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Abstract 

 

A Prediction Model for Prevention and Management of Metabolic 

Syndrome Based on Machine Learning 

 

Jung Hun Lee 

Department of Medicine 

The Graduate School 

Yonsei University 

 

Digital health-based lifestyle interventions (e.g., mobile applications, short message 

services, wearable devices, social media, and interactive websites) are widely used to 

manage metabolic syndrome (MetS). This study aimed to confirm the usefulness of digital 

health-based lifestyle interventions using healthcare devices and propose a novel prediction 

model of prevention and management for MetS. Participants with one or more MetS risk 

factors were recruited from December 2019 to September 2020, and finally, 106 

participants were analyzed. Participants were provided with five healthcare devices and 

applications. Characteristics were compared at baseline and follow-up, and lifelog data that 

were collected during the clinical trial were analyzed. With these results, the frequency of 

use of healthcare devices for continuous self-care was quantified, and a novel prediction 

model for the prevention and management of MetS was developed. The model predicts 
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persistence in continuous engagement as well as abbreviated risk factors for self-care 

effects. Representative machine-learning classifiers were used and compared. In both 

models, the random forest classifier showed the best performance, and feature selection 

was optimized through random forest-recursive feature elimination. As a result, the 

prediction model for persistence showed recall of 83.0%, precision of 92.4%, an F1-score 

of 0.874, a Matthews correlation coefficient (MCC) of 0.844, and accuracy of 94.9%. The 

prediction model for abbreviated risk factors showed a recall of 79.8%, a precision of 

87.2%, an F1-score of 0.834, and an MCC of 0.797 for increased abbreviated risk factors, 

and a recall of 75.1%, a precision of 85.5%, an F1-score of 0.800, and an MCC of 0.747 

for decreased abbreviated risk factors. The prediction model proposed showed high 

performance. Based on self-care with digital health-based lifestyle interventions, prediction 

models could be helpful for the prevention and management of MetS. 

 

 

 

 

 

 

 

 

Keywords: metabolic syndrome; digital health; lifestyle intervention; healthcare; 

machine learning 
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Chapter 1.  

Introduction 

1.1. Objective 

This study aimed to confirm the usefulness of digital health-based lifestyle 

interventions using healthcare devices and to propose a predictive model for prevention 

and management of MetS. Lifelog data were collected through healthcare devices, and 

features for prevention and management were extracted. With the features analyzed, a 

novel predictive model for the prevention and management of MetS was developed, 

consisting of persistence prediction for continued engagement and abbreviated risk factor 

prediction for self-care effects.  
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1.2. Background 

Metabolic syndrome (MetS) is a growing global public health challenge [1, 2]. Several 

population studies have highlighted the increased prevalence of MetS [3-6]. The National 

Health and Nutrition Examination Survey (2017–2018) has reported the prevalence of 

MetS as approximately 38.3% [5]. The corresponding values reported by the Korean 

National Health and Nutrition Survey in 2017 were 28.1% and 18.7% for men and women, 

respectively [6]. The increase in MetS was associated with several factors resulting from 

changing lifestyles, primarily aging, eating habits, physical inactivity, sedentary work, long 

working hours, and stress [7, 8]. MetS encompasses factors such as abdominal fat, 

hypertension, dyslipidemia, and glucose intolerance. In addition, it is a risk factor for type 

2 diabetes, coronary heart disease, and other cardiovascular diseases [2, 9-13]. When 

diabetes is not yet present, the risk for progression to type 2 diabetes averages about a five-

fold increase compared with those without the syndrome. Once diabetes develops, the 

cardiovascular risk increases even more [14].  

Most individuals who develop the syndrome first acquire abdominal obesity without 

risk factors, but multiple risk factors begin to appear with time. In the beginning, they are 

usually only borderline elevated; later, in many individuals, they become categorically 

elevated [14]. In some, the syndrome culminates in type 2 diabetes (Figure 1.1). As the 

MetS advances, risk for cardiovascular disease and its complications increase. Those with 

diabetes can further acquire a host of complications, including renal failure, diabetic 

cardiomyopathy, and various neuropathies. When cardiovascular disease and diabetes exist 
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concomitantly, the risk for subsequent cardiovascular morbidity is very high [9, 11-14]. 

Patients with MetS can manifest various other conditions that complicate their management. 

The presence of several or all of these outcomes commonly leads to the use of multiple 

medications (polypharmacy). Pharmacological interventions may help delay or manage 

complications associated with MetS. Polypharmacy carries the risk of adverse drug 

interactions and interferes with compliance, and for many patients, it imposes a prohibitive 

cost burden [14, 15]. The main aim of MetS management is to reduce modifiable risk 

factors (obesity, physical inactivity, and an atherogenic diet) through lifestyle changes [1, 

12, 15-19]. Several studies have examined the impact of digital health technologies on 

lifestyle changes and health outcomes [12, 15-21]. 

 

 

Figure 1.1. Clinical outcomes of the metabolic syndrome. 
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1.3. Digital Health 

Mobile technology has spread rapidly around the globe. Today, it is estimated that 

more than 5 billion people have mobile devices, and over half of these connections are 

smartphones [22]. Digital health is defined as an information and communication 

technology that supports health through electronic and mobile health solutions and uses big 

data, computational genomics, and artificial intelligence [23]. Across a patient’s journey, 

digital health apps can be divided into two main categories: those focused on wellness 

management, which facilitates tracking and modification of fitness behaviors, lifestyle, 

stress, and diet, and those that specifically focus on health condition management, which 

supply information on diseases and conditions, enable access to care, and aid treatment, 

such as through medication reminders. Condition management apps account for 47% of all 

digital health apps, with a notable increase in disease-specific apps. For apps that provide 

disease-specific support and management, the top five therapy areas they focus on are all 

chronic conditions [24, 25]. Digital health-based lifestyle interventions may improve 

population health by increasing access to medical services and uptake of interventions [23-

29]. Mobile applications, short message services (SMS), wearable devices, social media, 

and interactive websites have been used as intervention methods [16, 18, 19, 30-32].  
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1.4. Metabolic Syndrome 

Reaven developed the first concept of metabolic syndrome X [1, 2]. Based on the 

consultation, the World Health Organization (WHO) has defined a set of criteria. Many 

other international organizations or professional institutions, including the National 

Cholesterol Education Program’s Adult Treatment Panel III (NCEP: ATP III), the 

European Group for the Study of Insulin Resistance (EGIR), the American Association of 

Clinical Endocrinology (AACE), the International Diabetes Federation (IDF), and the 

American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) 

have also proposed criteria for recording measurements [1, 2, 9]. In the present study, 

NCEP: ATP III and IDF criteria were used [2, 20]. Abdominal obesity was defined based 

on the Korean Society for the Study of Obesity’s waist circumference (WC) cut-off values, 

which were used to determine MetS in this population [6]. MetS was defined as the 

presence of three or more of the following (Table 1.1): (1) WC of ≥ 90 cm in men or ≥ 85 

cm in women; (2) fasting blood sugar (FBS) levels of ≥ 100 mg/dL; (3) systolic/diastolic 

blood pressure (SBP/DBP) of ≥ 130/85 mmHg; (4) high-density lipoprotein cholesterol 

(HDL-C) levels of < 40 mg/dL in men or <50 mg/dL in women; and (5) triglyceride (TG) 

levels of ≥150 mg/dL. In this study, participants with pre-MetS (defined as having 1 or 2 

risk factors) were included for the prevention of MetS. 
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Table 1.1. Definition of metabolic syndrome 

Risk factors Defining level Criteria 

Central obesity 

- Waist circumference 

 

≥ 90 cm (males), ≥ 85 cm (females) 
KSSO 

Hyperglycemia 

- Fasting blood sugar 

 

≥ 100 mg/dl 

NECP ATP III, 

IDF 

Dyslipidemia 

- Triglyceride 

- HDL-C 

 

≥ 150 mg/dl 

< 40 mg/dl (males), < 50 mg/dl (females) 

Hypertension 

- Blood pressure 

 

≥ 130 mmHg systolic or ≥ 85 mmHg diastolic 

HDL-C, high-density lipoprotein cholesterol; KSSO, Korean Society for the Study of 

Obesity; NACP: ATP III, National Cholesterol Education Program’s Adult Treatment 

Panel III; IDF, International Diabetes Federation 
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1.5. Related Work 

Previous studies have reported weight loss in participants with MetS and obesity using 

remote monitoring and healthcare services combined with conventional treatment [16, 18, 

19, 30, 31, 33]. Other studies examined the impact of lifestyle interventions delivered by 

health coaches alongside activity monitoring [32]. These studies showed activity changes 

among the participants based on feedback from the monitoring service. However, these 

studies only reported the effects of healthcare services based on digital health-based 

lifestyle interventions. In addition, no detailed study has been conducted to show that 

lifestyle interventions and self-care are required to improve MetS. Lifestyle interventions 

must be conducted according to the patient’s characteristics, and self-care should be 

encouraged to prevent and manage MetS. Digital health-based lifestyle interventions may 

be key to achieving lifestyle changes and improving health [27, 28, 34]. People need to be 

able to adhere to lifestyle behaviors to make consistent and lasting changes. The importance 

of adherence in treating obesity or diabetes related to MetS has been widely described [35, 

36]. The effectiveness of lifestyle interventions is dependent on timely confirmation of self-

care. Digital health coordinators can provide personalized feedback and support in cases 

where it is not being maintained. Lifestyle changes can be assessed using both direct and 

indirect measures, including the levels of engagement, persistence, and physical activity, 

which all contribute to intervention uptake and help improve MetS outcomes. 
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Chapter 2.  

Materials and Methods 

2.1. Study Design 

The study participants were enrolled between December 2019 and September 2020 

using participants from the Wonju Cohort Study. The Wonju Cohort Study included a 

community-based cohort in Wonju, Korea, and medical examinations and epidemiological 

investigations were performed to identify cardiovascular and chronic diseases [37]. In the 

Wonju Cohort Study, participants with one or more MetS risk factors were invited to 

confirm the study’s explanation and their intention to participate. The inclusion criteria 

were as follows: 40–80 years of age, one or more MetS risk factors, and no difficulty using 

healthcare devices. Exclusion criteria were as follows: participants were excluded if they 

were taking medication, had difficulty using healthcare devices, or could not follow 

instructions related to the intervention. The participants were evaluated at two time points. 

The first assessment examined risk factors for MetS. Selected participants received five 

healthcare devices. Lifelog data were collected by an application installed on the 
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participants’ smartphones. A lifestyle intervention was introduced after 6 weeks to induce 

lifestyle changes and continuous engagement with the healthcare devices. At 26 weeks, the 

risk factors for MetS were assessed again (Figure 2.1). The Institutional Review Board of 

the Wonju College of Medicine, Yonsei University (CR319089), approved the study. The 

study protocol was registered at the Clinical Research Information Service (KCT0005783).  

 

 

Figure 2.1. Study design. BP, blood pressure; SMBG, self-monitoring blood glucose  
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2.2. Participants 

The Wonju cohort study included 1,519 participants, of whom 867 had one or more 

MetS risk factors. Participants were recruited for the clinical trial via phone, and 355 

participants confirmed their participation. The participants were assessed during a hospital 

visit, and the study aims were explained. Among them, 136 participants presented with 

more than one risk factor and agreed to participate in the clinical trial. Each participant 

received five healthcare devices. Finally, the analysis included data from 106 participants 

who were examined at the 26-week follow-up assessment. One participant received 

diabetes mellitus medication, 22 participants withdrew their consent (due to difficulties 

participating in the study or unavailability, among others), and seven participants who did 

not use the provided devices for more than half the study period were excluded from the 

analysis (Figure 2.2). 
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Figure 2.2. Flow chart of the study design. 
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2.3. Lifelog Data Using Healthcare Devices 

Lifelog data are the personal health data gathered daily and automatically by the 

provided application and healthcare devices. The provided healthcare devices were a blood 

pressure (BP) monitor (Omron HEM-9200T, Omron Healthcare, Japan); a self-monitoring 

blood glucose (SMBG) device (CareSens N Premier, I-SENS, Korea); a weight scale 

(Efilscale, LifeSemantics, Korea); a smart tape measure (PIE, Bagel Labs, Korea); and a 

smartwatch (Galaxy Watch Active 1, Samsung Electronics, Korea). For lifelog data, SBP, 

DBP, and heart rate (HR) were collected from the BP monitor, FBS from the SMBG device, 

step counter from the smartwatch, weight from the weight scale, and WC from the smart 

tape measure. These devices were connected to an application that recorded all the relevant 

measurements and automatically transferred the participants' lifelog data from their 

smartphones to a web-based server. It was recommended that the devices be used three or 

more times per week. Medical staff had real-time access to the lifelog data through a 

designated website. 

2.4. Group Classification 

Participants who received lifestyle interventions were included in the analysis. The 

participants with pre-MetS or MetS were divided into two groups according to the baseline 

and follow-up (26-week) assessment findings. The participants with pre-MetS were divided 

into two groups based on changes in their risk factors: the prevention group, with reduced 
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and consistent risk factors, and the non-prevention group, with increased risk factors. The 

participants in the MetS with the aim of management were divided into two groups: the 

improvement group, with reduced risk factors, and the non-improvement group, with 

consistent and increased risk factors. 

2.5. Engagement, Persistence, and Physical Activity 

The engagement was defined as the frequency of device use per week, based on pre-

specified criteria that involved two rules: (1) All five healthcare devices were used more 

than the minimum frequency required; (2) The total weekly frequency of device use was 

greater than the minimum frequency required. “Persistence” refers to the continuous 

number of satisfied engagements. The maximum persistence during the study period was 

analyzed. Physical activity was measured with a step counter embedded in the provided 

smartwatch. In this study, the prevention and improvement groups were used as a reference 

for lifestyle changes. Digital health-based lifestyle interventions were implemented during 

weeks 6, 8, and 10. Text messages were delivered from week 6; phone calls were made 

from week 8, and face-to-face re-training was conducted from week 10. Any questions 

from the participants were resolved by the medical staff via phone calls or visits. 
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2.6. Prediction Model Based on Machine Learning 

2.6.1. Machine-learning classifiers 

In this study, eight types of classifiers were adopted: decision trees (fine, medium, 

coarse), discriminant analysis (linear, quadratic), logistic regression, naïve Bayes, support 

vector machines (linear, quadratic cubic fine gaussian, medium gaussian, coarse gaussian), 

nearest neighbor classifiers (fine, medium, coarse, cosine, cubic, weighted), ensemble 

classifiers (boosted trees, bagged trees, subspace discriminant, RUSBoost trees), and neural 

network (narrow, medium, wide, bi-layered, tri-layered). Details regarding different 

machine-learning classifiers are listed in Table 2.1. The prediction performance was 

compared for each classifier that was trained and evaluated on five-fold cross-validation. 

(1) Decision tree: The decision tree is non-parametric and can efficiently deal with 

large, complicated datasets without imposing a complicated parametric structure. This 

classifier works by examining the discriminatory ability of the extracted features one at a 

time to create a set of rules that ultimately leads to a complete classification system. This 

method classifies a population into branch-like segments that construct an inverted tree 

with a root node, internal nodes, and leaf nodes. A root node, called a “decision node,” 

represents a choice that divides all records into two or more mutually exclusive subsets. 

Internal nodes, called chance nodes, represent one of the possible choices available in the 

tree structure; the top edge of the node is connected to its parent node, and the bottom edge 

is connected to its child nodes or leaf nodes. Leaf nodes, called end nodes, represent the 

final result of a combination of decisions or events [38, 39]. 
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(2) Discriminant Analysis: This classification algorithm is based on the assumption 

that the data of different classes obey different Gaussian distributions. The main process is 

first training a classifier to fit a function that can estimate the parameters of the distribution 

of each class, and then using the classifier to predict new samples. The linear discriminant 

analysis (LDA) is the most widely used discrimination analysis. In LDA, the key step is to 

find a projection hyperplane in k-dimensional space, then project different classes of 

samples onto the hyperplane, maximizing the between-class distances and minimizing the 

within-class distances.  

(3) Logistic Regression: Logistic regression is a generalized linear model. 

Generalized linear models are composed of two parts: a linear part and a link function. The 

linear part of the classification model is calculated, and the output of this calculation is 

conveyed through the link function. In the case of logistic regression, the linear result is 

run through a logistic function. The logistic function only returns values between 0.0 and 

1.0 [40]. 

(4) Naïve Bayes (NB): An NB classifier is a classification system based on Bayes' 

theorem that assumes all the attributes are fully independent given the output class, called 

the conditional independence assumption. The main advantage of the NB classifier is that 

it is easy to construct without needing complicated iterative parameter estimation schemes. 

In addition, the NB classifier is robust to noise and irrelevant attributes [41, 42].  

(5) Support Vector Machine (SVM): The SVM is a popular classifier based on 

finding optimal separating decision hyperplanes between classes with the maximum 
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margin between patterns of each class. It can benefit from a maximum margin hyperplane 

in a transformed feature space using a kernel function to map the dataset into an inner 

product space to create a non-linear structure. Common kernel functions include Gaussian, 

linear, quadratic, and cubic kernels [43, 44]. 

(6) Nearest Neighbor Classifiers: K-Nearest Neighbor (KNN) is one of the simplest 

classification algorithms. Its main idea is to find the K-nearest samples of new data in the 

feature space and then classify it into a specific class according to the k neighbors. The 

KNN classifier is simple but requires no training time. The training dataset is identified by 

an unknown window of class labels spread over the feature space. A new dataset is assigned 

a class label based on the single closest neighbor or K-nearest examples considering the 

Euclidean distance [44-46]. 

(7) Ensemble Classifiers: Different from other classification algorithms that only 

contain one classifier, Ensemble Classifiers are proposed to use multiple classifiers to 

improve the final performance. Its strategy is to aggregate multiple weak learners into 

strong learners. The weak learners can be decision trees, KNNs, or other single classifiers. 

The main aggregation strategies include bagging, boosting, and the random subspace 

method. In bagging, the training set is randomly sampled k times with replacement, 

producing k training sets with sizes equal to the original training set. Boosting induces an 

ensemble of learners by adaptively changing the distribution of the training set based on 

the performance of the previously created regressors. In the random subspace method, the 

regressor consists of multiple learners constructed systematically by pseudo-randomly 
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selecting subsets of the feature vector, that is, learners constructed in randomly chosen 

subspaces [47-51]. 

(8) Neural network (NN): Artificial neural networks (ANN) or simply neural 

networks (NN) are generalized mathematical models that exhibit biological nervous 

systems, which inspire the learning process of the human brain. ANN is a widely used 

approach. These methods typically have good predictive accuracy; however, they are not 

easy to interpret. Model flexibility increases with the neural network’s size and the number 

of fully connected layers. The model is a feed-forward, fully connected NN for 

classification. The first fully connected layer of the neural network has a connection with 

the network input, and each subsequent layer has a connection with the previous layer. 

Each fully connected layer multiplies the input by a weight matrix and then adds a bias 

vector. An activation function follows each fully connected layer. The final fully connected 

layer and the subsequent activation function produce the network’s output classification 

scores and predicted labels [52, 53]. 

2.6.2. Feature selection 

Feature selection is one of the techniques used for dimensionality reduction; in this 

technique, relevant features are selected, and irrelevant and redundant features are 

discarded. A reduction in input dimensionality can improve performance either by 

decreasing the learning speed and model complexity or by increasing generalization 

capacity and classification accuracy. The selection of suitable features can also reduce the 

measurement cost and improve understanding of the problem. The Recursive Feature 
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Elimination (RFE) selection method is a recursive process that ranks features according to 

some measure of their importance. At each iteration, the importance of each feature is 

determined, and the least important one is removed. The (inverse) order in which features 

are eliminated is used to construct a final ranking. The feature ranking method of random 

forest-recursive feature elimination (RF-FFE) is based on a measure of variable importance 

given by random forest. For any given tree in a random forest, there is a subset of the 

learning set not used by it during training because each tree was grown only on a bootstrap 

sample. These subsets, called “out-of-bag” (OOB), can give unbiased measures of 

prediction error. Intuitively, irrelevant features will not change the prediction error when 

altered in this way, in contrast to the relevant ones. The relative loss in performance 

between the “original” and “shuffled” data sets is therefore related to the relevance of the 

shuffled feature. In RF-RFE, this feature importance measure is coupled with the RFE [54-

57]. 
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Table 2.1. List of machine-learning classifiers and description 

Classifier Description 

Decision Tree 

Fine Tree Maximum number of splits: 100, Split criterion: Gini's diversity 

index, Surrogate decision splits: Off 

Medium Tree Maximum number of splits: 20, Split criterion: Gini's diversity 

index, Surrogate decision splits: Off 

Coarse tree Maximum number of splits: 4, Split criterion: Gini's diversity 

index, Surrogate decision splits: Off 

Discriminant Analysis 

Linear Discriminant Covariance structure: Full 

Quadratic Discriminant Covariance structure: Full 

Logistic Regression 

Logistic Regression - 

Naïve Bayes Classifiers 

Gaussian Naïve Bayes Distribution name for numeric predictors: Gaussian, Distribution 

name for categorical predictors: Not Applicable 

Kernel Naïve Bayes Distribution name for numeric predictors: Kernel, Distribution 

name for categorical predictors: Not Applicable, Kernel type: 

Gaussian, Support: Unbounded 

Support Vector Machine  

Linear SVM Kernel function: Linear, Kernel scale: Automatic, Box constraint 

level: 1, Multiclass method: One-vs-One, Standardize data: true 

Quadratic SVM Kernel function: Quadratic, Kernel scale: Automatic, Box 

constraint level: 1, Multiclass method: One-vs-One, Standardize 

data: true 

Cubic SVM Kernel function: Cubic, Kernel scale: Automatic, Box constraint 

level: 1, Multiclass method: One-vs-One, Standardize data: true 

Fine Gaussian SVM Kernel function: Gaussian, Kernel scale: sqrt(the number of 

predictors)/4, Box constraint level: 1, Multiclass method: One-vs-

One, Standardize data: true 

Medium Gaussian SVM Kernel function: Gaussian, Kernel scale: sqrt(the number of 

predictors), Box constraint level: 1, Multiclass method: One-vs-

One, Standardize data: true 

Coarse Gaussian SVM Kernel function: Gaussian, Kernel scale: sqrt(the number of 

predictors)*4, Box constraint level: 1, Multiclass method: One-

vs-One, Standardize data: true 
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Table 2.1. List of machine-learning classifiers and description (continued) 

Classifier Description 

Nearest Neighbor Classifiers 

Fine KNN Number of neighbors: 1, Distance metric: Euclidean, Distance 

weight: Equal, Standardize data: true 

Medium KNN Number of neighbors: 10, Distance metric: Euclidean, Distance 

weight: Equal, Standardize data: true 

Coarse KNN Number of neighbors: 100, Distance metric: Euclidean, Distance 

weight: Equal, Standardize data: true 

Cosine KNN Number of neighbors: 10, Distance metric: Cosine, Distance 

weight: Equal, Standardize data: true 

Cubic KNN Number of neighbors: 10, Distance metric: Minkowski (cubic), 

Distance weight: Equal, Standardize data: true 

Weighted KNN Number of neighbors: 10, Distance metric: Euclidean, Distance 

weight: Squared inverse, Standardize data: true 

Ensemble 

Boosted Trees 

(AdaBoost) 

Ensemble method: AdaBoost, Learner type: Decision tree, 

Maximum number of splits: 20, Number of learners: 30, Learning 

rate: 0.1 

Bagged Trees 

(Random Forest) 

Ensemble method: Bag, Learner type: Decision tree, Maximum 

number of splits: sample size-1, Number of learners: 30 

Subspace Discriminant Ensemble method: Subspace, Learner type: Discriminant, 

Number of learners: 30, Subspace dimension: 6 

Subspace KNN Ensemble method: Subspace, Learner type: Nearest neighbors, 

Number of learners: 30, Subspace dimension: 6 

RUSBoost Trees Ensemble method: RUSBoost, Learner type: Decision tree, 

Maximum number of splits: 20, Number of learners: 30, Learning 

rate: 0.1 

Neural Network 

Narrow NN Number of fully connected layers: 1, First layer size: 10, 

Activation: Rectified linear units (ReLU), Iteration limit: 1,000, 

Regularization strength (Lambda): 0, Standardize data: Yes 

Medium NN Number of fully connected layers: 1, First layer size: 25, 

Activation: ReLU, Iteration limit: 1,000, Regularization strength 

(Lambda): 0, Standardize data: Yes 

Wide NN Number of fully connected layers: 1, First layer size: 100, 

Activation: ReLU, Iteration limit: 1,000, Regularization strength 

(Lambda): 0, Standardize data: Yes 
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Bi-layered NN Number of fully connected layers: 2, First layer size: 10, Second 

layer size: 10, Activation: ReLU, Iteration limit: 1,000, 

Regularization strength (Lambda): 0, Standardize data: Yes 

Tri-layered NN Number of fully connected layers: 3, First layer size: 10, Second 

layer size: 10, Third layer size: 10, Activation: ReLU, Iteration 

limit: 1,000, Regularization strength (Lambda): 0, Standardize 

data: Yes 

 

2.6.3. Performance evaluation 

The participants’ characteristics at baseline were compared with those at follow-up 

using the paired t-test or Wilcoxon signed-rank test. An independent-samples t-test or 

Mann–Whitney U test was used to compare the differences between the two groups. The 

accuracy (Equation 2.1), recall (Equation 2.2), precision (Equation 2.3), F1-score (Equation 

2.4), and Matthews correlation coefficient (MCC) (Equation 2.5) were used to evaluate the 

performance of the proposed prediction model. The percentage of correctly classified 

values in each class is calculated using accuracy. Precision is defined as the percentage of 

true positive predictions, whereas recall is defined as the percentage of correct positive 

predictions that are predicted to be positive. Precision and recall are both equal to 1. When 

the dataset is unbalanced (the number of samples in one class is much larger than the 

number of samples in the other classes), accuracy cannot be considered a reliable measure 

anymore because it provides an overly optimistic estimation of the classifier’s ability for 

the majority class. The F1-score is the harmonic mean of precision and sensitivity, which 

is extensively used to deal with such unbalanced data. MCC accounts for true positives and 

negatives as well as false positives and negatives and is a balanced measure even when the 
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classes are of varying sizes. The MCC is, in essence, a correlation coefficient between -1 

and +1. The AUC (area under the curve) is the closed graph area surrounded by the receiver 

operating characteristic (ROC) curve and the right ordinate and abscissa. The AUC is used 

to evaluate the algorithm’s performance and generalization ability in the classification 

problem. The better the model’s performance, the closer the AUC value is to 1, which is 

good when AUC >0.85 [40, 47, 58, 59]. Analyses were performed using IBM SPSS 

Statistics 25 (SAS Institute, Cary, NC, USA) and MATLAB 2021b (MathWorks, USA). 

P-values of <0.05 were considered statistically significant. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (Equation 2.1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (Equation 2.2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (Equation 2.3) 

𝐹1‐ 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (Equation 2.4) 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝐹𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
  (Equation 2.5) 

 

, where TP means true positive, i.e., the number of positive samples predicted as 

positive samples, FP is false positive, i.e., the number of negative samples predicted as 

positive samples, TN is a true negative, and FN is a false negative. 
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Chapter 3.  

Effect of Digital Health-based Lifestyle Intervention 

3.1. Participant’s Characteristics 

The participants’ characteristics at baseline and follow-up assessments are presented 

in Table 3.1. Significant differences in WC, SBP, DBP, and HDL-C were observed in the 

pre-MetS participants (P < 0.05). The average number of risk factors decreased from 1.7 

(0.5) to 1.6 (1.1) (P > 0.05). Significant differences in MetS were observed in weight, BMI, 

risk factors, WC, SBP, DBP, and FBS. The average number of risk factors decreased from 

3.6 (0.6) to 2.4 (1.1) (P < 0.05). There were 42 participants in the pre-MetS prevention 

group with reduced and consistent risk factors and 14 in the non-prevention group with 

increased risk factors. MetS was present in 43 participants in the improvement group with 

reduced risk factors and in 17 participants in the non-improvement group with consistent 

and increased risk factors.  
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Table 3.1. Participant characteristics at baseline and follow-up assessments 

Characteristics 
Pre-MetS (n = 46) MetS (n = 60) 

Baseline Follow-up P-value Baseline Follow-up P-value 

General Characteristics       

Sex (male/female) 17/29 - - 25/35 - - 

Age (years) 63.9 (6.8) - - 65.2 (5.9) - - 

Height (cm) 160.1 (8.0) - - 160.0 (9.3) - - 

Weight (kg)  62.1 (9.1) 61.8 (8.9) 0.29 67.9 (11.4) 67.1 (11.3) <0.001 

BMI (kg/m2) 24.2 (2.9) 24.2 (2.9) 0.75 26.4 (2.7) 26.0 (2.7) <0.001 

Risk factors 1.7 (0.5) 1.6 (1.1) 0.58 3.6 (0.6) 2.4 (1.1) <0.001 

Risk factors of MetS       

WC 87.9 (7.5) 84.4 (7.2) <0.001 93.3 (7.1) 88.7 (8.4) <0.001 

SBP 138.0 (15.7) 125.5 (15.2) <0.001 140.1 (15.7) 127.0 (13.0) <0.001 

DBP 90.1 (9.1) 79.9 (9.2) <0.001 89.6 (8.1) 80.3 (9.0) <0.001 

FBS 92.4 (9.2) 91.5 (10.9) 0.56 101.7 (10.8) 96.9 (9.1) <0.001 

HDL-C 55.1 (9.0) 52.9 (10.0) <0.05 46.6 (9.1) 46.5 (10.0) 0.98 

TG 118.6 (55.2) 136.1(73.2) 0.05 166.7 (103.1) 170.7 (114.0) 0.63 

Group Classification       

Reduced risk factors - 18 - - 43 - 

Consistent risk factors - 14 - - 16 - 

Increased risk factors - 14 - - 1 - 

Values were presented as mean (standard deviation); MetS, metabolic syndrome; BMI, body mass index; WC, waist 

circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBS, fasting blood sugar; HDL-C, high-density 

lipoprotein cholesterol; TG, triglyceride.
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3.2. Effectiveness of Prevention and Management of MetS 

Changes in the number of risk factors between baseline and follow-up are presented 

(Table 3.2). For the pre-MetS participants, while the prevention and non-prevention groups 

did not differ statistically significantly at baseline, significant differences were observed at 

the follow-up (P < 0.001). Furthermore, these two groups had the highest WC and BP 

values at baseline. Both prevention and non-prevention groups showed significant within-

group differences between baseline and follow-up (P < 0.001). The prevention group 

showed significant decreases in WC (19%) and BP (53%), while the non-prevention group 

showed significant increases in HDL-C (50%) and TG (43%). The baseline and follow-up 

data for MetS participants revealed statistical differences between the improvement and 

non-improvement groups. In the improvement group, the number of MetS risk factors was 

greater at baseline (P < 0.05) but smaller at the follow-up (P < 0.001). The improvement 

group showed a significant difference between baseline and follow-up (P < 0.001). The 

improvement group showed a significant reduction in the WC (44%), BP (49%), FBS 

(40%), HDL-C (19%), and TG (19%), whereas the non-improvement group showed no 

significant changes.  
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Table 3.2. Change in the number of risk factors 

Characteristics 

Pre-MetS (n = 46) MetS (n = 60) 

Prevention 

(n = 32) 

Non-Prevention 

(n = 14) 
P-value 

Improvement 

(n = 43) 

Non-Improvement 

(n = 17) 
P-value 

Baseline 1.6 (0.5) 1.7 (0.5) 0.56 3.7 (0.7) 3.3 (0.5) <0.05 

WC 14 (43.8) 6 (42.9)  41 (95.3) 13 (76.5)  

Blood pressure 30 (93.8) 10 (71.4)  38 (88.4) 15 (88.2)  

FBS 3 (9.4) 2 (14.3)  26 (60.5) 12 (70.6)  

HDL-C 2 (6.3) 3 (21.4)  27 (62.8) 7 (41.2)  

TG 3 (9.4) 3 (21.4)  25 (58.1) 9 (52.9)  

Follow-up 1.0 (0.8) † 2.9 (0.3) † <0.001 2.0 (1.0) † 3.4 (0.5) <0.001 

WC 8 (25.0) 8 (57.1)  22 (51.2) 13 (76.5)  

Blood pressure 13 (40.6) 10 (71.4)  17 (39.5) 16 (94.1)  

FBS 2 (6.3) 4 (28.6)  9 (20.9) 9 (52.9)  

HDL-C 3 (9.4) 10 (71.4)  19 (44.2) 9 (52.9)  

TG 5 (15.6) 9 (64.3)  17 (39.5) 10 (58.8)  

Values are presented as mean (standard deviation); † represents statistically significant difference between baseline and 

follow-up (P-value < 0.001); MetS, metabolic syndrome; WC, waist circumference; FBS, fasting blood sugar; HDL-C, high-

density lipoprotein cholesterol; TG, triglyceride.
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3.3. Effectiveness of Digital Health-based Lifestyle Interventions 

The frequency of device use is presented in Figures 3.1 and 3.2. The frequency of 

healthcare device use increased when lifestyle interventions were implemented; 

specifically, during week 10, when re-training was provided, the frequency of device use 

was higher than that in weeks 6 and 8, when text messages and phone calls were introduced, 

respectively. In the pre-MetS and MetS groups, the level of engagement with BP monitors, 

weight scales, and smart tape measures gradually increased and stabilized from week 14 

onward.  

 

Figure 3.1. The number of days healthcare device use in the pre-MetS group.  

BP, blood pressure; SMBG, self-monitoring blood glucose 
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Figure 3.2. The number of days healthcare device use in the MetS group.  

BP, blood pressure; SMBG, self-monitoring blood glucose  
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3.4. Characteristic of Self-care Using Healthcare Devices 

3.4.1. The frequency of healthcare device use 

The frequency of use of healthcare device after 14 weeks in shown in Table 3.3. For 

those with pre-MetS, there were significant differences in the use of a smart tape measure, 

SMBG, or smartwatch and the total number of use days between the prevention and non-

prevention groups (P < 0.05). For those with the MetS, there were significant differences 

between the improvement and non-improvement groups (P < 0.05) using the five 

healthcare devices and the total number of use days. 

3.4.2. Engagement and persistence 

Changes in the prevention and improvement groups after week 14 are considered, and 

the criteria for the achievement of engagement and persistence are determined. The rules 

of engagement were defined as follows: Rule 1: Weight scale, smart tape measure, and BP 

monitor were used on more than 3 days per week; the SMBG was used on more than 2 days 

per week, with the pre-and post-meal use counted as a single event. Smartwatch was used 

for more than 5 days per week. Rule 2: The number of days when devices were used was 

more than 16. Weekly engagement criteria were satisfied when either of the rules were met. 

The overall engagement levels in the prevention and non-prevention groups of the pre-

MetS participants, during the 26 weeks were 10.6 (6.1) and 9.9 (6.3), respectively (P > 

0.05), and in the improvement and non-improvement groups of the pre-MetS participants 

10.2 (5.8) and 7.1 (6.1), respectively (P < 0.05). The maximum levels of persistence in the 
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prevention, non-prevention, improvement, and non-improvement groups were 8.9 (5.7), 

6.8 (4.7), 7.5 (4.8), and 5.4 (4.9), respectively. Although the engagement and persistence 

levels in the prevention and improvement groups were relatively high, the differences were 

not significant (P > 0.05). 

3.4.3. Physical activity 

Changes in physical activity levels were statistically significant after 14 weeks (P < 

0.001). Physical activity was 7,171.7 (4,735.3), 5,699.3 (4,937.6), 7,323.6 (5,310.9), and 

4,843.5 (4,589.4) steps in the prevention, non-prevention, improvement, and non-

improvement groups, respectively (Table 3.3). There were relatively large decreases in the 

WC and BP in the prevention and improvement groups with high physical activity.
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Table 3.3. Engagement differences between the groups 

Characteristics 

Pre-MetS (n = 46) MetS (n = 60) 

Prevention 

(n = 32) 

Non- 

Prevention 

(n = 14) 

P-value 
Improvement 

(n = 43) 

Non- 

Improvement 

(n = 17) 

P-value 

Frequency of healthcare device use per week after 14 weeks 

Weight scale 4.0 (2.7) 3.7 (2.3) 0.13 3.3 (2.7) 2.6 (2.5) <0.01 

Smart tape measure 3.5 (2.8) 2.8 (2.5) <0.01 3.2 (2.7) 2.5 (2.7) <0.01 

BP monitor 3.5 (2.8) 3.1 (2.4) 0.12 3.2 (2.6) 2.3 (2.5) <0.001 

SMBG 2.3 (2.1) 1.8 (1.7) <0.05 1.9 (1.9) 1.4 (1.6) <0.001 

Smartwatch 5.3 (2.9) 4.3 (3.3) <0.01 5.1 (2.9) 4.2 (3.1) <0.001 

Total number of use days 18.6 (10.2) 15.8 (9.4) <0.01 16.7 (9.8) 13.0 (9.7) <0.001 

Physical activity 7,171.7 (4,735.3) 5,699.3 (4,937.6) <0.001 7,323.6 (5,310.9) 4,843.5 (4,589.4) <0.001 

Criteria for achievement per 26 weeks 

Engagement 10.6 (6.1) 9.9 (6.3) 0.57 10.2 (5.8) 7.1 (6.1) 0.06 

Persistence 8.9 (5.7) 6.8 (4.7) 0.23 7.5 (4.8) 5.4 (4.9) 0.11 

Values were presented as mean (standard deviation); MetS, metabolic syndrome; BP, blood pressure; SMBG, self-

monitoring blood glucose 
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Chapter 4.  

Prediction Model for Prevention and Management of 

MetS 

4.1. Feature Extraction and Preprocessing 

A novel predictive model for the prevention and management of MetS was proposed, 

consisting of persistence prediction for continued engagement and abbreviated risk factor 

prediction for self-care effects. Lifelog data measured from five healthcare devices (BP 

monitor, weight scale, SMBG, smart tape measure, smartwatch) were used for feature 

extraction (Figure 4.1). Each feature was calculated by moving one day through a window 

of 7 days with an overlap of 6 days. The extracted features used seven clinical data points 

and five frequency-of-use data points. Clinical data used SBP, DBP, HR, weight, WC, FBS, 

and the number of steps parameters. The median filter was used for data, and if there was 

a difference of more than 20% from the previous value, it was replaced with the previous 

data. FBS was used as the minimum data value measured before and after meals. The 
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frequency-of-use days were calculated as the number of days of using healthcare devices 

in the window. 

 

Figure 4.1. Feature extraction and preprocessing.  

BP, blood pressure; SMBG, self-monitoring blood glucose; SBP, systolic blood pressure; 

DBP, diastolic blood pressure; HR, heart rate; WC, waist circumference 
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4.2. Data Labeling 

Data were labeled for model to predict persistence and abbreviated risk factors. The 

model was developed based on 4 weeks, considering the results of engagement and 

persistence in the prevention group and improvement group, as well as the size of the 

window and overlap. The labeling of continued engagement was determined to have been 

achieved when the datasets of 7–28 days from the current time point were satisfied with 

engagement, to avoid overlapping data (Figure 4.2 (left)). To label abbreviated risk factors, 

the number of risk factors was calculated with the data of SBP, DBP, WC, and FBS 

measured at present and 4 weeks later, and whether the risk factors maintained, increased, 

or decreased was confirmed (Figure 4.2 (right)). 

 

Figure 4.2. Data Labeling for prediction model: 

 persistence (left), abbreviated risk factors (right) 
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4.3. Prediction Model for Persistence 

4.3.1. Comparison of machine-learning models 

In the persistence prediction model, seven clinical data points and six frequency-of-

use data points were used. Performance was compared through decision trees, discriminant 

analysis, logistic regression, naïve Bayes, support vector machines, nearest neighbor 

classifiers, ensemble classifiers, and a neural network (Table 4.1). The ensemble classifier 

using bagged trees showed the best performance, with a recall of 87.0%, precision of 94.8%, 

F1-score of 0.907, MCC of 0.885, accuracy of 96.2%, and AUC of 0.98. In terms of feature 

importance, FBS, the number of steps, the number of use days (SMBG), weight, and the 

number of use days (smartwatch) ranked highly (Figure 4.3). 
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Table 4.1. Performance evaluation of the classifier in persistence prediction model 

Classifier 
Recall 

(%) 

Precision 

(%) 
F1-score MCC 

Accuracy 

(%) 
AUC 

Decision Tree       

Fine Tree 71.6 79.9 0.755 0.694 90.0 0.92 

Medium Tree 67.2 77.4 0.720 0.652 88.7 0.90 

Coarse Tree 56.9 76.4 0.652 0.583 86.9 0.77 

Discriminant Analysis       

Linear Discriminant 64.8 72.5 0.684 0.605 87.1 0.91 

Quadratic Discriminant 78.9 64.4 0.710 0.625 86.1 0.91 

Logistic Regression       

Logistic Regression 62.0 75.7 0.681 0.609 87.5 0.92 

Naïve Bayes        

Gaussian Naïve Bayes 81.4 51.8 0.633 0.527 79.7 0.89 

Kernel Naïve Bayes 95.9 31.8 0.477 0.340 54.8 0.89 

Support Vector Machine        

Linear SVM 61.8 76.4 0.683 0.613 87.7 0.91 

Quadratic SVM 66.6 80.7 0.730 0.669 89.4 0.92 

Cubic SVM 77.3 84.6 0.808 0.760 92.1 0.93 

Fine Gaussian SVM 80.0 90.2 0.848 0.812 93.8 0.95 

Medium Gaussian SVM 69.8 81.5 0.752 0.694 90.1 0.91 

Coarse Gaussian SVM 61.1 77.5 0.684 0.616 87.8 0.91 
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Table 4.1. Performance evaluation of the classifier in persistence prediction model (continued) 

Classifier 
Recall 

(%) 

Precision 

(%) 
F1-score MCC 

Accuracy 

(%) 
AUC 

Nearest Neighbor        

Fine KNN 86.7 88.3 0.875 0.841 94.7 0.92 

Medium KNN 74.7 84.2 0.792 0.741 91.5 0.95 

Coarse KNN 64.4 79.0 0.709 0.645 88.7 0.93 

Cosine KNN 75.4 83.2 0.791 0.739 91.4 0.95 

Cubic KNN 73.7 83.5 0.783 0.730 91.2 0.95 

Weighted KNN 83.1 89.8 0.863 0.829 94.3 0.96 

Ensemble       

Boosted Trees 70.2 83.9 0.765 0.712 90.7 0.94 

Bagged Trees 87.0 94.8 0.907 0.885 96.2 0.98 

Subspace Discriminant 61.4 73.6 0.669 0.592 86.9 0.91 

Subspace KNN 85.3 96.2 0.904 0.882 96.1 0.98 

RUSBoost Trees 83.4 65.4 0.733 0.656 86.9 0.93 

Neural Network       

Narrow NN 72.0 78.9 0.753 0.690 89.8 0.94 

Medium NN 76.9 82.2 0.794 0.741 91.4 0.95 

Wide NN 81.8 85.9 0.838 0.795 93.2 0.95 

Bi-layered NN 73.7 80.6 0.770 0.712 90.5 0.94 

Tri-layered NN 73.1 79.3 0.761 0.700 90.1 0.94 

Highest performance for evaluation metrics is in bold font; SVM, support vector machine; KNN, k-nearest neighbor; NN, neural 

network; MCC, Matthews correlation coefficient; AUC, area under the receiver operating characteristic curve 
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Figure 4.3. Feature importance in persistence prediction model. FBS, fasting blood 

sugar; SMBG, self-monitoring blood glucose; WC, waist circumference; SBP, systolic 

blood pressure; DBP, diastolic blood pressure; HR, heart rate 
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4.3.2. Feature selection and performance evaluation 

The RF-RFE algorithm was used for feature optimization. The recall process 

according to the RF-RFE process is presented in Figure 4.4. Feature optimization selected 

the minimum feature that stabilized the prediction result. In this study, the top five features 

(the number of use days (WC), weight, the number of steps, SBP, and FBS) for stabilizing 

prediction results were finally determined. As a result, the optimized feature showed a 

recall of 83.0%, precision of 92.4%, F1-score of 0.874, MCC of 0.844, and accuracy of 

94.9% (Table 4.2).  

 

Figure 4.4. Feature selection and performance evaluation in the persistence 

prediction model. SBP, systolic blood pressure; FBS, fasting blood sugar; SMBG, self-

monitoring blood glucose; BP, blood pressure; WC, waist circumference; DBP, diastolic 

blood pressure; HR, heart rate. 
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Table 4.2. Ensemble (bagged trees) model performance evaluation in the persistence 

prediction model 

 
Precision 

(%) 

Recall 

(%) 
F1-score MCC 

Accuracy 

(%) 

Achievement 83.0 92.4 0.874 0.844 94.9 

Non-achievement 98.1 95.5 0.968   

MCC, Matthews correlation coefficient 

 

4.4. Prediction Model for Abbreviated Risk Factors 

4.4.1. Comparison of machine-learning model 

In the abbreviated risk factor prediction model, seven clinical data points and six 

frequency-of-use data points were used. Performance was compared through decision trees, 

discriminant analysis, naïve Bayes, support vector machines, nearest neighbor classifiers, 

ensemble classifiers, and neural networks (Table 4.3). Therefore, the best performance was 

shown when the ensemble classifier’s bagged tree (random forest) was used. Increased risk 

factors showed a recall of 78.4%, precision of 85.0%, F1-score of 0.816, and MCC of 0.774 

and reduced risk factors showed a recall of 76.3%, precision of 85.0%, F1-score of 0.804, 

and MCC of 0.751. In terms of feature importance, FBS, DBP, SBP, and the number of 

steps ranked highly (Figure 4.5). 
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Table 4.3. Performance evaluation of the classifiers in the abbreviated risk factors prediction model 

Classifier 
Increased risk factors Decreased risk factors 

A (%) AUC 
R (%) P (%) F1 M R (%) P (%) F1 M 

Decision Tree 

Fine Tree 51.5 71.2 0.598 0.529 53.2 69.4 0.602 0.504 72.0 0.76 

Medium Tree 38.2 64.1 0.479 0.408 36.9 62.8 0.465 0.363 66.1 0.69 

Coarse Tree 33.7 57.2 0.424 0.343 43.3 51.7 0.471 0.317 62.0 0.62 

Discriminant Analysis 

Linear Discriminant 8.7 45.3 0.147 0.129 9.6 46.2 0.159 0.107 58.8 0.65 

Quadratic Discriminant 26.5 48.6 0.343 0.253 37.8 38.1 0.379 0.177 57.7 0.66 

Naïve Bayes  

Gaussian Naïve Bayes 21.7 48.4 0.300 0.226 41.1 33.4 0.369 0.136 55.2 0.64 

Kernel Naïve Bayes 40.5 54.4 0.464 0.363 24.9 52.0 0.337 0.233 62.6 0.70 

Support Vector Machine 

Linear SVM 0.0 - - - 0.0 - - - 58.5 0.49 

Quadratic SVM 25.4 67.8 0.370 0.343 21.6 62.6 0.321 0.264 64.0 0.67 

Cubic SVM 61.4 69.9 0.654 0.578 59.6 70.6 0.646 0.552 74.5 0.81 

Fine Gaussian SVM 59.0 88.6 0.708 0.674 54.1 86.7 0.666 0.617 79.1 0.90 

Medium Gaussian SVM 27.9 78.1 0.411 0.404 23.7 75.9 0.362 0.341 66.7 0.75 

Coarse Gaussian SVM 0.0 - - - 0.0 - - - 58.5 0.51 
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Table 4.3. Performance evaluation of the classifiers in the abbreviated risk factors prediction model (continued) 

Classifier 
Increased risk factors Decreased risk factors 

A (%) AUC 
R (%) P (%) F1 M R (%) P (%) F1 M 

Nearest Neighbor  

Fine KNN 77.0 77.5 0.772 0.717 73.9 77.2 0.755 0.685 81.9 0.82 

Medium KNN 47.2 60.0 0.528 0.435 44.2 64.1 0.523 0.418 69.2 0.81 

Coarse KNN 5.8 59.2 0.105 0.140 3.7 40.0 0.067 0.047 59.0 0.67 

Cosine KNN 47.9 61.0 0.537 0.446 45.9 63.9 0.534 0.426 69.7 0.81 

Cubic KNN 46.5 58.6 0.519 0.422 44.1 62.9 0.518 0.409 68.6 0.8 

Weighted KNN 71.2 79.4 0.751 0.696 68.7 78.0 0.731 0.659 81.0 0.89 

Ensemble 

Boosted Trees 41.3 68.2 0.514 0.449 38.2 69.6 0.494 0.413 68.1 0.75 

Bagged Trees 78.4 85.0 0.816 0.774 76.3 85.0 0.804 0.751 85.3 0.93 

Subspace Discriminant 0.1 100.0 0.030 0.032 1.6 53.8 0.031 0.054 58.6 0.64 

Subspace KNN 68.5 78.5 0.732 0.674 66.7 78.1 0.719 0.646 79.9 0.89 

RUSBoost Trees 69.4 53.1 0.602 0.496 68.3 50.1 0.578 0.435 62.1 0.73 

Neural Network 

Narrow NN 40.0 59.4 0.478 0.391 34.5 54.7 0.423 0.300 64.6 0.71 

Medium NN 53.1 61.5 0.570 0.477 53.7 64.0 0.584 0.471 70.1 0.79 

Wide NN 71.7 72.1 0.719 0.651 68.4 69.7 0.690 0.599 77.2 0.84 

Bi-layered NN 49.7 66.4 0.569 0.489 41.6 55.3 0.475 0.344 67.1 0.75 

Tri-layered NN 48.7 65.3 0.558 0.477 46.2 57.1 0.511 0.381 67.9 0.76 

R, Recall; P, Precision; F1, F1-score; M, Matthews correlation coefficient; A, Accuracy; AUC, area under the receiver 

operating characteristic curve; Highest performance for evaluation metrics is in bold font; SVM, support vector machine; 

KNN, k-nearest neighbor; NN, neural network;  
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Figure 4.5. Feature importance in the abbreviated risk factors prediction model.  

FBS, fasting blood sugar; DBP, diastolic blood pressure; SBP, systolic blood pressure; 

SMBG, self-monitoring blood glucose; HR, heart rate; WC, waist circumference 
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4.4.2. Feature selection and performance evaluation 

The RF-RFE algorithm was used for feature optimization. The recall process 

according to the RF-RFE process is presented in Figure 4.6. Feature optimization selected 

the minimum feature that stabilized the prediction result. In this study, the top seven 

features (FBS, DBP, SBP, the number of steps, HR, the number of use days (weight scale), 

and WC) for stabilizing prediction results were finally determined. Therefore, the 

optimized characteristics showed a recall of 79.8%, a precision of 87.2%, an F1-score of 

0.834, and an MCC of 0.797 in increased abbreviated risk factors, and a recall of 75.1%, a 

precision of 85.5%, an F1 score of 0.800, and an MCC of 0.747 in decreased abbreviated 

risk factors. (Table 4.4).  

 

 

Figure 4.6. Feature selection and performance evaluation in the abbreviated risk 

factors prediction model. FBS, fasting blood sugar; DBP, diastolic blood pressure; SBP, 

systolic blood pressure; SMBG, self-monitoring blood glucose; HR, heart rate; WC, waist 

circumference 
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Table 4.4. Ensemble (bagged trees) model performance evaluation in the abbreviated 

risk factors prediction  

 
Recall 

(%) 

Precision 

(%) 
F1-score MCC 

Accuracy 

(%) 

Maintained risk factors 91.6 85.3 0.884 0.708 85.7 

Increased risk factors 79.8 87.2 0.834 0.797  

Decreased risk factors 75.1 85.5 0.800 0.747  

MCC, Matthews correlation coefficient 
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Chapter 5.  

Discussion and Conclusion 

Digital health-based lifestyle interventions were presented for MetS prevention and 

management, which included using healthcare devices to support lifestyle changes and 

sustained long-term self-care. Previous studies compared the outcomes of participants who 

received and did not receive lifestyle interventions [16, 18, 19, 30-33]. There is some 

evidence that lifestyle interventions may be effective. However, this study examined the 

participants’ characteristics based on changes in MetS risk factors and proposed prediction 

models to prevent and manage MetS by using healthcare devices. The use of healthcare 

devices for promoting continued interest in lifestyle interventions and self-care was 

confirmed and the appropriate frequency of use was recommended. Although all 

participants used the same lifestyle interventions, group differences were observed. These 

findings suggest that some modifications to lifestyle interventions may be required based 

on the participant’s characteristics. to increase the likelihood of lifestyle changes. 
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A prediction model for the prevention and management of MetS was proposed in this 

study. The model predicts persistence in continuous engagement as well as abbreviated risk 

factors for self-care effects. The model constructed using random forest performed best 

among representative machine-learning classifiers. RF-RFE was used to optimize feature 

selection. As a result, the persistence prediction model showed a recall of 83.0%, a 

precision of 92.4%, an F1-score of 0.874, an MCC of 0.844, and an accuracy of 94.9%. In 

increased abbreviated risk factors, the prediction model showed a recall of 79.8%, a 

precision of 87.2%, an F1 score of 0.834, and an MCC of 0.797, while decreased 

abbreviated risk factors showed a recall of 75.1%, a precision of 85.5%, an F1 score of 

0.800, and an MCC of 0.747.  

5.1. Digital Health-Based Lifestyle Intervention 

5.1.1. Comparison of studies 

Previous findings have suggested that digital health-based lifestyle interventions 

effectively improve health. MetS management research is changing from the classic 

intervention methods such as web-based education programs, e-mail feedback, telephone, 

and SMS toward an intervention method using an application, wearable devices, and 

coaching through health monitoring [16, 18, 19, 30-33]. In this study, phone calls, text 

messages, and re-training were used from week 6 to help increase engagement with lifestyle 

interventions. Text messages and phone calls had little impact; re-training in person helped 
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increase engagement. The re-training focused on problems with smartphone use, 

connectivity with healthcare devices, and device use. The user's ability to interact with a 

device may limit self-care adoption in this context; these limitations should be addressed 

as soon as possible. 

Oh et al. provided a body composition monitor (including weight measurement) and 

a pedometer to the intervention group (n = 212) and conducted health counseling through 

the recorded data. The control group (n = 210) was given a weight scale and a step counter 

for 24 weeks. Participants were recommended to measure at least three times a week. In 

the test group and control group, weight decreased by 2.2 (3.6) kg and 0.8 (2.8) kg, 

respectively, and the decrease was higher in the intervention group that received healthcare 

[31]. Park et al. provided smartwatches for participants with and without MetS. Participants 

(n = 43) with MetS had statistically significant decreases in BMI, WC, TG, and BP. 

Participants (n = 68) without MetS showed statistically significant differences in BMI, WC, 

and HDL-C [19]. Mao et al. provided participants (n = 763) with a scale, pedometer, and 

BP monitor and performed health coaching through live video, phone calls, and text 

messages through an application. During the 4-month study, an average of 3.2% of total 

weight was lost, and 28.6% of participants decreased their weight by more than 5% [32]. 

Huh et al. provided wearable devices to participants (n = 20) and asked them to walk 

regularly for 12 weeks. Participants were provided with self-feedback on their exercise 

volume through a mobile application. After 12 weeks, risk factors decreased from 3.4 to 
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2.9. There was a decrease in 11 (55%) participants and no change in 7 (35%). Physical 

activity was 7,510.04 (3,525) steps [30]. 

In the present study, the number of risk factors in participants with pre-MetS decreased 

from 1.7 (0.5) to 1.6 (1.1) at baseline and follow-up (P > 0.05).  Weight was reduced by 

0.25 (1.62) kg. The risk factors of participants with MetS decreased from 3.6 (0.6) to 2.4 

(1.1) (P < 0.01). Weight was reduced by 0.89 (2.13) kg. In the prevention and improvement 

groups, physical activity was 7,171.7 (4,735.3), and 7,323.6 (5,310.9) steps, and in the non-

prevention and non-improvement groups, it was as low as 5,699.3 (4,937.6), and 4,843.5 

(4,589.4) steps. Risk factors improved significantly when compared to the previous study 

[30-32]. Although weight loss and physical activity were low, a large number of 

participants did lose weight. This is thought to be the result of the intervention provided to 

the participants, which focused more on self-care than weight management. 

5.1.2. Engagement, persistence, and physical activity 

The prime emphasis in the management of MetS is the mitigation of the modifiable, 

underlying risk factors (obesity, physical inactivity, and atherogenic diet) through lifestyle 

changes. Increased levels of physical activity help reduce weight and body mass index, 

improving the overall risk factor profile. Engagement levels were assessed using those in 

prevention and improvement groups as references, as these groups effectively managed the 

risk factors for pre- and post-MetS. Two rules define engagement criteria: the number of 

device use days per week (rule 1) and the total number of device use days (rule 2). These 

rules helped prevent engagement failures due to problems with healthcare devices. Based 
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on existing studies, persistence was measured as devices used at least three times a week. 

[31]. However, it was considered that there would be differences depending on the 

convenience of the participants in using the equipment [60], so the criteria were referred to 

the prevention and improvement groups. The smartwatch that can be worn on the wrist had 

the highest use, five times a week, and the scale, smart tape measure, and BP monitor were 

measured more than three times a week. However, in the case of an SMBG, which requires 

blood to be obtained by using a lancet, the frequency of use (twice a week) was low. 

Engagement was defined by these characteristics, and persistence was reflected in the 

amount of continuously satisfactory engagement. In addition, it was hypothesized that 

lifestyle changes might be associated with increased persistence. In this study, engagement 

and persistence levels in the prevention and improvement groups were relatively high, but 

not significant. Therefore, the period remaining after 14 weeks of regular use of the 

healthcare devices was relatively short. 

5.1.3. Change in risk factors 

The prevention and improvement groups used more of the provided healthcare devices 

than the other groups. The levels of satisfied engagement and maximum persistence were 

high. The prevention group showed a significant decrease in the WC (19%) and BP (53%), 

whereas the non-prevention group showed a significant increase in HDL-C (50%) and TG 

(43%). The improvement group showed significant reductions in the WC (44%), BP (49%), 

FBS (40%), HDL-C (19%), and TG (19%), whereas the non-improvement group showed 

no significant changes. The prevention and improvement groups had the highest levels of 
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engagement, persistence, and physical activity, with a significant decrease in risk factors. 

The number of risk factors observed in the non-prevention group of pre-MetS participants 

increased. Despite moderate physical activity levels, the WC and BP increased slightly, and 

the HDL-C and TG levels increased significantly, suggesting challenges related to dietary 

habits. Dietary habits are associated with hyperglycemia, hypertriglyceridemia, 

hypertension, low HDL cholesterol levels, and abdominal obesity [61, 62]. In the non-

improvement group of the MetS participants, the five risk factors did not change or changed 

slightly. This group had lower engagement, persistence, and physical activity levels than 

the other groups. Continuous self-care monitoring using lifestyle interventions is 

recommended. 

5.1.4. Drop-Out 

In a previous study, the drop-out rate was approximately 48% in the first 4 weeks [30] 

and 20% during the observation period [31]. Drop-out risk is associated with participant 

age, lack of familiarity with smartphones or wearable devices, and mobile application use. 

However, 23 (16%) of the 138 participants dropped out of this study. Reasons for dropping 

out included difficulties associated with study participation, time-constraints, and an 

unwillingness to continue. All participants had experience with long-term cohort studies 

and understood clinical trials and healthcare service protocols, which may account for the 

lower drop-out rate in this study than that in previous studies. However, seven (6%) 

participants failed to use the provided devices for >13 weeks. 
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5.2. Prediction Model for Prevention and Management of MetS 

5.2.1. Lifelog data and data labeling 

Participants were given five healthcare devices: a BP monitor, weight scale, SMBG, 

smart tape measure, and smartwatch. Lifelog data were used to evaluate engagement, 

persistence, and physical activity levels. The level of engagement was represented by the 

number of times a device was used during the window by the participants to maintain self-

care easily. Data were labeled to evaluate engagement and persistence. This was 

determined based on 4 weeks, which represents half of the analysis results, considering the 

limitations of the data measurement period, time-window, and overlap. 

5.2.2. Feature extraction  

Self-care utilizes values measured through healthcare devices, but it can take a long 

time to confirm meaningful changes in the measured values. In the short term, it may be 

difficult to recognize the amount of change because the value measured by the healthcare 

device is a small or the values are similar. This makes it difficult to motivate participants, 

as it is difficult for them to identify health improvements. In addition, the values may have 

been affected by the participants’ body positions, measurement sites, and device 

measurement errors [63]. Therefore, in this study, preprocessing of the data was performed. 

If the value is more than 20% of the previous value, it is replaced with the previous data. 

In addition, a median filter was used in consideration of outliers. For FBS, the minimum 

data value measured before and after meals was used. This accounted for the concentration 
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of data on one side due to the difficulty of selecting pre- and post-meal options for 

applications in FBS measurement. Finally, seven clinical data points and five weekly usage 

days were used as features for the development of the predictive model. 

5.2.3. Feature selection and performance evaluation 

A novel predictive model for the prevention and management of MetS was developed, 

consisting of persistence prediction for continued engagement and abbreviated risk factor 

prediction for self-care effects. Representative machine-learning classifiers were compared. 

In both models, the random forest showed the best performance. RF-RFE was used for 

optimal feature selection. The random forest grows hundreds of diverse classification trees 

and uses them together as a composite classifier. The final classification of a given sample 

is decided by applying the majority rule over the votes of the individual classifiers. To 

produce uncorrelated and dissimilar predictions, each tree is grown using only a reduced 

sample (a bootstrap) of the training set. As random forest uses OOB subsets to estimate the 

importance, computational efforts are not increased. Moreover, the random forest was 

developed as a multiclass algorithm, which suggests that it could provide a better measure 

of importance for this kind of problem than the combination of binary problems used, for 

example, by support vector machine [54-56]. 

Five features of the participation prediction model and seven features of the 

abbreviated risk factor prediction model were finally selected. These characteristics 

included weight-related indicators such as the number of steps, WC, and weight. These 

goals and recommendations for the clinical management of MetS aim for a 10% reduction 
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in abdominal obesity and require 30–60 min of moderate-intensity exercise daily as an 

activity level [2]. SBP and DBP were associated and had characteristics that showed 

significant differences before and after clinical trials. In the persistence prediction model, 

recall, precision, F1-score, and MCC all showed values of 80% or higher. In the abbreviated 

risk factor prediction model, the performance of the increased abbreviated risk factors was 

about 80% or higher, and the decreased abbreviated risk factors were 74% or higher. 

5.3. Limitations 

There are several limitations to this study. The digital health-based intervention was 

performed in a single group. Additionally, in some studies, even if equipment for self-care 

management is provided, the improvement effect of MetS may be insufficient if motivation 

is not achieved through appropriate intervention [64, 65]. For self-care through the 

proposed level of engagement, persistence, and physical activity, it is important to inform 

participants about steady health management by using the application and phone 

consistently [35, 36]. The participants’ experience using wearable devices was not 

considered; device familiarity may affect engagement levels. The age of the participants in 

this study is high, which might make it difficult to use healthcare devices, and participants 

may require help [65]. If you are unfamiliar with the connection between the healthcare 

devices and the application or the use of the devices, data omissions or errors may occur. 

Improper data collection may affect analysis results. Additionally, the number of 

participants in this study was insufficient. For this reason, some group analyses used 
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parametric and non-parametric methods. In future, additional lifelog data collection may 

improve the performance of the artificial intelligence-based model. The proposed 

predictive model for prevention and management of MetS should be validated in clinical 

trials. This study accounted only for the presence of a risk factor, rather than when it 

occurred. Future studies should examine the impact of risk factor timing on disease onset.  
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Abstract in Korean 

 

기계학습 기반의 대사증후군 예방 및 관리를 위한 예측 모델 

 

디지털 헬스 기반 생활습관 중재 (모바일 애플리케이션, 단문 메시지 

서비스, 웨어러블 장치, 소셜 미디어 및 대화형 웹사이트 등)는 대사증후군 

관리에 사용되고 있다. 본 연구는 헬스케어 기기를 활용하여 디지털 헬스 

기반 생활습관 중재의 유용성을 확인하고 대사증후군 예방 및 관리를 위한 

예측 모델을 제안하였다. 2019 년 12 월부터 2020 년 9 월까지 하나 이상의 

대사증후군 위험 요인을 가진 참여자를 모집하였고 최종 106 명이 선정되었다. 

참여자는 5 개의 헬스케어 기기와 애플리케이션이 제공되었다. 임상시험 전후 

특성을 비교하였으며, 참여 기간 동안 수집된 라이프로그 데이터를 

분석하였다. 이러한 결과를 기반으로 지속적인 자가관리를 위한 헬스케어 

기기의 사용 빈도를 정량화 하였으며, 대사증후군 예방 및 관리를 위한 예측 

모델을 개발하였다. 예측 모델은 연속적인 참여를 위한 지속성과 자가 관리 

효과를 위한 간소화된 위험 요소 예측으로 구성된다. 대표적인 기계 학습 

분류기를 사용하여 성능을 평가하였고 결과를 비교하였다. 두 모델은 랜덤 

포레스트 분류기가 가장 좋은 성능을 보였으며, 랜덤 포레스트-재귀적 특징 
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제거를 통해 특징 선택을 최적화하였다. 그 결과 지속성 예측모델은 재현율 

83.0%, 정밀도 92.4%, F1-score 0.874, Matthews 상관계수(Matthews correlation 

coefficient, MCC) 0.844, 그리고 정확도 94.9%를 보였다. 간소화된 위험인자 

예측모형에서 위험인자 증가 예측은 재현율 79.8%, 정밀도 87.2%, F1-score 

0.834, 그리고 MCC 0.797 이였으며, 위험인자 감소 예측은 재현율 75.1%, 

정밀도 85.5%, F1-score 0.800, 그리고 MCC 0.747 이였다. 제안된 예측 모델은 

높은 성능을 확인하였다. 디지털 헬스 기반 생활습관 중재를 통한 자가관리를 

기반으로 제안된 예측 모델은 대사증후군 예방 및 관리에 유용한 도움이 될 

것이다.  
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