
vSPACE: Supporting Parallel Network Packet Processing in
Virtualized Environments through Dynamic Core Management

Gyeongseo Park∗
DGIST/ETRI

Republic of Korea
gspark@dgist.ac.kr

Minho Kim
DGIST

Republic of Korea
mhkim@dgist.ac.kr

Ki-Dong Kang
ETRI

Republic of Korea
kd_kang@etri.re.kr

Yunhyeong Jeon
DGIST

Republic of Korea
yhjeon@dgist.ac.kr

Sungju Kim
DGIST

Republic of Korea
sungju_kim@dgist.ac.kr

Hyosang Kim
DGIST

Republic of Korea
hyosangkim@dgist.ac.kr

Daehoon Kim†

Yonsei University
Republic of Korea

daehoonkim@yonsei.ac.kr

Abstract
Data centers face significant performance challenges with parallel
processing for network I/O in virtualized environments, particu-
larly for latency-critical (LC) workloads that must satisfy strict
Service Level Objectives (SLOs). While previous studies have ad-
dressed performance challenges in network I/O virtualization, they
overlook the impact of excessive parallelism on the performance
of Virtual Machines (VMs). We observe that excessive paralleliza-
tion for VMs and network I/O processing can lead to core over-
subscription, resulting in significant resource contention, frequent
preemptions, and task migrations. Based on these observations,
we propose vSPACE, dynamic core management specifically de-
signed to support parallel network I/O processing in virtualized
environments efficiently. To reduce scheduling contention, vSPACE
creates distinct core allocation groups for VM and network I/O
and assigns dedicated cores to each. Then, it dynamically adjusts
the number of allocated cores to enforce appropriate parallelism
for VMs and network I/O processing based on varying demands.
vSPACE employs continuous monitoring and a heuristic algorithm
to periodically determine appropriate core allocation, addressing
excessive contention and improving energy and resource efficiency.
vSPACE operates in three modes: performance improvement, energy
efficiency, and resource efficiency. Our evaluations demonstrate
that vSPACE significantly enhances throughput by up to 4.2× com-
pared to existing core allocation approaches and improves energy
and resource efficiency by up to 16.5% and 30.5%, respectively.

∗Work was done while at DGIST
†Daehoon Kim is the corresponding author.

This work is licensed under a Creative Commons Attribution International
4.0 License.

PACT ’24, October 14–16, 2024, Long Beach, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0631-8/24/10
https://doi.org/10.1145/3656019.3689610

ACM Reference Format:
Gyeongseo Park, Minho Kim, Ki-Dong Kang, Yunhyeong Jeon, Sungju
Kim, Hyosang Kim, and Daehoon Kim. 2024. vSPACE: Supporting Parallel
Network Packet Processing in Virtualized Environments through Dynamic
Core Management. In International Conference on Parallel Architectures and
Compilation Techniques (PACT ’24), October 14–16, 2024, Long Beach, CA, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3656019.3689610

1 Introduction
Efficiently exploiting the parallelism of multi-core processors is
crucial for the performance of virtualized systems, which typically
consolidate multiple virtual machines (VMs). Each Virtual Machine
(VM) not only utilizes multiple vCPUs with multithreading capabil-
ities but also applies parallel processing to network I/O handling
with its own virtual Network Interface Cards (vNICs) [2, 13]. While
parallel processing can enhance performance by distributing tasks
across multiple cores, it introduces significant performance chal-
lenges, particularly in network I/O virtualization. The inherent
parallelism in both VM operations and network I/O processing
often leads to the oversubscription of processor cores, increasing
scheduling overheads. This excessive parallelism intensifies ex-
isting virtualization challenges, including increased latency from
unscheduled vCPUs, core resources competition from multiple net-
work I/O processing demands (e.g., physical and virtual Network
Interface Cards (pNICs and vNICs)), frequent VM exits from virtual
interrupts [11, 14, 15, 18, 19, 33]. These issues are problematic for
Latency-Critical (LC) workloads, where satisfying Service Level
Objectives (SLOs) is essential.

Although parallel processing offers opportunities to improve per-
formance, previous studies with hardware and software solutions
have primarily focused on addressing I/O virtualization overhead
within limited parallelism and capabilities. SR-IOV [12], a hardware
solution, reduces I/O overhead by allowing VMs direct access to de-
vices, enhancing performance. However, SR-IOV supports limited
parallelism as it relies on a static level of parallelism. Additionally,
deploying SR-IOV for advanced functionalities (e.g., overlay net-
works) demands specific devices with particular capabilities (e.g.,

14

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 10, 2025.

https://orcid.org/0000-0002-9791-5447
https://orcid.org/0009-0006-3604-3901
https://orcid.org/0000-0002-3778-5978
https://orcid.org/0009-0005-2890-3134
https://orcid.org/0009-0006-7869-7145
https://orcid.org/0009-0004-2705-9499
https://orcid.org/0000-0003-0837-0877
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3656019.3689610
https://doi.org/10.1145/3656019.3689610
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656019.3689610&domain=pdf&date_stamp=2024-10-13

VXLAN), thus increasing deployment complexity in multifaceted
settings. Consequently, SR-IOV often remains an optional feature
in cloud infrastructures due to these limitations. On the software
side, hBalance/vBalance[8, 10] aim to mitigate I/O processing de-
lays within vCPUs by redirecting I/O traffic from inactive to active
vCPUs. ES2[15] introduces an adaptive hybrid I/O handling model
that alternates between exit-based notifications (i.e., virtual inter-
rupts) during low load periods and a non-exit polling mode under
higher load conditions. These methods retain the adaptability and
scalability of software-based I/O virtualization, allowing dynamic
adjustments to workload changes without hardware reconfigura-
tion. However, their focus on single I/O processing overlooks the
broader potential advantages of parallel processing for multiple
tasks such as VM and I/O.

Excessive parallelization for VMs and network I/O leads to core
oversubscription, causing inefficient context switches and task mi-
grations. Our investigation uncovers that network I/O virtualization
amplifies the challenges due to its involvement in a wide range of
multiple tasks, including parallel packet processing on pNIC and
vNICs, and executing workloads on multiple vCPUs. This oversub-
scription presents challenges in balancing core allocation between
vCPUs and network I/O processing.

To overcome these challenges, we introduce vSPACE, a sophisti-
cated software-centric core management technique designed for
parallel network I/O processing in virtualized environments, signif-
icantly enhancing the performance and efficiency of LC workloads.
We observe that time sharing the cores for both vCPUs and network
I/O processing results in considerable contention, which can be
effectively addressed by dedicating separate cores to each. Based
on the observation, vSPACE creates distinct core allocation groups
for vCPUs and network I/O parallel processing, assigning dedi-
cated cores to each group. Then, vSPACE dynamically adjusts the
number of cores dedicated to vCPUs and network I/O processing
based on fluctuating demands, preventing core utilization satura-
tion. Through continuous monitoring for each group and a heuristic
algorithm, vSPACE periodically decides appropriate core allocation,
addressing excessive contention and improving energy and resource
efficiency. vSPACE introduces three operational modes, vSPACE-P
for performance, vSPACE-E for energy efficiency, and vSPACE-R for
resource efficiency, each designed to meet specific requirements
while enhancing overall system performance and efficiency.

To the best of our knowledge, this study is the first comprehen-
sive dynamic core management approach considering both vCPUs
and network I/O processing in I/O virtualization environments.
While parallel processing for VMs and network I/O increases re-
source contention, vSPACE addresses this with isolation and dy-
namic core allocation, enhancing performance, energy efficiency,
and resource utilization. vSPACE-P significantly enhances the maxi-
mum Query Per Second (QPS), achieving up to a 4.2 × improvement
over static core allocation methods. vSPACE-E reduces energy con-
sumption by up to 16.5% compared to state-of-the-art dynamic core
allocation techniques focused on energy efficiency [28]. Further-
more, vSPACE-R leads to more effective core allocation for VMs
running Best Effort (BE) workloads, showing up to a 30.5% im-
provement over dynamic core co-allocation study for resource effi-
ciency [34]. This comprehensive approach not only outperforms
existing scheduling and core allocation methods but also ensures

cloud deployment adaptability without requiring modifications to
the hypervisor, guest OS, or hardware. The primary contributions
of this work include:

• We emphasize the significance of core allocation for packet pro-
cessing in virtualized environments, advocating for equal consid-
eration with vCPU, diverging from traditional views.

• We identify a performance bottleneck in network packet process-
ing from core scheduling contention, showing that dynamic and
isolated core allocation can overcome it.

• vSPACE methodology introduces two novel strategies: distinct
and dynamic core allocation for vCPUs and packet processing.

• The three vSPACE modes outperform state-of-the-art schedul-
ing and core allocation approaches in performance, energy, and
resource efficiency, respectively.

2 Background
High-performance network technologies in modern pNICs and
their operating systems support parallel packet processing across
multi-core processors [23]. This is facilitated by techniques like
Receive Side Scaling (RSS) for incoming traffic and Transmit Packet
Steering (XPS) for outgoing traffic [35], allowing efficient packet
distribution to multiple processor cores. To enable efficient distri-
bution of network packets across multiple pCPUs, pNICs provide
multiple physical network queues (pNQs), each of which is mapped
to an individual pCPU. The packet distribution relies on hashing
IP addresses and port numbers, ensuring packets from the same
connection are handled by the same core. Virtualized environments
extend these principles through vNIC employing that use virtual
network queues (vNQs) linked to vCPUs, facilitating network traffic
management [36]. There are two components that process packets
with the vNICs: a back-end device and a front-end driver. The back-
end device generally emulates the hardware functionality of NICs
on the hypervisor using hypervisor-level threads, such as vNQs
and registers, which involves memory copying to transfer packets
from pNQs to vNQs, and vice versa. The front-end driver provides
interfaces that enable guest VMs to manipulate back-end devices.
When network packets arrive or are transmitted, the corresponding
vCPUs linked to vNQs are alerted through virtual interrupt re-
quests (vIRQs). This process ensures that both the hypervisor-level
threads simulating the vNQs and the vCPUs tied to these queues
are simultaneously activated for parallel packet processing.

Figure 1 shows the overview of parallel packet processing in a
virtualized environment. When a packet arrives at the pNIC, the
packet is delivered to a pNQ via the RSS technique. The packet
is copied to a software Rx queue in the hypervisor, and a pIRQ is
sent to the pCPU corresponding to the pNQ, informing the packet’s
arrival (1). The pCPU immediately schedules the pIRQ handler,
processing the packet and delivering the packet to a Received (Rx)
vNQ (2). The back-end device then sends a vIRQ to the vCPU
assigned to the vNQ (3). The vCPU executes the vIRQ handler
of the front-end driver within the VM, and the front-end driver
delivers the packet’s payload to the application running within the
VM (4). For packet transmission, the application within the VM
first packetizes the data through the network stack (1). The front-
end driver enqueues the packet in a Tx vNQ and triggers a VM exit
to notify the I/O event for the hypervisor (2). The back-end device

15

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 10, 2025.

vCPU

Front-end Driver

User App.

vCPU

Front-end Driver

User App.

vCPU

Front-end Driver

User App.

vCPU

Front-end Driver

User App.

vCPU

Front-end Driver

User App.

vCPU

Front-end Driver

User App.

pNIC Driver pNIC Driver pNIC Driver

Hypervisor

➁

➂ ❷

❸

Back-end
Device

Rx/Tx Queue

Back-end
Device

Rx/Tx Queue

➃ ❶

VM

Rx/Tx Queue Rx/Tx Queue Rx/Tx Queue

pNIC
pCPU pCPU pCPU

Processor

➀ ❹

❺

❻
Back-end

Device
Rx/Tx Queue

Back-end
Device

Rx/Tx Queue

Back-end
Device

Rx/Tx Queue

Back-end
Device

Rx/Tx Queue

Figure 1: The overview of network packet processing in a
virtualized environment.

transfers the packet to the pNIC driver (3), and the driver copies the
packet to a Tx pNQ (4). After transmission, the pNIC/vNIC sends
a pIRQ/vIRQ to the pCPU/vCPU assigned to the pNQ/vNQ, and
the pCPU/vCPU preemptively schedules the pIRQ/vIRQ handler to
complete the packet transmission process (5 / 6).

The number of pNQs/vNQs of pNICs/vNICs determines the de-
gree of parallelism for parallel packet processing. In otherwords, the
number of pNQs/vNQs establishes the degree towhich pIRQs/vIRQs
can be sent in parallel, subsequently activating pCPUs/vCPUs equal
to the number of pNQs/vNQs. Furthermore, the back-end devices,
which are typically composed of kernel threads on the hypervisor,
are also activated, corresponding to the number of vNQs.

3 Impact of Parallel Packet Processing with I/O
Virtualization

This section examines how strategic core management influences
LC workload performance within I/O virtualization. Our focus lies
on two critical areas: the adjustment of pNQs and vNQs, which
affects the engagement of pCPUs and vCPUs in packet processing,
and the impact of core management policies on overall system
performance. Specifically, adjusting the number of pNQs in pNICs
and vNQs in vNICs changes network I/O parallelism levels; high
levels of parallelism intensify oversubscription. We scrutinize core
management policies, encompassing modifications in pNQs, vNQs,
vCPUs numbers, and their corresponding pCPU allocations. For our
experiments, we employ memcached, a key-value store application
running on a VM with 20 threads across 20 vCPUs and pCPUs,
generating network traffic using mutilate based on Facebook’s
ETC trace [4]. We conduct over 10 trials while we plot the mean
with shaded regions and error bars representing 95% confidence
intervals.

3.1 Impact of Parallel Packet Processing on LC
Workload

We investigate the impact of parallel packet processing on tail re-
sponse latency for LC workloads by adjusting the number of pNQs

60 80 100 120 140
KQPS

0

1

2

P9
5

(m
s) SLO

1pNQ-1vNQ 1pNQ-20vNQ 20pNQ-1vNQ 20pNQ-20vNQ

Figure 2: 95𝑡ℎ percentile latency of memcached as the number
of pNQs and vNQs changes.

50.00

1

pI
R

Q
s (

M
)

1pNQ-1vNQ
1pNQ-20vNQ

20pNQ-1vNQ
20pNQ-20vNQ

(a) Physical IRQs

50.00.0

0.5

vI
R

Q
s (

M
)

1pNQ-1vNQ
1pNQ-20vNQ

20pNQ-1vNQ
20pNQ-20vNQ

(b) Virtual IRQs

50.00

2

4

C
on

te
xt

-
Sw

itc
he

s (
M

)

1pNQ-1vNQ
1pNQ-20vNQ

20pNQ-1vNQ
20pNQ-20vNQ

(c) Context-Switches

50.0100
102
104
106

M
ig
ra
tio
ns

1pNQ-1vNQ
1pNQ-20vNQ

20pNQ-1vNQ
20pNQ-20vNQ

(d) Migrations

Figure 3: System events across all cores in memcached at
50KQPS as the number of pNQs and vNQs changes.

and vNQs. These configurations are denoted as npNQ-nvNQ, where
n indicates the number of network queues. In Figure 2, we exam-
ine the P95 against Query Per Second (QPS) for configurations
ranging from minimal to maximal network queues: 1pNQ-1vNQ,
1pNQ-20vNQ, 20pNQ-1vNQ, and 20pNQ-20vNQ. Our findings high-
light a deterioration in performance with maximized vNQs or pNQs
compared to the baseline 1pNQ-1vNQ. For example, 1pNQ-1vNQ vio-
lates the SLO from 110KQPS while 1pNQ-20vNQ and 20pNQ-1vNQ
violate the SLO from 70KQPS and 110KQPS, respectively. Particu-
larly, 1pNQ-20vNQ suffers from further performance degradation,
as having multiple vNQs induces more scheduling overhead than
multiple pNQs; we delve into details later. Interestingly, even the
20pNQ-20vNQ, whichmaximizes both pNQs and vNQs, showsworse
performance at several load levels (from 80 KQPS to 120 KQPS)
compared to 1pNQ-1vNQ. However, the 1pNQ-1vNQ configuration
experiences a sharp increase in tail latency around 120KQPS due to
nearly 100% CPU utilization. Conversely, the 20pNQ-20vNQ config-
uration mitigates CPU saturation with parallel packet processing
but incurs scheduling overhead. The results indicate the need to
balance core allocation for NQs to reduce scheduling contention
and prevent CPU saturation.

Figure 3 presents system events that reveal the scheduling over-
heads at 50KQPS where all configurations satisfy the SLO. Rising
pNQs and vNQs directly correlate with an increase in pIRQs and
vIRQs, prompting more frequent context switches and migrations.
For example, the 20pNQ-20vNQ setup sees pIRQs and vIRQs increase
by 1.9x and 1.6x, respectively, compared to 1pNQ-1vNQ, resulting
in a similar increase in context switches. The competitive envi-
ronment significantly increases migrations by up to 466.5×, as

16

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 10, 2025.

Ti
m

e-
Sh

ar
in

g
18

vC
PU

-2
N

Q
16

vC
PU

-4
N

Q
14

vC
PU

-6
N

Q
12

vC
PU

-8
N

Q
10

vC
PU

-1
0N

Q
8v

C
PU

-1
2N

Q
Ti

m
e-

Sh
ar

in
g

18
vC

PU
-2

N
Q

16
vC

PU
-4

N
Q

14
vC

PU
-6

N
Q

12
vC

PU
-8

N
Q

10
vC

PU
-1

0N
Q

8v
C

PU
-1

2N
Q

Ti
m

e-
Sh

ar
in

g
18

vC
PU

-2
N

Q
16

vC
PU

-4
N

Q
14

vC
PU

-6
N

Q
12

vC
PU

-8
N

Q
10

vC
PU

-1
0N

Q
8v

C
PU

-1
2N

Q

100

101

102

P9
5

(m
s)

SLO

50 KQPS 150 KQPS 250 KQPS

Figure 4: 95𝑡ℎ percentile latency of memcached as the number
of pNQs, vNQs, and vCPUs changes.

the hypervisor scheduler reallocates vCPUs and vNQs across pC-
PUs. Moreover, vNQs significantly increase scheduling overheads
more than pNQs. For instance, 1pNQ-20vNQ increases the number of
context-switches and migration events by 2.0× and 288.2×, respec-
tively, compared to 20pNQ-1vNQ. This is because vNQs engage both
the corresponding vCPUs and the hypervisor threads that emulate
them, leading to higher competition for pCPU resources. In con-
trast, pNQs trigger packet processing directly via pIRQs, avoiding
hypervisor scheduling. Furthermore, hypervisor-level threads for
vNQs require substantial computational resources to perform mem-
ory copying for packet delivery between vNQs and pNQs, whereas
pNICs offload packet copying to Direct Memory Access (DMA)
engines, reducing their resource demands. Consequently, configu-
rations like 20pNQ-20vNQ underperform compared to 1pNQ-1vNQ,
despite spreading pCPU and vCPU utilization.

3.2 Impact of Core Allocation and Parallel
Packet Processing on LCWorkload

To mitigate the scheduling overheads associated with parallel net-
work packet processing, we apply two intuitive policies. Firstly, we
distinctly allocate pCPUs for vCPUs and NQs (i.e., both pNQs and
vNQs), to reduce resource contention. Secondly, we adjust the allo-
cation of pCPUs to vCPUs and NQs to ensure their combined count
aligns with the total number of available pCPUs, effectively pre-
venting resource overcommitment. We evaluate two primary strate-
gies in virtualized environments: Time-Sharing and Isolation.
Time-Sharing involves vCPUs and NQs sharing pCPUs equally.
For instance, with 20 total pCPUs, the combined count of vCPUs,
pNQs, and vNQs also totals 20, ensuring a uniform distribution
of resources across all tasks. Conversely, the Isolation strategy
assigns network queues and vCPUs to separate pCPUs, aligning
each parallelism level with the allocated pCPUs. This configuration
is denoted as nvCPU-nNQ, where n indicates the number of allo-
cated pCPUs for both vCPUs and NQs, ensuring the total number
of allocated resources matches the number of pCPUs.

Our results, depicted in Figure 4, demonstrate how different
strategies influence the P95. Isolation outperforms Time-Sharing
in satisfying the SLO, particularly at a higher query rate. Almost
Isolation configurations satisfy the SLO at 250KQPS, whereas
Time-Sharing violate The SLO beyond 150K QPS. Furthermore,
the effectiveness of Isolation emphasizes the critical need for
carefully balanced core allocation for NQs and vCPUs. Insufficient
core allocation can lead to excessive concentration on either NQs

Ti
m

e-
Sh

ar
in

g

Is
ol

at
io

n

Ti
m

e-
Sh

ar
in

g

Is
ol

at
io

n

Ti
m

e-
Sh

ar
in

g

Is
ol

at
io

n0

2

4

Ph
ys

ic
al

 IR
Q

s (
M

)

50 KQPS 150 KQPS 250 KQPS

(a) Physical IRQs

Ti
m

e-
Sh

ar
in

g

Is
ol

at
io

n

Ti
m

e-
Sh

ar
in

g

Is
ol

at
io

n

Ti
m

e-
Sh

ar
in

g

Is
ol

at
io

n0

1

2

3

Vi
rtu

al
 IR

Q
s (

M
) 50 KQPS 150 KQPS 250 KQPS

(b) Virtual IRQs

Ti
m

e-
Sh

ar
in

g

Is
ol

at
io

n

Ti
m

e-
Sh

ar
in

g

Is
ol

at
io

n

Ti
m

e-
Sh

ar
in

g

Is
ol

at
io

n0

2

4

C
on

te
xt

-S
w

itc
he

s (
M

)

50 KQPS 150 KQPS 250 KQPS

(c) Context-Switches

Ti
m

e-
Sh

ar
in

g

Is
ol

at
io

n

Ti
m

e-
Sh

ar
in

g

Is
ol

at
io

n

Ti
m

e-
Sh

ar
in

g

Is
ol

at
io

n100

102

104

106

M
ig

ra
tio

ns

50 KQPS 150 KQPS 250 KQPS

(d) Migrations

Figure 5: Comparison of system events in memcached between
Time-Sharing and Isolation.

Figure 6: 95𝑡ℎ percentile latency for Time-Sharing and
Isolation based on vCPUs/NQs adjustments.

or vCPUs (approaching 100% core utilization), resulting in perfor-
mance degradation as seen in the 18vCPU-2NQ and 8vCPU-12NQ.
This can adversely impact latency to escalate exponentially, some-
times resulting in outcomes worse than those of Time-Sharing.

Figure 5 provides a detailed comparison of system events for
both Time-Sharing and Isolation (i.e., 16vCPU-4NQ), illustrating
the areas of improvement. Isolation can avoid core oversubscrip-
tion with separated cores and reduced parallelism level, resulting
in fewer pIRQs and vIRQs, thereby mitigating preemptions and
VM exits. Compared to Time-Sharing, Isolation decreases the
count of pIRQs and vIRQs by up to 51.7% and 15.1%, respectively.
Moreover, Isolation reduces context switches and migrations by
up to 58.6% and 99.6%, respectively.

Additionally, we delve into performance improvements achieved
by isolation and parallelism management. Figure 6 shows the 95𝑡ℎ
percentile latency across KQPS levels for four distinct configura-
tions, employing either Time-Sharing or Isolation, with vary-
ing parallelism levels for VM and I/O. The baseline configura-
tion, 20vCPU-20vNQ(w/o iso.), shows the least effective perfor-
mance. In contrast, 16vCPU-4NQ(w/o iso.), which involves par-
allelism management for VM and I/O without Isolation, shows
improved performance. This improvement is primarily due to re-
duced contention for pCPUs, indicating that reducing parallelism
levels to avoid overcommitment can improve latency. Furthermore,

17

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 10, 2025.

Processor

vNIC
VQVQvNQ

pNIC
VQVQpNQ

VM
VQVQvCPU

vSPACE-
Guest

vSPACE-Host

pCPU
(NQ)

Monitoring
Latency &
Utilization

Dynamic Core Allocation

HW
Layer

Hyp.
Layer

Virt.
Layer

pCPU
(vCPU)

pCPU
(vCPU) pCPU

pNQs scaling

vNQ
scaling

vCPU
scaling

pCPU allocating

of vCPUs/vNQs

: For vCPU: For pNQ/vNQ : vSPACE

THvCPU
/THNQ

Threshold Exploration
of

vCPUs/
NQs

P95
&Util.

Figure 7: vSPACE architecture.

20vCPU-20vNQ(w/ iso.), which uses Isolation without chang-
ing parallelism levels for I/O and VM (both at 20), shows perfor-
mance improvement. This indicates that Isolation alone, even
without changing the number of vCPUs or NQs, can effectively
enhance system performance. The 16vCPU-4NQ(w/ iso.) shows
the best performance by combining these two strategies.

4 Architecture
4.1 Overview
We propose vSPACE that, in virtualized environments, efficiently
Supports PArallel network paCkEt processing through dynamic
core management for vCPUs and NQs for LC workloads. Based on
our observation, vSPACE dynamically allocates pCPUs to vCPUs and
NQs (i.e., pNQs and vNQs), ensuring the satisfaction of the target
SLO. Adjustments in pCPU allocation for vCPUs and NQs directly
influence the configuration of vCPUs and NQs, aligning resources
with demand. For instance, if vSPACE designates one pCPU for NQ
(i.e., 1NQ) and two pCPUs for vCPUs (i.e., 2vCPU), resulting in
corresponding adjustments in the numbers of pNQs, vNQs, and
vCPUs to one, one, and two, respectively. In this configuration, the
single pNQ and vNQ share the allocated pCPU.

The architecture of vSPACE is depicted in Figure 7, consisting of
twomain components: vSPACE-Host and vSPACE-Guest. vSPACE-Host,
operating at the hypervisor level, periodically measures the pCPU
utilization by vCPUs and NQs, along with the tail response latency.
Utilizing this data, vSPACE-Host searches for the most efficient
core allocation configuration. To achieve precise core allocation,
vSPACE-Host applies two critical utilization thresholds for vCPUs
and NQs. These thresholds represent the maximum allowable pCPU
utilization for vCPUs and NQs to satisfy the SLO. The adjustment
involves scaling the number of pNQs and allocating pCPU for both
vCPUs and NQs. Concurrently, vSPACE-Guest modifies the num-
ber of active vNQs and vCPUs within the VM. vSPACE offers three
modes: performance mode (i.e., vSPACE-P), energy-efficiency mode
(i.e, vSPACE-E), and resource-efficiency mode (i.e., vSPACE-R). In
vSPACE-P, all pCPUs are fully activated to maximize performance
and reduce latency, even when fewer cores can satisfy the SLO,
but this mode consumes more energy. vSPACE-E reduces energy
consumption by dynamically allocating pCPUs to vCPUs and NQs

Algorithm 1: Dynamic Core Allocation of vSPACE-P
Require: 𝑇𝑜𝑡𝑎𝑙𝑈 𝑡𝑖𝑙𝑣𝐶𝑃𝑈 ,𝑇𝑜𝑡𝑎𝑙𝑈 𝑡𝑖𝑙𝑁𝑄 (Measured metrics)
1: 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑟𝑒 = the total number of pCPUs
2: 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 =𝑇𝑜𝑡𝑎𝑙𝑈 𝑡𝑖𝑙𝑣𝐶𝑃𝑈 /𝑇ℎ𝑣𝐶𝑃𝑈

3: 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑁𝑄 =𝑇𝑜𝑡𝑎𝑙𝑈 𝑡𝑖𝑙𝑁𝑄/𝑇ℎ𝑁𝑄

4: 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 + 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑁𝑄

5: 𝑁𝑒𝑥𝑡𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 = round(𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑟𝑒 ∗ 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 /𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑡𝑜𝑡𝑎𝑙)
6: 𝑁𝑒𝑥𝑡𝐶𝑜𝑟𝑒𝑁𝑄 = round(𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑟𝑒 ∗ 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑁𝑄/𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑡𝑜𝑡𝑎𝑙)

as the load changes, maintaining the SLO but resulting in higher
latency than vSPACE-P. vSPACE-R enhances resource efficiency by
allocating idle pCPUs to a VM running a CPU-intensive work-
load (Best Effort) but causing lower throughput in LC workloads
compared to vSPACE-P and vSPACE-E due to contention from the
co-running workload.

4.2 Dynamic Core Allocation
vSPACE dynamically manages core allocation for vCPUs and NQs by
monitoring pCPU utilization to enhance performance and efficiency.
The primary objective is to prevent pCPU resource saturation for
vCPUs and NQs, using established utilization thresholds. These
thresholds are set to identify potential pCPU overload conditions
that have a risk of SLO violation.

Algorithm 1 outlines the operation of vSPACE-P. vSPACE-P uti-
lizes all available pCPUswhile dynamically adjusting the proportion
of pCPUs allocated to vCPUs and NQs. The algorithm begins with
identifying the number of pCPUs demanded for vCPUs and NQs.
It calculates the required pCPUs by dividing their respective total
pCPU utilizations by their individual thresholds and rounding to
the nearest integer (lines 2-3). The algorithm then calculates the to-
tal number of required pCPUs by summing the determined pCPUs
for vCPUs and NQs (line 4). The subsequent pCPU allocation to
vCPUs and NQs is determined by proportionally distributing the
maximum number of pCPUs relative to their required pCPUs (lines
5-6). This approach ensures efficient utilization of all pCPUs while
maintaining a fair distribution between vCPUs and NQs.

Algorithm 2 describes vSPACE-E’s dynamic core allocation strat-
egy, utilizing a 𝑀𝐴𝑅𝐺𝐼𝑁 to modulate core adjustments. Higher
𝑀𝐴𝑅𝐺𝐼𝑁 values promote stability by resisting rapid changes in
allocated pCPUs, whereas lower values favor energy efficiency
through more aggressive core reductions. It calculates the number
of pCPUs demanded for both vCPUs and NQs, similar to vSPACE-P
(lines 2-3). The algorithm starts by summing the pCPUs required
by vCPUs and NQs, then verifying if the summation result exceeds
the total number of pCPUs (lines 4-5). If so, the algorithm employs
a similar method as vSPACE-P to determine the core allocation for
vCPUs and NQs, where the pCPUs are allocated based on their
respective requirements (lines 6-7). However, if the required pCPUs
do not exceed the total number of pCPUs, the algorithm compares
the previously allocated pCPUs with the current requirements for
the vCPUs and NQs (lines 9 and 14). If the previous core allocation
is larger than the current requirements (i.e., the algorithm deter-
mines that a decrease in allocated cores is necessary), the next core
allocation is determined with increased total pCPU utilization by
the margin multiplier (lines 10 and 15). It enhances the stability of
core allocation by making it more difficult to decrease the number
of pCPUs. Conversely, if the previous core allocation is smaller
than the current requirements (i.e., the algorithm determines that

18

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 10, 2025.

Algorithm 2: Dynamic Core Allocation of vSPACE-E
Require: 𝑀𝐴𝑅𝐺𝐼𝑁 (A margin to stabilize core allocation)
Require: 𝑃𝑟𝑒𝑣𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 , 𝑃𝑟𝑒𝑣𝐶𝑜𝑟𝑒𝑁𝑄 (Previous core allocation)
Require: 𝑇𝑜𝑡𝑎𝑙𝑈 𝑡𝑖𝑙𝑣𝐶𝑃𝑈 ,𝑇𝑜𝑡𝑎𝑙𝑈 𝑡𝑖𝑙𝑁𝑄 (Measured metrics)
1: 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑟𝑒 = the total number of pCPUs
2: 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 = 𝑐𝑒𝑖𝑙 (𝑇𝑜𝑡𝑎𝑙𝑈 𝑡𝑖𝑙𝑣𝐶𝑃𝑈 /𝑇ℎ𝑣𝐶𝑃𝑈)
3: 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑁𝑄 = 𝑐𝑒𝑖𝑙 (𝑇𝑜𝑡𝑎𝑙𝑈 𝑡𝑖𝑙𝑁𝑄/𝑇ℎ𝑁𝑄)
4: 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 + 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑁𝑄

5: if 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑡𝑜𝑡𝑎𝑙 > 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑟𝑒 then
6: 𝑁𝑒𝑥𝑡𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 = round(𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑟𝑒 ∗ 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 /𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑡𝑜𝑡𝑎𝑙)
7: 𝑁𝑒𝑥𝑡𝐶𝑜𝑟𝑒𝑁𝑄 = round(𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑟𝑒 ∗ 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑁𝑄/𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑡𝑜𝑡𝑎𝑙)
8: else
9: if 𝑃𝑟𝑒𝑣𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 > 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 then
10: 𝑁𝑒𝑥𝑡𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 = 𝑐𝑒𝑖𝑙 (𝑀𝐴𝑅𝐺𝐼𝑁 ∗𝑇𝑜𝑡𝑎𝑙𝑈 𝑡𝑖𝑙𝑣𝐶𝑃𝑈 /𝑇ℎ𝑣𝐶𝑃𝑈)
11: else
12: 𝑁𝑒𝑥𝑡𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈 = 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑣𝐶𝑃𝑈

13: end if
14: if 𝑃𝑟𝑒𝑣𝐶𝑜𝑟𝑒𝑁𝑄 > 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑁𝑄 then
15: 𝑁𝑒𝑥𝑡𝐶𝑜𝑟𝑒𝑁𝑄 = 𝑐𝑒𝑖𝑙 (𝑀𝐴𝑅𝐺𝐼𝑁 ∗𝑇𝑜𝑡𝑎𝑙𝑈 𝑡𝑖𝑙𝑁𝑄/𝑇ℎ𝑁𝑄)
16: else
17: 𝑁𝑒𝑥𝑡𝐶𝑜𝑟𝑒𝑁𝑄 = 𝑅𝑒𝑞𝐶𝑜𝑟𝑒𝑁𝑄

18: end if
19: end if

an increase in allocated cores is necessary), the required pCPUs are
directly assigned as the next core allocation (lines 12 and 17).

vSPACE-R adopts a similar strategy to vSPACE-E for allocating
cores but adds a step to enhance resource efficiency. It allocates idle
pCPUs to VMs running BE workloads, after allocating pCPUs to
vCPUs and NQs for VM executing LC workload. If no pCPUs are
idle, the BE VM is temporarily suspended until pCPUs become idle.

4.3 Exploration of Thresholds
We introduce a threshold exploration policy, preventing both under-
utilization (by avoiding excessively low thresholds) and overload
risks (by avoiding excessively high thresholds). The policy gradu-
ally adjusts thresholds based on the observed utilization of vCPUs
and NQs. It changes thresholds for either vCPUs or NQs, with a
preference for maintaining higher thresholds to ensure efficient
resource utilization while satisfying the SLO.

Outlined in Algorithm 3, the process requires three constants:
𝐴𝑙𝑙𝑜𝑤𝑉𝑖𝑜 (allowable SLO violation percentage), 𝑅𝑒𝑤𝑎𝑟𝑑 (reward
factor for non-violation), and 𝑊𝑒𝑖𝑔ℎ𝑡 (weight for threshold up-
dates). Higher 𝑅𝑒𝑤𝑎𝑟𝑑 and𝑊𝑒𝑖𝑔ℎ𝑡 lead to quicker adjustments,
while lower values ensure stability. Periodically, it collects key per-
formance indicators, P95 latency and average CPU utilization for
both vCPUs (𝑢𝑡𝑖𝑙𝑣𝐶𝑃𝑈) and NQs (𝑢𝑡𝑖𝑙𝑁𝑄), aggregating these into
a dataset 𝑆 (lines 1-4) Once a notification is received, the algo-
rithm initiates the process for determining new thresholds (line 5).
This involves first retrieving the most recent thresholds for vCPUs
(𝑇𝐻𝑣𝐶𝑃𝑈) and NQs (𝑇𝐻𝑁𝑄) and then initializing corresponding
temporary thresholds (𝑇𝐻 ′

𝑣𝐶𝑃𝑈
, 𝑇𝐻 ′

𝑁𝑄
) (lines 6-7). The algorithm

filters the SLO-violating samples into 𝑆𝑣𝑖𝑜 (line 8). The algorithm
calculates 𝑎𝑙𝑙𝑜𝑤𝑉𝑖𝑜𝐶𝑜𝑢𝑛𝑡 , which represents the maximum number
of violations allowable, based on 𝐴𝑙𝑙𝑜𝑤𝑉𝑖𝑜 and the total number
of samples in set 𝑆 , and then determines the objective count to be
decreased to satisfy the SLO (𝑑𝑒𝑐𝐶𝑜𝑢𝑛𝑡) (lines 9-10). If 𝑑𝑒𝑐𝐶𝑜𝑢𝑛𝑡
exceeds zero, indicating the need for threshold adjustments to sat-
isfy the SLO, the algorithm embarks on a process to establish new
thresholds (line 10). It sorts in descending order and stores 𝑆𝑣𝑖𝑜 into
𝑆𝑣𝐶𝑃𝑈 and 𝑆𝑁𝑄 based on their respective utilizations (𝑢𝑡𝑖𝑙𝑣𝐶𝑃𝑈 and

Algorithm 3: Threshold Exploring Algorithm
Require: 𝐴𝑙𝑙𝑜𝑤𝑉𝑖𝑜 = allowable SLO violation percentage (0 ≤ 𝐴𝑙𝑙𝑜𝑤𝑉𝑖𝑜 ≤ 1)
Require: 𝑅𝑒𝑤𝑎𝑟𝑑 = reward for non-violation (𝑅𝑒𝑤𝑎𝑟𝑑 ≥ 1)
Require: 𝑊𝑒𝑖𝑔ℎ𝑡 = weight for threshold update (0 ≤𝑊𝑒𝑖𝑔ℎ𝑡 ≤ 1)
1: if receives P95, 𝑢𝑡𝑖𝑙𝑣𝐶𝑃𝑈 , 𝑢𝑡𝑖𝑙𝑁𝑄 then
2: 𝑠 = [𝑃95,𝑢𝑡𝑖𝑙𝑣𝐶𝑃𝑈 ,𝑢𝑡𝑖𝑙𝑁𝑄]
3: Append 𝑠 to 𝑆
4: end if
5: if notified of threshold exploration then
6: 𝑇𝐻𝑣𝐶𝑃𝑈 ,𝑇𝐻𝑁𝑄 = last thresholds for vCPUs and NQs
7: 𝑇𝐻 ′

𝑣𝐶𝑃𝑈
,𝑇𝐻 ′

𝑁𝑄
=𝑇ℎ𝑣𝐶𝑃𝑈 ,𝑇ℎ𝑁𝑄

8: 𝑆𝑣𝑖𝑜 = filter SLO-violating from 𝑆

9: 𝑎𝑙𝑙𝑜𝑤𝑉𝑖𝑜𝐶𝑜𝑢𝑛𝑡 = 𝑐𝑒𝑖𝑙 (𝑐𝑜𝑢𝑛𝑡 (𝑆) × 𝐴𝑙𝑙𝑜𝑤𝑉𝑖𝑜)
10: 𝑑𝑒𝑐𝐶𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 (𝑆𝑣𝑖𝑜)−𝑎𝑙𝑙𝑜𝑤𝑉𝑖𝑜𝐶𝑜𝑢𝑛𝑡

11: if 𝑑𝑒𝑐𝐶𝑜𝑢𝑛𝑡 > 0 then
12: 𝑆𝑣𝐶𝑃𝑈 , 𝑆𝑁𝑄 = Descending Sort 𝑆𝑣𝑖𝑜 by 𝑢𝑡𝑖𝑙𝑣𝐶𝑃𝑈 , 𝑢𝑡𝑖𝑙𝑁𝑄

13: while 𝑑𝑒𝑐𝐶𝑜𝑢𝑛𝑡 > 0 do
14: 𝑠𝑣𝐶𝑃𝑈 , 𝑠𝑁𝑄 = select top samples in 𝑆𝑣𝐶𝑃𝑈 , 𝑆𝑁𝑄

15: 𝑑𝑖 𝑓 𝑓𝑣𝐶𝑃𝑈 =𝑇𝐻 ′
𝑣𝐶𝑃𝑈

− 𝑢𝑡𝑖𝑙𝑣𝐶𝑃𝑈 of 𝑠𝑣𝐶𝑃𝑈

16: 𝑑𝑖 𝑓 𝑓𝑁𝑄 =𝑇𝐻 ′
𝑁𝑄

− 𝑢𝑡𝑖𝑙𝑁𝑄 of 𝑠𝑁𝑄

17: if 𝑑𝑖 𝑓 𝑓𝑣𝐶𝑃𝑈 ≤ 𝑑𝑖 𝑓 𝑓𝑁𝑄 then
18: 𝑇𝐻 ′

𝑣𝐶𝑃𝑈
= 𝑢𝑡𝑖𝑙𝑣𝐶𝑃𝑈 of 𝑠𝑣𝐶𝑃𝑈

19: remove 𝑠𝑣𝐶𝑃𝑈 from 𝑆𝑣𝐶𝑃𝑈 and 𝑆𝑁𝑄

20: else
21: 𝑇𝐻 ′

𝑁𝑄
= 𝑢𝑡𝑖𝑙𝑁𝑄 of 𝑠𝑁𝑄

22: remove 𝑠𝑁𝑄 from 𝑆𝑣𝐶𝑃𝑈 and 𝑆𝑁𝑄

23: end if
24: 𝑑𝑒𝑐𝐶𝑜𝑢𝑛𝑡 = 𝑑𝑒𝑐𝐶𝑜𝑢𝑛𝑡 − 1
25: end while
26: 𝑇𝐻𝑣𝐶𝑃𝑈 = (1 −𝑊𝑒𝑖𝑔ℎ𝑡) × 𝑇𝐻𝑣𝐶𝑃𝑈 +𝑊𝑒𝑖𝑔ℎ𝑡 × 𝑇𝐻 ′

𝑣𝐶𝑃𝑈

27: 𝑇𝐻𝑁𝑄 = (1 −𝑊𝑒𝑖𝑔ℎ𝑡) × 𝑇𝐻𝑁𝑄 +𝑊𝑒𝑖𝑔ℎ𝑡 × 𝑇𝐻 ′
𝑁𝑄

28: else if 𝑐𝑜𝑢𝑛𝑡 (𝑆𝑣𝑖𝑜)== 0 then
29: 𝑇𝐻𝑣𝐶𝑃𝑈 ,𝑇𝐻𝑁𝑄 = 𝑅𝑒𝑤𝑎𝑟𝑑 × 𝑇𝐻𝑣𝐶𝑃𝑈 , 𝑅𝑒𝑤𝑎𝑟𝑑 × 𝑇𝐻𝑁𝑄

30: end if
31: Clear 𝑆
32: end if

𝑢𝑡𝑖𝑙𝑁𝑄) (lines 12). The subsequent loop involves iterative adjust-
ment of the thresholds for these violating samples (lines 13). For
each top-ranked sample in the sorted sets 𝑆𝑣𝐶𝑃𝑈 and 𝑆𝑁𝑄 , it com-
putes the differences between the temporary thresholds (𝑇𝐻 ′

𝑣𝐶𝑃𝑈
,

𝑇𝐻 ′
𝑁𝑄

) and the top-sample utilizations (lines 14-16). Importantly,
it selects the sample with the smaller difference and updates the re-
spective threshold, thereby removing this sample from both 𝑆𝑣𝐶𝑃𝑈
and 𝑆𝑁𝑄 (lines 17-23). This decision strategically avoids utilizations
that have previously resulted in SLO violations. Additionally, it aims
to change the threshold for either vCPUs or NQs in the direction
with a smaller difference, thereby preventing underutilization due
to excessively low thresholds. This iterative process continues until
𝑑𝑒𝑐𝐶𝑜𝑢𝑛𝑡 is reduced to zero (lines 24-25). Subsequently, the final
thresholds for vCPUs (𝑇ℎ𝑣𝐶𝑃𝑈) and NQs (𝑇ℎ𝑁𝑄) are calculated as a
weighted average, factoring in both the new temporary thresholds
and the previous values (lines 26-27). In situations without SLO
violations, the thresholds are increased using the 𝑅𝑒𝑤𝑎𝑟𝑑 factor
(lines 28-30). Finally, the algorithm clears the set 𝑆 , preparing for
the next exploration round (line 31).

4.4 Implementation
Our implementation consists of vSPACE-Host and vSPACE-Guest
operatingwithin the hypervisor and the VM, respectively. vSPACE-Host
within the hypervisor performs two primary tasks: dynamic core
allocation for vCPUs and NQs and suitable thresholds exploration
for vCPUs and NQs. It adjusts the number of active pNQs in order

19

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 10, 2025.

to match the number of pCPUs assigned to NQs. Conversely, the
vSPACE-Guest within the VM is responsible for changing the num-
ber of active vCPUs and vNQs. To allocate pCPUs and modify the
number of active vCPUs, we employ CPUSET, a feature of the Linux
Cgroup system, which manages the range of available pCPUs and
vCPUs. To change the number of NQs, we utilize RSS and XPS to
manage the pNIC/vNIC, adjusting the number of pNQ/vNQ. The
communication between these vSPACE-Host and vSPACE-Guest is
facilitated by VSOCK, which supports zero-copy transfers. vSPACE
periodically measures the utilization of pCPUs by NQs and vCPUs
based on idle and non-idle time of the pCPUs.

5 Evaluation
5.1 Experimental Methodology
Our experimental setup involves testing with server and client
systems connected via a 10 Gbps NIC, a configuration that ensures
bandwidth is not a limiting factor for observing SLO violations. The
server uses a twenty-core Intel Xeon Gold 6138 CPU and 192GB
RAM, with the performance governor active and turbo boost off.
The VM has 20 vCPUs and 16 GBmemory, with the front-end driver
and back-end device being the virtio-net driver and vhost-net,
respectively [32, 41]. We use KVM hypervisor, with both the guest
and host kernels operating on Linux 5.13.1.
WorkloadsWeevaluate vSPACEwith two LCworkloads: memcached [24]
and nginx [31]. memcached, an in-memory key-value store appli-
cation, runs with 20 threads in the LC VM. The client machine
generates network packets using mutilate, based on Facebook’s
ETC trace [4]. nginx is a web server application that consists of
100,000 1KB html files with 20 threads, and wrk on the client ma-
chine sends requests to read the html files on the server. We set
1ms and 10ms as the target SLO for memcached and nginx, respec-
tively, established by the latency-load curve [16, 20]. To evaluate
the resource efficiency of vSPACE-R, we run multi-threaded applica-
tions from parsec benchmark suite [6] on a VM as a BE workload
(VM-BE): ferret, body track, freqmine, vips, fluidanimate.
Additionally, we run SysBench with another BE workload, which
conducts disk I/O read/write. In our co-allocation scenarios, we al-
locate the vCPUs of the VM-BE on idle pCPUs that are not allocated
for vCPUs and NQs of the VM executing the LC workload (VM-
LC). We run BE workloads only when evaluating the co-allocation
scenarios for vSPACE-R and Demeter. The experimental methods
remain consistent with those described in the motivation section.
Comparative Studies. We evaluate the impact of vSPACE on per-
formance, energy efficiency, and resource efficiency by comparison
with three static configurations and three existing studies. We con-
sider three static configurations: 20vCPU-1NQ and 20vCPU-20NQ for
single or multiple NQs using a time-sharing approach, and SR-IOV,
set for two NQs and 20 vCPUs. Note that the Intel 82599 ethernet
controller, commonly used in Amazon AWS NICs for VM, has a
two-queue limit per virtual function. In order to compare perfor-
mance, we compare vSPACE with ES2, a state-of-the-art study in
packet processing optimizations like adaptive hybrid vIRQ han-
dling and vIRQ redirection, aiming to reduce VM exits [15]. In our
comparison with ES2, we set the number of pNQs, vNQs, and vC-
PUs to 1, 1, and 20, respectively, reflecting ES2’s dependency on
single packet processing. For the evaluation of energy efficiency,

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P0

100
200
300
400
500

M
ax

im
um

 K
Q

PS

(a) memcached

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P0

100
200
300
400

M
ax

im
um

 K
Q

PS

(b) nginx

Figure 8: Maximum QPS.

we compare vSPACE with CoreNap, a state-of-the-art dynamic core
allocation [28], which dynamically adjusts pCPUs for LC workload
and packet processing to minimize active cores while satisfying the
SLO. In CoreNap, threads of LC applications and packet processing
for pNQs share pCPUs in a non-virtualization environment. To
utilize CoreNap in virtualized environments, we slightly modify
CoreNap. The modified CoreNap dynamically changes the number
of pCPUs for vCPUs running LC workloads and pNQs/vNQs for
packet processing, while the core allocation policy is the same as
the original. We evaluate the resource efficiency of vSPACE in co-
allocation scenarios, wherein a VM running BE workloads (VM-BE)
is allocated on idle pCPUs that are not allocated for VM executing
LC workloads (VM-LC). This is contrasted with Demeter, which
manages pCPUs and vCPUs for both VM types based on vCPU
scheduling time for resource efficiency. Although Demeter also
considers dynamic pCPU voltage and frequency management for
VM-BE, our focus remains on resource efficiency, setting all pCPUs
to their highest voltage and frequency states. For Demeter, we con-
duct experiments under two scenarios: single packet processing
with 1NQ and parallel packet processing with 20NQs.
vSPACE Configuration. In vSPACE, we empirically set several pa-
rameters. Tomaintain stable core allocation, we’ve set the𝑀𝐴𝑅𝐺𝐼𝑁

to 1.1. The𝑊𝑒𝑖𝑔ℎ𝑡 , used for calculating subsequent thresholds as
a weighted sum of previous ones, is set at 0.7. For The threshold
exploration algorithm, 𝑅𝑒𝑤𝑎𝑟𝑑 is used to increment the threshold
when no SLO violations are observed among the collected samples;
we set 𝑅𝑒𝑤𝑎𝑟𝑑 to 1.03. vSPACEmeasures utilization and tail latency,
performing dynamic core allocation every 100 ms. Threshold explo-
ration begins after collecting 1000 samples (i.e., 100 seconds). Once
stable thresholds are obtained through threshold exploration, we
halt the online threshold exploration to achieve consistent results.

5.2 Comparison with static loads
Performance Analysis. Figure 8 depicts the maximum through-
put representing the highest QPS under the SLO constraint in
memcached and nginx. In this comparison, vSPACE-P shows the
highest throughput, with an improvement of up to 318% in memcached
and 33% in nginx compared to the 20vCPU-20NQ configuration.
Meanwhile, vSPACE-E also shows considerable improvements simi-
lar to vSPACE-P. SR-IOV shows slight performance degration than
vSPACE-P and vSPACE-E in memcached due to its parallism level
limits (two-NQ). With ES2, performance enhancements are limited
in memcached and even cause performance degradation in nginx.

20

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 10, 2025.

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P0.0

0.5

1.0

1.5

ph
ys

ic
al

 IR
Q

s (
M

)

(a) Physical IRQs
20

vC
PU

-1
N

Q
20

vC
PU

-2
0N

Q
SR

-I
O

V
C

or
eN

ap
ES

2
vS

PA
C

E-
E

vS
PA

C
E-

P0.0

0.5

1.0

1.5

Vi
rtu

al
 IR

Q
s (

M
)

(b) Virtual IRQs

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P0

2

4

6

C
on

te
xt

-S
w

itc
he

s (
M

)

(c) Context-Switches

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P0

2

4

6

V
M

 e
xi

ts
 (M

)

(d) VM exits

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P

100
101
102
103

M
ig

ra
tio

ns
 (K

)

(e) Migrations

Figure 9: System events at 50KQPS in memcached.

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P0

1

2

Ph
ys

ic
al

 IR
Q

s (
M

)

(a) Physical IRQs

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P0

1

2

Vi
rtu

al
 IR

Q
s (

M
)

(b) Virtual IRQs

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P0

2
4
6
8

C
on

te
xt

-S
w

itc
he

s (
M

)

(c) Context-Switches

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P0

2

4

6

V
M

 e
xi

ts
 (M

)

(d) VM exits

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P100

101

102

103

M
ig

ra
tio

ns
 (K

)

(e) Migrations

Figure 10: System events at 50KQPS in nginx.

This is because polling for packet processing affects scheduling
VM running LC workloads; we will explain the details in the next
paragraph. CoreNap’s performance slightly improves as it reduces
scheduling overhead by decreasing the number of vCPUs and NQs,
even though it relies on a time-sharing approach.

Figure 9 and Figure 10 show system events across different
dynamic core management policies in memcached and nginx at
50KQPS, where all dynamic core management policies satisfy the
SLO. The system events include the number of pIRQs, vIRQs, con-
text switches, VM exits, and migrations. vSPACE-P shows a re-
duction in the number of pIRQs/vIRQs compared to 20vCPU-20NQ
at 50KQPS, showing decreases of 12.4%/23.3% in memcached and
12.9%/17.6% in nginx, respectively. This reduction of pIRQs and
vIRQs moderates scheduling overhead, leading to a further de-
crease in the number of context switches and migrations by 34.5%
and 98.9% in memcached at 50KQPS, respectively. vSPACE-E demon-
strates even greater reductions in the number of pIRQs/vIRQs at
50KQPS in both memcached and nginx, with decreases of up to
40.7%/45.9% and 42.9%/49.0%, respectively. This reduction further de-
creases context switches, VM exits, and migrations by 75.2%, 59.4%,
and 99.9% in memcached at 50KQPS, respectively. However, despite
moderating the scheduling overhead, vSPACE-E shows higher P95
since a smaller number of pCPUs are utilized for vCPUs and NQs
compared to vSPACE-P. SR-IOV offers reduced overhead (e.g., nearly
zero pIRQs) by allowing VMs direct pNIC access, but performance
is degraded by limited NQs. Although ES2 shows fewer system
events compared to vSPACE-P, the performance remains limited
or degrades since ES2 relies on packet processing with a single
core, leading to pCPU utilization saturation; we delve into more
details later. Furthermore, the polling method used in ES2 not only
results in high CPU utilization but also misses the opportunity to
batch packets due to rapid transmission processing; thereby, it is

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P0

50

100

Av
er

ag
e

C
PU

-0
 U

til
iz

at
io

n
(%

)

50KQPS 250KQPS

(a) memcached
20

vC
PU

-1
N

Q
20

vC
PU

-2
0N

Q
SR

-I
O

V
C

or
eN

ap
ES

2
vS

PA
C

E-
E

vS
PA

C
E-

P
20

vC
PU

-1
N

Q
20

vC
PU

-2
0N

Q
SR

-I
O

V
C

or
eN

ap
ES

2
vS

PA
C

E-
E

vS
PA

C
E-

P0

50

100

Av
er

ag
e

C
PU

-0
 U

til
iz

at
io

n
(%

)

50KQPS 150KQPS

(b) nginx

Figure 11: Utilization of CPU-0, dedicated to pNQ packet
processing and available for vCPUs or vNQs.

likely to impact VM running LC workloads negatively. Accordingly,
ES2 increases the migration by up to 9.9×, showing performance
degradation in nginx, compared to 20vCPU-1NQ. On the other hand,
CoreNap reduces the number of pIRQs and vIRQs by reducing the
number of pNQs and vNQs compared to the 20vCPU-20NQ. How-
ever, due to its time-sharing approach, CoreNap still incurs consid-
erable scheduling overheads under high load.

In Figure 11, we observe the utilization of CPU-0, dedicated
to pNQ packet processing and available for vCPUs or vNQs. No-
tably, at 250 KQPS for memcached and 150 KQPS for nginx, ES2
approaches 95.3% and 95.4% utilization, respectively. Such satura-
tion causes significant packet processing delays, leading to SLO
violations. Moreover, at 250 KQPS for memcached, ES2 records 3.0×
longer the total idle utilization compared to vSPACE-P, revealing its
poor parallelism in packet processing. SR-IOV shows lower CPU-
0 utilization due to its effective reduction of resource contention
by bypassing typical virtualization pathways, although its hard-
ware dependency raises concerns about availability and scalability.
vSPACE-P shows unsaturated utilization, reserving CPU-0 only for

21

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 10, 2025.

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P0.6

0.8

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

SL
O

 V
io

.
SL

O
 V

io
.

SL
O

 V
io

.
SL

O
 V

io
.

SL
O

 V
io

.
SL

O
 V

io
.

SL
O

 V
io

.
SL

O
 V

io
.

50KQPS 250KQPS 300KQPS

(a) memcached

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P

20
vC

PU
-1

N
Q

20
vC

PU
-2

0N
Q

SR
-I

O
V

C
or

eN
ap

ES
2

vS
PA

C
E-

E
vS

PA
C

E-
P0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
ne

rg
y

SL
O

 V
io

.
SL

O
 V

io
.

SL
O

 V
io

.

SL
O

 V
io

.
SL

O
 V

io
.

SL
O

 V
io

.
SL

O
 V

io
.

50KQPS 150KQPS 200KQPS

(b) nginx

Figure 12: Normalized Energy Consumption.

network packet processing. vSPACE-E shows a higher utilization
than vSPACE-P at 50 KQPS due to fewer cores allocated for NQs
compared to vSPACE-P.
Energy Efficiency Analysis. Figure 12 depicts the normalized
energy consumption in memcached and nginx at specific load lev-
els. We normalize all energy consumption values with respect to
vSPACE-P, which exhibits the best performance at all load lev-
els while excluding SLO violation cases. Our results show that
vSPACE-E demonstrates the best energy reduction among all dy-
namic core management policies while satisfying the SLO for all
load levels. At 50KQPS, where 20vCPU-20NQ satisfies the SLO, vSPACE-E
reduces energy consumption by up to 19.6% and 24.4% compared
to vSPACE-P and 20vCPU-20NQ respectively. SR-IOV significantly
reduces energy consumption by decreasing utilization and con-
tention, with the benefit from small NQs. CoreNap follows a time-
sharing approach, resulting in performance degradation caused
by scheduling overheads in a virtualized environment. The perfor-
mance degradation requires further active pCPUs to satisfy the SLO
than vSPACE-E. On the other hand, vSPACE-E separately allocates
pCPUs for vCPUs and NQs, effectively reducing the scheduling
overhead and allowing for reserving additional idle pCPUs. For
instance, vSPACE-E utilizes an average of 5 pCPUs in memcached
at 50 KQPS while CoreNap activates an average of 9 pCPUs. There-
fore, vSPACE-E shows energy reduction up to 16.5% compared to
CoreNap. ES2 and 20vCPU-1NQ show reduced energy consumption
at 50KQPS since they do not distribute the utilization for packet
processing among pCPUs. However, the static number of vCPUs
causes all pCPUs to be activated, preventing them from remaining
idle. Lastly, 20vCPU-20NQ shows the highest energy consumption
at 50KQPS, owing to maximizing the number of vCPUs and NQs.
Resource Efficiency Analysis. As shown in Figure 13, the com-
parison of pCPU allocation under vSPACE-R and Demeter reveals
significant differences in their approach to co-allocating resources

0

5

10

15

N
um

be
r o

f C
or

es

sysbench ferret body track freqmine vips fluidanimate AVG.

Demeter(1NQ) Demeter(20NQ) vSPACE-R

(a) memcached at 50KQPS

0

5

10

15

N
um

be
r o

f C
or

es

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

sysbench ferret body track freqmine vips fluidanimate AVG.

Demeter(1NQ) Demeter(20NQ) vSPACE-R

(b) memcached at 150KQPS

0

5

10

15

N
um

be
r o

f C
or

es

sysbench ferret body track freqmine vips fluidanimate AVG.

Demeter(1NQ) Demeter(20NQ) vSPACE-R

(c) nginx at 50KQPS

0

5

10

15
N

um
be

r o
f C

or
es

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

SL
O

 V
io

.

sysbench ferret body track freqmine vips fluidanimate AVG.

Demeter(1NQ) Demeter(20NQ) vSPACE-R

(d) nginx at 150KQPS

Figure 13: Average number of pCPUs for VM-BE.

for VM-LC and VM-BE. We evaluate two types of Demeter con-
figurations: one with a single NQ (i.e., Demeter(1NQ)) and one
with multiple NQs (i.e., Demeter(20NQ)). vSPACE-R outperforms
Demeter(1NQ) by allocating an average of 20.9% more pCPUs for
memcached and 24.0% more for nginx, across 6 BE workloads at 50
KQPS. This advantage increases in the ferret benchmark, with
vSPACE-R allocating 20% and 30.5% more pCPUs, respectively. Fur-
thermore, vSPACE-R satisfies the SLO at 250KQPS in memcached
and at 150KQPS in nginx, respectively. Conversely, Demeter satis-
fies the SLO only at 50KQPS; the allocated pCPUs for VM-BE are
smaller than vSPACE-R due to overlooking packet processing.

5.3 Comparison with Dynamic Loads
To evaluate the dynamic core management capabilities of vSPACE-P
and vSPACE-E under varying loads, we conduct experiments with
dynamic load scenarios.We gradually increase theQPS from 50KQPS
to 250KQPS, then subsequently decrease the QPS back to the initial
QPS of 50KQPS. Figure 14 presents the average number of pC-
PUs allocated for vCPUs and NQs as the load varies for vSPACE-P,
vSPACE-E, and 20vCPU-20NQ every 20 seconds. The figure also
shows normalized energy consumption and P95, measured every 20
seconds. The energy consumption is normalized to the maximum
energy consumption that the processor can use, determined by its
Thermal Design Power (TDP). vSPACE-P consistently satisfies SLO
and exhibits low tail latency in most cases. vSPACE-P offers up to
64% lower latency at low loads compared to vSPACE-E, making it
more suitable for applications requiring low latency. In vSPACE-P,
the ratio of pCPUs allocated for vCPUs and NQs is slightly changed.

22

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 10, 2025.

of

 v
C

PU
s

of

 N
Q

s

Figure 14: P95, Energy consumption and core allocation
changes in memcached with a dynamic load.

Conversely, vSPACE-E adjusts the number of pCPUs for vCPUs
and NQs proportionally as the QPS changes. vSPACE-E not only
satisfies the SLO in all cases but also reduces energy consumption
by up to 13.6% and 11.1% compared to 20vCPU-20NQ and vSPACE-P,
respectively. Despite 20vCPU-20NQ utilizing all pCPUs at all times,
SLO violations occur when the load surpasses 160 KQPS.

6 Related Work
Scheduling techniques. Several studies propose scheduling tech-
niques to improve performance in I/O virtualization by reducing the
scheduling overhead. vTurbo [37] assign vCPUs handling vIRQs
to turbo cores with short scheduling intervals (e.g., 0.1 ms), signifi-
cantly improving responsiveness by reducing hypervisor-induced
scheduling delays. Similarly, Ahn et al. [1] prioritizes vCPUs in crit-
ical sections by allocating them to dedicated pCPUs, dynamically
adjusting dedicated core numbers based on demand. CoINT [39] ex-
tends this concept, allowing critical-section vCPUs prolonged pCPU
occupation. Meanwhile, eCS [17] employs para-virtualized signals
for hypervisor notification, ensuring priority scheduling for critical
tasks. Despite their potential, these approaches necessitate system
modifications and largely ignore the performance bottlenecks in-
troduced by parallel packet processing, limiting their applicability
and overall performance enhancement in cloud environments.
I/O handling techniques. Several studies propose I/O handling
techniques to reduce I/O virtualization overhead. vBalance [10]

and hBalance [8] redirect vIRQs from inactive vCPUs to active
ones, ensuring vIRQ handlers are promptly addressed without wait-
ing for idle vCPUs to be rescheduled. ES2 [15] employs a hybrid I/O
management method, switching between exit-based and polling
modes to reduce VM exits, thereby mitigating exit-induced per-
formance degradation. Nevertheless, these approaches ignore the
advantages of employing parallel packet processing in vNIC. Such
oversight can lead to underutilization of available resources and
missed opportunities for further performance improvements in
virtualized environments.
Dynamic resource management. Various studies focus on dy-
namic core allocation to improve resource efficiency without vi-
olating the SLO for LC workloads. Arachne[30] dynamically ad-
justs active threads and pCPUs based on utilization, allocating
BE workloads to idle pCPUs for improved efficiency. vScale[9]
manages vCPU distribution across VMs based on CPU demand, re-
ducing scheduling delays and preventing performance degradation
in resource-overcommitted environments. Advancements in core
management policies, including dynamic voltage and frequency
scaling (DVFS), balance both performance and power consumption.
Hipster[26] and Twig[27] use reinforcement learning for dynamic
core allocation and DVFS management for co-located workloads.
Demeter [34] categorizes VMs to adjust core allocations and fre-
quency scaling, prioritizing LC VM to manage energy consumption
efficiently. Other studies consider multiple resources. Heracles[21],
PARTIES[7], and Rhythm[40] manage CPU, memory, network, and
disk resources, using feedback mechanisms for balanced utilization
across LC and BE workloads. CLITE [29] adopts Bayesian optimiza-
tion to predict near-optimal resource configurations, enhancing
co-located workload performance. However, these studies often
overlook parallel packet processing, leading to scheduling over-
heads and resource inefficiency.

Several studies focus on energy-efficient pCPU allocation. CARB[38]
adjusts pCPUs based on the slack between the SLO and response
latency to minimize active pCPUs for LC workloads. Peafowl[3]
uses a heuristic based on request rates to preserve idle pCPUs while
meeting the SLO. CoreNap [28] addresses this by adjusting pCPU
allocations for both LC workloads and packet processing, informed
by latency and consumption forecasts. However, these neglect the
complexities of I/O virtualization, resulting in energy inefficiency.
Hardware Acceleration Approach. SR-IOV [12] provides direct
VM access to physical I/O devices, reducing virtualization over-
head. Similarly, Microsoft Azure’s VMMQ [25] combines SR-IOV
with RSS to distribute network traffic across multiple cores. These
hardware solutions offer performance benefits but also present
challenges, such as during VM migration due to reliance on spe-
cific hardware capabilities. Our approach, vSPACE, contrasts with
hardware-dependent methods by offering a flexible, software-based
solution. Unlike static NQ management in hardware solutions,
vSPACE dynamically manages NQs, avoiding inefficiencies from
over-allocating NQs and unnecessary pCPU activation. Addition-
ally, hardware constraints like the Intel 82599 ethernet controllers’
two-queue limit per virtual function [5], commonly used in Amazon
AWS NICs, highlight vSPACE’s advantage. Its software-driven ap-
proach bypasses such limitations, ensuring efficient vCPU resource
utilization without hardware-specific restrictions. SmartNICs [22],
using a hardware-centric approach, benefit by offloading network

23

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 10, 2025.

tasks such as packet filtering, routing, and IP translation. However,
some tasks, such asmemory copying between the kernel/hypervisor
and VMs, cannot be offloaded. vSPACE aims to mitigate these ineffi-
ciencies through a software-centric approach. Therefore, combining
SmartNICs and vSPACE offers an opportunity to improve perfor-
mance and efficiency further. We will explore this in future work.

7 Conclusion
Datacenters face significant challenges in parallel processing within
virtualized environments, particularly risking SLO violations for LC
workloads. Previous studies mitigate I/O overheads but often over-
look the impact of excessive parallelism, which leads to complex
scheduling challenges, such as frequent preemptions and migra-
tions due to high pCPU demand. To mitigate these challenges, we
introduce vSPACE, dynamic core management designed to support
parallel network packet processing in virtualized environments.
vSPACE employs two main strategies: it ensures independent pCPU
allocation for vCPUs and NQs, and it dynamically adjusts this allo-
cation based on periodic pCPU utilization monitoring. This allows
vSPACE to proactively identify situations where pCPU utilization
is at risk of saturation, ensuring an appropriate number of pC-
PUs are allocated to both vCPUs and NQs as needed. Moreover,
vSPACE offers three operational modes to enhance performance
(vSPACE-P), energy efficiency (vSPACE-E), and resource efficiency
(vSPACE-R), catering to the diverse needs of data centers. Our eval-
uations show that vSPACE significantly improves throughput (i.e.,
maximum QPS) by up to 4.2× compared to previous policies for
core allocation. Additionally, vSPACE offers considerable improve-
ments in energy efficiency and resource utilization by up to 16.5%
and 30.5% compared to state-of-the-art dynamic core allocation
techniques.

Acknowledgments
This research was supported in part by Institute of Information &
Communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No. 2018-0-00503, Re-
searches on next generation memory-centric computing system
architecture), Institute of Information & Communications Technol-
ogy Planning & Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (No. 2022-0-00498, Development of high-efficiency
AI computing SW core technology for high-speed processing of
large learning models), Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. RS-2024-00396013, DRAM PIM Hardware
Architecture for LLM Inference Processing with Efficient Mem-
ory Management and Parallelization Techniques), and National
Research Foundation of Korea (NRF) grants funded by the Korean
government (MSIT) under Grant (No. 2018R1A5A1060031).

References
[1] Jeongseob Ahn, Chang Hyun Park, Taekyung Heo, and Jaehyuk Huh. 2018.

Accelerating critical OS services in virtualized systems with flexible micro-sliced
cores. In European Conference on Computer Systems (EuroSys). 1–14.

[2] Amazon. [n. d.]. Amazon EC2 Instance Types. https://aws.amazon.com/ec2/
instance-types/#instance-details.

[3] Esmail Asyabi, Azer Bestavros, Erfan Sharafzadeh, and Timothy Zhu. 2020.
Peafowl: in-application CPU scheduling to reduce power consumption of in-
memory key-value stores. In ACM Symposium on Cloud Computing (SoCC). 150–
164.

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload analysis of a large-scale key-value store. In ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measurement and Model-
ing of Computer Systems. 53–64.

[5] AWS. 2024. Enable enhanced networking with the Intel 82599 VF interface on
Linux instances. [Online]. Available: https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/sriov-networking.html.

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques. 72–81.

[7] Shuang Chen, Christina Delimitrou, and José F Martínez. 2019. PARTIES: QoS-
Aware Resource Partitioning for Multiple Interactive Services. In ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 107–120.

[8] Luwei Cheng and Francis CM Lau. 2016. Offloading interrupt load balancing
from smp virtual machines to the hypervisor. IEEE Transactions on Parallel and
Distributed Systems (TPDS) 27, 11 (2016), 3298–3310.

[9] Luwei Cheng, Jia Rao, and Francis CM Lau. 2016. vscale: Automatic and efficient
processor scaling for smp virtual machines. In ACM European Conference on
Computer Systems (EuroSys). 1–14.

[10] Luwei Cheng and Cho-Li Wang. 2012. vBalance: using interrupt load balance
to improve I/O performance for SMP virtual machines. In ACM Symposium on
Cloud Computing (SoCC). 1–14.

[11] Yaozu Dong, Dongxiao Xu, Yang Zhang, and Guangdeng Liao. 2011. Optimizing
network I/O virtualization with efficient interrupt coalescing and virtual receive
side scaling. In IEEE International Conference on Cluster Computing (CLUSTER).
26–34.

[12] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng Liao, Kun Tian, and Haibing
Guan. 2012. High performance network virtualization with SR-IOV. J. Parallel
and Distrib. Comput. 72, 11 (2012), 1471–1480.

[13] Google. [n. d.]. Google Cloud Virtual Machine Types. https://cloud.google.com/
compute/docs/machine-types.

[14] HaiBing Guan, YaoZu Dong, RuHui Ma, Dongxiao Xu, Yang Zhang, and Jian Li.
2012. Performance enhancement for network I/O virtualization with efficient
interrupt coalescing and virtual receive-side scaling. IEEE Transactions on Parallel
and Distributed Systems (TPDS) 24, 6 (2012), 1118–1128.

[15] XiaoKang Hu, Jian Li, Ruhui Ma, and Haibing Guan. 2020. ES2: Building an
Efficient and Responsive Event Path for I/O Virtualization. IEEE Transactions on
Cloud Computing (TCC) (2020).

[16] Ki-Dong Kang, Gyeongseo Park, Hyosang Kim, Mohammad Alian, Nam Sung
Kim, and Daehoon Kim. 2021. NMAP: Power Management Based on Network
Packet Processing Mode Transition for Latency-Critical Workloads. In IEEE/ACM
International Symposium on Microarchitecture (MICRO). 143–154.

[17] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2018. Scaling Guest {OS}
Critical Sections with {eCS}. In USENIX Annual Technical Conference (ATC).
159–172.

[18] Jian Li, Ruhui Ma, HaiBing Guan, and David SL Wei. 2015. vINT: Hardware-
assisted virtual interrupt remapping for SMP VM with scheduling awareness.
In IEEE International Conference on Cloud Computing Technology and Science
(CloudCom). 234–241.

[19] Jian Li, Shuai Xue, Wang Zhang, Ruhui Ma, Zhengwei Qi, and Haibing Guan.
2017. When I/O interrupt becomes system bottleneck: Efficiency and scalability
enhancement for SR-IOV network virtualization. IEEE Transactions on Cloud
Computing 7, 4 (2017), 1183–1196.

[20] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos
Kozyrakis. 2014. Towards energy proportionality for large-scale latency-critical
workloads. In ACM/IEEE International Symposium on Computer Architecture
(ISCA). 301–312.

[21] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving resource efficiency at scale. In
ACM SIGARCH Computer Architecture News, Vol. 43. 450–462.

[22] Mellanox. 2018. http://www.mellanox.com/page/products_dyn?product_family=
275&mtag=bluefield_smart_nic.

[23] Mellanox Mellanox. 2020. Mellanox ConnectX-5 product brief. [On-
line]. Available: https://www.mellanox.com/related-docs/prod_adapter_cards/
PB_ConnectX-5_EN_Card.pdf.

[24] Memcached. [n. d.]. https://memcached.org. Accessed on 04/30/2019. https:
//memcached.org.

[25] Microsoft. 2023. Overview of Virtual Machine Multiple Queues (VMMQ). [On-
line]. Available: https://learn.microsoft.com/en-us/windows-hardware/drivers/
network/overview-of-virtual-machine-multiple-queues.

[26] Rajiv Nishtala, Paul Carpenter, Vinicius Petrucci, and Xavier Martorell. 2017. Hip-
ster: Hybrid task manager for latency-critical cloud workloads. In IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 409–420.

[27] Rajiv Nishtala, Vinicius Petrucci, Paul Carpenter, and Magnus Sjalander. 2020.
Twig: Multi-agent task management for colocated latency-critical cloud services.
In IEEE International Symposium on High Performance Computer Architecture

24

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 10, 2025.

https://aws.amazon.com/ec2/instance-types/#instance-details.
https://aws.amazon.com/ec2/instance-types/#instance-details.
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sriov-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sriov-networking.html
https://cloud.google.com/compute/docs/machine-types.
https://cloud.google.com/compute/docs/machine-types.
http://www.mellanox.com/page/ products_dyn?product_family=275&mtag=bluefield_smart_nic.
http://www.mellanox.com/page/ products_dyn?product_family=275&mtag=bluefield_smart_nic.
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf
https://memcached.org.
https://memcached.org.
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-virtual-machine-multiple-queues
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-virtual-machine-multiple-queues

(HPCA). 167–179.
[28] Gyeongseo Park, Ki-Dong Kang, Minho Kim, and Daehoon Kim. 2022. CoreNap:

Energy Efficient Core Allocation for Latency-Critical Workloads. IEEE Computer
Architecture Letters (CAL) 22, 1 (2022), 1–4.

[29] Tirthak Patel and Devesh Tiwari. 2020. Clite: Efficient and qos-aware co-location
of multiple latency-critical jobs for warehouse scale computers. In IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 193–206.

[30] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. 2018.
Arachne: core-aware thread management. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI). 145–160.

[31] Will Reese. 2008. Nginx: the high-performance web server and reverse proxy.
Linux Journal 2008, 173 (2008), 2.

[32] Rusty Russell. 2008. virtio: towards a de-facto standard for virtual I/O devices.
ACM SIGOPS Operating Systems Review 42, 5 (2008), 95–103.

[33] Stijn Schildermans, Jianchen Shan, Kris Aerts, Jason Jackrel, and Xiaoning Ding.
2021. Virtualization overhead of multithreading in X86 state-of-the-art & remain-
ing challenges. IEEE Transactions on Parallel and Distributed Systems (TPDS) 32,
10 (2021), 2557–2570.

[34] Wenda Tang, Yutao Ke, Senbo Fu, Hongliang Jiang, Junjie Wu, Qian Peng, and
Feng Gao. 2022. Demeter: QoS-aware CPU scheduling to reduce power consump-
tion of multiple black-box workloads. In ACM Symposium on Cloud Computing
(SoCC). 31–46.

[35] Willem de Bruijn Tom Herbert. [n. d.]. Scaling in the Linux Networking Stack.
https://static.lwn.net/kerneldoc/networking/scaling.html

[36] Jason Wang. [n. d.]. Multiqueue virtio-net. https://www.linux-kvm.org/page/
Multiqueue

[37] Cong Xu, Sahan Gamage, Hui Lu, Ramana Kompella, and Dongyan Xu. 2013.
{vTurbo}: Accelerating Virtual Machine {I/O} Processing Using Designated
{Turbo-Sliced} Core. In USENIX Annual Technical Conference (ATC). 243–254.

[38] Xin Zhan, Reza Azimi, Svilen Kanev, David Brooks, and Sherief Reda. 2016.
Carb: A c-state power management arbiter for latency-critical workloads. IEEE
Computer Architecture Letters 16, 1 (2016), 6–9.

[39] Wang Zhang, Xiaokang Hu, Jian Li, and Haibing Guan. 2018. CoINT: Proactive
Coordinator for Avoiding Interruptability Holder Preemption Problem in VSMP
Environment. In IEEE International Conference on Computer Communications
(INFOCOM). 477–485.

[40] Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and
Yungang Bao. 2020. Rhythm: component-distinguishable workload deployment
in datacenters. In ACM European Conference on Computer Systems (EuroSys).
1–17.

[41] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.

25

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 10, 2025.

https://static.lwn.net/kerneldoc/networking/scaling.html
https://www.linux-kvm.org/page/Multiqueue
https://www.linux-kvm.org/page/Multiqueue

	Abstract
	1 Introduction
	2 Background
	3 Impact of Parallel Packet Processing with I/O Virtualization
	3.1 Impact of Parallel Packet Processing on LC Workload
	3.2 Impact of Core Allocation and Parallel Packet Processing on LC Workload

	4 Architecture
	4.1 Overview
	4.2 Dynamic Core Allocation
	4.3 Exploration of Thresholds
	4.4 Implementation

	5 Evaluation
	5.1 Experimental Methodology
	5.2 Comparison with static loads
	5.3 Comparison with Dynamic Loads

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

