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Abstract: Myelodysplastic syndromes (MDSs) are a group of hematologic neoplasms accompanied by
dysplasia of bone marrow (BM) hematopoietic cells with cytopenia. Recently, digitalized pathology
and pathomics using computerized feature analysis have been actively researched for classifying and
predicting prognosis in various tumors of hematopoietic tissues. This study analyzed the pathomic
features of hematopoietic cells in BM aspiration smears of patients with MDS according to each
hematopoietic cell lineage and dysplasia. We included 24 patients with an MDS and 21 with normal
BM. The 12,360 hematopoietic cells utilized were to be classified into seven types: normal erythrocytes,
normal granulocytes, normal megakaryocytes, dysplastic erythrocytes, dysplastic granulocytes,
dysplastic megakaryocytes, and others. Four hundred seventy-six pathomic features quantifying
cell intensity, shape, and texture were extracted from each segmented cell. After comparing the
combination of feature selection and machine learning classifier methods using 5-fold cross-validation
area under the receiver operating characteristic curve (AUROC), the quadratic discriminant analysis
(QDA) with gradient boosting decision tree (AUROC = 0.63) and QDA with eXtreme gradient
boosting (XGB) (AUROC = 0.64) showed a high AUROC combination. Through a feature selection
process, 30 characteristics were further analyzed. Dysplastic erythrocytes and granulocytes showed
lower median values on heatmap analysis compared to that of normal erythrocytes and granulocytes.
The data suggest that pathomic features could be applied to cell differentiation in hematologic
malignancies. It could be used as a new biomarker with an auxiliary role for more accurate diagnosis.
Further studies including prediction survival and prognosis with larger cohort of patients are needed.

Keywords: myelodysplastic syndromes; machine learning in pathology; bone marrow analysis; bone
marrow neoplasms

1. Introduction

Myelodysplastic syndromes (MDSs) represent a collection of clonal bone marrow
disorders characterized by ineffective hematopoiesis, resulting in morphological dysplasia
of hematopoietic cells and peripheral blood cytopenias [1–3]. Although the importance of
genomic features is growing in the diagnosis of MDSs, dysplastic morphology remains a
crucial element in confirming the diagnosis [4]. However, the diagnostic and quantification
processes for MDS dysplasia inherently involve subjective components, posing interpreta-
tive challenges. Furthermore, variations among observers can occur when assessing mild,
borderline cases [1,5].

Recently, in the field of medical imaging analysis, research in radiomics, which enables
the extraction of various quantitative and statistical characteristics of lesions through
image analysis, has been actively conducted [6]. Pathomics utilizes radiomics parameters
across various pathological tissues, enabling the derivation of objective indicators for the
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characteristics of diverse tissues [7]. Currently, pathomic features are actively researched in
the field of oncology diagnosis, treatment efficacy assessment, and prognosis prediction
in various tissues [8–13]. Nevertheless, research in the field of pathomics has not yet been
sufficiently conducted due to the challenges associated with acquiring and analyzing bone
marrow tissue. These difficulties include the invasive nature of bone marrow extraction
procedures, which can limit sample availability; the heterogeneity of bone marrow samples,
which complicates the standardization of data; and the need for high-resolution imaging
to accurately capture cellular details. Additionally, the complex and variable morphology
of bone marrow cells poses significant challenges for developing robust deep learning
algorithms, requiring extensive annotation and validation to ensure accuracy and reliability
in automated analyses [14,15]. Pathomics analysis in bone marrow samples remains an
unexplored area, and it is expected to be utilized in understanding the characteristics of
lesions, in pathophysiology, and in prognosis prediction in MDSs. As an emerging field
that is starting to gain attention, it merges into the broader multi-omics framework, offering
detailed insights into the structural alterations of tissues at a microscopic scale. Compiling
pathomic data at the patient level will be crucial for effectively incorporating pathomics
into clinical prognostic models [16].

We have previously developed an algorithm through earlier research that uses deep
learning to detect hematopoietic cells in bone marrow aspirate slides and differentiate
between dysplastic and normal cells in each cell lineage [17]. In the previous study, we
classified the hematopoietic cells in bone marrow aspiration slide into eight categories
(normal erythrocytes, normal granulocytes, normal megakaryocytes, dysplastic erythro-
cytes, dysplastic granulocytes, dysplastic megakaryocytes, blasts, and others) using the
convolutional neural network (CNN) method with an accuracy of 0.912 to 0.993. We have
demonstrated the potential of the developed algorithm as an auxiliary tool for diagnosing
patients with MDS for shortening the time for diagnosis and standardizing visual reading.

This study aimed to identify hematopoietic cells in Korean patients with MDS and
extract various pathomic signatures to analyze the characteristics of dysplastic and normal
hematopoietic cells by lineage. Using a machine learning approach incorporating feature
selection and cross-validated model evaluation, we examined the potential for distinguish-
ing normal from dysplastic cells based on pathomic features of myelodysplastic cells. This
approach provides insights into the potential for pathomic feature-based discrimination
and informs directions for future research.

2. Materials and Methods
2.1. Dataset Preparation and Proposed Framework

The workflow of this study is illustrated in Figure 1. A total of 24 patients diagnosed
with an MDS and 21 normal bone marrow slides were included. The diagnosis of myelodys-
plastic syndrome was conducted according to the WHO 2016 MDS diagnostic criteria [18].
Normal bone marrow was designated from patients undergoing lymphoma routine staging
work-ups, specifically those without any hematologic malignancy or reactive marrow
findings and with no peripheral blood dilution. Wright–Giemsa staining was performed on
bone marrow aspiration, and the comprehensive scanning of the bone marrow aspiration
slide was conducted using Motic Digital Slide Assistant software version 1.0.7.61. (Motic
China Group Co., Ltd., Xiamen, China). Automated identification and segmentation of
nucleated cells in bone marrow aspiration slides were conducted following the previous
study [17]. Briefly, the segmentation task was trained and tested with U-net, one of the
convolutional network architectures, using patched bone marrow aspiration slide images.
For the creation of patch images, areas with well-spread nucleated cells were manually
selected and captured. A total of 11,000 patch images were produced. Manual labeling was
conducted on 946 nucleated cells, and a segmentation algorithm was developed for cell
detection within these patch images. The research adhered to the Declaration of Helsinki
guidelines and received approval from the Institutional Review Board (IRB) of Kangnam
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Sacred Heart Hospital (IRB No. HKS 2021-07-023-008). Due to the study’s anonymized
nature, the IRB waived the requirement for informed consent.
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Figure 1. Workflow of the classification task of dysplastic cells in this study.

2.2. Pathomic Feature Extraction

The open-source Python package Pyradiomics was utilized to extract the pathomic
features [19]. After image segmentation with an annotated mask, discretization and prepro-
cessing of image of the segmented image was performed and applied to the first-, second-,
or higher-order (texture) statistics. From bone marrow aspiration slides, 476 pathomic
features were extracted from the segmented cell images of the identified nucleated cells.
The radiomic features consisted of 9 shape features; 18 first-order statistical features; and
24 gray-level co-occurrence matrix (GLCM), 16 gray-level run-length matrix (GLRLM),
16 gray-level size zone matrix (GLSZM), 14 gray-level dependence matrix (GLDM), and
5 neighboring gray tone difference matrix (NGTDM) features. Four wavelet filters were
applied to the image and extracted the same set of radiomic features from the wavelet
response image. The GLCM was constructed using four directions: 0◦, 45◦, 90◦, and 135◦.
The default offset of 1 was applied, and the GLCM was normalized by dividing each ele-
ment by the total number of pixel pairs to ensure robust and reproducible feature extraction.
The specific name of radiomic features are listed up in Supplementary Table S1. Using
1316 images each of image, Mask, and Overlay, we extracted pathomic features from a total
of 12,360 segmented cells using 40X magnification patch images. The median number of
patch images per patient was 26, while the median number of nucleated cells per patient,
after segmentation and cropping, was 238.

2.3. Combination of Feature Selection and Modeling Methods

The extracted pathomic features were labeled for each cell according to lineage and
the presence or absence of dysplasia in seven categories. The cell counts for each category
are as follows: normal erythrocytes (NE), normal granulocytes (NG), normal megakary-
ocytes (NM), dysplastic erythrocytes (DE), dysplastic granulocytes (DG), and dysplastic
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megakaryocytes (DM), with 1533, 7902, 433, 716, 1217, and 540 cells, respectively. The
labeling was performed by two hematologic pathologists with 30 and 11 years of experi-
ence, respectively. In cases of differing opinions, consensus labeling was conducted. To
enhance label reliability, reviewers independently assigned labels, and any discrepancies
were resolved through consensus discussions to reduce subjectivity and maintain consis-
tency in the labeling process. To facilitate feature selection, (i) supervised feature selection
was conducted to compare the extraction values for each cell class. Features were selected
based on the statistical significance of the median value differences between normal and
dysplastic cells across lineages and their adherence to a normal distribution. (ii) Combined
validation was used to evaluate the potential utility of classification performance. Six
well-known feature selection methods from existing literature were employed [20–22]. To
differentiate between normal and dysplastic cells, 14 commonly used machine learning
classifiers were applied. Each feature selection method was combined with all classifiers,
yielding 84 cross-combinations. For each combination, 5-fold cross-validation results were
calculated using the AUROC.

2.4. Statistical and Data Analysis

To assess the statistical significance of differences between the characteristics of MDS
patients and the normal bone marrow group, the Mann–Whitney statistical method was
utilized. Additionally, the statistical significance of differences between the extracted
pathomic features across the seven cell classes, as well as the characteristics of normal
versus dysplastic cells within each lineage, was evaluated using the Mann–Whitney test.
Furthermore, a radar chart was created for the classification of dysplastic cells according to
cell lineage, providing a visual representation of the characteristics for each lineage. All
statistical analyses were conducted using Medcalc version 15.0 (MedCalc Software, Ostend,
Belgium) and R version 4.1.0 (R Foundation for Statistical Computing).

3. Results
3.1. Demographics of Cohorts and Data Resource

In this study, a total of 45 patients were enrolled, including 24 with an MDS and 21
with normal bone marrow (Table 1). The median ages of the patients with MDSs and normal
bone marrow were 70.5 (interquartile range (IQR) = 55.5–77.0) and 64.0 (IQR = 46.8–78.3),
respectively. The number of male and female patients was 14 and 10 in the MDS group,
and 12 and 9 in the normal bone marrow group, respectively. There was no statistical
difference between the two groups in age and gender ratio. In patients with MDS, the
median hemoglobin value was significantly lower at 8.5 g/dL compared to 13.3 g/dL
in the normal group. The white blood cells (WBC) (3005 vs. 6560/µL) and platelet
(94.5 vs. 232.0 × 103/µL) counts were also significantly lower in the MDS group compared
to that in the normal group. Lactate dehydrogenase (LD) levels were significantly higher in
the MDS group compared to that in the normal group (260.0 vs. 183.0 IU/L). There was
no difference in prothrombin time (PT) or activated partial thromboplastin time (aPTT),
and other test results such as aspartate aminotransferase (AST), alanine aminotransferase
(ALT), blood urea nitrogen (BUN), creatinine (Cr), and folate also showed no significant
differences between the groups. Among patients with MDS, 33.3% each were classified
under refractory anemia with excess blasts-2 (EB-2) and multilineage dysplasia (MLD),
followed by 16.7% under refractory anemia with excess blasts-1 (EB-1), and 4.2% each under
single lineage dysplasia (SLD), refractory multilineage dysplasia (R-MLD), myelodysplastic
syndrome-unclassified (MDS-U), and therapy-related myelodysplastic syndrome (t-MDS).
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Table 1. Baseline characteristics of cohorts.

Classification

p-ValueMyelodysplasia
Syndromes (MDSs)

(n = 24)

Normal Bone
Marrow
(n = 21)

Age 70.5 (55.5–77.0) 64.0 (46.8–78.3) 0.3276

Sex (male:female) 14:10 12:9 0.9364

Aspartate aminotransferase (U/L) 26.0 (17.3–36.3) 20.0 (16.0–30.8) 0.2738

Alanine aminotrasnferase (U/L) 22.0 (11.0–42.8) 17.0 (12.8–22.3) 0.5331

Blood urea nitrogen
(BUN, mg/dL) 13.5 (11.8–20.7) 13.5 (12.5–17.7) 0.8693

Creatinine (mg/dL) 0.75 (0.56–0.97) 0.82 (0.69–0.91) 0.8416

Folate (ng/mL) 6.6 (5.1–10.2) 14.5 (9.0–21.7) 0.0091

Lactate dehydrogenase (IU/L) 260.0 (216.0–337.0) 183.0 (153.8–197.5) <0.0001

Hemoglobin (g/dL) 8.5 (7.9–9.1) 13.3 (11.9–14.1) <0.0001

White blood cells (/uL) 3005 (1970–3780) 6560 (5515–8288) <0.0001

Platelet (103/uL) 94.5 (45.0–157.5) 232.0 (183.0–296.8) 0.0001

Prothrombin time (s) 12.5 (11.6–13.7) 12.4 (11.5–13.2) 0.5009

aPTT (s) 30.4 (28.4–33.8) 32.0 (28.3–34.8) 0.6398

MDS classification
Single lineage dysplasia

Multi-lineage dysplasia (MLD)
Excess blast-1
Excess blast-2

Ring sideroblasts MLD
Unclassifiable

Therapy-related MLD

1 (4.2%)
8 (33.3%)
4 (16.7%)
8 (33.3%)
1 (4.2%)
1 (4.2%)
1 (4.2%)

N/A N/A

3.2. Feature Extraction and Correlation for First Order

Extraction was performed for a total of 476 features, including 18 first-order statis-
tical features and 24 GLCM, 16 GLRLM, 16 GLSZM, 14 GLDM, and 5 NGTDM features.
Among these, the first-order statistical features and their median and interquartile values
are described in Table 2. When comparing the values of normal and dysplastic cells by each
cell’s lineage, the 90th percentile value of first-order statistics was significantly lower in
dysplastic erythrocytes (DE, median 80.6, IQR = 62.9–89.8) and granulocytes (DG, median
74.0 IQR = 57.0–86.7) than in normal erythrocytes (NE, median 84.0, IQR = 68.5–91.7) and
granulocytes (NG, 84.8, IQR = 71.6–92.0), respectively. Meanwhile, megakaryocytes showed
significantly lower values in normal megakaryocytes (NM, median 80.0, IQR = 70.0–87.0)
compared to that in dysplastic megakaryocytes (DM, median 84.0, IQR = 68.5–91.7). First-
order energy and total energy also showed significantly lower values in normal erythro-
cytes and granulocytes compared to that in their dysplastic forms (Figure 2). Items such
as wavelet high–high (HH) dependence nonuniformity showed higher values in both
NM and DM, with NM values being higher than DM. When correlation analysis was
performed for first-order features, variance and mean absolute deviation showed the
highest correlation at 0.977, followed by robust mean absolute deviation (r = 0.939) and
interquartile range (r = 0.864), which also exhibited high correlations with each other
(Supplementary Figure S1).
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Table 2. First-order statistical features of normal and dysplastic cells in erythrocytes, granulocytes,
and megakaryocytes.

Image Classification

First Order
Erythrocytes Granulocytes Megakaryocytes

Normal Dysplastic p Normal Dysplastic p Normal Dysplastic p

10 Percentile −101 (−107.6
to −91.8

−102 (−107.2
to −93.0) 0.6494

−102
(−108.1

to −91.3)

−100.4
(−106.6

to −92.2)
0.0035

−87.3
(−98.0

to −71.5)

−94.5
(−108.0

to −84.5)
0.0672

90 Percentile 84 (68.5
to 91.7)

80.6 (62.9
to 89.8) 0.0001 84.8 (71.6

to 92.0)
74 (57.0
to 86.7) <0.0001 80.0 (70.0

to 87.0)
89.2 (85.2
to 96.8) 0.0004

Energy
808,744

(635,607 to
1,037,648)

884,340
(691,798 to
1,118,195)

<0.0001
813,222

(648,916 to
997,607)

884,137
(687,053 to
1,120,851)

<0.0001
2,427,583

(1,838,880 to
3,171,995)

931,679
(530,292 to
3,294,565)

0.007

Entropy 2.7 (2.4 to 2.9) 2.7 (2.5 to 2.9 0.389 2.7 (2.5
to 2.8)

2.6 (2.4
to 2.8) 0.0001 2.7 (2.5

to 2.8)
2.8 (2.6
to 2.8) 0.3043

Interquartile
Range

123 (56.9
to 147.0)

122 (57.9
to 144.8) 0.4963 123 (53.3

to 147.5)
115 (43
to 141) <0.0001 102.8 (46.8

to 129.0)
81 (54.8
to 129.3) 0.9192

Kurtosis 1.9 (1.5 to 2.8) 1.8 (1.5 to 2.7 0.488 1.9 (1.5
to 2.8)

1.9 (1.5
to 3.2) 0.0002 2.1 (1.5

to 3.1)
2.2 (1.8
to 4.0) 0.3259

Maximum 107 (102
to 111)

106 (100
to 111) 0.1449 107 (102

to 110)
104 (93
to 110) <0.0001 110 (105

to 113)
110 (109
to 112) 0.8707

Mean −6.8 (−30
to 14.3)

−12.7 (−35.2
to 8.2) 0.0001 −4.7 (−27.6

to 16.2)

−20.4
(−43.5
to 2.3)

<0.0001 8.1 (−13.9
to 22.8

12.0 (−3.9
to 30.3 0.2255

Mean
Absolute
Deviation

60.6 (47.5
to 70.3)

60.5 (47.4
to 69.4) 0.4078 60.9 (48.0

to 70.6)
56.8 (41.8
to 67.5) <0.0001 53.9 (42.7

to 63.8
52.9 (42.5
to 64.1) 0.8023

Median −6 (−56
to 46)

−33 (−60
to 41) 0.0002 7.8 (−54

to 49)
−45 (−62

to 35) <0.0001 31.5 (−40
to 44)

40.0 (−29.4
to 49.5) 0.527

Minimum −120 (−123
to −118)

−120 (−122
to −118) 0.0036 −121 (−123

to −119)
−119 (−122

to −116) <0.0001 −120 (−121
to −118)

−122 (−124
to −120) 0.0015

Range 228 (220
to 232)

226 (218
to 232) 0.0353 228 (221

to 232)
223 (210
to 231) <0.0001 230 (224

to 233)
231 (229.3
to 234.5) 0.1164

Robust Mean
Absolute
Deviation

48.8 (32.4
to 60.7)

48.4 (32.6
to 60.1) 0.6169 49.1 (32.7

to 61.2)
44.8 (26.3
to 58.0) <0.0001 41.5 (28.3

to 54.0)
38.0 (25.9
to 53.9) 0.9235

Root Mean
Squared

74.7 (68.3
to 80.6)

74.9 (68.4
to 80.3) 0.6922 75.1 (68.6

to 81.1)
73.6 (67.4
to 78.8) <0.0001 67.1 (60.1

to 73.7)
71.1 (64.2
to 76.5) 0.0663

Skewness −0.02 (−0.6
to 0.5)

0.07 (−0.41
to 0.64) 0.0021

−0.09
(−0.65
to 0.49)

0.25 (−0.35
to 0.86) <0.0001

−0.38
(−0.86
to 0.12)

−0.6 (−1.1
to −0.01) 0.1881

Total Energy
808,744

(635,607 to
1,037,648)

884,339
(691,798 to
1,118,195)

<0.0001
813,222

(648,916 to
997,607)

884,137
(687,053 to
1,120,851)

<0.0001
2,427,583

(1,838,880 to
3,171,995)

931,679
(530,292 to
3,294,565)

0.007

Uniformity 0.18 (0.16
to 0.22)

0.18 (0.15
to 0.21 0.3958 0.18 (0.16

to 0.22)
0.19 (0.16
to 0.23) 0.0001 0.19 (0.16

to 0.23)
0.17 (0.16
to 0.19) 0.1027

Variance 4770 (3539
to 5805)

4691 (3459
to 5641) 0.2284 4807 (3603

to 5896)
4305 (2962

to 5413) <0.0001 3911 (2946
to 4916)

4369 (3274
to 5187) 0.2446
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Figure 2. Comparison for pathomic features according to cell classification in patients with myelodys-
plastic syndrome. The x-axis categorizes cells into different types: dysplastic granulocyte (DG),
others, dysplastic erythrocyte (DE), normal erythrocyte (NE), normal granulocyte (NG), dysplastic
megakaryocyte (DM), normal megakaryocyte (NM), and others.

3.3. Feature Selection and Modeling

We employed six feature selection methods: ANOVA, mutual information (MI), ran-
dom forest (RF), ExtraTrees (ETE), gradient boosting decision tree (GBDT), and extreme
gradient boost (XGB). Additionally, we conducted modeling using 14 different machine
learning methods, resulting in the exploration of 64 combinations of feature selection and
modeling methods. Exploring diverse combinations of feature selection techniques and
machine learning models is a widely utilized approach in radiomics, particularly when
working with handcrafted features [23]. Using feature selection methods, we calculated
the information gain for all features and ranked them in descending order. Features were
sequentially fed into the model, starting with those that had the highest information gain.
Additional features were included until no further improvement in classification perfor-
mance was observed. The results of comparing the combination of feature selection and
ML classifier methods using 5-fold cross-validation area under the receiver operating char-
acteristic curve (AUROC) are shown in Table 3. Eighty-four combinations of classification
and feature selection methods were utilized in this study to find the combination with
the highest performance. The combinations achieving a high AUROC included quadratic
discriminant analysis (QDA) paired with GBDT, yielding an AUROC of 0.6315, an accuracy
of 62.8%, a sensitivity of 42.2%, and a specificity of 83.6%. The corresponding confusion
matrix (Figure 3) illustrates this performance, reflecting the model’s higher specificity com-
pared to sensitivity. The top 30 features extracted from the QDA and GBDT combination
are listed in Table 4.
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Table 3. Combination of feature selection and modeling methods by 5-fold cross validation results
with area under receiver operating characteristics curve.

ANOVA MI RF ETE GBDT XGB

GNB 0.54 0.54 0.56 0.58 0.59 0.56

BNB 0.49 0.50 0.50 0.50 0.50 0.50

KNN 0.51 0.52 0.53 0.53 0.53 0.53

DT 0.53 0.54 0.54 0.55 0.54 0.54

RF 0.49 0.50 0.49 0.49 0.49 0.50

GBDT 0.49 0.49 0.50 0.50 0.50 0.50

Adaboost 0.50 0.50 0.52 0.51 0.52 0.51

XGB 0.50 0.51 0.51 0.51 0.52 0.52

LDA 0.50 0.50 0.51 0.51 0.50 0.50

QDA 0.59 0.60 0.57 0.59 0.63 0.64

LGR 0.50 0.50 0.51 0.50 0.50 0.50

Linear-SVM 0.47 0.50 0.50 0.50 0.51 0.50

RBF-SVM 0.50 0.50 0.50 0.49 0.50 0.50

MLP 0.50 0.54 0.54 0.50 0.54 0.52
Abbreviations: ANOVA: analysis of variance; MI: mutual information; RF: random forest; ETE: ExtraTrees; GBDT:
gradient boosting decision tree; XGB: extreme gradient Boost; GNB: Gaussian naïve Bayes; BNB: Bernoulli naïve
Bayes; LDA: linear discriminant analysis; QDA: quadratic discriminant analysis; LGR: logistic regression; MLP:
multi-layer perceptron classifier.
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Figure 3. Confusion matrix illustrating the performance of the classification model. The matrix
shows the number of true negatives (474), false positives (93), false negatives (328), and true positives
(239). The rows represent the actual classes (negative and positive), while the columns represent
the predicted classes. The color intensity reflects the magnitude of the values, with darker shades
indicating higher counts.
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Table 4. Top 30 features on the combination of gradient boosting decision tree (GBDT) and quadratic
discriminant analysis (QDA).

wavelet-HH_gldm_DependenceNonUniformity
original_firstorder_Maximum
original_glszm_LargeAreaHighGrayLevelEmphasis
wavelet-LH_glszm_ZoneEntropy
wavelet-LH_glszm_LargeAreaLowGrayLevelEmphasis
original_firstorder_Range
wavelet-LH_glcm_Imc1
wavelet-HH_glrlm_RunVariance
wavelet-LH_glszm_GrayLevelNonUniformity
wavelet-HL_glszm_LargeAreaLowGrayLevelEmphasis
wavelet-HH_glszm_LargeAreaLowGrayLevelEmphasi
wavelet-LH_glszm_LargeAreaEmphasis
original_glrlm_LongRunHighGrayLevelEmphasis
wavelet-LL_firstorder_Median
wavelet-LH_glcm_Correlation
original_firstorder_90Percentile
original_shape2D_MinorAxisLength
wavelet-LH_glrlm_RunVariance
wavelet-HL_glrlm_RunVariance
wavelet-LH_glszm_LargeAreaHighGrayLevelEmphasis
wavelet-HL_glszm_GrayLevelNonUniformity
original_firstorder_Minimum
wavelet-LL_ngtdm_Contrast
wavelet-LH_ngtdm_Strength
wavelet-HH_firstorder_Maximum
original_glcm_Imc2
wavelet-LH_glszm_ZoneVariance
wavelet-HL_glcm_Imc1
wavelet-HL_glcm_InverseVariance
wavelet-HL_gldm_DependenceNonUniformity

3.4. Differences by Cell Lineage

Additional analysis was conducted on the top 15 items among the top 30 features for
each cell lineage’s normal and dysplastic cells. The median values of pathomic features
for each cell type were visualized through a heatmap plot, and the results are shown in
Figure 3. In the case of megakaryocytes, due to the cell’s intrinsic characteristics, they
showed a higher median value compared to other cell lineages. Both erythrocytes and
granulocytes exhibited differences between dysplastic and normal cells. Specifically, DE
and DG showed lower median values compared to NE and NG, and distinct patterns were
evident on the heatmap (Figure 4).

Additionally, a radar plot was created to visually discriminate between the characteristics
of each cell lineage based on their median values (Figure 5). For megakaryocytes, the normal
form generally showed the highest values, except for f9 (wavelet-LL_firstorder_Median). In
contrast, dysplastic forms had high values for f2 (original_firstorder_Range) and f1 (origi-
nal_firstorder_Maximum) similar to normal, but lower values for f11 (wavelet-LH_glcm_Imc1)
and f12 (wavelet-LH_glszm_GrayLevelNonUniformity), showing distinct characteristics.
DG was notably the lowest in all items. DE also showed a lower area compared to NE,
highlighting a distinguishable difference in dysplastic cells from normal. NE and NG
displayed relatively similar radar plot patterns compared to other cell lineages.
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Figure 4. Heatmap of pathomic feature distribution in nucleated cells of patients with myelodys-
plastic syndromes. The x-axis denotes different cell types: DE, DG, and DM represent dysplastic
erythrocytes, granulocytes, and megakaryocytes, respectively, while NE, NG, and NM represent
normal erythrocytes, granulocytes, and megakaryocytes, respectively. Median values of pathomic
features for each cell type are visualized, illustrating cell-specific patterns. Megakaryocytes (DM and
NM) display higher median values compared to other lineages, likely reflecting intrinsic cellular
characteristics. DE and DG show lower median values than their normal counterparts (NE and NG),
with distinct patterns evident across dysplastic and normal cell types.
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4. Discussion

In this study, various pathomic signature features of nucleated cells from patients
with MDSs and normal BM aspiration smears were extracted and analyzed to explore their
potential applications in MDS diagnosis and cell classification. The findings highlight the
potential of pathomics for future cell classification.

In diagnosing hematologic malignancies, expert visual interpretation plays a pivotal
role. While MDS diagnosis has traditionally relied on morphological evaluation, recent stud-
ies have examined the integration of advanced technologies as auxiliary tools [17,24–30].
Among these, the application of artificial intelligence in hematology research is steadily
increasing, although studies specifically targeting MDS remain limited. Previous studies
that applied deep learning for MDS cell classification reported varying levels of perfor-
mance. For example, Lee et al. achieved sensitivity between 64.0% and 90.0% and specificity
between 94.8% and 99.9% depending on the cell type [17], while Mori et al. demonstrated
sensitivity and specificity of 91.0% and 97.7%, respectively, in distinguishing decreased gran-
ule scale [25]. However, to our knowledge, no previous studies have analyzed pathomics
in bone marrow aspiration cell morphology and MDS diseases. This study is significant
as the first to conduct a pathomic analysis specifically targeting patients with MDS. The
pathomic features of each cell showed significant differences in median values across cell
lineages and dysplastic status. Notably, normal erythrocytes and granulocytes versus
dysplastic erythrocytes and granulocytes exhibited significant differences, with dysplastic
cells showing lower values in many of the selected features. These distinctive differences
were visually confirmed through heatmaps and radar plots.

Pathomic features, by quantifying and objectifying intrinsic cellular characteristics,
hold potential for diverse applications. Recently, studies investigating the association
between pathomic features and prognosis in various oncologic tissues have been actively
conducted [8,9,13,31]. Radiomics has already become widely used and is one of the most
extensively studied approaches for identifying imaging features linked to tumor pathophys-
iology [32–36]. The morphological characteristics of cells remain intrinsically important
for diagnosis, even in an era where molecular assessments through massive sequencing
are gaining prominence [37]. Image analysis, which enables classification based on un-
derlying disease pathophysiology, underscores the clinical relevance of pathomic features,
even within the context of molecular diagnostics. Pathomic features applied to tissue are
anticipated to significantly impact both diagnosis and prognosis prediction in hemato-
logic malignancies.
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Quantified image analysis is also expected to contribute to the standardization and
objectivity of diagnostic processes. Cell discrimination often relies on subjective visual
assessment, which complicates standardization. Quantification is essential for achieving
consistent interpretations unaffected by variability in expertise across specialists. Ad-
ditionally, numerical values derived from various pathomic features facilitate objective
interpretation, especially in areas that are visually challenging to differentiate. Visualization
methods, such as the radar plots used in this study, can help clarify and illustrate the char-
acteristics of individual cells. Previous studies have also attempted to quantify and analyze
features like nucleated cells and fibrosis in bone marrow for diagnosing hematologic ma-
lignancies [38–41]. To our knowledge, the quantification of morphological characteristics
extracted through pathomics of individual nucleated cells in bone marrow aspiration has
not been attempted. However, dysplastic cells are expected to show distinctive differences
that can be quantified as pathomic features, making this approach valuable.

A major challenge lies in selecting and utilizing various pathomic features for differ-
ent diseases and establishing appropriate cutoff values. In radiomics, ongoing research
focuses on evaluating feature selection methods and suitable classifiers for each specific
disease [20,21]. Therefore, studies analyzing disease-specific pathomic feature charac-
teristics are crucial for identifying pathomic features useful for each disease. Although
artificial intelligence methods, such as unsupervised selection, have been recently applied,
supervised selection that incorporates clinical experience remains valuable. This under-
scores the need for more studies comparing and evaluating different pathomic features, as
done in this study. This research is anticipated to serve as a meaningful starting point for
future investigations.

The limitations of this study include the small sample size, which precluded analysis
of individual patient characteristics and application to patient-specific diagnosis. This
limited sample size may constrain the generalizability and reliability of the conclusions,
underscoring the importance of validation in larger, independent cohorts. Additionally,
the lack of external data limits the scope of analysis and interpretation. Future research
should aim to include a larger cohort of patients and apply pathomics at the patient level,
rather than limiting the analysis to cell-level classification. Testing the model on an external
dataset will also be essential to confirm its robustness and generalizability across different
clinical settings. Follow-up research should incorporate data from multiple institutions
to achieve standardization and address these limitations. Bone marrow aspirate samples,
in particular, may vary in slide preparation and staining protocols across institutions.
Therefore, comprehensive investigation and standardization of these methodologies are
crucial to ensure reliable and reproducible diagnostic applications. In addition, this study
employed PyRadiomics for texture feature extraction using wavelet-based analysis. While
transform- and mathematical modeling-based techniques provide valuable insights [42],
their use has been limited due to practical constraints, including the risk of overfitting with
a small dataset. Future studies will address these limitations by expanding the dataset
and incorporating broader transform-based approaches for a more comprehensive analysis
of texture features. Finally, this study lacks systematic documentation of inter-reviewer
labeling discrepancies. Although consensus discussions were used to resolve differences,
the absence of quantitative tracking limits the ability to rigorously assess initial inter-rater
variability. Future studies will implement structured discrepancy tracking to enhance label
reliability assessment.

This study was restricted to cell-level classification, without expanding to patient-level
diagnosis. Future research should progress from cellular-level discrimination towards
comprehensive MDS diagnosis at the individual patient level. We intend to increase the
sample size in subsequent studies to further validate these findings and enhance clinical
applicability for patient-specific diagnostic frameworks. Future analyses that incorporate
deep learning methods are anticipated to demonstrate improved performance, necessi-
tating further research in this area. Similar approaches are being explored in radiology
to enhance performance [43]. The combination of machine learning and deep learning
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has recently gained attention for classification tasks [8]. Applying this combination to
optimize feature selection and classification is anticipated to yield improved results. Addi-
tionally, subsequent studies should integrate genomic data, expanding research into the
field of pathogenomics.

5. Conclusions

In conclusion, this study demonstrates the clinical relevance of applying pathomic fea-
tures to cell differentiation in hematologic malignancies, particularly in patients diagnosed
with MDS. Pathomic features are expected to be actively investigated in nucleated cells of
the bone marrow. As an objective and standardized tool, pathomics holds the potential to
quantify bone marrow cell interpretation and diagnosis. It is anticipated that pathomics
could be utilized as a novel biomarker, potentially playing an auxiliary role in enhancing
diagnostic accuracy. While the performance obtained in this study is not yet sufficient for
clinical application, we consider this work a foundational step toward future advancements.
Moreover, this study holds particular significance as one of the first to explore pathomics
in hematology. Building on this foundation, the research team plans to pursue follow-up
studies aimed at achieving improved outcomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bioengineering11121230/s1, Figure S1: Pearson correlation coefficient of first-order features
extracted from hematopoietic cells in bone marrow aspiration in patients with myelodysplastic
syndrome; Table S1: Comprehensive List of Pathomic Features.
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