIF, analogous to 

the K-M estimator of the survival function in 1.1. First, we note that the N-A estimator of 

the cumulative hazard function naturally extends to the estimators of cumulative “cause-

specific” hazard and cumulative “sub-distribution” hazard as �̃�𝑘
𝑐−𝑠(𝑥) = ∑

𝑑𝑖𝑘

𝑌𝑖
𝑥𝑖≤𝑥  and 

�̃�𝑘
𝑠−𝑑(𝑥) = ∑

𝑑𝑖𝑘

𝑌𝑖
∗𝑥𝑖≤𝑥 , respectively, where dik is the number of events of type k occurring 

at time xi, and the denominator (or risk-set) 𝑌𝑖
∗ is expanded to include subjects whose 

event time 𝑋 < 𝑥 ∩ 𝑡𝑦𝑝𝑒 ≠ 𝑘, as in the sub-distribution hazard definition above. From the 

expression of Fk(x) = ∫ 𝑆(𝑢) × ℎ𝑘(𝑢)𝑑𝑢
𝑥

0
 =  ∫ 𝑆(𝑢)𝑑𝐻𝑘𝑢

𝑥

0
,  

The Aalen-Johansen (A-J) CIF estimator  

𝐹𝑘(𝑥)̂ = 0, if x < x1,  

= ∑ 𝑆(𝑥)̂ ×𝑥𝑖≤𝑥 �̃�𝑘
𝑐−𝑠(𝑥) = ∑ [∏ (1 −

𝑑𝑗

𝑌𝑗
)𝑗:𝑥𝑗<𝑥𝑖 ×

𝑑𝑖𝑘

𝑌𝑖
]𝑥𝑖≤𝑥 , if x ≥ x1. 

The A-J CIF estimate is the non-parametric maximum likelihood estimate (NPMLE) 
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of the true CIF (Pintilie, 2005), and estimation of the sub-density function follows as 𝑓𝑘(𝑥)̂ 

= 
d

dx
𝐹𝑘(𝑥)̂. 

An important point of note is that the usual K-M survival estimator always over-

estimates the CIF, because it treats all event types other than the type (or cause) k of interest 

as right-censored. This can be verified from how 𝑆(𝑥)̂ is calculated by the K-M method. 

Treating all event types ≠ k as independently right-censored, those events would not be 

included in the numerator of 
𝑑𝑗

𝑌𝑗
 (for 𝑗: 𝑥𝑗 < 𝑥𝑖), and 𝑆(𝑥)̂ = ∏ (1 −

𝑑𝑗𝑘

𝑌𝑗
)𝑗:𝑥𝑗<𝑥𝑖 , where 

the number of events occurring at time xj uses djk (< dj) of the kth event type only, rather 

than dj of all event types. The K-M method thus over-estimates 𝑆(𝑥)̂ , and 𝐹𝑘(𝑥)̂  = 

∑ 𝑆(𝑥)̂ ×𝑥𝑖≤𝑥 �̃�𝑘
𝑐−𝑠(𝑥)  becomes over-estimated as well. We provide an extreme yet 

intuitive example of the K-M method over-estimating the CIF: Consider 10 patients waiting 

for an organ transplant. If 9 die while waiting and the single surviving patient receives a 

transplant, the K-M method would simply right-censor (and subtract only from the 

denominator of 
𝑑

𝑌
 ) those 9 deceased such that the estimated survival from receiving a 

transplant = 1 - 
𝑑

𝑌
 = 1 −

1

1
 = 0, resulting in a CIF = 1 – survival = 1 – 0 = 1 (or 100%). In 

contrast, the A-J CIF estimate of receiving a transplant = (1 −
9

10
) ×

1

1
= 0.1 (or 10%), 

which is intuitively the right estimate. 

 

1.3 Cause-specific, Sub-distribution, and Marginal hazards 
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In this section, we restate the definitions of the cause-specific hazard and sub-

distribution hazard, and define the “marginal” hazard. Recall that  

ℎ𝑘
𝑐−𝑠(𝑥) = lim

∆𝑥→0

Pr(𝑥≤𝑋≤𝑥+∆𝑥,𝑡𝑦𝑝𝑒=𝑘 |𝑋≥𝑥)

∆𝑥
,  

ℎ𝑘
𝑠−𝑑(𝑥) = lim

∆𝑥→0

Pr(𝑥≤𝑋≤𝑥+∆𝑥,𝑡𝑦𝑝𝑒=𝑘 |𝑋≥𝑥∪(𝑋<𝑥∩𝑡𝑦𝑝𝑒≠𝑘))

∆𝑥
. 

Now, think of a “marginal” hazard for the event type or cause k, where all other types or 

causes (1, 2, …, k-1, k+1, …, K) are removed or eliminated. When K competing events are 

present, the observed survival time X = min(T1, T2, …, TK), but when types or causes other 

than k have been eliminated, the observed survival time X = Tk. Under this situation where 

only the single event type k is available to occur, we define the marginal hazard as  

ℎ𝑘
𝑚𝑎𝑟𝑔(𝑥) = lim

∆𝑥→0

Pr(𝑥≤𝑇𝑘≤𝑥+∆𝑥 |𝑇𝑘≥𝑥)

∆𝑥
. 

Thus, the marginal hazard is simply a hazard function of some “marginally” distributed Tk 

among the jointly distributed vector of random variables (T1, T2, …, TK). 

Emura et al. (2020) distinguished between these three types of hazard functions in the 

competing risks setting and characterized the interrelationships between the sub-

distribution, cause-specific and marginal hazards, which can be summarized as follows.  

ℎ𝑘
𝑠−𝑑(𝑥) = 

𝑆(𝑥)

1−∫ 𝑆(𝑢)×ℎ𝑘
𝑐−𝑠(𝑢)𝑑𝑢

𝑥

0

× ℎ𝑘
𝑐−𝑠(𝑥),  

ℎ𝑘
𝑠−𝑑(𝑥) = 

𝐶𝜃(𝑆1(𝑥),…,𝑆𝐾(𝑥))

1−∫ 𝐶𝜃(𝑆1(𝑢),…,𝑆𝐾(𝑢))×ℎ𝑘
𝑚𝑎𝑟𝑔

(𝑢)𝑑𝑢
𝑥

0

× ℎ𝑘
𝑚𝑎𝑟𝑔(𝑥). 
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Notice that we used a yet undefined notation in 𝐶𝜃(𝑆1(𝑥),… , 𝑆𝐾(𝑥)) for the relationship 

between the sub-distribution and marginal hazards, which stands for a “copula” function 

with copula parameter(s) 𝜃 that defines the possible dependence or correlation structure 

among the K competing risk events. 𝐶𝜃(𝑆1(𝑥),… , 𝑆𝐾(𝑥)) is thus the multivariate “joint” 

survival probability, and the definition and further use of copulas will be detailed in Chapter 

3 & beyond. Up to this point, we have implicitly assumed that all competing risk events 

are mutually independent of each other, and in fact, this mutual independence assumption 

is the cornerstone of cause-specific hazards estimation and modeling (Klein & 

Moeschberger, 2003). In other words, it has been implicitly assumed that the overall 

survival function S(x) = Pr(T1 >x, T2 >x, …, TK >x) = Pr(T1 >x) × Pr(T2 >x) × … × 

Pr(TK >x), which is clearly not the case in many real-life situations (Tsiatis, 1975; Klein, 

2010). While this unrealistic assumption in cause-specific hazards may be somewhat 

justified by the classical non-informative censoring argument, the possible dependence 

among the K competing events has to be dealt with in marginal hazards estimation, since 

finding a “marginal” distribution is naturally connected to separating a single event time 

from its dependency within the “joint” distribution of K event times. Therefore, the above 

relationship between the sub-distribution and marginal hazards includes a copula 

dependence structure, and we can see that their relationship is essentially the same as that 

between the sub-distribution and cause-specific hazards, other than the copula notation for 

“joint” overall survival. In fact, cause-specific hazards estimation is no more than using an 

independence copula, among abundant families of other copulas, to estimate the marginal 
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hazards. In contrast, sub-distribution hazard estimation and modeling doesn’t suffer from 

this potential dependency problem, since it does not assume that the competing risks are 

non-informative or independent of each other. 

To further contrast the marginal hazard against the cause-specific hazard, we briefly 

mention regression modeling with competing risks survival data. For convenience purposes, 

let’s assume the time to an event of interest is T, and the time to all other competing events 

(including random right-censoring) is C, which then retains the previous notation of the 

observed time-to-event X = min(T, C) and the status indicator variable δ = I(T ≤ C). 

Including covariates Z for regression modeling, we obtain the so-called triplet survival data 

of (X, δ, Z). In the univariate case (one time-to-event of interest with independent right 

censoring), the monumental Cox proportional hazards (PH) regression (Cox, 1972) utilizes 

the partial likelihood  

L(β) =∏
exp [𝛽𝑇 ∙ 𝑍(𝑖)]

∑ exp [𝛽𝑇 ∙ 𝑍𝑗]𝑗∈𝑅(𝑡𝑖)

𝐷

𝑖=1

 

i = 1, 2, …, D for distinct event times ti, j = 1, 2, …, n subjects, R(ti) = the number of 

subjects at risk (the risk-set) at event times ti,  

to estimate the regression coefficients vector β of a semi-parametric regression model  

h(x|Z) = ℎ0(𝑥) ∙ exp [𝛽
𝑇 ∙ 𝑍] 

For regression modeling of the “cause-specific” hazard ℎ𝑘
𝑐−𝑠(𝑥), the above Cox regression 
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model is identically applied as  

ℎ𝑘
𝑐−𝑠(𝑥|𝑍) = ℎ0

𝑐−𝑠(𝑥) ∙ exp [𝛽𝑇 ∙ 𝑍] 

where all other competing events are simply assumed as independent right-censoring. In 

the similar spirit of semi-parametric modeling, but with additional weights in the 

denominator of the likelihood function to add back the subjects who experienced any 

competing event before experiencing the event of interest (as in the previous definition of 

the sub-distribution hazard ℎ𝑘
𝑠−𝑑(𝑥)), Fine & Gray (1999) developed a proportional “sub-

distribution” hazard regression model as  

ℎ𝑘
𝑠−𝑑(𝑥|𝑍) = ℎ0

𝑠−𝑑(𝑥) ∙ exp [𝛽𝑇 ∙ 𝑍] 

which essentially models the CIF as  

𝐹𝑘(𝑥|𝑍) = 1 − exp [−∫ ℎ0
𝑠−𝑑(𝑢) ∙ exp {𝛽𝑇 ∙ 𝑍}𝑑𝑢]

𝑥

0

 

The modified partial likelihood in the Fine & Gray regression model is  

L(β) =∏
exp [𝛽𝑇 ∙ 𝑍(𝑖)]

∑ 𝑤𝑖𝑗 ∙ exp [𝛽
𝑇 ∙ 𝑍𝑗]𝑗∈𝑅(𝑡𝑖)

𝐷

𝑖=1

 

i = 1, 2, …, D for distinct event of interest times ti, j = 1, 2, …, n subjects, R(ti) = the number 

of subjects at risk (the risk-set) at event of interest times ti, weight wij = 
𝐺(𝑡𝑖)

𝐺(min (𝑠𝑗,𝑡𝑖))
, where 

sj = jth subject’s all other competing event times, 𝐺(∙) = K-M survival estimate of the 

right-censoring distribution.  
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The weight wij can be intuitively understood as the conditional probability of survival from 

censoring (due to all competing events or random right-censoring itself) at event of interest 

times ti, given the survival from censoring at times min(sj, ti). 

Consensus of the current literature on competing risks regression is to use either the 

cause-specific or sub-distribution hazard (Lau et al., 2009; Andersen et al., 2012; Wolbers 

et al., 2014; Austin et al., 2016; Hsu et al., 2017). Since the sub-distribution hazard is not 

an actual “hazard” in the usual sense (recall why it is called a “sub-” hazard, and also the 

term “sub-” distribution), interpretation of the model results in terms of covariates’ effects 

on the sub-hazard is not straightforward. Also, since devising a regression model for the 

CIF was the original intention of Fine & Gray (1999), the sub-hazard model is usually 

recommended for prognosis or prediction model development purposes. Regarding the 

cause-specific hazard model, it treats any other competing or censoring events as 

independent right-censoring, and thus enables one to concentrate on the single event of 

interest’s cause-specific hazard and its hazard ratio (HR) by covariate levels. Thus, the 

cause-specific hazard model is deemed appropriate for disease etiology research purposes, 

where the HR and its statistical significance by an exposure or treatment on some 

biomedical time-to-event is of primary interest. However, what if the assumption of mutual 

independence among competing or censoring events isn’t met? A straightforward example 

of dependent censoring is when a patient drops out of a clinical trial (right-censored; 

corresponds to time C) due to deteriorating health in an overall survival (event of interest; 

corresponds to time T) study, and it is easy to see that assuming independence in this case 
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of positive dependence over-estimates the “marginal” overall survival function. Hence, 

when T and C are dependent upon each other, using the “cause-specific” hazard model and 

its independent censoring assumption results in a biased analysis. 

We restate that the cause-specific hazard is also a marginal hazard, with the 

independence copula assumed to be its dependence structure. The cause-specific hazard is 

merely a single possibility among many other potential marginal hazards, depending on the 

actual correlation between T and C. Thus, if strong evidence exists against mutual 

independence among competing event times, then specifying their dependence structure is 

required for unbiased estimation modeling of the marginal hazard(s). This leads us to the 

infamous “non-identifiability of competing risks” dilemma (Tsiatis, 1975; Prentice, 1978; 

Crowder 1994; Klein, 2010). This dilemma basically states that given the observable data 

of X = min(T, C) and δ = I(T ≤ C), there is no way to distinguish independence from 

dependence of T and C (Klein, 2010). In other words, independent T and C with some 

marginal hazards produce the same observables of X and δ as dependent T and C with some 

other marginal hazards would produce. Thus, additional information regarding the 

dependence structure is needed, and various efforts to overcome this problem (additional 

covariates information, parametric distribution assumptions, etc.) continue today. A 

literature review of these approaches toward analyzing dependent competing risks data, 

with an emphasis on the use of copulas for dependence modeling, is the main topic of 

Chapter 2. First, we take a closer look at the “non-identifiability of competing risks” 

dilemma. 
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1.4 The Non-identifiability Dilemma 

A well-known framework in the analysis of competing risks survival data, is that of 

“latent failure times” (Prentice, 1978). The term “failure” time, as opposed to “event” time, 

comes from the historical context of viewing survival analysis as “time-to-failure” analysis. 

Latent failure times assumes a potential event time for each type (or cause) of competing 

event, regardless of this being realistic or not. For example, if the competing risks pertain 

to possible causes of death, a patient obviously cannot die from a competing cause if 

already deceased due to some other cause. However, this framework provides an easy way 

to conceptualize a joint multivariate distribution of the individual competing risks which 

are usually mutually exclusive in reality. 

Retaining our notation of bivariate competing risks, X = min(T, C), δ = I(T ≤ C), the 

“joint” survival function S(t, c) = Pr(T >t, C >c), and the “marginal” survival functions S(t) 

= Pr(T >t) and S(c) = Pr(C >c) can be expressed with the joint survival function as Pr(T >t, 

C >0) = S(t, 0) and Pr(T >0, C >c) = S(0, c), respectively. Given the actually observable 

information of (X, δ), our knowledge of the survival functions is limited to Pr(X >x) = 

Pr(min(T, C) >x) = Pr(T >x | δ=1) + Pr(C >x | δ=0), a sum of conditional probabilities that 

involve both the joint and marginal survivals. Thus, given (X, δ), many different 

possibilities exist for the joint and marginal survival functions, i.e. the survival functions 

are not “identifiable” from the observable information alone. 
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Identifiability is defined as follows: For the pdf f of the observables (X, δ) with 

parameters vector θ, θ is identifiable if any given θ uniquely determines the density f of (X, 

δ), i.e. if 𝑓𝑋,𝛿,𝜃1 ≡ 𝑓𝑋,𝛿,𝜃2, then 𝜃1 = 𝜃2 (Czado & Van Keilegom, 2022). This can also be 

thought of as the pdf f of (X, δ) being an injective function, such that 𝑓𝑋,𝛿,𝜃1 ≡ 𝑓𝑋,𝛿,𝜃2 

guarantees 𝜃1 = 𝜃2. 

Given the observables (X, δ) in a “classical” competing risks situation, we cannot 

uniquely identify the joint and/or marginal survival functions non-parametrically, i.e., they 

are “non-identifiable” from (X, δ) alone. The bivariate case was noted by Cox (1959), and 

Tsiatis (1975) extended the result to the k-dimensional case. Here, we provide an example 

of such non-identifiability using the bivariate exponential distribution of Gumbel (1960). 

The joint survival function S(t, c) = Pr(T >t, C >c) is defined as exp [−𝜆𝑇𝑡 − 𝜆𝐶𝑐 − 𝜌𝑡𝑐] 

with parameters 𝜆𝑇, 𝜆𝐶, and 𝜌, where 𝜌 denotes the dependency between T ~ Exp(𝜆𝑇) 

and C ~ Exp(𝜆𝐶), 0 ≤ 𝜌 ≤ 𝜆𝑇𝜆𝐶. From S(x) = exp[-H(x)], the joint cumulative hazard 

function H(t, c) = 𝜆𝑇𝑡 + 𝜆𝐶𝑐 + 𝜌𝑡𝑐, and under the assumption of independence, the cause-

specific hazards are 𝜆𝑇 + 𝜌𝑡 and 𝜆𝐶 + 𝜌𝑐, respectively for T and C. Using these cause-

specific hazards to compute the cause-specific survival functions,  

𝑆𝑇(𝑡) = exp[−𝐻𝑇(𝑡)] = exp [−∫ (𝜆𝑇 + 𝜌𝑢)
𝑡

0
𝑑𝑢] = exp [−𝜆𝑇𝑡 −

1

2
𝜌𝑡2],  

𝑆𝐶(𝑐) = exp[−𝐻𝐶(𝑐)] = exp[−∫ (𝜆𝐶 + 𝜌𝑢)
𝑐

0
𝑑𝑢] = exp [−𝜆𝐶𝑐 −

1

2
𝜌𝑐2]. 

These results (under “independence”), however, are unequal to the marginal survival 
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functions for the exponential distribution, exp [−𝜆𝑇𝑡]  and exp [−𝜆𝐶𝑐]  (under some 

“dependence” 𝜌). The problem is that it is not possible to distinguish between these two 

different models from the observation of (X, δ) alone, since X = min(T, C) allows only one 

of either T or C to be observed, and there is seemingly no way to estimate the correlation 

between T and C. In fact, Tsiatis (1975) states and proves that for any true model with 

dependent competing risks, there exists an independent competing risks model that yields 

identical (X, δ) information, which is precisely the non-identifiability dilemma. 

 

1.5 Study Outline and Objectives 

The current study aims to investigate methods that enable us to robustly identify the 

yet known as “unidentifiable” dependence structure in competing risks or dependently 

censored survival times for which only the minimum (or first-occurring), event time and 

its event type (or cause) are known. Without loss of generality, we will assume bivariate 

survival data where the observed survival time X = min(T, C), status indicator δ = I(T ≤ C), 

and dependence between T and C is allowed, T: time to event of interest, C: time to all 

other competing or dependent censoring events. This bivariate case can be expanded to the 

multivariate case of three or more mutually dependent time-to-events. 

Further chapters will be comprised of: Chapter 2. Previous Literature in Modeling 

Dependent Competing Risks Survival Data; Chapter 3. Proposed Method; Chapter 4. 

Simulation Study; Chapter 5. Real Data Analysis, and Chapter 6. Discussion and 
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Conclusion. 

In summary, the main objectives of this study are:  

(i) identify whether dependent censoring is present by explicitly estimating the 

correlation between T (time to the event of interest) and C (time to any other competing 

event or dependent censoring),  

(ii) use the estimated correlation to estimate the marginal distributions (survival curves, 

hazard functions) via copula-based methods, and  

(iii) unbiasedly estimate a main exposure or treatment’s effect on the identified 

marginal survival or hazard (of the event of interest), which we expect will have further 

applications in disease etiology research or randomized clinical trials of drug efficacy.  
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Chapter 2  

Previous Literature in Modeling Dependent 

Competing Risks Survival Data 

2.1 Definition and Basic Properties of Copulas 

The copula function 𝐶𝜃(𝑆1(𝑥),… , 𝑆𝐾(𝑥))  with copula parameter(s) θ has been 

mentioned in Section 1.3 as the multivariate joint survival probability of 1, 2, …, K 

competing events. The definition, properties, and use of copulas in bivariate (or 

multivariate) survival analysis will be detailed here. 

First, the term “copula” refers to a multivariate cdf for which the marginal distribution 

of each random variable is the Uniform distribution on the interval [0, 1]. In the latent 

failure times context, for the random vector (X1, X2, …, XK) of competing event times, the 

copula of (X1, X2, …, XK) is defined as the joint cdf Pr(X1 ≤x1, X2 ≤x2, …, XK ≤xK). The 

probability integral transform is applied to each marginal distribution to write the joint cdf 

in copulae notation as below. 

(Lemma) Probability integral transform: Let F be a continuous cdf and let X have the 

cdf F. Then, FX(X) follows the standard Uniform distribution, i.e. FX(X) ~ Unif(0,1). 

∴ Pr(X1 ≤x1, X2 ≤x2, …, XK ≤xK) = Pr(U1 ≤u1, U2 ≤u2, …, UK ≤uK) = Cθ(u1, u2, …, uK). 
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The book by Nelsen (2006) includes more precise definitions and properties of copulas, 

among which some are noted here. Let the unit square I2 be the product IxI, where I = [0,1]. 

Then, a two-dimensional copula is a function C from I2 to I with the following properties:  

(Definition) Two-dimensional copula C:  

1) For every u, v in I, C(u,0) = C(0,v) = 0, C(u,1) = u and C(1,v) = v. 

2) For every u1, u2, v1, v2 in I such that u1 ≤ u2, v1 ≤ v2,  

C(u2, v2) - C(u2, v1) - C(u1, v2) + C(u1, v1) ≥0. 

A strict definition of a K-dimensional copula requires it to be “grounded” and “K-

increasing”, for which the details are referred to Nelsen (2006). 

An important cornerstone of copula theory is its bounds from above and below, namely 

the Frechet-Hoeffding bounds. 

(Theorem) Frechet-Hoeffding bounds: For every u, v in I2, 

max(u+v-1,0) ≤ C(u,v) ≤ min(u,v). 

The stated bounds can be easily verified in the two-dimensional case using (U, 1-U), 

which is perfect negative dependence or the counter-monotone copula, and (U, U), which 

is perfect positive dependence or the co-monotone copula, for U ~ Unif(0,1).  

The central theorem of copulas for most of its statistical applications is the theorem by 

Sklar (1959), explaining why a copula determines the dependence among the components 
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of a random vector (Hofert et al., 2018). 

(Theorem) Sklar’s theorem: Let H be a joint distribution (or cdf) of two marginal cdfs 

F and G.  

1) There exists a copula C such that for all x, y in the real line R, H(x,y) = C(F(x), 

G(y)), where F(x) can be obtained as F-1(U=u), U ~ Unif(0,1), and G(y) as G-1(V=v), V ~ 

Unif(0,1), from the copula C(u,v), and F-1(∙) and G-1(∙) are generalized inverses of F(∙) and 

G(∙). If F and G are continuous, then C is unique. 

2) Conversely, for H(x,y) with marginals F(x) and G(y), a copula C(u,v) can be 

constructed as H(F-1(U=u), G-1(V=v)). 

Part 2) of Sklar’s theorem, which provides a method of constructing copulas from joint 

distributions, is exemplified below from the book by Nelsen (2006). Consider a bivariate 

joint cdf H with marginal cdfs F and G as  

H(x,y) = 
(𝑥+1)(𝑒𝑦−1)

(𝑥+2𝑒𝑦−1)
, 𝑓𝑜𝑟 (𝑥, 𝑦) ∈ [−1,1] × [0,∞],  

= 1 − 𝑒−𝑦, 𝑓𝑜𝑟 (𝑥, 𝑦) ∈ (1,∞] × [0,∞], 

= 0, elsewhere. 

    F(x) = 0, for x < -1,   G(y) = 0, for y < 0,  

  = (x+1)/2, x ∈ [-1,1],      = 1 − 𝑒−𝑦, y ≥ 0. 

  = 1, x > 1. 
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Then, the quasi-inverses of F and G are F-1(u) = 2u-1, G-1(v) = -ln(1-v), for u, v ∈ I, 

and the copula C(u,v) = H(F-1(u), G-1(v)) = 
2𝑢(

1

(1−𝑣)
−1)

{2(𝑢−1)+
2

(1−𝑣)
}
= 

𝑢𝑣

(𝑢+𝑣−𝑢𝑣)
. While C(u,v) = Pr(U 

≤u, V ≤v) is a cdf, we are more interested in the “survival” function Pr(U >u, V >v) in 

bivariate (or multivariate) survival analysis. Inserting marginal survival functions Pr(T >t) 

and Pr(C >c) for time-to-events T and C in a copula thus provides a useful measure such 

that C(Pr(T >t)=some s, Pr(C >c)=some t) = Pr(U ≤s, V ≤t) = C(s,t) = Pr(T >t, C >c), the 

joint survival function of interest. 

A major application of copulas in multivariate survival analysis is the construction of 

dependent (or correlated) survival times for simulation purposes. For simplicity, we 

consider the case of bivariate survival times that are correlated through a copula, and 

introduce a general method of generating such dependent survival times, which is known 

as the “conditional distribution (cdf)” method (Nelsen, 2006). First, we give a theorem that 

guarantees the obtention of the “conditional” cdf for any given copula. 

(Theorem) For a copula C and ∀ 𝑣 ∈ 𝑰,
𝜕

𝜕𝑢
𝐶(𝑢, 𝑣) exists for almost all u, and satisfies 

0 ≤
𝜕

𝜕𝑢
𝐶(𝑢, 𝑣) ≤ 1 . Here, the copula partial derivative 

𝜕

𝜕𝑢
𝐶(𝑢, 𝑣)  is a conditional cdf, 

since 
𝜕

𝜕𝑢
𝐶(𝑢, 𝑣) =  lim

∆𝑢→0

1

∆𝑢
{𝐶(𝑢 + ∆𝑢, 𝑣) − 𝐶(𝑢, 𝑣)} = Pr(V ≤v | U=u). 

Writing 
𝜕

𝜕𝑢
𝐶(𝑢, 𝑣) as cu(v), generate a pair of data (u,v) correlated via C(u,v) as:  

i) Generate instances of two independent Unif(0,1) random variables u and t. 
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ii) Calculate v using cu(v) = t, and v = cu
-1(t). 

We illustrate the conditional distribution method using the example of finding the 

copula C(u,v) = H(F-1(u), G-1(v)) =
𝑢𝑣

(𝑢+𝑣−𝑢𝑣)
 from the joint cdf H and marginals F and G 

of page 22 above. From the copula function, the partial derivative cu(v) = 

1

(𝑢+𝑣−𝑢𝑣)2
× {𝑣(𝑢 + 𝑣 − 𝑣) − 𝑢𝑣(1 − 𝑣)} = (

𝑣

𝑢+𝑣−𝑢𝑣
)2 , from which cu

-1(t) = v = 

𝑢√𝑡

{1−(1−𝑢)√𝑡}
 . Now, generate the correlated random variates (x,y) whose marginal 

distributions are originally Unif(-1,1) and Exp(1), as:  

i) Sample two independent Unif(0,1) random variates u and t. 

ii) Set v = 
𝑢√𝑡

{1−(1−𝑢)√𝑡}
.  

For Y ~ Exp(1), the cdf G(y) = 1-e-y, and thus G-1(v) = y = -ln(1-v).  

For X ~ Unif(-1,1), the cdf F(x) = (x+1)/2, and thus F-1(u) = x = 2u-1. 

iii) Setting x = 2u-1, y = -ln(1-v), where v = 
𝑢√𝑡

{1−(1−𝑢)√𝑡}
, (x,y) is the desired pair, 

correlated via C(u,v) =
𝑢𝑣

(𝑢+𝑣−𝑢𝑣)
 (Nelsen, 2006). 

We will use this conditional distribution method throughout our study’s simulations of 

dependent censoring in Chapter 4. 

Among the many different copula functions that currently exist, two major families of 

copulas are the elliptical and Archimedean copulas. First, elliptical copulas are the copulas 



24 

 

of elliptical distributions, where an elliptical distribution is defined as  

(Definition) Elliptical distribution: A k-dimensional random vector X has an elliptical 

distribution with location vector 𝜇 ∈  ℝ𝑘, scale matrix Σ = 𝐴𝐴𝑡 with rank(Σ) = r ≤k for 

a matrix A ∈  ℝ𝑘×𝑟  and radial part R ≥0 if 𝑋 ≡  𝜇 + 𝐴𝑌, 𝑓𝑜𝑟 𝑌 ≡ 𝑅𝑆 , where S is 

uniformly distributed on the unit sphere in ℝ𝑘, R and S independent (Hofert et al., 2018). 

The most commonly used elliptical copula is the Normal or Gaussian copula, which is 

a copula with its cdf being the cdf of a multivariate normal distribution. In the bivariate 

case, a Normal copula C(u,v) = Pr(U ≤u, V ≤v) = Pr(ΦT(T) ≤u, ΦC(C) ≤v) = Pr(T ≤ ΦT
-1(u), 

C ≤ ΦC
-1(v)), for the standard normal distribution cdf Φ, where the bivariate Normal pdf  

𝑓𝑇,𝐶(𝑡, 𝑐) =
1

2𝜋√1−𝜌2
exp [−

1

2(1−𝜌2)
{𝑡2 − 2𝜌𝑡𝑐 + 𝑐2}], for (𝑡, 𝑐)  ∈  ℝ2, 𝜌 ∈ [−1,1],  

such that the bivariate Normal cdf, or the Normal copula, is  

Pr(T ≤ ΦT
-1(u), C ≤ ΦC

-1(v)) = ∫ ∫ 𝑓𝑇,𝐶(𝑡, 𝑐)
Φ𝐶
−1(𝑣)

−∞
𝑑𝑐𝑑𝑡

Φ𝑇
−1(𝑢)

−∞
= 

1

2𝜋√1−𝜌2
∫ ∫ exp [−

1

2(1−𝜌2)
{𝑡2 − 2𝜌𝑡𝑐 + 𝑐2}]

Φ𝐶
−1(𝑣)

−∞
𝑑𝑐𝑑𝑡

Φ𝑇
−1(𝑢)

−∞
. 

Second, Archimedean copulas are also widely applied due to the ease with which they 

can be constructed, and the great variety of copulas that belong to this class (Nelsen, 2006). 

To define the Archimedean copula, let X and Y be continuous random variables with joint 

cdf H and marginal cdfs F and G. In the case where X, Y were independent, then H(x,y) = 

F(x)∙G(Y). Now, for the general case of dependent X and Y, suppose some function λ(∙), its 
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range positive in [0,1], enables λ(H) = λ(F)∙λ(G). Then setting φ(∙) = -ln{ λ(∙)} or φ(t) = -

ln{ λ(t)}, φ(H) = -ln{ λ(H)} = -ln{ λ(F)∙λ(G)} = - ln{ λ(F)} - ln{λ(G)} = φ(F) + φ(G). That 

is, a function of H (the joint cdf) can be expressed as a function of F and G (the marginal 

cdfs), and expressing H as φ-1{φ(F) + φ(G)} derives a copula function, named an 

Archimedean copula. 

∴ H = φ-1{φ(F) + φ(G)} ⟺ C(F(X),G(Y)) = C(u,v) = φ-1{φ(F(X)) + φ(G(Y))}  

= φ-1{φ(u) + φ(v)}. 

The function φ(∙) is called the generator function of an Archimedean copula, and the 

three most popular Archimedean copula functions derived from their respective generator 

functions are now introduced: the Clayton, Gumbel, and Frank copulas. 

(Definition) Clayton copula: Consider the generator function φ(t) = 
1

𝜃
(𝑡−𝜃 − 1). Then, 

φ-1(t) = (𝜃φ + 1)
−1

𝜃 , and the corresponding Archimedean copula generation of φ-1{φ(u) + 

φ(v)} results in [𝜃 {
1

𝜃
(𝑢−𝜃 − 1) +

1

𝜃
(𝑣−𝜃 − 1)} + 1]

−1

𝜃  = (𝑢−𝜃 + 𝑣−𝜃 − 1)
−1

𝜃 , which is 

the Clayton copula with copula parameter 𝜃 ∈ [−1,∞)\{0}. 

(Definition) Gumbel copula: Consider the generator function φ(t) = (−𝑙𝑛𝑡)𝜃.  

Then, φ-1(t) = exp (−𝑡
1

𝜃), and φ-1{φ(u) + φ(v)} = exp [−{(−𝑙𝑛𝑢)𝜃 + (−𝑙𝑛𝑣)𝜃}
1

𝜃], which 

is the Gumbel copula with copula parameter 𝜃 ∈ [1,∞). 
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(Definition) Frank copula: Consider the generator function φ(t) = −ln (
𝑒−𝜃𝑡−1

𝑒−𝜃−1
).  

Then, φ-1(t) = −
1

𝜃
ln {𝑒−𝑡(𝑒−𝜃 − 1) + 1} , and φ-1{φ(u) + φ(v)} = −

1

𝜃
ln [1 +

(𝑒−𝜃𝑢−1)(𝑒−𝜃𝑣−1)

𝑒−𝜃−1
], which is the Frank copula with copula parameter 𝜃 ∈ (−∞,∞)\{0}. 

In the current study, the Normal, Clayton, Gumbel, and Frank copulas introduced 

above will be used in generating dependent (or correlated) time-to-events data and the 

subsequent analysis of such data to unbiasedly estimate the marginal hazard of the event of 

interest. 

The direction and degree of dependence (or correlation) between the time-to-events T 

and C, corresponding to the event of interest and all other competing or dependent 

censoring events, respectively, is another very important measure that must be defined. The 

usual Pearson correlation coefficient is rarely used in practice due to its many fallacies and 

its measuring of only a ‘linear’ trend (Hofert et al., 2018). Instead, non-parametric rank-

correlation coefficients such as Kendall’s tau or Spearman’s rho are preferred, among 

which Kendall’s tau will be described and used here. 

Kendall’s tau is defined in terms of concordance, where two pairs of observed data 

(ti,ci) and (tj,cj) are ‘concordant’ if ti < tj and ci < cj or ti > tj and ci > cj. In contrast, the pairs 

are ‘discordant’ if ti < tj and ci > cj or ti > tj and ci < cj. Among a random sample of n 

observations from a vector (T, C) of continuous survival times, there exist a total of nC2 

distinct pairs of observations in the sample, and letting c denote the number of ‘concordant’ 
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pairs and d denote the number of ‘discordant’ pairs, Kendall’s tau for this sample is defined 

as: Kendall’s tau τ = 
𝑐−𝑑

𝑐+𝑑
=  (c-d) / nC2. From τ = 

𝑐−𝑑

𝑐+𝑑
 , we see that it is the difference 

between the probability of concordance and discordance in a random sample of bivariate 

survival times, and thus can be stated more formally as below. 

(Theorem) Equivalent expressions for Kendall’s tau:  

Let (X1, Y1) and (X2, Y2) be independent vectors of continuous random variables with 

joint cdfs H1 and H2, respectively, with common margins F (of X1 and X2) and G (of Y1 and 

Y2). Let C1 and C2 denote the copulas of (X1, Y1) and (X2, Y2), respectively, such that H1(x,y) 

= C1(F(x), G(y)) and H2(x,y) = C2(F(x), G(y)). Let τ denote the difference between the 

probabilities of concordance and discordance of (X1, Y1) and (X2, Y2), i.e.,  

τ = Pr[(X1 - X2) (Y1 - Y2) >0] - Pr[(X1 - X2) (Y1 - Y2) <0]. This is equivalently expressed 

using the copulas C1 and C2 as τ = 4∬ 𝐶2(𝑢, 𝑣)𝑑𝐶1(𝑢, 𝑣)𝑰2
− 1. 

Since ∬ 𝐶2(𝑢, 𝑣)𝑑𝐶1(𝑢, 𝑣)𝑰2
= ∫ ∫ 𝐶2(𝑢, 𝑣)

𝜕2

𝜕𝑢𝜕𝑣
𝐶1(𝑢, 𝑣)𝑑𝑢𝑑𝑣

1

0

1

0
 , this is again 

equivalent to τ = 1 − 4∬
𝜕

𝜕𝑢
𝐶2(𝑢, 𝑣)

𝜕

𝜕𝑣
𝐶1(𝑢, 𝑣)𝑑𝑢𝑑𝑣𝑰2

.  

For an Archimedean copula generated by φ(∙) such that C(u,v) = φ-1{φ(u) + φ(v)}, 

Kendall’s tau can be found as τ = 1 + 4∫
φ(t)

φ′(𝑡)
𝑑𝑡

1

0
 (Nelsen, 2006). 

Hence, Kendall’s tau can be found via its relationship with an Archimedean copula’s 

dependence parameter 𝜃, shown in Table 3.1 below for the Clayton, Gumbel, and Frank 
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copulas, and also for the Normal (or Gaussian) copula with dependence parameter 𝜌 ∈

[−1,1]. 

Table 2.1 Relationship between Kendall’s tau and the copula dependence parameter 

in several parametric copulas 

Copula Copula dependence parameter Kendall’s tau 

Normal (Gaussian) 𝜌 ∈ [−1,1] 
2

𝜋
arcsin (𝜌) 

Clayton 𝜃 ∈ [−1,∞)\{0} 
𝜃

2 + 𝜃
 

Gumbel 𝜃 ∈ [1,∞) 
𝜃 − 1

𝜃
 

Frank 𝜃 ∈ (−∞,∞)\{0} 

1 −
4

𝜃
{1 − 𝐷1(𝜃)},  

Debye function 𝐷𝑘(𝜃) =

 
𝑘

𝜃𝑘
∫

𝑡𝜃

𝑒𝑡−1
𝑑𝑡

𝜃

0
 

 

2.2 The Assumed Copula Approach to Estimate the Marginal 

Hazards 

As copulas are a natural tool in modeling multivariate dependence structures, they 

have been widely adapted in modeling the possible dependence in competing risks survival 

data. A seminal work in this area has been done by Zheng and Klein (1994, 1995), where 

they proposed an ‘assumed’ copula to first determine the dependence structure of the given 
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competing risks data, which then leads to unbiased identifiability of the marginal hazards 

of the competing risk events. More specifically, assuming that the copula is known, the 

authors used the notion of self-consistency to construct an estimator of the marginal 

survival functions based on dependent competing risks data (Zheng & Klein, 1994). This 

concept of self-consistency has been used by Efron (1976) to derive the K-M estimator in 

the case of ‘independent’ competing risks, or bivariate survival, data. 

For a bivariate survival time sample (Ti, Ci), i = 1, 2, …, n subjects, nonparametric 

estimators of the ‘marginal’ survival functions of T and C (with marginal cdfs F and G, 

respectively) are denoted as 𝑃�̂�(𝑇 ≥ 𝑡) = �̂�(𝑡) =  ∑ I(𝑇𝑖 ≥ 𝑡)
𝑛
𝑖=1   and 𝑃�̂�(𝐶 ≥ 𝑐) =

�̂�(𝑐) =  ∑ I(𝐶𝑖 ≥ 𝑐)
𝑛
𝑖=1 . When the status indicator variable δ = I(T ≤ C) = 0, one does not 

observe Ti but only knows that Ti > Xi = min(Ti, Ci). If x ≤ Xi < Ti, then one is certain that 

𝐼(𝑇𝑖 ≥ 𝑥) =1 to count towards the survival estimator, but if Xi < x, one doesn’t know 

whether the unobservable Ti will be ≥ 𝑥 or not. Thus, the probability that needs to be 

estimated is Pr(𝑇 ≥ 𝑡 | 𝑋𝑖 = 𝑥𝑖 < 𝑡, 𝛿𝑖 = 0) = Pr(𝑇 ≥ 𝑡 | 𝑇 > 𝑥𝑖 , 𝐶 = 𝑥𝑖), and likewise, 

Pr(𝐶 ≥ 𝑐 | 𝐶 > 𝑥𝑖 , 𝑇 = 𝑥𝑖), from the viewpoint of the dependent censoring or competing 

event time C. The self-consistent marginal survival estimators at some time x are  

�̂�𝑛𝑒𝑤(𝑥) =
1

𝑛
∑{𝐼(𝑋𝑖 ≥ 𝑥) + 𝐼(𝑋𝑖 < 𝑥) ∙ (1 − 𝛿𝑖) ∙ Pr̂𝑜𝑙𝑑(𝑇 ≥ 𝑥 | 𝑇 > 𝑥𝑖 , 𝐶 = 𝑥𝑖)}

𝑛

𝑖=1

 

=
1

𝑛
∑{𝐼(𝑋𝑖 ≥ 𝑥) + 𝐼(𝑋𝑖 < 𝑥) ∙ (1 − 𝛿𝑖) ∙

1 − 𝐶𝑣(1 − �̂�𝑜𝑙𝑑(𝑥), 1 − �̂�𝑜𝑙𝑑(𝑥𝑖))

1 − 𝐶𝑣(1 − �̂�𝑜𝑙𝑑(𝑥𝑖), 1 − �̂�𝑜𝑙𝑑(𝑥𝑖))
}

𝑛

𝑖=1
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where Xi (= xi) is the event time of subject i, 𝐶𝑣(𝑢, 𝑣) =
𝜕

𝜕𝑣
𝐶(𝑢, 𝑣) = Pr(𝑈 ≤ 𝑢 | 𝑉 = 𝑣). 

This can be shown by 𝑃�̂�(𝑇 ≥ 𝑥 | 𝑇 > 𝑥𝑖, 𝐶 = 𝑥𝑖) =
𝑃�̂�(𝑇>𝑥,𝐶=𝑥𝑖)

𝑃�̂�(𝑇>𝑥𝑖,𝐶=𝑥𝑖)
, where  

𝑃�̂�(𝑇 > 𝑥, 𝐶 = 𝑥𝑖) = ∫𝐼[(𝑢, 𝑣)|𝐹(𝑥) < 𝑢 ≤ 1, 𝐺(𝑥𝑖 ≤ 𝑣 < 𝐺(𝑥𝑖 + 𝜃)] ∙ 𝑐(𝑢, 𝑣)𝑑𝑢𝑑𝑣

= Pr(𝑢 > 𝐹(𝑥), 𝑣 > 𝐺(𝑥𝑖)) − Pr(𝑢 > 𝐹(𝑥), 𝑣 > 𝐺(𝑥𝑖 + 𝜃))

= 𝐶(𝐹(𝑥), 𝐺(𝑥𝑖)) − 𝐶(𝐹(𝑥), 𝐺(𝑥𝑖 + 𝜃)) + 𝐺(𝑥𝑖 + 𝜃) − 𝐺(𝑥𝑖), 

and similarly, 𝑃�̂�(𝑇 > 𝑥𝑖, 𝐶 = 𝑥𝑖) =  𝐶(𝐹(𝑥𝑖), 𝐺(𝑥𝑖)) − 𝐶(𝐹(𝑥𝑖), 𝐺(𝑥𝑖 + 𝜃)) + 𝐺(𝑥𝑖 +

𝜃) − 𝐺(𝑥𝑖). Then,  

lim
𝜃→0

𝑃�̂�(𝑇 > 𝑥, 𝐶 = 𝑥𝑖)

𝑃�̂�(𝑇 > 𝑥𝑖 , 𝐶 = 𝑥𝑖)
= lim
𝜃→0

−[
{𝐶(𝐹(𝑥), 𝐺(𝑥𝑖)) − 𝐶(𝐹(𝑥), 𝐺(𝑥𝑖 + 𝜃))}

{𝐺(𝑥𝑖 + 𝜃) − 𝐺(𝑥𝑖)}
] + 1

− [
{𝐶(𝐹(𝑥𝑖), 𝐺(𝑥𝑖)) − 𝐶(𝐹(𝑥𝑖), 𝐺(𝑥𝑖 + 𝜃))}

{𝐺(𝑥𝑖 + 𝜃) − 𝐺(𝑥𝑖)}
] + 1

=
1 −

𝜕
𝜕𝑣
𝐶(𝐹(𝑥), 𝐺(𝑥𝑖))

1 −
𝜕
𝜕𝑣
𝐶(𝐹(𝑥𝑖), 𝐺(𝑥𝑖))

=
1 − 𝐶𝑣(1 − 𝑆(𝑥), 1 − 𝑅(𝑥𝑖))

1 − 𝐶𝑣(1 − 𝑆(𝑥𝑖), 1 − 𝑅(𝑥𝑖))
. 

Following a similar procedure as above,  

�̂�𝑛𝑒𝑤(𝑥) =
1

𝑛
∑{𝐼(𝑋𝑖 ≥ 𝑥) + 𝐼(𝑋𝑖 < 𝑥) ∙ 𝛿𝑖 ∙ Pr̂𝑜𝑙𝑑(𝐶 ≥ 𝑥 | 𝐶 > 𝑥𝑖, 𝑇 = 𝑥𝑖)}

𝑛

𝑖=1

 

=
1

𝑛
∑{𝐼(𝑋𝑖 ≥ 𝑥) + 𝐼(𝑋𝑖 < 𝑥) ∙ 𝛿𝑖 ∙

1 − 𝐶𝑣(1 − �̂�𝑜𝑙𝑑(𝑥𝑖), 1 − �̂�𝑜𝑙𝑑(𝑥))

1 − 𝐶𝑣(1 − �̂�𝑜𝑙𝑑(𝑥𝑖), 1 − �̂�𝑜𝑙𝑑(𝑥𝑖))
}

𝑛

𝑖=1

. 
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Thus, first beginning with an initial guess (usually by simply assuming independence 

between T and C) of �̂�𝑜𝑙𝑑(𝑥) and �̂�𝑜𝑙𝑑(𝑥), iteratively update to �̂�𝑛𝑒𝑤(𝑥) and �̂�𝑛𝑒𝑤(𝑥) 

until convergence. The point to stress is that the joint survival function of T and C is a 

function of the copula and the unknown ‘marginal’ survival functions S(x) and R(y), and 

that these marginal survival functions can be estimated by the above self-consistent 

equations when the copula is assumed to be known.  

In Zheng and Klein (1995), the estimation of marginal survival functions is provided 

with a graphical tool named the “copula-graphic estimator” for dependent competing risks 

data, which reduce to the usual K-M estimator when the bivariate survival times are 

independent. Again, it is shown that the marginal survival functions are identifiable if the 

copula (dependence structure) is assumed to be known, and an iterative bisection root-

finding algorithm is presented with a graphical tool that depicts the relationship between 

F(x) of the survival time T and G(x) of the dependent competing risk or censoring time C 

on a unit square. The resulting estimators �̂�𝑛 and 𝐺𝑛 are strongly consistent for F and G 

such that as 𝑛 → ∞, �̂�𝑛 → 𝐹  and 𝐺𝑛 → 𝐺  for all 𝑥 ∈ [0,∞) . The authors noted in the 

results of their simulation study that the important requirement for a good estimate of the 

marginal survival function is a reasonable guess of the strength of association between T 

and C (hence, an ‘assumed’ copula), and not the functional form of the copula. 
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2.3 Likelihood-based Semi-parametric Modeling Under an 

Assumed Copula 

Following the works of Zheng and Klein, Huang and Zhang (2008) applied the 

assumed copula & self-consistent estimator of marginal survival to a Cox PH regression 

setting. More systematically, Chen (2010) extended the assumed copula approach to the 

regression setting by generalizing the marginal regressions via semiparametric 

transformation models, which include both proportional hazards and proportional odds. 

Under the premise that the marginal and/or joint distributions of competing event times 

cannot be identified without additional information (the non-identifiability problem), both 

the functional form of the copula and the copula parameter(s) that control the level of 

association between event times were assumed to be known. Similar to the comments of 

earlier works (Zheng and Klein, 1994, 1995; Huang and Zhang, 2008), Chen found that the 

proposed model was robust to the functional form of the copula (e.g. whether the 

underlying copula was Normal, Clayton, Gumbel etc.) but sensitive to the assumed level 

of association (e.g. the copula parameter value that directly corresponds to Kendall’s tau; 

Table 3.1). 

Using the author’s notation, T1* and T2* are two dependent event times for two 

competing events, and C(u,v), u, v ∈ [0,1], is a chosen copula function where the joint 

survival function of T1* and T2* is Pr(T1* >t1, T2* >t2) = C{S1(t1), S2(t2)}, t1 ≥0, t2 ≥0. The 

functional form and the association parameter for C are assumed to be known. For two sets 
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of covariates Z1 and Z2, Chen conducted marginal regression analyses to estimate the effect 

of Zk on Tk* (k=1, 2). The two marginal regressions are specified as the following 

semiparametric transformation models for k=1, 2:  

Λ𝑘(𝑡; 𝛽𝑘, 𝑅𝑘) = 𝐺𝑘[∫ 𝐼(𝑇𝑘
∗ ≥ 𝑠) ∙ exp {

𝑡

0

𝛽𝑘
𝑇𝑍𝑘(𝑠)}𝑑𝑅𝑘(𝑠)], 

where Λ𝑘(𝑡; 𝛽𝑘 , 𝑅𝑘)  is the cumulative intensity (or hazard) function for the counting 

process 𝑁𝑘
∗(𝑡) = 𝐼(𝑇𝑘

∗ ≤ 𝑡) , Gk is some specified strictly increasing and differentiable 

transformation function, and Rk is an unspecified increasing function to be estimated from 

the data (or some baseline hazard function).  

Also, for subject i, i = 1, 2, …, n, the observed data triplet are {𝑇𝑖, 𝛿𝑘𝑖 , 𝑍𝑘𝑖(𝑡); k=1, 2, 

0 ≤ t ≤ maximum follow-up time tend}, the counting process of an observed event k (=1 or 

2) for subject i is 𝑁𝑘𝑖(𝑡) = 𝛿𝑘𝑖 ∙ 𝐼(𝑇𝑖 ≤ 𝑡) = 𝐼(𝑇𝑖 = 𝑇𝑘𝑖
∗ ) ∙ 𝐼(𝑇𝑖 ≤ 𝑡)  such that 𝛿𝑘𝑖  is 

subject i's event 1 or 2 status indicator, and 𝐼(𝑇𝑖 ≤ 𝑡) is a counter for subject i's survival 

time being ≤ 𝑡. The corresponding at-risk process is 𝑌𝑖(𝑡) = 𝐼(𝑇𝑖 ≥ 𝑡), which indicates 

whether subject i is still at risk at time t or beyond. 

After specifying the marginal regression model’s functional form, Chen made an 

important comment that the focus on “marginal” or “net” event time regression analysis 

implies the hypothetical setting of artificially removing the other competing risk, i.e. the 

assessment of covariate effects on either one of event k=1 or k=2, but having the other 

correlated event removed. This is precisely what our current study aims to achieve, e.g. the 
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effect of a new drug in a randomized clinical trial under the ideal scenario of no patient 

being dependently censored due to one’s deteriorating or improving health condition. Chen 

also mentioned that this counterfactual scenario of removing the competing risk event(s) 

may have controversial interpretation issues (Prentice, 1978), which was also noted in our 

study’s outline of the ‘latent failure times’ framework (section 1.4). 

To describe the above semiparametric transformation model in more detail, consider 

the following cause-specific (or marginal) intensity (or hazard) for the counting process 

𝑁𝑘𝑖(𝑡), k=1, 2:  

𝑌𝑖(𝑡) ∙ exp{𝛽𝑘
𝑇𝑍𝑘𝑖(𝑡)} ∙ 𝜂𝑘𝑖(𝑡−;𝛽, 𝑅) ∙ 𝑟𝑘(𝑡), 

where 𝑟𝑘(𝑡) = 𝑅𝑘
′ (𝑡) , 𝜂𝑘𝑖(𝑡−; 𝛽, 𝑅) ≡ 𝜂𝑘

∗ [∫ 𝑌𝑖(𝑢) ∙ exp{𝛽1
𝑇𝑍1𝑖(𝑢)} ∙ 𝑑𝑅1(𝑢)

𝑡

0
, ∫ 𝑌𝑖(𝑢) ∙
𝑡

0

exp{𝛽2
𝑇𝑍2𝑖(𝑢)} ∙ 𝑑𝑅2(𝑢)],  

for 𝜂𝑘
∗ (𝑡1, 𝑡2) =

𝜕

𝜕𝑡𝑘
Φ[exp{−𝐺1(𝑡)} , exp{−𝐺2(𝑡)}] 

= 𝑔𝑘(𝑡𝑘) ∙ exp {−𝐺𝑘(𝑡𝑘)} ∙ 𝐷𝑘[exp{−𝐺1(𝑡1)} , exp{−𝐺2(𝑡2)}],  

Φ = − log(C) , 𝑔𝑘 = 𝐺𝑘
′ , 𝐷𝑘(𝑢1, 𝑢2) = −

𝜕

𝜕𝑢𝑘
Φ(𝑢1, 𝑢2).  

Thus, exp{−𝐺𝑘(𝑡)}  being a survival function, Φ[exp{−𝐺1(𝑡)} , exp{−𝐺2(𝑡)}]  being a 

joint cumulative hazard, 
𝜕

𝜕𝑡𝑘
Φ[exp{−𝐺1(𝑡)} , exp{−𝐺2(𝑡)}]  is some form of marginal 

hazard that considers the kth event’s correlation with the (k±1)th event. Hence, the whole 

expression 𝑌𝑖(𝑡) ∙ exp{𝛽𝑘
𝑇𝑍𝑘𝑖(𝑡)} ∙ 𝜂𝑘𝑖(𝑡−; 𝛽, 𝑅) ∙ 𝑟𝑘(𝑡)  is a marginal semiparametric 
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transformation model, with 𝑟𝑘(𝑡)  and exp{𝛽𝑘
𝑇𝑍𝑘𝑖(𝑡)}  corresponding to a Cox model’s 

baseline hazard and proportional hazards of covariates formulation. 

Using this marginal semiparametric transformation model, Chen provides the log-

likelihood function for parameters {𝑑𝑅}  and 𝛽 , for which we provide the original 

likelihood function using the general likelihood formulation of  

𝐿 = ∏ 𝑓(𝑡𝑖)
𝛿𝑖 ∙ 𝑆(𝑡𝑖)

1−𝛿𝑖𝑛
𝑖=1 = ∏ ℎ(𝑡𝑖)

𝛿𝑖 ∙ 𝑆(𝑡𝑖)
𝑛
𝑖=1 , where  

𝑓(∙): 𝑝𝑑𝑓, 𝑆(∙): 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, ℎ(∙): ℎ𝑎𝑧𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝛿: 𝑒𝑣𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑢𝑠 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 

in time-to-event regression models. 

𝐿 =∏[∏∫ exp{𝛽𝑘
𝑇𝑍𝑘𝑖(𝑡)}

𝑡𝑒𝑛𝑑

0

2

𝑘=1

𝑛

𝑖=1

∙ 𝜂𝑘𝑖(𝑡−; 𝛽, 𝑅) ∙ 𝑑𝑅𝑘(𝑡) ∙ 𝑑𝑁𝑘𝑖(𝑡)

∙ exp {−Φ[exp{−Λ1𝑖(𝑡𝑒𝑛𝑑; 𝛽1, 𝑅1)} , exp{−Λ2𝑖(𝑡𝑒𝑛𝑑; 𝛽2, 𝑅2)}]}], 

such that the first integral portion of the likelihood expresses the joint hazard function, and 

the second exp{-Φ(∙)} portion expresses the joint survival function. 

Utilizing this likelihood function, one can obtain the score functions (first-order partial 

derivative vectors of the parameters of interest) and information matrices (second-order 

partial derivative matrices of the parameters) for estimation and statistical inference (point 

estimation, interval estimation, testing, and P-values). Chen provides explicit expressions 

for the score functions and information matrices and shows that the subsequent maximum 

likelihood estimations result in unbiased, consistent, and asymptotically normal (weak 



36 

 

convergence to a zero-mean Gaussian process) parameter estimates. 

Conclusively, Chen (2010) presented a systematic way to conduct marginal regression 

analysis for dependent censoring or competing risks, applicable to the broad class of 

semiparametric transformation models, when the dependence structure is completely 

specified through an assumed copula. Chen also made an important note that in the 

presence of regression covariates, although the copula association parameter may be 

estimated from the data along with the regression coefficients (Heckman & Honore, 1989), 

the variability of the resulting estimates is quite large, i.e. the estimates are unstable, and is 

not recommended. Thus, one is still left with the question of how accurate the ‘assumed’ 

copula would be and how to possibly estimate the copula association parameter if a 

reasonable guess of it is challenging. 

Subsequent contributions to copula-based dependent competing risks analysis were 

made by Emura and Chen (2016, 2018). Emura and Chen (2016) applied Chen’s copula-

based framework to gene selection for survival data with dependent censoring, where the 

authors noted that no practical methods exist to date that simultaneously estimate the copula 

association parameter and the marginal regression models. However, a novel approach to 

estimating the copula parameter through cross-validation of a survival time prediction 

model was proposed, where the copula parameter that maximizes a k-fold cross-validated 

Harrell’s c-index is chosen to be the corresponding parameter of the given data. An 

important comment here is that due to the non-identifiability of competing risks data, the 

usual likelihood equation may provide little information about the true association 



37 

 

parameter (or corresponding Kendall’s tau correlation), rescinding maximum likelihood-

based approaches. An implementation of the authors’ work was also provided as an R 

package “compound.Cox”, which we utilize in our simulations and analyses as well. The 

more recent Emura and Chen (2018) is a textbook on copula-based approaches to survival 

data with dependent censoring, and to the best of our knowledge, seems to be the first 

textbook to comprehensively cover the topic. 

 

2.4 Parametric Identifiability of Copulas and Marginal 

Distributions 

Van Keilegom et al. (2013, 2019, 2020, 2021, 2022, 2023) have extensively studied 

the identifiability of dependent competing risks data using parametrically specified copulas 

and marginal distributions. Schwarz, Jongbloed, and Van Keilegom (2013) mainly studied 

the mathematical conditions under which some parametric copulas may be used to identify 

the joint distribution of (T, C), X = min(T, C), δ = I(T ≤C). The more recent Deresa and 

Van Keilegom (2019) substantially formulated the parametric identifiability approach, 

utilizing monotone increasing transformations to obtain bivariate normally distributed 

linear regression error terms, for which the bivariate normal distribution is known to be 

identifiable under bivariate competing risks (Nadas, 1971; Basu and Ghosh, 1978). 

Following the authors’ notation, T and C are log-transformed event of interest and 
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dependent censoring times, for which the proposed joint regression model is  

Λ𝜃(𝑇) = 𝑋
𝑡𝛽 + 𝜀𝑇 

Λ𝜃(𝐶) = 𝑊
𝑡𝜂 + 𝜀𝐶 , 

where X and W are covariates of dimension p and q that are associated with T and C, 

respectively, and Λ𝜃(∙) is a parametric class of monotone transformations that preserves 

the rank of its domain (the Yeo-Johnson family of power transformations). The vector of 

error terms (𝜀𝑇, 𝜀𝐶) has a bivariate normal (BVN) distribution such that  

(𝜀𝑇
𝜀𝐶
) ~ 𝑁2 ((

0
0
), Σ = (

𝜎𝑇
2 𝜌𝜎𝑇𝜎𝐶

𝜌𝜎𝑇𝜎𝐶 𝜎𝐶
2 )), Σ: positive definite. 

The observed event time Z = min(T, C), event status indicator δ = I(T ≤ C), and the dataset 

has n independent and identically distributed (i.i.d.) observations of (Z𝑖 , δ𝑖 , X𝑖,W𝑖), 𝑖 =

1,2,… , 𝑛 . The parameter vector for estimation 𝛼 = (𝜃, 𝛽, 𝜂, 𝜎𝑇
2, 𝜎𝐶

2, 𝜌) ∈ ℝ𝑝+𝑞+4 , for 

which the authors showed is identifiable from the observed data, and noted that this is non-

trivial, since for a given subject we observe either T or C but never both. 

For the BVN distributed error terms linear model above, the conditional cdfs and pdfs 

(given the covariates X and W) are expressed as  

{
 
 

 
 𝐹𝑇|𝑋(𝑡|𝑥) = 𝐹𝜖𝑇(Λ𝜃(𝑡) − 𝑥

𝑡𝛽) = Φ(
Λ𝜃(𝑡) − 𝑥

𝑡𝛽

𝜎𝑇
)

𝐹𝐶|𝑊(𝑐|𝑤) = 𝐹𝜖𝐶(Λ𝜃(𝑐) − 𝑤
𝑡𝜂) = Φ(

Λ𝜃(𝑐) − 𝑤
𝑡𝜂

𝜎𝐶
)

, 
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{
 
 

 
 𝑓𝑇|𝑋(𝑡|𝑥) = 𝜎𝑇

−1 ∙ ϕ(
Λ𝜃(𝑡) − 𝑥

𝑡𝛽

𝜎𝑇
) ∙ Λ𝜃(𝑡)

′

𝑓𝐶|𝑊(𝑐|𝑤) = 𝜎𝐶
−1 ∙ ϕ(

Λ𝜃(𝑤) − 𝑤
𝑡𝜂

𝜎𝐶
) ∙ Λ𝜃(𝑤)

′

. 

Recall that the sub-distribution function 𝐹𝑍,δ(𝑧, 1) = Pr(𝑍 ≤ 𝑧, δ = 1) = Pr(T ≤ t, T ≤

C) = Pr(𝐶 ≥ 𝑇 | 𝑇 ≤ 𝑧) ∙ Pr (𝑇 ≤ 𝑧) = ∫ Pr(𝐶 ≥ 𝑢 | 𝑇 = 𝑢) ∙ 𝑓𝑇(𝑢)𝑑𝑢
𝑧

0
 , and for BVN 

distributed random variables X1 and X2, the conditional distribution of 𝑋2 | 𝑋1 =

𝑥1 ~ 𝑁(𝜇2 +
𝜌(𝑥1−𝜇1)𝜎2

𝜎1
, 𝜎2

2(1 − 𝜌2)), for BVN parameters (𝜇1, 𝜇2, 𝜎1
2, 𝜎2

2, 𝜌) (Hogg, 

McKean, & Craig, 2013). 

Then, the sub-distribution and sub-density functions for the proposed model are  

𝐹𝑍,δ|X,W(𝑧, 1|𝑥, 𝑤; 𝛼) = Pr(𝑍 ≤ 𝑧, δ = 1|X = x,W = w)

= Pr(Λ𝜃(𝑇) ≤ Λ𝜃(𝑧), Λ𝜃(𝑇) ≤ Λ𝜃(𝐶)|𝑋 = 𝑥,𝑊 = 𝑤)

= ∫ Pr(𝜀𝐶 ≥ 𝑒 + 𝑥
𝑡𝛽 −𝑤𝑡𝜂 | 𝜀𝑇 = 𝑒) ∙ 𝑓𝜀𝑇(𝑒)𝑑𝑒

Λ𝜃(𝑧)−𝑥
𝑡𝛽

−∞

=
𝜆

𝜎𝑇
∫ [1 − Φ(

𝑒 + 𝑥𝑡𝛽 − 𝑤𝑡𝜂 − 𝜌
𝜎𝐶
𝜎𝑇
𝑒

𝜎𝐶√1− 𝜌
2

)]ϕ(
𝑒

𝜎𝑇
)𝑑𝑒

Λ𝜃(𝑧)−𝑥
𝑡𝛽

−∞

, 

𝑓𝑍,δ|X,W(𝑧, 1|𝑥, 𝑤; 𝛼) =
1

𝜎𝑇
[1 − Φ(

Λ𝜃(𝑧) − 𝑤
𝑡𝜂 − 𝜌

𝜎𝐶
𝜎𝑇
(Λ𝜃(𝑧) − 𝑥

𝑡𝛽)

𝜎𝐶√1 − 𝜌
2

)] 

× ϕ(
Λ𝜃(𝑧) − 𝑥

𝑡𝛽

𝜎𝑇
)Λ𝜃(𝑧)

′, 
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and similarly,  

𝑓𝑍,δ|X,W(𝑧, 0|𝑥, 𝑤; 𝛼) =
1

𝜎𝐶
[1 − Φ(

Λ𝜃(𝑧) − 𝑥
𝑡𝛽 − 𝜌

𝜎𝑇
𝜎𝐶
(Λ𝜃(𝑧) − 𝑤

𝑡𝜂)

𝜎𝑇√1 − 𝜌
2

)] 

× ϕ(
Λ𝜃(𝑧) − 𝑤

𝑡𝜂

𝜎𝐶
)Λ𝜃(𝑧)

′. 

The authors then provided a theorem and proof of the identifiability of the parameter 

vector 𝛼 = (𝜃, 𝛽, 𝜂, 𝜎𝑇
2, 𝜎𝐶

2, 𝜌)  such that if 𝑓𝑍1,δ1|X,W(∙, ℓ|𝑥, 𝑤; 𝛼1) = 𝑓𝑍2,δ2|X,W(∙

, ℓ|𝑥, 𝑤; 𝛼2), then 𝛼1 = 𝛼2. Naturally, estimation of the parameter vector 𝛼 now follows, 

with the likelihood function expressed as  

𝐿(𝛼) =∏𝑓𝑍,δ|X,W(𝑍𝑖, δ𝑖|𝑋𝑖,𝑊𝑖; 𝛼)

𝑛

𝑖=1

 

=∏{
1

𝜎𝑇
[1 −Φ(

Λ𝜃(𝑍𝑖) −𝑊𝑖
𝑡𝜂 − 𝜌

𝜎𝐶
𝜎𝑇
(Λ𝜃(𝑍𝑖) − 𝑋𝑖

𝑡𝛽)

𝜎𝐶√1− 𝜌
2

)]ϕ(
Λ𝜃(𝑍𝑖) − 𝑋𝑖

𝑡𝛽

𝜎𝑇
)}δ𝑖

𝑛

𝑖=1

 

× {
1

𝜎𝐶
[1 − Φ(

Λ𝜃(𝑍𝑖) − 𝑋𝑖
𝑡𝛽 − 𝜌

𝜎𝑇
𝜎𝐶
(Λ𝜃(𝑍𝑖) −𝑊𝑖

𝑡𝜂)

𝜎𝑇√1− 𝜌
2

)]ϕ(
Λ𝜃(𝑍𝑖) −𝑊𝑖

𝑡𝜂

𝜎𝐶
)}1−δ𝑖 

× Λ𝜃(𝑍𝑖)
′. 

Standard errors (SEs) and confidence intervals (CIs) were subsequently found by utilizing 

the asymptotic normality of maximum likelihood estimators (MLEs). 
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Deresa and Van Keilegom (2020) extended the above paper (Deresa and Van Keilegom, 

2019) by additionally including administrative right-censoring times, and considering 

multivariate (more than two) competing risks. Afterwards, Deresa and Van Keilegom (2021) 

further generalized the “BVN transformation for identifiability” approach by leaving the 

transformation function unspecified and simultaneously estimating a non-parametric 

transformation function from the given survival data subject to dependent censoring. 

The most recent work by Czado and Van Keilegom (2023) considerably expands the 

parametric approach to copulas and marginal distributions widely used in practice. The 

authors consider a survival time T where T is stochastically dependent on a censoring time 

C, for which the researcher’s interest is in the marginal distribution of T. They provide 

sufficient conditions where a parametric copula and parametric marginal distributions of T 

and C completely identifiable without assuming that the copula parameter is known (the 

previous “assumed copula” approach).  

Similar to our notation, consider an event (of interest) time T and dependent censoring 

time C, where the observables are Y = min(T, C) and δ = I(T ≤ C). Assume parametric 

marginal distributions and copulas 𝐹𝑇 ∈ {𝐹𝑇,𝜃𝑇 : 𝜃𝑇 ∈ Θ𝑇} , 𝐹𝐶 ∈ {𝐹𝐶,𝜃𝐶 : 𝜃𝐶 ∈ Θ𝐶} , 𝐶 ∈

{𝐶𝜃: 𝜃 ∈ Θ} . Then, from Sklar’s theorem (1959), for continuous marginals 𝐹𝑇  and 𝐹𝐶 , 

there exist s a unique copula C such that 𝐹𝑇,𝐶(𝑡, 𝑐) = 𝐶{𝐹𝑇(𝑡), 𝐹𝐶(𝑐)} =

𝐶(𝑢, 𝑣), 𝑓𝑜𝑟 𝑡, 𝑐 ≥ 0. Also, express the conditional cdfs via copula partial derivatives as  
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{
ℎ𝐶|𝑇,𝜃(𝑣|𝑢) =

𝜕

𝜕𝑢
𝐶𝜃(𝑢, 𝑣) = Pr (𝑉 ≤ 𝑣|𝑈 = 𝑢)

ℎ𝑇|𝐶,𝜃(𝑢|𝑣) =
𝜕

𝜕𝑣
𝐶𝜃(𝑢, 𝑣) = Pr (𝑈 ≤ 𝑢|𝑉 = 𝑣)

, 

such that the sub-distribution functions (CIFs) are expressed as  

{
 
 

 
 𝐹𝑌,𝛿(𝑦, 1) = ∫ {1 − ℎ𝐶|𝑇(𝐹𝐶(𝑡)|𝐹𝑇(𝑡))}𝑓𝑇(𝑡)𝑑𝑡

𝑦

0

𝐹𝑌,𝛿(𝑦, 0) = ∫ {1 − ℎ𝑇|𝐶(𝐹𝑇(𝑐)|𝐹𝐶(𝑐))}𝑓𝐶(𝑐)𝑑𝑐
𝑦

0

, 

and the corresponding sub-density functions are then  

{
𝑓𝑌,𝛿(𝑦, 1) = {1 − ℎ𝐶|𝑇(𝐹𝐶(𝑦)|𝐹𝑇(𝑦))}𝑓𝑇(𝑦)

𝑓𝑌,𝛿(𝑦, 0) = {1 − ℎ𝑇|𝐶(𝐹𝑇(𝑦)|𝐹𝐶(𝑦))}𝑓𝐶(𝑦)
. 

Again, “identifiability” is defined as the parameters (𝜃, 𝜃𝑇 , 𝜃𝐶) ∈ Θ × Θ𝑇 × Θ𝐶 uniquely 

determining the density function of the observable random variables (Y, 𝛿) such that if 

𝑓𝑌,𝛿,𝛼1 ≡ 𝑓𝑌,𝛿,𝛼2 then 𝛼1 = 𝛼2, 𝛼𝑗 = (𝜃𝑗, 𝜃𝑇𝑗, 𝜃𝐶𝑗)
𝑡, 𝑗 = 1,2. 

The following theorems (Thm.1 – Thm.4) regarding the identifiability of specific 

parametric distributions and copulas are stated without proof, and additional details are 

deferred to the original paper (Czado & Van Keilegom, 2023). 

(Thm.1) Suppose that the following two conditions hold. 

(i) For 𝜃𝑇1, 𝜃𝑇2 ∈ Θ𝑇 and 𝜃𝐶1, 𝜃𝐶2 ∈ Θ𝐶, we have the four equivalences  

lim
𝑡→0

𝑓𝑇,𝜃𝑇1(𝑡)

𝑓𝑇,𝜃𝑇2(𝑡)
= 1 ⟺𝜃𝑇1 = 𝜃𝑇2, lim

𝑡→∞

𝑓𝑇,𝜃𝑇1(𝑡)

𝑓𝑇,𝜃𝑇2(𝑡)
= 1⟺𝜃𝑇1 = 𝜃𝑇2, 
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lim
𝑡→0

𝑓𝐶,𝜃𝐶1(𝑡)

𝑓𝐶,𝜃𝐶2(𝑡)
= 1 ⟺𝜃𝐶1 = 𝜃𝐶2, lim

𝑡→∞

𝑓𝐶,𝜃𝐶1(𝑡)

𝑓𝐶,𝜃𝐶2(𝑡)
= 1⟺𝜃𝐶1 = 𝜃𝐶2. 

(ii) The parameter space Θ × Θ𝑇 × Θ𝐶 is such that  

lim
𝑡→0

ℎ𝑇|𝐶,𝜃(𝑢𝑡|𝑣𝑡) = 0, ∀(𝜃, 𝜃𝑇 , 𝜃𝐶) ∈ Θ × Θ𝑇 × Θ𝐶 or  

lim
𝑡→∞

ℎ𝑇|𝐶,𝜃(𝑢𝑡|𝑣𝑡) = 0, ∀(𝜃, 𝜃𝑇 , 𝜃𝐶) ∈ Θ × Θ𝑇 × Θ𝐶, and similarly for ℎ𝐶|𝑇,𝜃(𝑣𝑡|𝑢𝑡), 

where 𝑢𝑡 = 𝐹𝑇,𝜃𝑇(𝑡), and 𝑣𝑡 = 𝐹𝐶,𝜃𝐶(𝑡). 

Then the model 𝐹𝑇,𝐶(𝑡, 𝑐) = 𝐶{𝐹𝑇(𝑡), 𝐹𝐶(𝑐)} is identified. 

(Thm.2) Condition (i) of Thm.1 is satisfied for the families of log-Normal, log-Student-

t, Weibull, and log-Logistic densities. 

(Thm.3) [Frank, Gumbel, and Gaussian copulas] Condition (ii) of Thm.1 is satisfied by 

the following:  

(i) the Frank copula, independently of the marginal distributions and the parameter 

space,  

(ii) the Gumbel copula if lim
𝑡→0

log {𝑓𝑇,𝜃𝑇(𝑡)}

log {𝑓𝐶,𝜃𝐶(𝑡)}
∈ (0,∞) , ∀(𝜃, 𝜃𝑇) ∈ (Θ𝑇 × Θ𝐶),  

(iii) the Gaussian copula if lim
𝑡→0

𝐴𝜃,𝐹𝑇,𝜃𝑇 ,𝐹𝐶,𝜃𝐶
(𝑡) = −∞,∀(𝜃, 𝜃𝑇 , 𝜃𝐶) ∈ Θ × Θ𝑇 × Θ𝐶  

or lim
𝑡→∞

𝐴𝜃,𝐹𝑇,𝜃𝑇 ,𝐹𝐶,𝜃𝐶
(𝑡) = −∞,∀(𝜃, 𝜃𝑇 , 𝜃𝐶) ∈ Θ × Θ𝑇 × Θ𝐶,  

and similarly for 𝐴𝜃,𝐹𝐶,𝜃𝐶 ,𝐹𝑇,𝜃𝑇
, where 𝐴𝜃,𝐹1,𝐹2(𝑡) = Φ

−1{𝐹1(𝑡)} − 𝜃Φ
−1{𝐹2(𝑡)}. 
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(Thm.4) [Clayton copula] Suppose that condition (i) of (Thm.1) holds, Θ𝑇 × Θ𝐶 is 

such that lim
𝑡→0

𝑓𝑇,𝜃𝑇(𝑡)

𝑓𝐶,𝜃𝐶(𝑡)
 is either 0 or +∞ for all 𝜃𝑇 ∈ Θ𝑇 and 𝜃𝐶 ∈ Θ𝐶 , and the copula 𝐶𝜃 

is a Clayton copula (𝜃 > 0). Then the model 𝐹𝑇,𝐶(𝑡, 𝑐) = 𝐶𝜃{𝐹𝑇(𝑡), 𝐹𝐶(𝑐)} is identified. 

For marginal distributions and copulas that are identifiable via (Thm.1) to (Thm.4), the 

parameters are estimated using maximum likelihood, for which the likelihood function is 

composed of the two probabilities Pr(Ti = yi, Ci > yi) and Pr(Ci = yi, Ti > yi), as the following:  

𝐿(𝛼) =∏[{1 − ℎ𝐶|𝑇(𝐹𝐶(𝑦𝑖)|𝐹𝑇(𝑦𝑖))}𝑓𝑇(𝑦𝑖)]
𝛿𝑖[{1 − ℎ𝑇|𝐶(𝐹𝑇(𝑦𝑖)|𝐹𝐶(𝑦𝑖))}𝑓𝐶(𝑦𝑖)]

1−𝛿𝑖

𝑛

𝑖=1

, 

The usual log-likelihood function, score vector, and information matrix are utilized for 

point & interval estimation & inference, and consistency and asymptotic normality of the 

estimators are obtained from the properties of the MLE. 

The main utility of this paper is its claimed novelty in proving the identifiability of a 

copula model for dependent censoring, where the copula association parameter is not 

assumed to be known. Although the study covers several survival time distributions and 

copulas that are often used in practice, Deresa and Van Keilegom (2022) note in another 

study that some survival time distributions, such as the Gompertz distribution, do not 

satisfy the above identifiability condition (Thm.1), which leaves room for improvement. 

 

 



45 

 

2.5 Other Approaches to Modeling Dependent Competing Risks 

in Survival Analysis 

Here, we briefly mention some approaches other than that of copula-based modeling 

for dependent competing risks or dependently censored survival data. Neither the 

approaches themselves nor the list of studies within each approach are exhaustive or 

complete, as they are outside the immediate scope of the current study and were not 

extensively reviewed. 

Heckman and Honore (1989) proposed identifiability conditions for models with 

regressors, or covariates, showing the possibility of identifying the joint distribution of 

competing risks survival times without parametric functional form assumptions. This 

approach essentially relies on a sufficient variation in the marginal survival times by 

different values of a highly predictive covariate, where the covariate is associated with both 

or all of the marginal survival times. Abbring and van den Berg (2003) showed that the 

conditions of Heckman and Honore (1989) can be considerably relaxed in the mixed PH 

case, such that the marginal survival times require much less variation by the different 

values of a covariate. 

Inverse probability of censoring weights (IPCWs) proposed by Robins and Finkelstein 

(2000) is another approach of utilizing available covariates that are associated with both 

the time to event of interest and the time to other competing or dependent censoring events. 

The main idea is to compensate for dependently censored subjects by giving extra weight 
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to subjects who are not yet censored and have similar characteristics to those censored in 

terms of the available covariates. By estimating the probability of censoring at time t = Pc(t) 

through a Cox model including the available covariates, the IPCW is calculated as = 1/(1 - 

Pc(t)) (Willems et al., 2018). For the IPCWs to fully adjust for the dependence, all 

covariates that might be associated with the event of interest and the dependent censoring 

event, thus inducing a correlation (dependence) between the two, must be measured. This 

is also known as the “no unmeasured confounders” assumption. 

A third approach to modeling competing risks survival data, especially for semi-

competing risks such as the association between progression-free survival and overall 

survival in oncology trials, is the multi-state model or illness-death model (Meller et al., 

2019; Weber & Titman, 2018; Putter et al., 2007). The multi-state model does not assume 

latent failure times, but rather uses transition intensity matrices to model the probability of 

transitioning between possible states or arriving at a particular state. This allows for clinical 

prediction modeling of disease incidence or patient survival, especially in semi-competing 

risks survival data where both the time-to event of interest and the time to some other 

intermediate or non-terminal event are observed in at least some cases. However, this 

approach is inherently unable to address the potential correlation (dependence) in the 

“classical” competing risks situation of mutually exclusive time-to-events, as the latent 

failure times framework is not utilized and the counterfactual transition or association 

between the mutually exclusive states is undefined. 
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Chapter 3  

Proposed Method 

3.1 Previous studies on the parametric identifiability of bivariate 

Normally distributed competing risks data 

Among the previous works on identifiability within parametric families of bivariate 

distributions, we focus on the ubiquitous bivariate Normal distribution (the BVN 

distribution), where the distribution of the observable X = min(T, C) and δ = I(T ≤ C) 

uniquely determines the distribution of the (unobservable) underlying BVN distribution 

(Nadas, 1971; Basu & Ghosh, 1978). 

Using the notations of Nadas (1971), consider a BVN-distributed random vector (X0, 

X1) with mean (μ0, μ1) and covariance matrix (σij) where 𝜎𝑖𝑖 = 𝜎𝑖
2 and 𝜎𝑖𝑗 = 𝜌𝜎𝑖𝜎𝑗 (i, j 

= 0, 1 and i≠j). Here, Z = min(X0, X1), and I is defined by Z = XI. Also, let 𝑛(∙ | 𝑎, 𝑏2) be 

the univariate Normal density with mean a and standard deviation b, and let 𝑁(∙ | 𝑎, 𝑏2) 

be the corresponding cumulative distribution. Then, the conditional density 𝑓𝑖(𝑧) of Z for 

I = i is given by the following lemma (proof deferred to the original paper). 

(Lemma) 𝑓𝑖(𝑧) = {
𝑝𝑖
−1 ∙ 𝑛(𝑧| 𝜇𝑖, 𝜎𝑖

2) ∙ (1 − 𝑁 (
𝑧−𝜇𝑖

∗

𝜎𝑖
∗ |0,1) , 𝑖𝑓 𝜌𝜎1−𝑖 ≠ 𝜎𝑖

𝑛(𝑧| 𝜇𝑖, 𝜎𝑖
2), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, where  
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𝜇𝑖
∗ = 𝛼𝑖𝜇1−𝑖 + (1 − 𝛼𝑖)𝜇𝑖 , 𝜎𝑖

∗ = 𝛼𝑖𝜎1−𝑖(1 − 𝜌
2)1/2, 𝛼𝑖 = (1 − 𝜌

𝜎1−𝑖

𝜎𝑖
)−1,   

𝑎𝑛𝑑 𝑝𝑖 = Pr(𝐼 = 𝑖) = 𝑁(0 | 𝜇𝑖 − 𝜇1−𝑖, 𝜎0
2 + 𝜎1

2 − 2𝜌𝜎0𝜎1). 

From the lemma, 
𝑝𝑖∙𝑓𝑖(𝑧)

𝑛(𝑧| 𝜇𝑖,𝜎𝑖
2)
= 1 − 𝑁(

𝑧−𝜇𝑖
∗

𝜎𝑖
∗ |0,1) , and now, let 𝜇0

′ , 𝜇1
′ ,  and 𝜎𝑖𝑗

′   be the 

parameters defining any other BVN density for which its (Z, I) has the same conditional 

density 𝑓𝑖(𝑧) of Z for I = i. 

Since lim
𝑧→−∞

𝑝𝑖∙𝑓𝑖(𝑧)

𝑛(𝑧| 𝜇𝑖,𝜎𝑖
2)
= lim

𝑧→−∞
{1 − 𝑁 (

𝑧−𝜇𝑖
∗

𝜎𝑖
∗ |0,1)} = 1 such that lim

𝑧→−∞

𝑝𝑖∙𝑓𝑖(𝑧)

𝑛(𝑧| 𝜇𝑖,𝜎𝑖
2)
= 1,  

lim
𝑧→−∞

𝑝𝑖∙𝑓𝑖(𝑧)

𝑛(𝑧| 𝜇𝑖,𝜎𝑖
2)
= lim

𝑧→−∞

𝑝𝑖∙𝑓𝑖(𝑧)

𝑛(𝑧| 𝜇′𝑖,𝜎
′
𝑖
2
)
= 1 . Therefore, lim

𝑧→−∞

𝑛(𝑧| 𝜇𝑖,𝜎𝑖
2)

𝑛(𝑧| 𝜇′𝑖,𝜎
′
𝑖
2
)
= 1 , from which 

𝜇𝑖 = 𝜇𝑖
′, 𝜎𝑖 = 𝜎𝑖

′ is deduced, and 𝜌𝑖 = 𝜌𝑖
′ also, from 𝑝𝑖 = 𝑝𝑖

′. 

Basu and Ghosh (1978) additionally showed in a lemma that if 𝜎𝑖 < 𝜎𝑖
′ or 𝜎𝑖 = 𝜎𝑖

′ 

but 𝜇𝑖 > 𝜇𝑖
′ then the above lim

𝑧→−∞

𝑛(𝑧| 𝜇𝑖,𝜎𝑖
2)

𝑛(𝑧| 𝜇′𝑖,𝜎
′
𝑖
2
)
= 0, and if 𝜎𝑖 > 𝜎𝑖

′ or 𝜎𝑖 = 𝜎𝑖
′ but 𝜇𝑖 <

𝜇𝑖
′ then lim

𝑧→−∞

𝑛(𝑧| 𝜇𝑖,𝜎𝑖
2)

𝑛(𝑧| 𝜇′𝑖,𝜎
′
𝑖
2
)
= ∞, and that these results equally apply when 𝑧 → +∞. They 

also dealt with the case where 𝛼𝑖 = (1 − 𝜌
𝜎1−𝑖

𝜎𝑖
)−1  may not be positive (which Nadas 

implicitly assumed), and proved BVN’s identifiability in this situation as well. 

 

3.2 Proposed method of estimating the correlation in various 

parametric bivariate competing risks data 
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We now present our proposed method of a unified parametric approach to estimating 

the correlation (or the strength of dependence) in bivariate competing risks survival data, 

where the minimum of either T (time-to-event of interest) or C (time-to competing event 

or dependent censoring) is observed, but never both. The motivation for such an approach 

to correlation (dependence) estimation is that no practical methodology exists for 

simultaneously estimating the correlation and marginal hazards (Emura & Chen, 2016), 

and the usual ML-based estimation of the correlation parameter together with the marginal 

hazards parameters results in a large variability of the estimates due to the likelihood 

function having little information for the correlation (Chen, 2010; Michimae & Emura, 

2022). Therefore, we propose a method to first estimate the correlation in some given 

bivariate competing risks data, and afterwards, estimate the marginal survival and/or hazard 

function of the time-to-event of interest, taking the estimated correlation into account. 

Our proposal starts with a possible connection between some given bivariate 

competing risks data and the previously proven to be identifiable (Section 4.1) bivariate 

normal (BVN) or bivariate Weibull distributions, via the bivariate central limit theorem 

(CLT). First, the multivariate CLT is stated as below. 

(Theorem) Multivariate central limit theorem (CLT) 

For some k-dimensional random vector 

[
 
 
 
𝑋(1)
𝑋(2)
…
𝑋(𝑘)]

 
 
 
, consider n i.i.d. samples 

[
 
 
 
𝑋1(1)
𝑋1(2)
…
𝑋1(𝑘)]

 
 
 
, …, 
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[
 
 
 
𝑋𝑛(1)
𝑋𝑛(2)
…

𝑋𝑛(𝑘)]
 
 
 
 with mean vector 𝜇𝑘×1 and covariance matrix Σ𝑘×𝑘, with k finite (<∞) variances 

on the diagonal. The sample mean �̅�𝑛 =
1

𝑛

[
 
 
 
∑ 𝑋𝑖(1)
𝑛
𝑖=1

∑ 𝑋𝑖(2)
𝑛
𝑖=1

…
∑ 𝑋𝑖(𝑘)
𝑛
𝑖=1 ]

 
 
 

 then converges in distribution to a 

k-variate Normal distribution, i.e. √𝑛 ∙ (�̅�𝑛 − 𝜇𝑘×1)
𝑑
→𝑁𝑘(0𝑘×1, Σ𝑘×𝑘). 

In the bivariate case of [
𝑌(1)
𝑌(2)

] with mean [
𝜇(1)
𝜇(2)

] and covariance [
𝜎(1)
2 𝜌𝜎(1)𝜎(2)

𝜌𝜎(1)𝜎(2) 𝜎(2)
2 ],  

√𝑛 ∙ ([
�̅�𝑛(1)

�̅�𝑛(2)
] − [

𝜇(1)
𝜇(2)

])
𝑑
→𝑁2([

0
0
] , [

𝜎(1)
2 𝜌𝜎(1)𝜎(2)

𝜌𝜎(1)𝜎(2) 𝜎(2)
2 ]),  

√𝑛 ∙ (�̅�𝑛(1) − 𝜇(1))
𝑑
→𝑁(0, 𝜎(1)

2 ) , √𝑛 ∙ (�̅�𝑛(2) − 𝜇(2))
𝑑
→𝑁(0, 𝜎(2)

2 ) , −1 ≤ 𝜌 ≤ 1 

(Hogg, McKean, & Craig, 2013). 

Now, consider taking the sample mean of some parametric bivariate dependent 

censoring (or competing risks) data correlated through some parametric copula with 

correlation 𝜌0. Regardless of what the marginal distributions are or what kind of functional 

form the copula has, taking its sample mean would result in a convergence to a BVN 

distribution with the same correlation 𝜌0 (or two univariate Normal distributions linked 

by a Gaussian copula with correlation 𝜌0), by the bivariate CLT. This situation is depicted 

in the following diagram (Figure 3.1).
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Figure 3.1 Convergence of the sample mean to a bivariate normal distribution in various parametric copula models 

with parametric marginal distributions 
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Thinking in terms of this unique Gaussian (or Normal) copula with Normally 

distributed marginals for the sample means of a given bivariate competing risks data, the 

correlation 𝜌0  is preserved, regardless of the original data’s copula functional form or 

marginal distributions. Also, we described in Section 4.1 of how a BVN-distributed (Y1, 

Y2) is free from the non-identifiability issue such that the sub-density function of its 

observables of min(Y1, Y2) and I(Y1 ≤ Y2) uniquely identify the underlying BVN 

distribution parameters. Using this fact to find 𝜌0 , the following questions need to 

addressed:  

(i) Does a BVN distribution that produces the same sample mean information as those 

of (X = min(T, C), δ = 𝐼(𝑇 ≤ 𝐶)), and thus with its correlation parameter being equal to 

𝜌0 of (T, C), uniquely exist? 

(ii) Is the desired BVN distribution in (i) estimable from the sample mean information 

of (X = min(T, C), δ = 𝐼(𝑇 ≤ 𝐶))? 

These questions are addressed via a couple of conjectures below. 

First, the setting and notations of our conjectures are:  

(a) Some given bivariate competing risks data (T, C) of sample size n with parametric 

marginal distributions for a time-to-event of interest T and time-to competing event or 

dependent censoring C, which have a correlation 𝜌0 through a parametric copula,  

(b) Sample mean data of (�̅�, 𝐶̅), with �̅� = 𝑡�̅� (with mean 𝜇𝑡̅𝑚, variance 𝜎2𝑡̅𝑚) or 
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missing (∙), 𝐶̅ = 𝑐�̅�−𝑚 (with mean 𝜇𝑐�̅�−𝑚, variance 𝜎2𝑐�̅�−𝑚) or missing (∙), where 𝑚 =

∑ 𝐼(𝑇 ≤ 𝐶)𝑛
𝑖=1 , �̅� =

1

𝑚
∑ 𝑇𝑖 ∙ 𝐼(𝑇 ≤ 𝐶)
𝑛
𝑖=1 , 𝐶̅ =

1

(𝑛−𝑚)
∑ 𝐶𝑖 ∙ {1 − 𝐼(𝑇 ≤ 𝐶)}
𝑛
𝑖=1 , and (�̅�, 𝐶̅) 

have the same correlation 𝜌0 as in (T, C) through a Gaussian (or Normal) copula, via the 

bivariate CLT,  

(c) A hypothetical BVN-distributed (Y1, Y2) of sample size n with parameters 𝜃 =

(𝜇𝑌1 , 𝜇𝑌2 , 𝜎𝑌1
2 , 𝜎𝑌2

2 , 𝜌), for which min(Y1, Y2) and I(Y1 ≤ Y2) produce the same sample mean 

information as in (ii), i.e. �̅�1 = �̅�1,𝑚 = 𝑡�̅� (with mean 𝜇𝑡̅𝑚, variance 𝜎2𝑡̅𝑚) or missing 

(∙ ), �̅�2  = �̅�2,𝑛−𝑚  = 𝑐�̅�−𝑚  (with mean 𝜇𝑐�̅�−𝑚 , variance 𝜎2𝑐�̅�−𝑚 ) or missing (∙ ), where 

𝑚 = ∑ 𝐼(𝑌1 ≤ 𝑌2)
𝑛
𝑖=1 , �̅�1 =

1

𝑚
∑ 𝑌1,𝑖 ∙ 𝐼(𝑌1 ≤ 𝑌2)
𝑛
𝑖=1 , �̅�2 =

1

(𝑛−𝑚)
∑ 𝑌2,𝑖 ∙ {1 − 𝐼(𝑌1 ≤
𝑛
𝑖=1

𝑌2)}. 

This setting is also depicted by the following diagram (Figure 3.2).
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Figure 3.2 A hypothetical bivariate normal distribution that has the same sample mean information as that of a given 

bivariate competing risks data with a parametric copula linking the parametric marginal distributions 
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Conjectures 1~2 now follow as:  

(Conjecture 1) For the sample mean information from the given bivariate competing 

risks data (T, C), a BVN distribution that produces the same sample mean information, and 

thus has the same correlation 𝜌0 as that of the given (T, C) as its correlation parameter, 

uniquely exists. 

(Justification 1) (i) Correlation parameter of the hypothesized BVN distribution equals 

to 𝜌0 of the given bivariate competing risks data (T, C):  

For now, suppose that such a BVN distribution uniquely exists such that its correlation 

parameter to be estimated also uniquely exists. Justification of existence and uniqueness 

follow below. Then for large enough sample size n, the bivariate CLT guarantees that the 

sample mean’s distribution of a given bivariate competing risks data has the same 

covariance matrix Σ, and hence, the same correlation 𝜌0 as that of (T, C).  

∴ By the bivariate CLT in reverse direction, if a BVN distribution’s min(Y1, Y2) and I(Y1 

≤ Y2) data produces the same sample mean information as that of X = min(T, C) and δ = 

𝐼(𝑇 ≤ 𝐶), then the BVN distribution’s correlation parameter 𝜌 is also equal to that of the 

sample mean information, which is 𝜌0. 

(ii) Existence: The sample mean information from bivariate competing risks data are such 

that 𝜇𝑡̅𝑚 , 𝜇𝑐�̅�−𝑚  are both > 0, 𝜎2�̅�𝑚 , 𝜎2𝑐�̅�−𝑚  are both finite (< ∞ ), 0 < m < n, and 

correlation -1 ≤ 𝜌0  ≤ 1.  For the BVN-distributed (Y1, Y2) parameters 𝜃 =

(𝜇𝑌1 , 𝜇𝑌2 , 𝜎𝑌1
2 , 𝜎𝑌2

2 , 𝜌), the distribution’s support has a range of (-∞, ∞) for each of (Y1, Y2), 
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each of 𝜎𝑌1
2 , 𝜎𝑌2

2  can take any finite value, and the correlation 𝜌 covers the whole interval 

[-1, 1]. Especially, if the missing n – m observations of T and m observations of C were 

counterfactually known, then the sample mean random vector (�̅�, 𝐶̅) would be distributed 

as ~ 𝑁2([
𝑡�̅�
𝑐�̅�
] , [

𝜎𝑡̅𝑛
2 𝜌0𝜎�̅�𝑛𝜎𝑐�̅�

𝜌0𝜎�̅�𝑛𝜎𝑐�̅� 𝜎𝑐�̅�
2

])  by the bivariate CLT, for the total number of 

samples n without missing or unknown values. Apparently then, a BVN distribution (Y1, 

Y2) for which its sample mean (�̅�1, �̅�2) is identical to (�̅�, 𝐶̅) would be distributed as ~ 

𝑁2([
𝑡�̅�
𝑐�̅�
] , 𝑛 ∙ [

𝜎𝑡̅𝑛
2 𝜌0𝜎�̅�𝑛𝜎𝑐�̅�

𝜌0𝜎𝑡̅𝑛𝜎𝑐�̅� 𝜎𝑐�̅�
2

]) by the bivariate CLT in reverse direction, i.e. such a 

BVN distribution exists. 

∴  There exists some BVN distribution (Y1, Y2) that produces the same sample mean 

information as that of the given bivariate competing risks data (T, C). 

(iii) Uniqueness: Suppose that two different BVN distributions, using only their respective 

min(Y1, Y2) and I(Y1 ≤ Y2) data, produce the same sample mean information as that of the 

given bivariate competing risks data. Since we know that a given bivariate dataset’s sample 

mean is unique (a given dataset cannot produce two different sample means), the above 

assumption of two different BVN distributions having the same sample mean information 

implies that the two different distributions produced the same min(Y1, Y2) and I(Y1 ≤ Y2) 

data, i.e. the same competing risks format data, which would then result in the same sample 

mean information. However, by Nadas (1971) and Basu and Ghosh (1978), the identified 

minimum of a BVN-distributed pair uniquely determines the distribution of the pair (their 
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underlying BVN distribution), so the assumption that two different BVN distributions 

produced the same competing risks format data cannot be true. 

∴ A given sample mean information of (�̅�, 𝐶̅) is produced from a unique BVN distribution 

(Y1, Y2) and its competing risks format data of min(Y1, Y2) and I(Y1 ≤ Y2). 

(Conjecture 2) Such a BVN distribution described in Conjecture 1, especially its 

correlation parameter 𝜌, can be numerically estimated with the given bivariate competing 

risks data’s sample mean information of 
𝑚

𝑛
, 𝜇𝑡̅𝑚, 𝜇𝑐�̅�−𝑚, 𝜎2𝑡̅𝑚, and 𝜎2𝑐�̅�−𝑚. 

(Justification 2) From the given bivariate competing risks data’s sample mean, we 

know the proportions 
𝑚

𝑛
 or 

(𝑛−𝑚)

𝑛
 of T or C that are observed as the minimum of the two, 

𝜇𝑡̅𝑚 and 𝜎2�̅�𝑚 of the observed T = min(T, C), and 𝜇𝑐�̅�−𝑚 and 𝜎2𝑐�̅�−𝑚 of the observed 

C = min(T, C). Using this sample mean information, the parameters 𝜃 =

(𝜇𝑌1 , 𝜇𝑌2 , 𝜎𝑌1
2 , 𝜎𝑌2

2 , 𝜌) of the BVN distribution (Y1, Y2) can be estimated via a method-of-

moments type estimation as below. 

(i) The proportion of T observed, 
𝑚

𝑛
: For BVN random variables S and T, use the fact that 

Pr(S < T) = Pr(S - T < 0), where S – T ~ 𝑁(𝜇𝑆 − 𝜇𝑇 , 𝜎𝑆
2 + 𝜎𝑇

2 − 2𝜌𝜎𝑆𝜎𝑇), Pr(S - T < 0) = 

Pr(Z < −
𝜇𝑆−𝜇𝑇

√𝜎𝑆
2+𝜎𝑇

2−2𝜌𝜎𝑆𝜎𝑇

 ), Z ~ N(0, 1). Then, compare 
𝑚

𝑛
  of ( �̅� , 𝐶̅ ) with Pr(Z < 

−
𝜇𝑌1−𝜇𝑌2

√𝜎𝑌1
2 +𝜎𝑌2

2 −2𝜌𝜎𝑌1𝜎𝑌2

) of (Y1, Y2). 
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(ii) Means of �̅� and 𝐶̅, 𝜇𝑡̅𝑚 and 𝜇𝑐�̅�−𝑚: For the observed Y1 = min(Y1, Y2), obtain its 

sub-density function as  

1

𝜎𝑌1
[1 − Φ(

𝑦1 − 𝜇𝑌2 − 𝜌
𝜎𝑌2
𝜎𝑌1

(𝑦1 − 𝜇𝑌1)

𝜎𝑌2√1− 𝜌
2

)] 

×ϕ(
𝑦1 − 𝜇𝑌1
𝜎𝑌1

), 

where Φ is the standard Normal cdf, ϕ the standard Normal pdf, and for the jth such Y1 

(= y1), calculate its contributing weight as 𝑤𝑡𝑗 = 𝑠𝑢𝑏 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑗 ∑ 𝑠𝑢𝑏 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑗
𝑚
𝑗=1⁄  

to estimate �̂�[Y1] = ∑ (𝑦1,𝑗 ∙ 𝑤𝑡𝑗)
𝑚
𝑗=1 . 

Similarly, For the observed Y2 = min(Y1, Y2), obtain its sub-density function, calculate its 

contributing weight as 𝑤𝑡𝑘, and estimate �̂�[Y2] = ∑ (𝑦2,𝑘 ∙ 𝑤𝑡𝑘)
𝑛−𝑚
𝑘=1 . Then, compare 𝜇𝑡̅𝑚 

of (�̅�, 𝐶̅) with �̂�[Y1] = ∑ (𝑦1,𝑗 ∙ 𝑤𝑡𝑗)
𝑚
𝑗=1  of (Y1, Y2), and compare 𝜇𝑐�̅�−𝑚 of (�̅�, 𝐶̅) with 

�̂�[Y2] = ∑ (𝑦2,𝑘 ∙ 𝑤𝑡𝑘)
𝑛−𝑚
𝑘=1  of (Y1, Y2). 

(iii) Variances of �̅� and 𝐶̅, 𝜎2𝑡̅𝑚 and 𝜎2𝑐�̅�−𝑚: For the observed Y1 = min(Y1, Y2), use 

the sub-density and corresponding weight in (ii) to estimate �̂�[𝑌1
2] = ∑ (𝑦1,𝑗

2 ∙ 𝑤𝑡𝑗)
𝑚
𝑗=1 , and 

use the estimated �̂�[Y1] in (ii) to estimate 𝑉𝑎�̂�[𝑌1] = �̂�[𝑌1
2] − {�̂�[𝑌1]}

2. Similarly, For 

the observed Y2 = min(Y1, Y2), use the sub-density, corresponding weight, and �̂�[Y2] in 

(ii) to estimate 𝑉𝑎�̂�[𝑌2] = �̂�[𝑌2
2] − {�̂�[𝑌2]}

2 . Then, compare 𝜎2𝑡̅𝑚  of ( �̅� , 𝐶̅ ) with 

𝑉𝑎�̂�[𝑌1] 𝑚⁄  of (Y1, Y2), and compare 𝜎2𝑐�̅�−𝑚 of (�̅�, 𝐶̅) with 𝑉𝑎�̂�[𝑌2] (𝑛 − 𝑚)⁄  of (Y1, 
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Y2). 

∴ A numerical estimation algorithm may be conducted as follows:  

(a) Starting from some initial parameters 𝜃(0) = (𝜇𝑌1
(0), 𝜇𝑌2

(0), 𝜎𝑌1
2 (0), 𝜎𝑌2

2 (0), 𝜌(0)) , 

generate a random BVN-distributed sample of size n from the initial parameters. 

(b) Perform the comparisons (i)~(iii) above for the error calculation of an objective function, 

where the objective is to minimize the aggregated error. Update the BVN distribution 

parameters to those currently evaluated if the objective function value becomes smaller. 

(c) Repeat (b) above for a given number of iterations, or until some convergence criteria is 

met. The resulting BVN distribution parameters 𝜃(𝑘) = (𝜇𝑌1
(𝑘), 𝜇𝑌2

(𝑘), 𝜎𝑌1
2 (𝑘), 𝜎𝑌2

2 (𝑘), 𝜌(𝑘)), 

after k iterations, are the BVN parameters that produce the same sample mean information 

as that of the given bivariate competing risks data, and specifically, 𝜌(𝑘) = 𝜌0 , the 

correlation parameter of interest. 

Conclusively, the correlation (dependence) in bivariate competing risks data for any 

parametric marginal distributions linked through parametric copulas can be estimated by 

our unified approach of estimating the identifiable BVN distribution’s correlation 

parameter, as stated in Conjectures 1~2. Since the bivariate Weibull distribution, which is 

often used in survival and reliability analyses, was also shown to be identifiable from its 

observed minimum (Moeschberger & Klein, 1995; Moeschberger, 1974), one can use the 

bivariate Weibull in place of the ubiquitous BVN distribution to proceed in a similar manner. 
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3.3 Optimization procedures in estimating the correlation in 

bivariate competing risks data 

We now focus on the numerical estimation algorithm in Conjecture 2 of Section 3.2. 

More specifically, we present the objective function of minimization and its components, 

such as the minimization criteria, weights assigned within the objective function, and 

sample size considerations. In addition, some optimization algorithms for global and local 

searches, as well as the R packages used for their implementation, are introduced. A parallel 

computing procedure to simultaneously process multiple runs of newly generated data and 

their bootstrap samples is also briefly mentioned. 

The basic structure of an optimization problem is to find the global minimum or 

maximum of a pre-defined objective function f(s) by evaluating f with changing s ∈ 𝑆, 

where S is the possible search space. Without loss of generality, we hereafter assume a 

minimization problem. Finding a unique solution to the optimization problem may become 

complicated due to a brute-force blind search being unrealistic, constraints on the search 

space or no constraints resulting in too broad a search space, the difficulty of pinpointing a 

global minimum among possibly numerous local minima, etc. An example figure of 

numerous local minima is shown below (courtesy to Cortez, 2021). 
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Figure 3.3 Plot of the ‘rastrigin’ objective function with many local minima 

 

The above figure plots the ‘rastrigin’ function, 𝑓𝑟𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛(�⃗�) = ∑ (𝑥𝑖
2 − 10 cos 2𝜋𝑥𝑖 +

𝐷
𝑖=1

10), D: number of dimensions, which is a popular benchmark for real-valued optimization 

algorithm evaluations. Numerous local minima are depicted by the many valleys in the 

figure, where the overall global minimum lies on the origin. In this situation, relying only 

on local search methods, such as the Newton-Raphson variants based on gradient descent, 

may result in failure to find the desired global minimum, due to convergence to a local 

solution. Among the broad classes of optimization methods: 1. Blind search (grid search, 

Monte Carlo search etc.), 2. Single-state or ‘Local’ search (gradient descent, tabu search 

etc.), 3. Population-based or ‘Global’ search (simulated annealing, genetic algorithms etc.) 

(Cortez, 2021), we will focus on a mixed use of global and local search methods. 

Recalling Conjecture 2 of Section 3.2, Pr(Z < −
𝜇𝑌1−𝜇𝑌2

√𝜎𝑌1
2 +𝜎𝑌2

2 −2𝜌𝜎𝑌1𝜎𝑌2

), Z ~ N(0,1), of  
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the BVN distribution (Y1, Y2) was used to compare against 
𝑚

𝑛
 of (�̅�, 𝐶̅), which can be 

thought of as regressing 
𝑚

𝑛
  of ( �̅� , 𝐶̅ ) upon a function f of the BVN parameters 

𝜇𝑌1 , 𝜇𝑌2 , 𝜎𝑌1
2 , 𝜎𝑌2

2 , 𝜌, such as 
𝑚

𝑛
 = 𝑓1(𝜇𝑌1 , 𝜇𝑌2 , 𝜎𝑌1

2 , 𝜎𝑌2
2 , 𝜌) + 𝜀1, 𝜀1: 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 1.  

Similarly, the other four possible comparisons of 𝜇𝑡̅𝑚  with �̂� [Y1] = ∑ (𝑦1,𝑗 ∙ 𝑤𝑡𝑗)
𝑚
𝑗=1  , 

𝜇𝑐�̅�−𝑚 with �̂�[Y2] = ∑ (𝑦2,𝑘 ∙ 𝑤𝑡𝑘)
𝑛−𝑚
𝑘=1 ,  

𝜎2𝑡̅𝑚 with 𝑉𝑎�̂�[𝑌1] 𝑚 = [�̂�[𝑌1
2] − {�̂�[𝑌1]}

2
] /𝑚⁄ ,  

and 𝜎2𝑐�̅�−𝑚 with 𝑉𝑎�̂�[𝑌2] (𝑛 − 𝑚) = [�̂�[𝑌2
2] − {�̂�[𝑌2]}

2
] /(𝑛 − 𝑚)⁄   

can be thought of as  

𝜇𝑡̅𝑚 = 𝑓2(𝜇𝑌1 , 𝜇𝑌2 , 𝜎𝑌1
2 , 𝜎𝑌2

2 , 𝜌) + 𝜀2, 𝜀2: 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 2,  

𝜇𝑐�̅�−𝑚 = 𝑓3(𝜇𝑌1 , 𝜇𝑌2 , 𝜎𝑌1
2 , 𝜎𝑌2

2 , 𝜌) + 𝜀3,  𝜀3: 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 3,  

𝜎2𝑡̅𝑚 = 𝑓4(𝜇𝑌1 , 𝜇𝑌2 , 𝜎𝑌1
2 , 𝜎𝑌2

2 , 𝜌) + 𝜀4,  𝜀4: 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 4,  

and 𝜎2𝑐�̅�−𝑚 = 𝑓5(𝜇𝑌1 , 𝜇𝑌2 , 𝜎𝑌1
2 , 𝜎𝑌2

2 , 𝜌) + 𝜀5,  𝜀5: 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 5. 

Hence, our objective function 𝑓𝑜𝑏𝑗(∙) can be defined as some aggregate function of 

the five error terms to be minimized, such as  

𝑓𝑜𝑏𝑗(∙) = min (∑ 𝜀𝑖
2)5

𝑖=1 , or 𝑓𝑜𝑏𝑗(∙) = min (∑ |𝜀𝑖|
5
𝑖=1 ),  

such that 𝜃 = (�̂�𝑌1 , �̂�𝑌2 , �̂�𝑌1
2 , �̂�𝑌2

2 , �̂�) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃∈Θ(∑ 𝜀𝑖
2)5

𝑖=1  𝑜𝑟 𝑎𝑟𝑔𝑚𝑖𝑛𝜃∈Θ(∑ |𝜀𝑖|
5
𝑖=1 ) , 
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for the BVN parameter vector 𝜃  = (𝜇𝑌1 , 𝜇𝑌2 , 𝜎𝑌1
2 , 𝜎𝑌2

2 , 𝜌)  and its parameter space Θ . 

Among the often-used minimization criteria (or performance metrics) of mean absolute 

error (MAE) = 
1

5
∑ |𝜀𝑖|
5
𝑖=1  , mean absolute percentage error (MAPE) = 

100

5
∑

|𝜀𝑖|

𝑡𝑟𝑢𝑒𝑖

5
𝑖=1  , 

where 𝑡𝑟𝑢𝑒𝑖  is one of the five sample mean information components 
𝑚

𝑛
 , 𝜇𝑡̅𝑚 , 𝜇𝑐�̅�−𝑚 , 

𝜎2𝑡̅𝑚, 𝜎2𝑐�̅�−𝑚, depending on which comparison is being made, or root mean squared error 

(RMSE) = √
1

5
∑ 𝜀𝑖

25
𝑖=1 , we considered either the MAPE or RMSE criterion, and chose to 

use MAPE based on the rationale that MAPE more closely resembles our objective of 

finding BVN parameters that exactly reproduce the sample mean information of (�̅�, 𝐶̅).  

In terms of the relative weights assigned within the objective function, we 

experimented with different weights 𝑤𝑡𝑖, ∑ 𝑤𝑖 = 1
5
𝑖=1 , for the error terms of 𝜀1 to 𝜀5. 

Weights such as being proportional to the I(T ≤ C) proportion, or putting more emphasis 

on reducing a certain error term such as 𝜀1 = |
𝑚

𝑛
− 𝑓1(𝜇𝑌1 , 𝜇𝑌2 , 𝜎𝑌1

2 , 𝜎𝑌2
2 , 𝜌)| were applied 

and compared against. Consequently, equal weights of 1/5 each was chosen to provide the 

relatively best performance (the smallest objective function value). 

The sample size n of the given bivariate competing risks data and the hypothesized 

BVN distribution is another important consideration, as it directly determines the amount 

of information available when searching for the BVN parameters that minimize our 

objective function. This is especially true in our case, since the proposed algorithm requires 

generating a random BVN sample with sample size n from a given set of interim parameters 
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for each comparison with the ‘true’ sample mean information of (�̅�, 𝐶̅). Thus, it may be 

hypothesized that a larger sample size n would provide more information for both sides of 

distributions (T, C) and (Y1, Y2) when comparing their competing risks format sample mean 

information for the BVN parameter updates on (Y1, Y2). 

We used a combination of first globally searching the parameter space for promising 

candidates, and then refining the possible solutions with a local search, after which the 

candidate providing the lowest objective function value is chosen as the final solution. For 

the global (or population-based) search, stochastic Monte Carlo, simulated annealing, and 

genetic algorithms were considered (Cortez, 2021; Givens & Hoeting, 2005). For the 

subsequent local (or single-state) search, a Newton-Raphson variant of gradient descent by 

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula was used (Nash, 2014). We first 

note that the stochastic Monte Carlo search was discarded due to its pure randomness and 

inefficiency in searching for a solution, and the genetic algorithm as well, because the so-

called crossovers and mutations frequently resulted in incalculable numbers for generating 

a BVN distribution, such as the covariance matrix not being positive definite.  

Therefore, we adopted simulated annealing (Kirkpatrick et al., 1983) as the first stage 

global search, which also employs gradient descent to search for solutions but with 

additional stochastic randomness. The ‘annealing’ phenomenon is observed in metallurgy, 

which is the process of heating up a solid and then cooling it slowly (Cortez, 2021; Givens 

& Hoeting, 2005). By adopting a temperature parameter, say “temp”, which governs the 

probability of accepting an inferior option as the updated solution, simulated annealing is 
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able to escape from possible local minima and move toward the desired global minimum. 

As this stochastic acceptance of inferior options is key to the algorithm, the temp parameter 

should start with a high value and then gradually decrease as the algorithm proceeds. The 

Pr(inferior option acceptance) is set by Boltzmann’s probability exp {−∆𝐸/(𝑘 ∙ 𝑡𝑒𝑚𝑝)} 

in thermodynamics, where ∆𝐸  is the internal energy increase and 𝑘  is Boltzmann’s 

constant. Intuitively, ∆𝐸 = 𝑓𝑜𝑏𝑗(𝜃
𝑛𝑒𝑤) − 𝑓𝑜𝑏𝑗(𝜃

𝑐𝑢𝑟𝑟)  is how much worse the new 

inferior option is compared to the current solution, and temp is the quantitative measure of 

willingness to accept such an inferior option as the updated solution. As the algorithm 

progresses and temp decreases to zero, the Pr(inferior option acceptance) also goes to zero, 

thus hopefully honing in on the global minimum. The overall process is summarized in the 

following algorithm by Givens and Hoeting (2005). 

(Algorithm) Simulated annealing 

Conduct an iterative procedure with an initial solution vector 𝜃(0)  and initial 

temperature temp0. Iterations within each stage of constant temperature are indexed by i. 

The stages are indexed by j = 0, 1, 2 … and each stage consists of mj number of iterations, 

that is, i = 1, 2, …, mj for stage j. 

(i) Select a candidate solution 𝜃∗  within the neighborhood of 𝜃(𝑖) , say 𝒩(𝜃(𝑖)) 

according to a proposal density 𝑔(𝑖)(∙|𝜃(𝑖)) . The Gaussian or Cauchy-Lorentz visiting 

distributions are frequently used proposal densities (Xiang et al., 2013). 

(ii) Randomly decide whether to adopt 𝜃∗ as the next candidate solution or to keep 
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the current solution 𝜃(𝑖). That is, let 𝜃(𝑖+1) = 𝜃∗ with probability  

p = min(1, exp {−[𝑓𝑜𝑏𝑗(𝜃
∗) − 𝑓𝑜𝑏𝑗(𝜃

(𝑖))]/𝑡𝑒𝑚𝑝𝑗}.  

Otherwise, keep the current solution as 𝜃(𝑖+1) = 𝜃(𝑖). 

(iii) Repeat steps (i) and (ii) mj number of times. 

(iv) Increment j. Update 𝑡𝑒𝑚𝑝𝑗+1 = 𝛼(𝑡𝑒𝑚𝑝𝑗)  and 𝑚𝑗+1 = 𝛽(𝑚𝑗)  by some 

functions 𝛼(∙) and 𝛽(∙). 𝛼(∙) should slowly decrease the temperature to zero, and 𝛽(∙) 

should scale the number of iterations mj within each temperature exponentially in 

probability p. 

(v) Return to step (i). 

For additional details on simulated annealing, we refer the reader to Cortez (2021), 

Xiang et al. (2013), or Givens and Hoeting (2005). 

A possible enhancement of simulated annealing is refining its result with a local search 

(Givens & Hoeting, 2005), for which we used the BFGS formula of gradient descent. Since 

the inverse Hessian matrix is calculated within each run, gradient descent-based methods 

also have the potential advantage of utilizing MLE’s asymptotic normality for statistical 

inference of the estimated parameters (Nash, 2014; Michimae & Emura, 2022). 

To implement the proposed global and local searches, we used the GenSA and base 

stats packages in R (R foundation for statistical computing). The generalized simulated 

annealing method implemented by the GenSA package has been validated to perform well 
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in solving non-linear objective functions with many local minima (Xiang, Gubian, & 

Martin, 2017), and the optim() function in the stats package is routinely used in ML-based 

estimations. Hyper-parameters such as the maximum number of iterations within each 

temperature and the initial temperature in the GenSA() function, or the number of function 

calls for each candidate solution in optim() were tuned specific to the current study’s 

objective function. Due to the long and greatly varying runtimes of GenSA(), the parallel 

and doParallel packages in R that utilize multiple cores of the computer CPU were used to 

simultaneously process multiple runs of newly generated data and their bootstrap samples 

for MAE and bootstrap CI calculations. 

The nonparametric bootstrap and the percentile method (Givens & Hoeting, 2005) 

were used to construct bootstrap CIs as follows. B independent random resamples were 

taken with replacement from the originally simulated (T, C) data with same sample sizes n. 

The correlation (dependence) between T and C was estimated via the proposed method in 

each of the b = 1, 2, …, B bootstrap samples, where the bth estimated Kendall’s tau = �̂�(𝑏). 

Rearranging the tau estimates in increasing order,  

�̂�(1) ≤ �̂�(2) ≤ ⋯ ≤ �̂�(𝐵) 

the 100 ∙ (1 − 𝛼) percentiles CI of 𝜏 for number of bootstraps B was calculated as  

[�̂�
(𝐵∙

𝛼
2
)
, �̂�
(𝐵∙(1−

𝛼
2
))
]. 
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Chapter 4  

Simulation Study 

4.1 Part 1: Estimation of correlation (dependence) in bivariate 

competing risks survival data 

4.1.1 Estimation of correlation with different marginal distributions for an 

underlying Normal (Gaussian) copula 

- Simulation settings 

The overall simulation configuration was based upon varying the three factors below. 

(i) Marginal distributions of bivariate competing risks data: Exponential, Weibull, and Log-

Normal marginals 

(ii) Functional form of copulas: Normal (Gaussian), Clayton, Frank, and Gumbel copulas 

(iii) Size of correlations: 0, 0.3, 0.5, and 0.8 

We first present the results for varying factors (i) and (iii) under a Normal (Gaussian) copula 

linking the bivariate survival times. The results for varying the functional form of copulas, 

such as the Archimedean copulas of Clayton, Frank, and Gumbel, are presented in section 

4.1.2. 
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The parameter settings for each of the marginal distributions followed those used in 

previous studies of copula modeling in competing risks survival analysis. Specifically, the 

Exponential distributions’ parameters were set as  

T ~ Exponential(0.023), C ~ Exponential(0.025), for the time to event of interest T, time to 

other competing events or dependent censoring C, respectively, which is from the renal 

transplant data example of Sorrell et al. (2021). 

The Weibull distributions’ (shape, scale) parameters were set as  

T ~ Weibull(0.63, 0.06), C ~ Weibull(0.86, 0.04), which is also from Sorrell et al. (2021). 

The Log-Normal distributions’ (mean, standard deviation) of log(T) and log(C) were set as 

T ~ LogNormal(2.2, 1.0), C ~ LogNormal(2.0, 0.25), from the simulation study of Czado 

and Van Keilegom (2022).  

The Normal (Gaussian) copula’s dependence parameter 𝜌  was set as 0, 0.4539905, 

0.7071068, and 0.9510565, corresponding to a Kendall’s tau of 0 (independence), 0.3, 0.5, 

and 0.8, respectively (Table 3.1). 

As demonstrated in section 2.1, the conditional distribution (conditional cdf) method 

was used to generate bivariate survival times that follow certain marginal distributions and 

are correlated by a certain size or strength and functional form. For example, after 

generating a random variable U = u ~ Uniform(0,1) and its correlated random variable V = 

v ~ Uniform(0,1) through the conditional cdf (or copula partial derivative) of a Normal 
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copula, consider a bivariate Weibull distribution with marginals T ~ Weibull(𝛼𝑇 , 𝜆𝑇) and C 

~ Weibull(𝛼𝐶 , 𝜆𝐶) for shape α and scale λ. From a Weibull distribution’s hazard, cumulative 

hazard, and survival functions  

ℎ(𝑡) = 𝛼𝜆𝑡𝛼−1, 𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
= 𝜆𝑡𝛼 , 𝑆(𝑡) = exp[−𝐻(𝑡)] = exp [−𝜆𝑡𝛼],  

the correlated bivariate Weibull survival times of T (= t) and C (= c) were generated as  

𝑢 = 𝑆(𝑡) = 𝑒𝑥𝑝[−𝜆𝑇𝑡
𝛼𝑇], 𝑡 = 𝑆−1(𝑢) = {−

log(𝑢)

𝜆𝑇
}1/𝛼𝑇,  

𝑣 = 𝑆(𝑐) = 𝑒𝑥𝑝[−𝜆𝐶𝑡
𝛼𝐶], 𝑐 = 𝑆−1(𝑣) = {−

log(𝑣)

𝜆𝐶
}1/𝛼𝐶. 

For the simulated bivariate competing risks data (T, C) of correlation 𝜌0 and sample 

size n, for which we varied n from 500 to 4000, the observed survival time X = min(T, C) 

and status indicator δ = I(T ≤ C) were defined. The “sample mean” information of (X, δ): 

mean of observed T = 𝜇𝑡̅𝑚, variance of observed T = 𝜎2�̅�𝑚, mean of observed C = 𝜇𝑐�̅�−𝑚, 

variance of observed C = 𝜎2𝑐�̅�−𝑚, and the proportion of T that was observed = 
𝑚

𝑛
, were 

set as the true values to compare those of a hypothetical BVN distribution against, where 

min(T, C) = T (i.e. δ = 1) m out of n times (section 3.2). An objective function for 

minimization was defined using the MAPE criterion with equal weights, such that the five 

BVN distribution parameters 𝜃 = (𝜇𝑌1 , 𝜇𝑌2 , 𝜎𝑌1
2 , 𝜎𝑌2

2 , 𝜌) minimizing the MAPE of the five 

error terms defined in section 3.3 were estimated as the desired true parameter values. 

Especially, the resulting BVN correlation parameter 𝜌  was estimated as the true 
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correlation of interest 𝜌0 of the bivariate competing risks data (T, C). 

For each simulated data (T, C), random resampling with replacement bootstraps of 

equal sample sizes n were used for the estimation of standard errors (SEs) and 95% CIs. 

200 bootstrap samples were taken for the point estimate, bootstrap SE, and bootstrap 95% 

CI of the correlation 𝜌0 . In addition, multiple runs of data generation and subsequent 

bootstrap sampling were conducted to obtain the mean bias or mean absolute error (MAE) 

and the coverage probability (CP) of the bootstrap 95% CI regarding the true correlation 

𝜌0. Here, we conducted 50 multiple runs of 50 bootstrap samples each. 

As noted in section 3.3, a global search of possible solutions followed by a local search 

of refining the candidate solutions was used for the estimation of 𝜌0 . First, the global 

search utilized simulated annealing via the GenSA package in R for the four possible 

correlation ranges of [-0.1, 0.2), [0.2, 0.4), [0.4, 0.6), and [0.6, 0.9] for zero, low, 

intermediate, and high correlations, assuming the situations of either independence or 

positive correlation between T and C. Negative correlations were considered to be dealt 

with by negating either one of the bivariate survival times. Conservative lower and upper 

bounds for the remaining four BVN mean and variance parameters were assigned as the 

possible parameter space for simulated annealing’s search of candidate solutions. For 

example, 0.5 times the observed sample means and standard deviations of (T, C) were 

assigned as the lower bound, and 5 times the observed values as the upper bound. For each 

candidate solution (the BVN parameters vector 𝜃 ), four separate GenSA searches 

corresponding to the four possible correlation ranges were conducted, and the correlation 
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range resulting in the smallest objective function value among the four possible ranges of 

[-0.1, 0.2), [0.2, 0.4), [0.4, 0.6), and [0.6, 0.9] received an upvote. Thus, for the 200 

bootstrap samples of a single data generation, the 200 voting results of GenSA determined 

the most likely range of correlation among zero, low, intermediate, or high correlation of 

the initially generated (T, C) data.  

Because the runtime of simulated annealing varied greatly by its settings, the GenSA() 

function hyper-parameters of maximum number of iterations within each temperature 

(maxit) and the initial starting temperature (temp) were tuned specific to the current study’s 

objective function using iterated racing of the irace package in R (Cortez, 2021; Lopez-

Ibanez et al., 2016). Specifically, they were set as maxit=7310 and temp=820, compared to 

the default setting of maxit=10000 and temp=1000 by Cortez (2021), resulting in relatively 

faster runtimes.  

Next, based on the range of correlation determined by the global search, a local search 

using gradient descent was performed via the optim() function in R. Here, all five BVN 

distribution parameters were allowed to vary freely within their possible bounds. Especially, 

the correlation parameter 𝜌 was allowed to vary within its pre-determined range among 

one of [-0.1, 0.2), [0.2, 0.4), [0.4, 0.6), or [0.6, 0.9], based on its previous global search 

result. Overall, the resulting local search estimate of 𝜌  of the hypothesized BVN 

distribution served as the point estimate of the true 𝜌0 of the simulated (T, C) data, and 

the estimates of 𝜌 among the bootstrap samples of the simulated (T, C) data were used for 

the bootstrap SE and 95% CI calculations. The dataset & bootstrap samples generation and 
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global & local searches were performed multiple times (=50) for the MAE and CP 

calculations. 

The simulated sample size n varied from 500 to 4000, for which the resulting 

correlation estimations were affected to some degree. Specifically, a smaller sample size 

sufficed for the estimation of either zero or high (= 0.8) correlations, while a larger sample 

size was required to adequately distinguish between low (= 0.3) or intermediate (= 0.5) 

correlations. Thus, sample sizes of 500 or 1000 were used for the estimation of zero or large 

(= 0.8) correlations, while larger sample sizes of 2000, 3000, or 4000 were used for the 

estimation of low (= 0.3) or intermediate (= 0.5) correlations. After obtaining the BVN 

correlation parameter estimate �̂�, it was transformed to Kendall’s tau as �̂� = 2/𝜋 ∙ sin−1 �̂� 

for the presentation of results and subsequent interpretations. Due to the comparatively 

long runtimes of the GenSA() function, the number of multiple runs and bootstrap samples 

were set to 50. The 50 multiple runs were simultaneously conducted using 25 cores of a 

64-core computer for 50/25 = 2 parallel jobs each per core. 

- Simulation results 

Simulation results of correlation (dependence) estimation in bivariate competing risks 

data using the proposed method of estimating the correlation parameter in a hypothesized 

BVN distribution are shown in Tables 4.1 and 4.2.  

Table 4.1 shows the good performance of the proposed method in terms of the point 

estimate and its bootstrap SE of the true correlation in a simulated (T, C) dataset. The 
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proposed method works well under various parametric distributions often used in survival 

data analysis, such as the Exponential, Weibull, or Log-Normal distributions. The bootstrap 

95% CIs also demonstrate the proposed method’s capability of distinguishing between 

independence, low, intermediate, or high correlation in bivariate competing risks data, 

which is especially true when the survival times are Log-Normally distributed. 

The results of correlation estimation in multiple runs of an initially simulated (T, C) 

dataset and its bootstrap samples are presented in Table 4.2. The mean estimate and mean 

absolute error (MAE, or mean bias) demonstrate the proposed method’s accuracy in 

estimating the underlying correlation, and the coverage probabilities (CPs) of the bootstrap 

95% CIs are also near the desired 95% under a 0.05 significance level. In addition, since 

zero correlation implies independence only in Normal (Gaussian) copulas (Hogg, McKean, 

& Craig, 2013), the use of Normal copulas in our simulations enabled us to make 

conclusive statements of independence between the competing time-to-events when the 

bootstrap 95% CI of the estimated correlation included zero.  
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Table 4.1: Simulation results of correlation (dependence) estimation in bootstrap 

samples of bivariate competing risks data (T, C) a with the proposed method, where 

the underlying copula linking the two marginal distributions is the Normal (Gaussian) 

copula 

Marginal 

distribution 

True 

Kendall’s 

tau 

Estimated Kendall’s tau with 

proposed method 

Point 

estimate 

Bootstrap b 

MAE 

Bootstrap 

SE 

Bootstrap  

95% CI 

Exponential 

0 0.088 0.007 0.024 (-0.099, 0.245) 

0.3 0.374 0.000 0.050 (0.206, 0.398) 

0.5 0.497 0.005 0.040 (0.413, 0.615) 

0.8 0.696 0.039 0.033 (0.586, 0.863) 

Weibull 

0 0.005 0.043 0.077 (-0.067, 0.186) 

0.3 0.249 0.042 0.085 (0.127, 0.471) 

0.5 0.450 0.031 0.085 (0.347, 0.679) 

0.8 0.720 0.015 0.033 (0.694, 0.824) 

Log-Normal 

0 -0.070 0.064 0.081 (-0.108, 0.207) 

0.3 0.266 0.022 0.045 (0.188, 0.381) 

0.5 0.483 0.023 0.032 (0.389, 0.552) 

0.8 0.825 0.059 0.071 (0.628, 0.912) 

Abbreviations: CI, confidence interval; MAE, mean absolute error; SE, standard error 

a Simulated (T, C) data’s sample sizes were 500 or 1000 for Kendall’s tau of zero or 0.8, and 2000, 3000, or 

4000 for Kendall’s tau of 0.3 or 0.5 

b 200 bootstrap samples of the originally simulated (T, C) data were used for the calculations 
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Table 4.2: Simulation results of correlation (dependence) estimation in multiple runs 

of bootstrap samples of bivariate competing risks data (T, C) a with the proposed 

method, where the underlying copula linking the two marginal distributions is the 

Normal (Gaussian) copula 

Marginal 

distribution 

True 

Kendall’s 

tau 

Estimated Kendall’s tau with 

proposed method 

Mean 

estimate 
MAE 

Empirical  

SE 
CP b 

Weibull 

0 0.061 0.077 0.081 96 

0.3 0.262 0.069 0.075 92 

0.5 0.425 0.091 0.068 82 

0.8 0.733 0.080 0.031 90 

Log-Normal 

0 0.013 0.063 0.083 98 

0.3 0.287 0.055 0.060 94 

0.5 0.492 0.054 0.049 96 

0.8 0.751 0.068 0.030 96 

Abbreviations: CP, coverage probability; MAE, mean absolute error; SE, standard error 

a Simulated (T, C) data’s sample sizes were 500 or 1000 for Kendall’s tau of zero or 0.8, and 2000, 3000, or 

4000 for Kendall’s tau of 0.3 or 0.5 

b 50 multiple runs of 50 bootstrap samples of the originally simulated (T, C) data were used for the CP 

calculations  
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4.1.2 Estimation of correlation with different copulas for underlying Weibull 

marginal distributions 

- Simulation settings 

Here, the functional form of copulas was varied among the Normal (Gaussian), 

Clayton, Frank, and Gumbel copulas in estimating correlations of 0 (independence), 0.3, 

0.5, and 0.8. The marginal distributions of T and C were set to follow a Weibull distribution. 

For the copula dependence parameter values corresponding to a Kendall’s tau of 0.3, 

0.5, and 0.8, the Normal (Gaussian) copula’s values were 0.4539905, 0.7071068, and 

0.9510565, the Clayton copula’s 0.8571429, 2, and 8, the Frank copula’s 2.917434, 

5.736283, and 18.19154, and the Gumbel copula’s 1.428571, 2, and 5. (Table 3.1). The 

independence copula u ∙ v with dependence parameter value 0 was used to generate 

independent (T, C) data. The marginal distribution parameters for Weibull (shape, scale) 

were T ~ Weibull(0.63, 0.06) and C ~ Weibull(0.86, 0.04), as noted in section 4.1.1. 

The process of dataset & bootstrap samples generation and global & local searches 

followed the settings outlined in section 4.1.1, as well as the simulated sample sizes and 

parallel execution via multiple cores. Due to time constraints, 50 bootstrap samples were 

taken for the calculation of SE and 95% CIs. 

A peculiar phenomenon was observed when bootstrap sample means were taken from 

the initially generated (T, C) data. A shrinkage or enlargement of the correlation between T 

and C occurred for the sample means of (T, C) when the original dataset was generated 
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using the Archimedean copulas of Clayton, Frank, or Gumbel. By the bivariate CLT, the 

correlations were theoretically expected to be identical between the original (T, C) data and 

the aggregation of bootstrap sample means (�̅�, 𝐶̅ ) data. Thus, we underwent a separate 

simulation of this phenomenon, where for each initially generated (T, C) data of sample 

sizes 500 or 1000, 1000 bootstrap samples were taken, and the calculations of (�̅�, 𝐶̅) in each 

bootstrap sample were aggregated into a single dataset for the subsequent calculation of the 

correlation between �̅� and 𝐶̅. This process was repeated 200 times that resulted in 200 

datasets of 1000 bootstrap sample means as each of their observations, for which the mean 

and 95% CI of the 200 correlation values were calculated (Table 4.3). The underlying 

marginal distributions were Weibull-distributed as described above, and the phenomenon 

was investigated in the Normal (Gaussian), Clayton, Frank, and Gumbel copulas for 

correlations of either 0.3, 0.5, or 0.8 to be the true values. The cases for Exponential or 

Log-Normal marginals are included in the Appendix (Tables A1~A2). 

In addition, we compared the performance of our proposed method to that of 

conventional maximum likelihood estimation (MLE). MLE constructs the likelihood 

function of (X, δ), X = min(T, C), and δ = I(T ≤ C) by considering the (conditional cdf of 

C) ∙ (pdf of T) and (conditional cdf of T) ∙ (pdf of C) terms separately, depending on 

whether δ = 1 and 0, and creates the composite likelihood by multiplying the separate 

terms. Specifically, the likelihood function can be constructed as  

𝐿(Θ) =∏{Pr(𝑇𝑖 = 𝑥𝑖 , 𝐶𝑖 > 𝑥𝑖)
𝛿𝑖 ∙ Pr(𝐶𝑖 = 𝑥𝑖, 𝑇𝑖 > 𝑥𝑖)

1−𝛿𝑖}

𝑛

𝑖=1
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=∏[{
𝜕

𝜕𝑆𝑇(𝑥𝑖; 𝜃𝑇)
𝒞𝛼(

𝑛

𝑖=1

𝑆𝑇(𝑥𝑖; 𝜃𝑇), 𝑆𝐶(𝑥𝑖; 𝜃𝐶)) ∙ 𝑓𝑇(𝑥𝑖; 𝜃𝑇)}
𝛿𝑖 ∙  

{
𝜕

𝜕𝑆𝐶(𝑥𝑖; 𝜃𝐶)
𝒞𝛼(𝑆𝑇(𝑥𝑖; 𝜃𝑇), 𝑆𝐶(𝑥𝑖; 𝜃𝐶)) ∙ 𝑓𝐶(𝑥𝑖; 𝜃𝐶)}

1−𝛿𝑖], 

where the parameters vector Θ = (α, 𝜃𝑇 , 𝜃𝐶)
𝑇, α: copula dependence parameter(s),  

𝜃𝑇 , 𝜃𝐶 :marginal distribution parameters of T, C, respectively,  

𝑋𝑖 = min(𝑇𝑖, 𝐶𝑖) = 𝑥𝑖 , 𝛿𝑖 = I(𝑇𝑖 ≤ 𝐶𝑖): the realized time-to-event and event status of the 

ith subject,  

𝒞𝛼(𝑢, 𝑣): the copula or joint cdf of U = u ~ Uniform(0,1), V = v ~ Uniform(0,1) with copula 

parameter α,  

𝑆𝑇(𝑥𝑖; 𝜃𝑇), 𝑆𝐶(𝑥𝑖; 𝜃𝐶): the marginal survival functions of T, C, respectively,  

𝑓𝑇(𝑥𝑖; 𝜃𝑇), 𝑓𝐶(𝑥𝑖; 𝜃𝐶): the marginal pdfs of T, C, respectively. 

Subsequent numerical iterations to maximize the log-likelihood, usually by gradient 

descent, essentially attempts to estimate the copula dependence parameter(s) 𝛼 and the 

marginal distribution parameters 𝜃𝑇, 𝜃𝐶 simultaneously. We used the R code provided by 

Sorrell et al. (2021) for MLE of the correlation (dependence) where the copulas and 

correlations were varied as described above, and the marginals were Weibull-distributed 

(Table 4.4). 
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- Simulation results 

Table 4.3 demonstrates the phenomenon of correlation (dependence) shrinkage or 

enlargement in the Archimedean copulas of Clayton, Frank, and Gumbel, compared to that 

of the Normal (Gaussian) copula. The average correlation value of the 200 simulated (T, C) 

datasets was used as the ‘true’ correlation to compare against when calculating the 

percentage (%) of shrinkage or enlargement in each case. Although some correlation 

shrinkage was observed, the Normal copula had the least difference in correlations between 

those of the initially generated data and the bootstrap sample means. 

An enlargement in correlation was observed when the correlated data was generated 

via the Clayton copula, where the enlargement was as high as 37.9%. When the marginals 

were correlated using the Frank or Gumbel copulas, a correlation shrinkage of around 

20~30% was observed. The relative size of correlation shrinkage/enlargement seemed to 

differ not only by the functional form of copulas, but also by the underlying size of the true 

correlation and the marginal distributions of the bivariate survival times (Appendix tables 

A1~A2). No detailed previous literature was found regarding this phenomenon. 

Table 4.4 shows the simulation results of our proposed method and those of MLE for 

the estimation of correlation (dependence) in bivariate competing risks data when the 

copulas are varied and the marginals are Weibull-distributed. The point estimates, SEs, and 

95% CIs of our proposed method demonstrate its robust performance across different 

copulas, regardless of their functional forms. The proposed method’s ability to distinguish 
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between different sizes of the correlation is again shown by the non-overlapping 95% CIs, 

especially in the case of the Clayton copula linking the marginal distributions. 

A point of note is that due to the correlation shrinkage/enlargement by Archimedean 

copulas in Table 4.3, correlation estimates via the proposed method in Table 4.4 were 

compensated for by their respective amounts of shrinkage or enlargement. This is because 

the proposed method utilizes the bivariate CLT and inevitably, its theoretical property that 

the correlation of the original data is preserved in its sample mean. Thus, for example, the 

point estimate of 0.554 for a true tau of 0.5 in a (T, C) dataset linked by a Frank copula in 

Table 4.4 was calculated by compensating for the Frank copula’s correlation shrinkage of 

30.1% in a simulated dataset with true Kendall’s tau = 0.5 in Table 4.3. 

In contrast, the correlation estimates via MLE were subpar with largely biased point 

estimates, large SEs, and wide 95% CIs. The consistently large SEs and resultant wide CIs 

highlight the instability of MLE in simultaneously estimating the copula and marginal 

distribution parameters. The MLE results were relatively better for correlated datasets 

constructed by the Clayton copula, although the results of our proposed method had smaller 

SEs and narrower 95% CIs in this case as well.  



82 

 

Table 4.3: Correlation shrinkage or enlargement in bootstrap sample means of 

bivariate competing risks data (T, C) a with Weibull marginal distributions, where T 

and C are linked via the Normal, Clayton, Frank, and Gumbel copulas 

Copula 

True 

Kendall’s 

tau 

Simulated 

data avg. 

correl. 

Bootstrap 

sample 

mean avg. 

correl. 

95% CI of 

bootstrap 

sample mean 

correl. 

Shrinkage or 

Enlargement 

Normal 

0.3 0.302 0.258 (0.178, 0.343) -14.6% 

0.5 0.498 0.447 (0.366, 0.519) -10.2% 

0.8 0.802 0.755 (0.719, 0.784) -5.9% 

Clayton 

0.3 0.301 0.415 (0.328, 0.502) 37.9% 

0.5 0.500 0.632 (0.564, 0.683) 26.4% 

0.8 0.799 0.844 (0.823, 0.862) 5.6% 

Frank 

0.3 0.303 0.205 (0.122, 0.290) -32.3% 

0.5 0.498 0.348 (0.230, 0.425) -30.1% 

0.8 0.800 0.591 (0.491, 0.675) -26.1% 

Gumbel 

0.3 0.298 0.193 (0.124, 0.265) -35.2% 

0.5 0.499 0.359 (0.278, 0.439) -28.1% 

0.8 0.800 0.674 (0.398, 0.726) -15.8% 

Abbreviations: avg., average; CI, confidence interval; correl., correlation 

a 200 datasets, where each consists of 1000 bootstrap sample mean observations from the originally simulated 

(T, C) data with a sample size of 500  
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Table 4.4: Simulation results of correlation (dependence) estimation in bivariate 

competing risks data (T, C) a with the proposed method, compared to those with MLE, 

where the underlying marginal distributions are Weibull distributed 

Copula 
True 

tau 

Estimated Kendall’s tau  

with proposed method 

Estimated Kendall’s tau  

with MLE 

Point 

estimate 

Bootstrap 

b 

SE 

Bootstrap 

95% CI 

Point 

estimate 

Bootstrap 

SE 

Bootstrap 

95% CI 

Indep. 0 0.005 0.077 
(-0.067, 

0.186) 
0.268 0.280 

(0.096, 

0.891) 

Normal 

0.3 0.249 0.085 
(0.127, 

0.471) 
0.610 0.197 

(0.096, 

0.749) 

0.5 0.450 0.085 
(0.347, 

0.679) 
0.654 0.202 

(0.165, 

0.815) 

0.8 0.720 0.033 
(0.694, 

0.824) 
0.891 0.205 

(0.289, 

0.891) 

Clayton 

0.3 0.277 0.037 
(0.265, 

0.399) 
0.373 0.078 

(0.180, 

0.473) 

0.5 0.549 0.040 
(0.505, 

0.652) 
0.597 0.062 

(0.388, 

0.651) 

0.8 0.832 0.016 
(0.700, 

0.891) 
0.921 0.093 

(0.638, 

0.955) 

Frank 

0.3 0.452 0.078 
(0.247, 

0.538) 
0.498 0.227 

(0.070, 

0.909) 

0.5 0.554 0.075 
(0.299, 

0.557) 
0.546 0.165 

(0.340, 

0.918) 

0.8 0.728 0.053 
(0.613, 

0.790) 
0.669 0.191 

(0.279, 

0.963) 

Gumbel 

0.3 0.340 0.083 
(0.247, 

0.572) 
0.013 0.139 

(0.043, 

0.641) 

0.5 0.479 0.076 
(0.284, 

0.568) 
0.547 0.162 

(0.076, 

0.935) 

0.8 0.749 0.032 
(0.602, 

0.853) 
0.910 0.163 

(0.535, 

0.972) 

Abbreviations: CI, confidence interval; Indep., independence copula; SE, standard error 

a Simulated (T, C) data sample sizes were 500 or 1000 for Kendall’s tau of zero or 0.8, and 2000, 3000, or 4000 

for Kendall’s tau of 0.3 or 0.5 

b 50 bootstrap samples of the originally simulated (T, C) data were used for the calculations  
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4.2 Part 2: Estimation of marginal survival and the effect of a 

binary treatment variable in bivariate competing risks 

survival data 

4.2.1 Subsequent estimation of marginal survival following the estimation of 

correlation in bivariate competing risks survival data 

- Simulation settings 

The study objective in biomedical research given some bivariate competing risks 

survival data may be the unbiased estimation of the marginal survival probability (or hazard 

rate, with a 1-to-1 correspondence between the two) over time for an event of interest. In 

addition, the researcher would likely be interested in the effect (or regression coefficient) 

of some treatment or exposure on the marginal hazard rate of the event of interest. Therefore, 

we simulated these situations that would subsequently follow after the estimation of 

correlation (dependence) in bivariate competing risks data. 

Two simulation settings were devised for the estimation of marginal survival 

probability over time for an event of interest, considering the possible correlation of a 

competing event. 

First, 200 samples from the Log-Normal marginal distributions simulated in the 

previous section with mean and standard deviation for each of log(T) and log(C) as T ~ 

LogNormal(2.2, 1.0), C ~ LogNormal(2.0, 0.25), were linked via a Gumbel copula for a 
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simulated Kendall’s tau = 0.339, and the marginal survival curve of T was subsequently 

plotted by  

(i) using the proposed method to estimate the correlation between T and C as 0.304,  

(ii) incorrectly assuming zero correlation or independence (cause-specific hazards),  

(iii), (iv) incorrectly specifying the correlation as 0.5, 0.8, respectively. 

The copula-graphic estimator by Zheng and Klein (1994, 1995) introduced in Ch. 2 and its 

implementation via the compound.Cox package in R (Emura and Chen, 2016), together 

with the survival package in R, were used to plot the marginal survival curves of T. 

Second, 500 samples from Weibull and Exponential marginal distributions of T ~ 

Weibull(2, 0.25) and C ~ Exponential(0.2), were linked via a Clayton copula for a simulated 

Kendall’s tau = 0.791, and the marginal survival curve of T was subsequently plotted by  

(i) using the proposed method to estimate the correlation between T and C as 0.769,  

(ii) incorrectly assuming zero correlation or independence (cause-specific hazards),  

(iii), (iv) incorrectly specifying the correlation as 0.3, 0.9, respectively. 

In the next section 4.2.2, this example expands to a hypothetical randomized clinical 

trial (RCT) setting with a single binary treatment variable, for which the estimation of its 

efficacy (regression coefficient and its statistical significance) is the study objective. 

- Simulation results 
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The main purpose of Figures 4.1.1 and 4.1.2 are to visually demonstrate the unbiased 

marginal survival curve when the correlation (dependence) between T and C is correctly 

estimated via our proposed method, compared to the biased marginal survivals under 

incorrectly specified correlations of 0, 0.5, or 0.8. The well-known K-M survival curve 

assumes independent censoring, corresponding to the largely over-estimated survival curve 

in the right of Figure 4.1.1. For positively (negatively) correlated time-to-events T and C, 

the K-M curve will always over-estimate (under-estimate) the marginal survival curve as 

shown. Naturally, if the correlation is wrongly assumed as larger (smaller) than the actual 

positive correlation, this will result in under-estimation (over-estimation) of the marginal 

survival probability over time, as in Figure 4.1.2. 

Although the biasedness of the marginal survival of T is less pronounced in Figures 

4.2.1~4.2.2, the over-estimation under incorrectly smaller correlations (right of Figure 

4.2.1, left of Figure 4.2.2) and under-estimation under an incorrectly larger correlation 

(right of Figure 4.2.2) can still be seen. Under the previously mentioned hypothetical RCT 

scenario of a new treatment to a disease, the time to event of interest T may be the overall 

survival (OS) time of a patient, while the time to competing event C may be the observed 

time until patient withdrawal from the trial due to deteriorating health or adverse effects of 

the new treatment. Biasedness of the marginal survival of T, especially that of the universal 

K-M curve, then equates to the patients’ marginal OS probability over time under the new 

treatment, or efficacy of the new treatment, being incorrectly estimated.  
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Figure 4.1.1: Simulation results of marginal survival curves of the time to event of interest T in bivariate competing 

risks data (T, C) a, where the “true” marginal survival curve of T with Kendall’s tau = 0.339 is plotted in green, and 

the marginal survival curves after either estimating the correlation between (T, C) via the proposed method or 

assuming the correlation to be zero (independence) are plotted in blue 

 
a The underlying marginal distributions are Log-Normally distributed and the copula linking the marginal distributions is the Gumbel copula  
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Figure 4.1.2: Simulation results of marginal survival curves of the time to event of interest T in bivariate competing 

risks data (T, C) a, where the “true” marginal survival curve of T with Kendall’s tau = 0.339 is plotted in green, and 

the marginal survival curves after assuming the correlation between (T, C) to be either 0.5 or 0.8 are plotted in blue 

 
a The underlying marginal distributions are Log-Normally distributed and the copula linking the marginal distributions is the Gumbel copula  
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Figure 4.2.1: Simulation results of marginal survival curves of the time to event of interest T in bivariate competing 

risks data (T, C) a, where the “true” marginal survival curve of T with Kendall’s tau = 0.791 is plotted in green, and 

the marginal survival curves after either estimating the correlation between (T, C) via the proposed method or 

assuming the correlation to be zero (independence) are plotted in blue 

 
a The underlying marginal distributions are Weibull and Exponentially distributed for T and C, respectively, and the copula linking the marginal 

distributions is the Clayton copula  
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Figure 4.2.2: Simulation results of marginal survival curves of the time to event of interest T in bivariate competing 

risks data (T, C) a, where the “true” marginal survival curve of T with Kendall’s tau = 0.791 is plotted in green, and 

the marginal survival curves after assuming the correlation between (T, C) to be either 0.3 or 0.9 are plotted in blue 

 
a The underlying marginal distributions are Weibull and Exponentially distributed for T and C, respectively, and the copula linking the marginal 

distributions is the Clayton copula 
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4.2.2 Subsequent estimation of the effect of a binary treatment variable following 

the estimation of correlation in bivariate competing risks survival data 

- Simulation settings 

The second example of the previous section 4.2.1 is expanded and continued here. 500 

samples from Weibull and Exponential marginal distributions were generated as T ~ 

Weibull(2, 0.25) and C ~ Exponential(0.2), linked via a Clayton copula for a simulated 

Kendall’s tau = 0.791 (true tau = 0.8). In a hypothetical RCT setting of a new treatment to 

a disease, the time to event of interest T is the OS time of a patient, while the time to 

competing event C is the dependently censored time until patient withdrawal from the trial 

due to deteriorating health or adverse effects of the new treatment. Thus, a strongly positive 

correlation between T and C is hypothesized. The new treatment variable ‘Trt’ was 

generated as Trt ~ Bernoulli(0.5) with equal probability of either the new treatment or a 

placebo. As the treatment assignment was completely randomized, all other covariates such 

as patient age, gender, and disease characteristics were assumed to be well-balanced in the 

treatment and control groups, i.e., no other adjustment for covariates was needed for.  

A semi-parametric Cox PH model was assumed as  

h(x|Trt) = ℎ0(𝑥) ∙ exp [𝛽
𝑇 ∙ 𝑇𝑟𝑡], X (= x) = min(T, C)  

with baseline hazards of T and C as ℎ0,𝑇(𝑡) = 𝛼𝑇𝜆𝑇𝑡
𝛼−1 and ℎ0,𝐶(𝑐) = 𝜆𝐶, respectively. 

Therefore, the hazard functions were set as  
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ℎ𝑇(𝑡|𝑇𝑟𝑡) = 2 ∙ 0.25 ∙ 𝑡
(2−1) ∙ exp(𝛽𝑇 ∙ 𝑇𝑟𝑡) = 0.5 ∙ 𝑡 ∙ exp (𝛽𝑇 ∙ 𝑇𝑟𝑡),  

ℎ𝐶(𝑐|𝑇𝑟𝑡) = 0.2 ∙ exp (𝛽𝐶 ∙ 𝑇𝑟𝑡),  

and the correlated survival times (T, C) were generated as  

𝑇 = [−
log(𝑢)

{0.25∙exp(𝛽𝑇∙𝑇𝑟𝑡)}
]1/2, 𝐶 = −

log(𝑣)

{0.2∙exp(𝛽𝐶∙𝑇𝑟𝑡)}
 (section 4.1.1),  

for 𝒞𝛼(𝑢, 𝑣) = (𝑢
−𝛼 + 𝑣−𝛼 − 1)−

1

𝛼  from a Clayton copula with copula dependence 

parameter 𝛼 = 8, corresponding to a Kendall’s tau = 𝛼/(2 + 𝛼) = 0.8 (Table 2.1). The 

true effect sizes or regression coefficients of the new treatment on T and C, 𝛽𝑇 and 𝛽𝐶, 

were set as -0.5 and 0.2, respectively. These beta values correspond to a HR = exp(-0.5) = 

0.61 of the new treatment on T (= OS time), and HR = exp(0.2) = 1.22 of the new treatment 

on C (= time to patient withdrawal). That is, the new treatment is largely effective in 

prolonging patient survival, while having a slightly detrimental effect on, or increasing the 

hazard of, patient withdrawal from the trial. No other censoring or competing events were 

assumed, as one can always combine all events other than the event of interest into a single 

dependent competing or censoring event. 

200 bootstrap samples of the initially generated (T, C) data were taken, and the 

regression coefficients 𝛽𝑇  and 𝛽𝐶  of the treatment variable Trt were estimated under 

several correlation scenarios: 

(i) use the proposed method to estimate the mean correlation between T and C as 0.769, 

and utilize the estimated correlation in the marginal Cox regression analyses,  
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(ii) incorrectly assume zero correlation or independent censoring (cause-specific hazards), 

(iii), (iv) incorrectly specify the correlation as 0.3, 0.9, respectively. 

The dependCox.reg() function from the compound.Cox package in R, which enables 

univariate Cox regression under dependent censoring (Emura & Chen, 2016), was used for 

(i), (iii), and (iv), and the conventional coxph() function from the survival package for (ii). 

- Simulation results 

Tables 4.5.1~4.5.2 show the simulation results of regression coefficients estimation for 

a univariate Cox regression model of a binary treatment variable with dependent time-to-

events (T, C). Under our simulation settings, the average proportions of T and C were 77.2% 

and 22.8%, respectively. 

First of all, the proposed method of correlation estimation performed well with a mean 

estimate of 0.769 and standard error of 0.055, compared to the simulated Kendall’s tau of 

0.791 or true Kendall’s tau of 0.8. The approaches of cause-specific hazards and two 

incorrectly specified correlations do not have standard errors for tau since it was not 

considered as a parameter for estimation. 

Second, the mean estimates of the regression coefficients βT and βC were evidently less 

biased using the proposed method of correlation estimation, compared to the other three 

scenarios. The mean estimates of �̂�𝑇  = -0.482 and �̂�𝐶  = 0.187 were close to the true 

values of -0.5 and 0.2, compared to the largely over-estimated values under independence 
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and an incorrectly smaller or weaker correlation = 0.3, as the mean percentage error (MPE) 

values clearly demonstrate. The beta estimates under an incorrectly larger or stronger 

correlation = 0.9 between the survival endpoints became under-estimated as �̂�𝑇 = -0.436 

and �̂�𝐶 = -0.130, with the direction of association even being reversed in the estimation 

of βC. Absolute deviation from the true regression coefficients became larger as the 

assumed size or strength of the correlation deviated further from the true correlation, which 

emphasizes the importance of accurately estimating the correlation in competing risks or 

dependently censored survival data when conducting regression analyses. 
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Table 4.5.1: Simulation results of estimated correlation 0.769 and assumed independence, and their subsequent 

regression coefficients estimations for a univariate Cox regression model with bivariate competing risks data (T, C) a 

Param. 
True 

value 

Proposed method of correlation 

estimation 

Cause-specific hazards  

(Independence, �̂� = 0) 

Mean 

estimate 
MPE Bootstr. SE 

Mean 

estimate 
MPE Bootstr. SE 

βT -0.5 -0.482 3.58% 0.096 -0.718 -43.6% 0.109 

βC 0.2 0.187 6.58% 0.191 0.545 -172% 0.197 

τ 0.8 0.769 3.56% 0.055 0.000 -100% - 

 

Table 4.5.2: Simulation results of assumed correlations of 0.3 and 0.9, and their subsequent regression coefficients 

estimations for a univariate Cox regression model with bivariate competing risks data (T, C) a 

Param. 
True 

value 

Incorrectly assumed  

correlation (�̂� = 0.3) 

Incorrectly assumed  

correlation (�̂� = 0.9) 

Mean 

estimate 
MPE Bootstr. SE 

Mean 

estimate 
MPE Bootstr. SE 

βT -0.5 -0.619 -23.8% 0.105 -0.436 12.8% 0.088 

βC 0.2 0.517 -159% 0.193 -0.130 164.9% 0.117 

τ 0.8 0.300 -62.5% - 0.900 12.5% - 

Abbreviations: Bootstr., bootstrap; MPE, mean percentage error; Param., parameter for estimation; SE, standard error 

a The marginal distributions are Weibull and Exponentially distributed, and the copula linking the marginal distributions is the Clayton copula 
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Chapter 5  

Real Data Analysis 

5.1 Real data 1: Acute lymphoblastic leukemia (ALL) data 

5.1.1 ALL data: Description and preparation 

A real-world dataset of 2,279 patients with acute lymphoblastic leukemia (ALL) from 

the European Group for Blood and Marrow Transplantation was available via the dynpred 

package in R (van Houwelingen & Putter, 2012). The patients with ALL received an 

allogeneic hematopoietic stem cell transplant (AHSCT) from an HLA-identical sibling 

after first complete remission during the time period of 1985 – 1998. The clinically relevant 

events recorded were the incidence of acute graft versus host disease (AGvHD), the 

recovery of platelet counts to normal level, relapse of the disease, and all-cause death. 

AGvHD refers to an acute manifestation of the grafted or transplanted immune cells 

attacking its host, the patient who received AHSCT. For these documented events, the time-

to-event and indicator of event occurrence (yes/no) were recorded. The median follow-up 

of patients was 6.6 years (van Houwelingen & Putter, 2012). Additional prognostic 

variables that were recorded were donor-recipient gender mismatch (yes/no), T-cell 

depletion prophylaxis for GvHD prevention (yes/no), age of patient at transplant (≤20, 20-

40, >40), and year of transplant (1985-89, 1990-94, 1995-98). 
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A major marker of treatment success in ALL patients who receive AHSCT is being 

relapse-free. The occurrence of AGvHD, although life-threatening if very severe, is also 

known to have a beneficial “graft vs. leukemia” effect, where the transplanted healthy 

immune cells attack any residual cancerous blood cells that may remain in the host (Baron 

et al., 2023; Nordlander et al., 2004; Katsahian et al., 2004). Focusing on this issue, the 

outcome of interest was set as the time to relapse, where the main exposure or treatment is 

the occurrence of AGvHD. Thus, our research question was whether AGvHD incidence has 

a beneficial effect on the time to relapse to reduce its hazard among patients with ALL. An 

important issue here is the possible dependence between the endpoints of relapse and all-

cause death before relapse, as it is clinically likely that patients with a longer/shorter time 

to relapse would also have a longer/shorter time to all-cause death, and vice-versa. The 

possible correlation (dependence) between these survival endpoints should thus be 

estimated and taken into account to unbiasedly estimate the regression coefficient and 

statistical significance of the exposure of interest, AGvHD incidence. The survival time of 

patients was observed only up to their time to relapse, as data on survival after relapse is 

not always reliable (van Houwelingen & Putter, 2012). Therefore, the observed survival 

time was the minimum of either the time to relapse or the time to all-cause death or end-

of-study censoring but never both, inducing a “classical” competing risks situation. 

Several other factors were considered for data preparation. First, the study population 

was limited to those whose platelet count recovered to normal levels, as this is an important 

indicator of successful “engraftment”, where the transplanted hematopoietic stem cells 
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initially take root and establish themselves in the host's body. The biological assumption 

here was that initial engraftment was necessary for AGvHD to occur later on. To avoid 

immortal time bias (Zhang et al., 2022), a landmark time of 100 days since transplant was 

used (Dafni, 2011) to define platelet recovery (yes/no), as well as AGvHD status (yes/no) 

by its very definition. Hence, only those who were followed up for at least 100 days, 

together with platelet recovery, were considered for further analysis. This resulted in a study 

population of 1,083 ALL patients with platelet recovery within 100 days of AHSCT. Second, 

we envisioned a quasi-RCT setting where the “treatment” is whether or not a patient 

experienced AGvHD. As such, the distribution of other available prognostic variables 

(gender mismatch, GvHD prevention prophylaxis, age of patient, and year of transplant) 

were checked to see if they were well-balanced by AGvHD status (yes/no). As these 

prognostic variables were all categorical, a non-significant difference in the proportions of 

a variable by AGvHD status with a Chi-squared test P-value >0.05 was considered as 

sufficient balance for each variable. 

Regarding the possible correlation (dependence) between the two outcomes of time to 

relapse and time to either all-cause death or end-of-study censoring, three analysis 

scenarios were considered in assessing the effect of AGvHD on the time to relapse: 1) 

estimation of correlation with the proposed method, 2) assumed independence, and 3) 

assumed correlation of Kendall’s tau = 0.3. After either estimating or assuming the 

correlation between the two survival outcomes, the marginal survival probability over time 

of disease relapse and the regression coefficient of AGvHD incidence for the time to relapse 
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in a univariate Cox regression model were estimated according to each correlation scenario. 

The marginal survival probability over time was plotted using the original study population 

dataset (N=1,083) defined above, while the beta coefficient of the treatment arms variable 

was estimated in the original study population as well as in its 200 bootstrap samples for 

additional bootstrap SE and P-value calculations. The Wald statistic was used for the 

bootstrap P-values. The CG.Clayton() function in the compound.Cox R package (Emura & 

Chen, 2016) was used for marginal survival curve plotting, and the dependCox.reg() 

function of the same R package for univariate Cox regression with dependent censoring. 

The conventional coxph() function in the survival R package was used for analysis scenario 

2) of assumed independence. 

5.1.2 ALL data: Analysis results of applying the proposed method 

Table 5.1 shows the baseline characteristics of the study population prepared for the 

analysis of the ALL dataset. AGvHD occurred in 52.4% of patients with ALL, and the Chi-

squared test or ANOVA P-values were >0.05 for all covariates considered, indicating an 

adequate balance of covariates by the main exposure or “treatment” of AGvHD, in terms 

of the outcome of time to relapse. For disease relapse against AGvHD incidence, the 

proportion of relapse among patients with AGvHD was 17.6% compared to 20.2% of 

relapse among those without AGvHD, indicating a possible protective association of 

AGvHD with disease relapse. The one-sided P-value of this univariate assessment was 

0.327/2=0.164. In addition, 17.5 % of patients who received GvHD prevention experienced 

AGvHD compared to 22.1% among those without such prophylaxis, with the P-value of 
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0.066 showing borderline significance. Thus, further matching by GvHD prevention status 

may result in a better balance of covariates between the AGvHD incidence groups (yes/no). 

According to the three analysis scenarios detailed in the previous section 5.1.1, we 

either estimated the correlation (dependence) between the time to relapse and the time to 

all-cause death or end of study censoring via our proposed method, or assigned assumed 

correlations of zero (independence) or Kendall’s tau=0.3. The correlation estimations by 

our proposed method, for the original real-world data and its 200 bootstrap samples, are 

shown in Table 5.2. The point estimate of the original data’s correlation was Kendall’s 

tau=0.673, while the mean estimate of its 200 bootstrap samples was 0.781, which is a very 

strong positive correlation. This is to be expected, as disease relapse and overall survival 

are known to correlate strongly in patients with ALL. Figure 5.1 depicts the survival 

probability curves under the estimated correlation being the mean estimate of 0.781 (in 

green) vs. the assumed independence (left, in blue) and assumed correlation of 0.3 (right, 

in blue) scenarios. It is evident that the resulting survival curves are very different according 

to the underlying correlation assumption between the time to event of interest and the time 

to its competing event(s). Therefore, an accurate estimation of correlation between the 

survival endpoints is important and necessary, rather than resorting to the independent 

censoring assumption and the conventional K-M survival curve (Figure 5.1; left, in blue). 

Table 5.2 displays the univariate Cox regression results of the beta coefficient 

estimation regarding the potentially beneficial effect of AGvHD incidence on the time to 

relapse of ALL. Results according to the three analysis scenarios of either an estimated or 
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assumed correlation between the survival endpoints are shown in separate columns. Results 

of a single analysis of the original dataset and those of the 200 bootstrap samples of the 

original dataset are shown in separate rows. The SE and P-value calculations of the original 

dataset analysis were done by the dependCox.reg() function of the compound.Cox package 

in R (Emura & Chen, 2016). Comparing the mean estimate of the bootstrap samples and 

the single estimate of the original study population, the beta coefficient, SE, and P-value 

estimates are mostly in agreement, albeit the size of the AGvHD effect being slightly larger 

for the single analysis of the original data under the proposed method of correlation 

estimation (-0.122 vs. -0.104). 

Comparing the results by the three scenarios of an estimated or assumed correlation in 

Table 5.2, all are in agreement that the AGvHD effect on the hazard of disease relapse is 

not statistically significant at the 0.05 level. However, under the one-sided test of H0: 

AGvHD has a null or detrimental effect on the hazard of relapse vs. Ha: AGvHD has a 

protective effect on the hazard of relapse, the results under the estimated correlation of 

0.781 or 0.673 estimation show statistical significance at the liberal 0.2 level with P-values 

of 0.177 or 0.145, while those of assumed independence or assumed Kendall’s tau=0.3 do 

not. This is mainly due to the smaller SEs of the estimated beta coefficient under the 

proposed method of correlation estimation. Overall, the hypothesized protective effect of 

AGvHD incidence upon the subsequent relapse of ALL reaches statistical significance 

more closely when the apparently strong correlation between the survival outcomes is taken 

into consideration.  
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Table 5.1: Baseline characteristics of the ALL study population (N=1,083) in total and 

by incident AGvHD status 

Variables Total 
AGvHD incidence  

Yes No P-value a 

Overall N (%) 1,083 (100) 567 (52.4) 516 (47.6) - 

Year of transplant, N (%)    0.865 

1985 – 1989 213 (19.7) 108 (19.0) 105 (20.3)  

1990 - 1994 442 (40.8) 233 (41.1) 209 (40.5)  

1995 – 1998 428 (39.5) 226 (39.9) 202 (39.2)  

Age at transplant, N (%)    0.536 

≤ 20 275 (25.4) 138 (24.4) 137 (26.6)  

20 - 40 533 (49.2) 278 (49.0) 255 (49.4)  

> 40 275 (25.4) 151 (26.6) 124 (24.0)  

Donor-recipient mismatch, N (%)    0.267 

No mismatch 835 (77.1) 429 (75.7) 406 (78.7)  

Gender mismatch 248 (22.9) 138 (24.3) 110 (21.3)  

GvHD prevention, N (%)    0.066 

No prophylaxis 870 (80.3) 468 (82.5) 402 (77.9)  

T-cell depletion prophylaxis 213 (19.7) 99 (17.5) 114 (22.1)  

Disease relapse, N (%)    0.327 

Yes 204 (18.8) 100 (17.6) 104 (20.2)  

No 879 (81.2) 467 (82.4) 412 (79.8)  

Follow-up time (years), mean (SD) 4.91 (3.91) 4.83 (3.97) 5.01 (3.84) 0.453 

Abbreviations: AGvHD, acute graft vs. host disease; ALL, acute lymphoblastic leukemia; GvHD, graft vs. host 

disease; SD, standard deviation 
a P-values were calculated with ANOVA for continuous variables and the Chi-squared test for categorical 

variables
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Figure 5.1: Marginal survival curves of the time to relapse in the ALL study population (N=1,083) under the estimated 

correlation via the proposed method (green), under independence (left, in blue), and under an assumed correlation 

of 0.3 (right, in blue), where the copula linking the time to relapse and the time to other endpoints (all-cause death or 

end of study censoring) is the Clayton copula 

 

Abbreviations: ALL, acute lymphoblastic leukemia  
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Table 5.2: Results of correlation (dependence) estimation with the proposed method and subsequent regression 

coefficient estimation for a univariate Cox regression model of AGvHD occurrence on the time to relapse in the ALL 

study population (N=1,083), where the copula linking the time to relapse and the time to other endpoints (all-cause 

death or end of study censoring) is the Clayton copula 

 
Proposed method of correlation 

estimation 

Cause-specific hazards  

(Independence, �̂� = 0) 
Assumed correlation (�̂� = 0.3) 

Params. 
Mean a 

estimate 

Bootstr. b 

SE 

One-side 

P-value c 

Mean 

estimate 

Bootstr. 

SE 

One-side 

P-value 

Mean 

estimate 

Bootstr. 

SE 

One-side 

P-value 

βT -0.104 0.113 0.177 -0.118 0.143 0.204 -0.115 0.143 0.211 

τ 0.781 0.069 <0.001 0 - - 0.3 - - 

Params. 
Orig. data 

d 

estimate 

Orig. data 

SE 

One-side 

P-value 

Orig. data 

estimate 

Orig. data 

SE 

One-side 

P-value 

Orig. data 

estimate 

Orig. data 

SE 

One-side 

P-value 

βT -0.122 0.115 0.145 -0.112 0.140 0.211 -0.110 0.142 0.218 

τ 0.673 - - 0 - - 0.3 - - 

Abbreviations: AGvHD, acute graft vs. host disease; ALL, acute lymphoblastic leukemia; Bootstr., bootstrap; Orig., original; Params., parameters for 

estimation; SE, standard error 

a The mean value of 200 regression coefficients estimated from the 200 bootstrap samples of the original ALL study population 

b The standard error (empirical standard deviation) of 200 regression coefficients estimated from the 200 bootstrap samples 

c A one-sided P-value calculated from the Wald statistic = �̂�𝑇 / SE(�̂�𝑇) 

d The single regression coefficient, SE, and P-value estimated from the original ALL study population  
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5.2 Real data 2: AIDS Clinical Trials Group (ACTG) Study 175 

data 

5.2.1 ACTG 175 data: Description and preparation 

A real-world dataset of a double-blind RCT among adults infected with the human 

immunodeficiency (HIV) virus whose CD4 T-cell counts were 200~500/mm3 was obtained 

from the speff2trial package in R. The study objective was to compare the efficacy of 

monotherapy with either zidovudine (also known as AZT) or didanosine vs. the 

combination therapies of AZT plus didanosine or AZT plus zalcitabine, resulting in a total 

of four treatment arms. The primary endpoint of the study was ≥50% decline in CD4 T-cell 

count, progression of HIV to AIDS, or all-cause death, whichever came first. Early patient 

withdrawal due to deteriorating health or toxic effects of the drug occurred during the trial, 

which is strongly indicative of dependent censoring that is positively correlated with the 

primary endpoint. Therefore, the estimation of correlation (dependence) between the 

primary endpoint and the competing event of patient withdrawal is necessary to unbiasedly 

estimate and compare the efficacy of the treatment arms. The ACTG 175 data has been 

analyzed by several previous studies similar to our study, focusing on the possible 

correlation between the time to primary endpoint and time to patient withdrawal (Deresa 

& Van Keilegom; 2021, Chen; 2010, Huang & Zhang; 2008). 

Among the four treatment arms initially included in the data, only the two treatment 

arms of AZT alone (N=532) and AZT plus didanosine (N=522) were considered for a total 
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of 1,054 patients. Among the 1,054 patients, 284 patients experienced the primary endpoint 

of a decline in CD4 T-cells, progression to AIDS, or death, while 381 patients withdrew 

from the trial and 389 were administratively censored at the end of study. The possible 

dependent censoring of patient withdrawal and administrative end-of-study censoring were 

combined into one competing event (against that of the primary endpoint) as 381+389 = 

770 patients. Since the study was a double-blind RCT with randomized treatment allocation, 

we expected the eight clinically relevant covariates of age, gender, race, intravenous drug 

use, hemophilia, baseline CD4 T-cell count, prior antiretroviral history, and disease 

symptoms indicator (Deresa & Van Keilegom; 2021, Chen; 2010, Huang & Zhang; 2008) 

to be well-balanced between the two treatment arms. Either ANOVA for continuous 

covariates or the Chi-squared test for categorical covariates were used to test for the 

covariates’ sufficient balance by treatment arms at a significance level of 0.05. 

Regarding the possible correlation (dependence) between the two outcomes of time to 

the primary endpoint and time to either withdrawal or end-of-study censoring, three 

analysis scenarios were considered in comparing the efficacy of treatment arms: 1) 

estimation of correlation with the proposed method, 2) assumed independence, and 3) 

assumed correlation of Kendall’s tau = 0.8. After either estimating or assuming the 

correlation between the survival endpoints, the marginal survival probability over time of 

the primary endpoint and the regression coefficient of the treatment arms variable for the 

time to the primary endpoint in a univariate Cox regression model were estimated 

according to each correlation scenario. The marginal survival probability over time was 
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plotted using the original ACTG 175 dataset study population, while the beta coefficient of 

the treatment arms variable was estimated in the original ACTG 175 dataset as well as in 

its 200 bootstrap samples for additional bootstrap SE and P-value calculations. The Wald 

statistic with bootstrap SEs were used for the bootstrap P-values. The CG.Clayton() 

function in the compound.Cox R package (Emura & Chen, 2016) was used for marginal 

survival curve plotting, and the dependCox.reg() function of the same R package for 

univariate Cox regression with dependent censoring. The conventional coxph() function in 

the survival R package was used for analysis scenario 2) of assumed independence. 

5.2.2 ACTG 175 data: Analysis results of applying the proposed method 

Baseline characteristics of the ACTG 175 data study population (N=1,054) by the two 

treatment arms are shown in Table 5.3. A similar number of patients were allocated to each 

treatment (532 patients for monotherapy, 522 for combination therapy), and as expected 

from a double-blind RCT, the P-values show that all relevant covariates were well-balanced 

between the treatment arms. The outcome variables of the primary endpoint indicator 

(yes/no) and mean follow-up time are very different between the two treatments (P-values 

<0.001), with patients in the combination treatment arm showing a smaller proportion of 

the primary endpoint and a longer mean follow-up time. 

Figure 5.2 displays the marginal survival curves of the primary endpoint by the three 

estimated or assumed correlation scenarios. For plotting the survival curve by our proposed 

method of correlation estimation, we used the mean correlation estimate of 200 bootstrap 
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samples of the original ACTG 175 dataset (Table 5.4). Compared to the survival curve 

plotted under the estimated correlation of Kendall’s tau = 0.313 (in green), the survival 

curve of assumed independence between the survival endpoints over-estimates (left, in 

blue), and that of assumed Kendall’s tau = 0.8 under-estimates the marginal survival of the 

primary endpoint (right, in blue). An accurate estimation of the marginal survival 

probability over time is important in describing or predicting the patients’ status if patient 

withdrawal from the trial or any other dependent censoring were not to occur, thus enabling 

us to compare the two treatment arms more objectively. In this aspect, the largely differing 

survival curve under an assumed correlation of 0.8 (right, in blue) shows how the estimated 

marginal survival probabilities can deviate to a large degree under different correlations 

between the survival endpoints. 

Table 5.4 compares the estimated regression coefficient of the combination treatment 

vs. monotherapy for the time to the primary endpoint in a univariate Cox regression model 

among the three scenarios of an estimated or assumed correlation between the primary 

endpoint and other endpoints (patient withdrawal or end of study censoring). Also, in 

separate rows are the mean estimate of 200 bootstrap samples of the original ACTG 175 

dataset and the single estimate of the original dataset. As expected, the estimated regression 

coefficients, SEs, and P-values of the original dataset and those of its bootstrap samples are 

similar.  

Comparing column-wise by the three estimated or assumed correlations, the ordering 

of the relative sizes of the estimated regression coefficients shows that the effect estimate 
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is largest under assumed independence between the survival endpoints (-0.701), slightly 

smaller under the estimated correlation of 0.313 by the proposed method (-0.688), and 

smallest under an assumed correlation of 0.8 (-0.376). This is in agreement with the 

previous studies by Huang and Zhang (2008) and Chen (2010), while difficult to directly 

compare with Deresa and Van Keilegom (2021) due to their use of a linear regression model. 

Overall, the combination treatment is clearly superior over monotherapy in terms of the 

primary endpoint with protective HRs of exp(-0.688) = 0.50, exp(-0.701) = 0.49, or exp(-

0.376) = 0.69 across all three correlation scenarios, which is also in agreement with the 

aforementioned studies.  

A point of note is the difference in the estimated correlation between our study and 

Deresa and Van Keilegom (2021). First, we estimated a mean correlation of 0.313 between 

the time to primary endpoint and time to other endpoints (patient withdrawal or end of 

study censoring), while Deresa and Van Keilegom (2021)’s correlation estimation of 0.458 

(=2/pi*arcsine(0.659)) was between the time to primary endpoint and time to patient 

withdrawal, treating end of study censoring as administrative independent censoring. This 

is clearly reasonable, while we believe that combining all other events into one dependent 

or competing event to estimate its correlation with the event of interest is also a reasonable 

approach. Second, since the ACTG study 175 was a double-blind RCT, we confirmed that 

all eight covariates were balanced between the two treatment arms and considered them to 

be adjusted for, and proceeded with a univariate Cox regression of the treatment arm 

variable upon the time to primary event. The previous studies differ with ours in that they 
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again adjusted for the aforementioned covariates in the regression model, resulting in 

different beta coefficient estimates compared to ours. However, the relative effect sizes by 

the estimated correlation, assumed independence, or assumed correlation of 0.8 are in 

agreement among all studies including ours. Conclusively, the better efficacy of 

combination therapy (vs. monotherapy) under the possibly correct estimation of correlation 

between the survival endpoints is not as large compared to that of assumed independence, 

but larger than that under an incorrectly assumed correlation of Kendall’s tau = 0.8.  
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Table 5.3: Baseline characteristics of the ACTG 175 dataset study population 

(N=1,054) in total and by treatment arms 

Variables Total 
Treatment arms  

Mono Combo P-value a 

Overall N (%) 1,054 (100) 532 (50.5) 522 (49.5) - 

Age, mean (SD) 35.2 (8.77) 35.2 (8.85) 35.2 (8.70) 0.994 

Gender, N (%)    0.458 

Male 866 (82.2) 432 (81.2) 434 (83.1)  

Female 188 (17.8) 100 (18.8) 88 (16.9)  

Race, N (%)    0.329 

White 760 (72.1) 376 (70.7) 384 (73.6)  

Other 294 (27.9) 156 (29.3) 138 (26.4)  

History of IV drug use, N (%)    0.344 

Yes 136 (12.9) 63 (11.8) 73 (14.0)  

No 918 (87.1) 469 (88.2) 449 (86.0)  

Hemophilia, N (%)    0.927 

Yes 85 (8.1) 42 (7.9) 43 (8.2)  

No 969 (91.9) 490 (92.1) 479 (91.8)  

Baseline CD4 count, mean (SD) 351 (122) 349 (130) 353 (114) 0.552 

Prior antiretroviral therapy, N (%)    0.761 

Yes 618 (58.6) 309 (58.1) 309 (59.2)  

No 436 (41.4) 223 (41.9) 213 (40.8)  

Disease symptoms, N (%)    0.530 

Yes 185 (17.6) 89 (16.7) 96 (18.4)  

No 869 (82.4) 443 (83.3) 426 (81.6)  

Primary endpoint, N (%)    <0.001 

Yes 284 (26.9) 181 (34.0) 103 (19.7)  

No 770 (73.1) 351 (66.0) 419 (80.3)  

Follow-up time (years), mean (SD) 
858.2  

(302.9) 

801.2  

(326.9) 

916.2  

(264.2) 
<0.001 

Abbreviations: ACTG, AIDS Clinical Trials Group Study; Combo, combination therapy of AZT plus 

didanosine; IV, intravenous; Mono, AZT monotherapy; SD, standard deviation 
a P-values were calculated with ANOVA for continuous variables and the Chi-squared test for categorical 

variables 
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Figure 5.2: Marginal survival curves of the time to the primary endpoint in the ACTG 175 dataset (N=1,054) under 

the estimated correlation via the proposed method (green), under independence (left, in blue), and under an assumed 

correlation of 0.8 (right, in blue), where the copula linking the time to the primary endpoint and the time to other 

endpoints (withdrawal from the trial or end of study censoring) is the Clayton copula 

 

Abbreviations: ACTG, AIDS Clinical Trials Group Study  
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Table 5.4: Results of correlation (dependence) estimation with the proposed method and subsequent regression 

coefficient estimation for a univariate Cox regression model of mono vs. combination treatment arms on the time to 

the primary endpoint in the ACTG 175 dataset (N=1,054), where the copula linking the time to the primary endpoint 

and the time to other endpoints (patient withdrawal or end of study censoring) is the Clayton copula 

 
Proposed method of correlation 

estimation 

Cause-specific hazards  

(Independence, �̂� = 0) 
Assumed correlation (�̂� = 0.8) 

Params. 
Mean a 

estimate 

Bootstr. b 

SE 

Bootstr. 

P-value c 

Mean 

estimate 

Bootstr. 

SE 

Bootstr. 

P-value 

Mean 

estimate 

Bootstr. 

SE 

Bootstr. 

P-value 

βT -0.688 0.118 <0.001 -0.701 0.116 <0.001 -0.376 0.085 <0.001 

τ 0.313 0.073 <0.001 0 - - 0.8 - - 

Params. 
Orig. data 

d 

estimate 

Orig. data 

SE 

Orig. data 

P-value 

Orig. data 

estimate 

Orig. data 

SE 

Orig. data 

P-value 

Orig. data 

estimate 

Orig. data 

SE 

Orig. data 

P-value 

βT -0.675 0.122 <0.001 -0.704 0.123 <0.001 -0.372 0.082 <0.001 

τ 0.370 - - 0 - - 0.8 - - 

Abbreviations: ACTG, AIDS Clinical Trials Group Study, Bootstr., bootstrap; Orig., original; Params., parameters for estimation; SE, standard error 

a The mean value of 200 regression coefficients estimated from the 200 bootstrap samples of the original ACTG 175 dataset 

b The standard error (empirical standard deviation) of 200 regression coefficients estimated from the 200 bootstrap samples 

c A two-sided P-value calculated from the Wald statistic = �̂�𝑇 / SE(�̂�𝑇) 

d The single regression coefficient, SE, and P-value estimated from the original ACTG 175 dataset 
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Chapter 6  

Discussion and Conclusion 

6.1 Points of Discussion 

The current study proposed a novel method of estimating the possible correlation or 

dependence in bivariate competing risks survival data (T, C), where only the minimum of 

the time-to-events is observed and never both. We essentially addressed the “non-

identifiability” dilemma in competing risks data by establishing a connection between any 

parametric bivariate competing risks survival data and the identifiable BVN distribution 

via the bivariate CLT (Figure 3.2). Simulations across a range of marginal distributions, 

copulas, and correlations showed our proposed method to accurately and precisely estimate 

the true correlation of (T, C) (Tables 4.1~4.2). Further estimation of the marginal survival 

curve of the time-to-event of interest T also demonstrated the importance of estimating the 

possible dependence between T and C by our proposed method, in contrast to the 

biasedness of the K-M curve and its default assumption of independent censoring (Figures 

4.1~4.2). In addition, the necessity of correlation estimation between the survival outcomes 

was shown in a Cox PH regression model of estimating the effect of a treatment or exposure 

on the marginal hazard of T (Table 4.5). The beta coefficients were accurately estimated 

when the correlation of T and C was estimated by our proposed method and included in the 

model, while the coefficient estimates became biased under the “cause-specific” hazards 
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analysis of independent censoring or when the correlation was incorrectly assumed. To 

verify our proposed method’s real-world applicability, we used two real-world datasets that 

were strongly indicative of dependence between the survival time endpoints. Here, we were 

able to re-confirm the proposed method’s usefulness in accounting for correlated survival 

outcomes when estimating the effect of an exposure or treatment in disease etiology 

research or RCTs (Tables 5.2 and 5.4). 

Compared to the previous literature on dependent competing risks or dependently 

censored survival data, the current study presents a novel approach to explicitly estimate 

the correlation, or copula dependence parameter α, between the bivariate survival time 

endpoints. First of all, our proposed method is a significant advancement compared to the 

beginning works by Zheng and Klein (1995, 1994) and Huang and Zhang (2008), where 

the copula parameter α and the copula’s functional form were assumed to be completely 

known for the subsequent estimation of marginal survival or hazard functions. However, 

the contributions of Zheng and Klein must be acknowledged in proving the identifiability 

of marginal distributions of multivariate survival times once their dependence structure is 

known, and in developing the copula-graphic survival estimator under dependence, which 

reduces to the K-M survival curve under independence. Huang and Zhang also provided 

the framework of a sensitivity analysis under various possible correlation scenarios for a 

Cox regression model with dependent censoring, and their simulation approaches have 

been closely followed in the current study. The mainstream consensus in copula-based 

dependence modeling of survival data up to the works of Emura and Chen (2016, 2018) 
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was that the copula parameter α must be “assumed”, due to the non-identifiability of 

competing risks data and the likelihood function providing little information regarding the 

value of α (Chen, 2010; Emura & Chen, 2016; Michimae & Emura, 2022). Emura and Chen 

(2016) did propose a novel way of indirectly estimating α by using cross-validation of a 

survival prediction model. Their approach was to choose α that maximizes the cross-

validated Harrell’s c-index, under the rationale that the α value resulting in the best 

prediction of actual survival times would be the true α. However, this approach relies on 

the existence of highly predictive covariates within the given dataset and was deemed 

infeasible after its application to our simulations (results not shown). The most recent works 

of Deresa and Van Keilegom (2019, 2020, 2021, 2022-1, 2022-2) and Czado and Van 

Keilegom (2023) deserve much acknowledgement, as their approach of BVN-distributed 

error terms after data transformation for the identifiability of competing risks survival data 

(Deresa & Van Keilegom, 2019, 2020) was the starting point of the current study. Czado 

and Van Keilegom (2023) expanded parametric identifiability from the BVN distribution 

and its Normal copula to other widely used marginal distributions and copulas, such as the 

Log-Normal and Weibull marginal distributions and the Archimedean copulas of Clayton, 

Frank, and Gumbel. Their theorems essentially state that bivariate competing risks or 

dependently censored survival data from the parametric marginal distributions and copulas 

noted above are “identifiable” from the usual likelihood construction and subsequent MLE. 

However, we empirically verified the instability of MLE in the case of Weibull marginal 

distributions linked via Normal, Clayton, Frank, or Gumbel copulas (Table 4.4), and the 
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disagreement between our results and the statements of Czado and Van Keilegom (2023) 

seems to require further study. 

We also propose some other topics for future study. First, our numerical estimation 

algorithm may be used to further develop a test of dependence in bivariate competing risks 

or dependently censored survival data. The test may be formulated in the lines of a null 

hypothesis stating independence of T and C, where the estimated correlation not being 

statistically significantly different from zero would imply independence only for a Normal 

(Gaussian) copula (Hogg, McKean, & Craig, 2013). For resampled data statistics of 

empirical CIs, the proportion of null hypothesis rejection would be used to calculate the P-

value of the test. Second, the phenomenon of correlation shrinkage or enlargement in the 

bootstrap sample means of Archimedean copulas should be further investigated. Although 

no direct search results were found, the previous works of Fermanian et al. (2004), Genest 

and Segers (2010), and Segers (2012) regarding the asymptotics or convergence of copula 

processes may provide theoretical groundwork in explaining this phenomenon. Third, as 

the proposed method’s global search with simulated annealing required comparatively long 

runtimes, other potentially faster algorithms such as ‘differential evolution’ which is known 

to work well for continuous numerical optimization (Cortez, 2021) may be worth exploring. 

 

6.2 Study Conclusion 

In conclusion, the current study proposed a novel method to explicitly estimate the 
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correlation (dependence) in bivariate competing risks survival data, subsequently enabling 

an unbiased estimation of the marginal survival or hazard functions of the event of interest 

when the independent censoring assumption does not hold. Simulations showed that the 

proposed method works well over various marginal distributions, copulas, and sizes of the 

correlation. Our study provides a potential contribution to the existing literature in that the 

proposed method is applicable to any parametric bivariate competing risks data, requires 

no covariate information to estimate the correlation, and shows accurate and precise results 

where the conventional MLE fails to do so. We expect the current study to have further 

applications in biomedical time-to-event analyses where dependence between the survival 

endpoints exist more often than not, especially in disease etiology research and RCTs of 

drug efficacy. 
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Appendix 

Table A1. Correlation shrinkage or enlargement in bootstrap sample means of 

bivariate competing risks data (T, C) a with Exponential marginal distributions, where 

T and C are linked via parametric copulas such as the Normal, Clayton, Frank, and 

Gumbel copulas 

Copula 

True 

Kendall’s 

tau 

Simulated 

data avg. 

correl. 

Bootstrap 

sample 

mean avg. 

correl. 

95% CI of 

bootstrap 

sample mean 

correl. 

Shrinkage or 

Enlargement 

Normal 

0.3 0.299 0.268 (0.207, 0.328) -10.4% 

0.5 0.500 0.464 (0.418, 0.510) -7.2% 

0.8 0.800 0.781 (0.755, 0.806) -2.4% 

Clayton 

0.3 0.301 0.407 (0.343, 0.469) 35.2% 

0.5 0.500 0.625 (0.582, 0.667) 25.0% 

0.8 0.800 0.873 (0.858, 0.887) 9.1% 

Frank 

0.3 0.301 0.220 (0.094, 0.281) -26.9% 

0.5 0.498 0.368 (0.100, 0.438) -26.1% 

0.8 0.799 0.628 (0.171, 0.693) -21.4% 

Gumbel 

0.3 0.299 0.212 (0.140, 0.279) -29.1% 

0.5 0.500 0.381 (0.149, 0.453) -23.8% 

0.8 0.800 0.713 (0.676, 0.750) -10.9% 

Abbreviations: avg, average; CI, confidence interval; correl, correlation 

a 200 datasets, where each consists of 1000 bootstrap sample mean observations from the original (T, C) dataset 

with a sample size of 1,000.  
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Table A2. Correlation shrinkage or enlargement in bootstrap sample means of 

bivariate competing risks data (T, C) a with Log-Normal marginal distributions, 

where T and C are linked via parametric copulas such as the Normal, Clayton, Frank, 

and Gumbel copulas 

Copula 

True 

Kendall’s 

tau 

Simulated 

data avg. 

correl. 

Bootstrap 

sample 

mean avg. 

correl. 

95% CI of 

bootstrap 

sample mean 

correl. 

Shrinkage or 

Enlargement 

Normal 

0.3 0.299 0.240 (0.180, 0.304) -19.7% 

0.5 0.500 0.398 (0.334, 0.450) -20.4% 

0.8 0.800 0.608 (0.532, 0.662) -24.0% 

Clayton 

0.3 0.301 0.357 (0.303, 0.412) 18.6% 

0.5 0.500 0.518 (0.461, 0.560) 3.6% 

0.8 0.800 0.642 (0.525, 0.692) -19.8% 

Frank 

0.3 0.301 0.190 (0.069, 0.257) -36.9% 

0.5 0.498 0.310 (0.085, 0.381) -37.8% 

0.8 0.799 0.501 (0.129, 0.587) -37.3% 

Gumbel 

0.3 0.299 0.191 (0.119, 0.253) -36.1% 

0.5 0.500 0.333 (0.157, 0.409) -33.4% 

0.8 0.800 0.571 (0.491, 0.629) -28.6% 

Abbreviations: avg, average; CI, confidence interval; correl, correlation 

a 200 datasets, where each consists of 1000 bootstrap sample mean observations from the original (T, C) dataset 

with a sample size of 1,000. 
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국문요약 

 

이변량 경쟁위험 생존자료에서 상관성과 주변부 분포 추정을 위한  

통합된 모수적 추정 방법 제안 

 

둘 중 먼저 발생한 사건까지의 시간만 알 수 있는 이변량 경쟁위험 생존자료에서 두개 사건 

발생 시간 간의 상관성은 식별 불가능한 것으로 알려져 있다. 두개의 사건 발생 시간 간의 상관성 

또는 영이 아닌 상관계수가 존재한다면, 독립적 중도절단 가정 하의 특정 원인별 위험 (cause-

specific hazards) 분석이나 잘못 가정된 상관계수 하의 분석은 편향을 야기한다. 이러한 상관성

이 존재할 때 가장 중요하게 추정되어야 할 모수는 사건 발생 시간 간의 상관계수로 볼 수 있다. 

이 경우에 최대우도추정법은 추정치가 편향되고 분산 또한 큰 것으로 알려져 있고, 정확한 상관

계수 추정을 위한 실용적인 방법은 아직 없는 실정이다. 

이변량 정규분포를 따르는 이변량 경쟁위험 자료에서는 원래의 분포 모수가 식별 가능함에 

착안하여, 본 연구는 이변량 중심극한정리를 연결고리로 주어진 이변량 경쟁위험 자료와 식별 가

능한 이변량 정규분포를 연결하는 통합된 모수적 접근법을 제안하였다. 즉, 같은 표본 평균 정보
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를 갖는 이변량 정규분포의 상관계수 모수가 주어진 자료에서 추정하고자 하는 상관계수이며 이

것을 반복적인 수치 알고리즘으로 추정 가능함을 보였다. 상관계수의 정확한 추정은 이후의 주변

부 생존 또는 위험 함수의 비편향적 추정을 또한 가능케 한다. 

본 연구는 기존 연구들 대비 광범위한 모수적 이변량 경쟁위험 자료에 적용이 가능하고, 상

관계수 추정을 위한 공변량 정보가 필요 없으며, 최대우도추정법이 경쟁위험 자료의 상관계수 추

정에 사용될 수 없음을 보완하는 측면에서 잠재적 기여를 할 수 있을 것으로 보인다. 아울러 보건

의료적 관점에서, 사건 발생까지의 시간 간에 상관성이 존재할 수 있는 질병의 인과성 연구 또는 

신약 평가 임상시험 등에 추가적인 응용 사례가 있기를 기대한다. 

                                                              

핵심되는 말: 경쟁위험 생존분석, 상관계수, 종속성, 식별성 문제, 이변량 중심극한정리 


