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Simple Summary: Artificial intelligence (AI) technology is being applied in various ways
in the clinical field, with its use in medical practice rapidly expanding. This study is the first
to report an integrated AI model developed for clinical decision-making in the treatment
of early gastric cancer (EGC). This model combines endoscopic images with demographic
data to facilitate objective clinical decision-making in real-world practice before endoscopic
resection (ER) or gastrectomy. The system demonstrated consistently high performance
across the training set, the internal validation set, and external validation sets from two
different institutions, highlighting its strong potential for practical application. This clinical
decision support system could assist physicians in making more informed decisions about
ER or surgery for patients with EGC in real-world settings. Moreover, its further application
has the potential to reduce medical efforts and costs by effectively identifying appropriate
candidates for ER or surgery.

Abstract: Objectives: The accurate prediction of lymph node metastasis (LNM) and lym-
phovascular invasion (LVI) is crucial for determining treatment strategies for early gastric
cancer (EGC). This study aimed to develop and validate a deep learning-based clinical
decision support system (CDSS) to predict LNM including LVI in EGC using real-world
data. Methods: A deep learning-based CDSS was developed by integrating endoscopic
images, demographic data, biopsy pathology, and CT findings from the data of 2927 pa-
tients with EGC across five institutions. We compared a transformer-based model to an
image-only (basic convolutional neural network (CNN)) model and a multimodal classifi-
cation (CNN with random forest) model. Internal testing was conducted on 449 patients
from the five institutions, and external validation was performed on 766 patients from
two other institutions. Model performance was assessed using the area under the receiver
operating characteristic curve (AUC), probability density function, and clinical utility curve.
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Results: In the training, internal, and external validation cohorts, LNM/LVI was ob-
served in 379 (12.95%), 49 (10.91%), 15 (9.09%), and 41 (6.82%) patients, respectively. The
transformer-based model achieved an AUC of 0.9083, sensitivity of 85.71%, and speci-
ficity of 90.75%, outperforming the CNN (AUC 0.5937) and CNN with random forest
(AUC 0.7548). High sensitivity and specificity were maintained in internal and external
validations. The transformer model distinguished 91.8% of patients with LNM in the
internal validation dataset, and 94.0% and 89.1% in the two different external datasets.
Conclusions: We propose a deep learning-based CDSS for predicting LNM/LVI in EGC by
integrating real-world data, potentially guiding treatment strategies in clinical settings.

Keywords: stomach cancer; artificial intelligence; lymph node metastasis; clinical decision
support system; multimodal artificial intelligence

1. Introduction and Background
Gastric cancer is the fifth-most common cancer and the third leading cause of cancer-

related deaths worldwide [1,2]. Endoscopic resection (ER), including endoscopic sub-
mucosal dissection (ESD), is widely accepted for effectively treating patients that have
indications of tumors with a very low possibility of lymph node metastasis (LNM) and that
are suitable for en bloc resection [3,4]. Thus, predicting LNM including lymphovascular
invasion (LVI) ‘before’ total resection is essential to determine treatment options for early
gastric cancer (EGC), such as ER or surgery.

In real-world practice, physicians have determined treatment strategies in EGC after
predicting LNM risk using endoscopic images, abdominal computed tomography (CT)
findings, biopsy pathology, and demographics. However, determining ER as a treatment
strategy in practice can be challenging due to variability in physician experience, as the
accuracy of each diagnostic method is inconsistent. There is significant interobserver
variability in assessing the feasibility of ER based on endoscopic image findings, with an
accuracy of only 31–38% [5,6]. Additionally, biopsy results, which represent only a portion
of the lesion, can differ from the final pathological findings in nearly half of the cases [7].
CT findings for early gastric cancer are also reported to have a low sensitivity of around
48% [8]. While EUS (endoscopic ultrasonography) is a valuable diagnostic tool, it has
limited reproducibility due to operator dependence, and both its sensitivity and specificity
are reported to be limited [9–11].

As a result, approximately 16.0–20.0% of patients undergoing ER experience non-
curative resection [12–15]. Of these patients, about 7.5–9.5% have LNM, which necessitates
additional surgery [16,17]. For selecting patients who require radical surgery after non-
curative ESD, the “eCura” system was developed [18]. However, this scoring can only be
conducted after the resection of the EGC lesion because it is based on pathological findings.

With advancements in artificial intelligence (AI) technology, various models have been
developed to detect and diagnose lesions. Initially, machine learning and deep learning
models focused on the endoscopic morphological characteristics of lesions reported and
described by endoscopists. However, recent developments enable AI models to analyze
photos of the lesions themselves, offering judgment methods free from the observer’s
subjectivity. Hence, this kind of clinical decision support system (CDSS) can help in
determining treatment options for EGC.

AI has recently been applied in CDSSs to augment physicians’ capability to reach
optimal clinical decisions [19,20]. However, until now, most CDSS models have been
developed using only image or tabular data, not integrated data [19–21]. To select suitable
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patients for ER in EGC, endoscopic features are crucial for predicting the invasion depth of
lesions. Thus, most studies have focused on developing AI models to predict invasion depth
in EGC using endoscopic images [22,23]. The endoscopic features of EGC contain vital
information about biological behaviors; therefore, many endoscopists rely heavily on them
to decide whether ER should be performed. However, other clinical information, including
biopsy pathology, CT findings, endoscopic ultrasound (EUS) findings, and demographic
findings, is also crucial for the physician in determining treatment strategies for EGC.
According to a previous study, abnormal CT findings such as gastric fold thickening or
reactive LN enlargement are significantly related to non-curative resection after ER [24].

Therefore, developing an AI model that integrates endoscopic images with other
clinical information, similar to in a real-world situation, can prove to be a more useful
CDSS in EGC. This study aims to develop and validate a deep learning-based CDSS for
predicting LNM including LVI in EGC by integrating real-world data before resection.

2. Methods
2.1. Study Design and Data Preparation

This study was conducted across multiple centers (Figure 1), involving seven different
institutions. Data from five institutions (Seoul St. Mary’s Hospital, Incheon St. Mary’s
Hospital, Gangnam Severance Hospital, Korea University Anam Hospital, and Gangwon
University Hospital) were used for the training and testing datasets, and data from two
other institutions were used for external validation (Chuncheon Sacred Heart Hospital for
external validation 1; Kyung Hee University Medical Center for external validation 2).
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Figure 1. Flowchart of the study design. CDSS—clinical decision support system; EGC—early gastric
cancer; LNM—lymph node metastasis; LVI—lymphovascular invasion.

Patients diagnosed with EGC were enrolled in this study. All patients underwent
curative treatment with either surgery or ER between January 2010 and December 2015.
Patients who underwent ER were enrolled after ascertaining the absence of five-year
recurrence, because LNM was not pathologically confirmed. No recurrence over five
years post-ER was clinically regarded as no LNM. The endoscopic images and clinical
information of each patient were obtained. Clinical information included tabular data that
could be obtained before resection, such as age, sex, tumor location, size, biopsy pathology,
and CT descriptions provided by expert radiologists (unremarkable finding; gastric fold
thickening; LN enlargement including reactive, metastatic suspicious LN). For the ground
truth, pathological results from resected specimens including the pathological diagnosis,
tumor location and size, invasion depth, LNM, and LVI were also collected.
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Endoscopic static images were obtained using standard endoscopes (GIF-Q260J, GIF-
H260, and GIF-H290; Olympus Medical Systems Co. Ltd., Tokyo, Japan). The endoscopic
images included only white light images. In addition, poor-quality images, such as those
that were out of focus or those with motion blurring, halation, or poor air insufflation, were
excluded. In addition, patients lost to follow-up after ER or in whom LN recurrence was
observed after ER were excluded.

Tabular patient data, including demographic data, biopsy pathology, and CT findings,
were also collected. Multiple endoscopic images and tabular data were integrated for
each patient. Cases with missing data were excluded. This study was approved by
the institutional review boards of each institution (institutional review board of Seoul
St. Mary’s Hospital and Incheon St. Mary’s Hospital (XC22RCDI0068), institutional
review board of Korea University Anam Hospital (2022AN0013), institutional review board
of Gangnam Severance Hospital (3-2021-0330), institutional review board of Gangwon
National University Hospital (KNUH-2021-10-014-003), institutional review board of Kyung
Hee University Hospital (KHUH 2021-09-016), and institutional review board of Chuncheon
Sacred Heart Hospital (2022-03-022)).

2.2. Model Construction

We utilized the data of 2927 patients with EGC from five institutions as a training set
to develop the CDSS to predict LNM/LVI before total resection.

To increase the diversity of data representations and decrease data scale bias caused
by the imbalance between classes, we employed image data augmentation methods during
the training time. For data of a class with a relatively small size of image sets, randomly
generated images by augmentation methods were additionally trained. Flipping, rotation,
blur, and Gaussian noises were applied by random parameters to the negative class 1 time
because the number of images in the positive class (13,167 images from 545 patients) was
larger by about 1.6 times than that in the negative class (8255 images from 2382 patients).

2.3. Image-Only-Based Model: Basic Convolutional Neural Network (CNN)

We trained a model using endoscopic images to predict LNM/LVI. These models
were composed of fully connected layers with multiple neural units after consecutive
convolutional blocks. For the CNN-based predictor, ResNet18, which has shown significant
success in numerous studies, was used (Figure 2a). ResNet18 has been used for various
computer vision tasks including in the medical domain with stable performance, because
the number of layers that the architecture consists of is sufficient for learning a dataset of a
moderate size. To explore the performance of various CNN architectures on the image-only
task, we compared them, as shown in the Supplementary Materials. The models were
pre-trained on a dataset for an endoscopic lesion detection task, and transfer learning was
utilized. All pre-trained convolutional layers were fixed, whereas the fully connected layers
and the final classification layer were fine-tuned on the new task. As a result, the accuracies
of VGG16 and VGG19 are 58.57% and 52.12%, respectively, whereas the ResNet18 shows
61.92% accuracy (Supplementary Table S1).

2.4. Multimodal Classification Model: CNN with Random Forest

Utilizing only a single data modality to predict LNM/LVI in patients with EGC is
ineffective because of the wide range of available data. Therefore, utilizing information from
multimodal data is important for improving the performance of target tasks. Through the
use of a CNN, the task could be favorably trained in the end-to-end process. However, there
are some limitations to simultaneously handling and fusing multimodal data. Specifically,
controlling the scale and dimension imbalances between input multimodal data is too
parametric to stabilize them. Therefore, to efficiently secure the optimized performance
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and extract intact fusion information, we built a two-stage predictor. In this study, we
developed a traditional fusion model to jointly use multimodal data, including multiple
endoscopic images and tabular data. The model consisted of a CNN for image features and
a fusion module.
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The CNN architecture and training strategy for extracting image features were based
on the image classifier v2 (IC v2), which was designed to predict the invasion depth of
EGC from an endoscopic image [22]. To jointly use the image features and tabular data,
a random forest model and principal component analysis were constructed for fusing
multiplicative factors (Figure 2b). The details of the model and the preparation process to
fuse the multimodal data are described in the Supplementary Materials.

2.5. Transformer-Based Model

To predict LNM/LVI by considering both tabular and image data, we constructed
another model architecture based on the transformer [25]. Although there have been
attempts to combine multimodal data, these methods have been based on CNN-based
modules which have a receptive field with a limited range. The scale of the receptive
field for input data is closely associated with the ability to catch hidden information in the
multimodal features. By overcoming these challenges, the transformer has shown com-
parable performance in a wide range of machine learning fields such as natural language
processing and computer vision. In addition, the nature of the transformer in self-attending
to relations between multiple modalities allows for significant achievements in multimodal
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data. The model follows the encoder–predictor routine, including two separate unimodal
encoders for the image and tabular data, and a transformer-based predictor for fusing
feature representations from multimodal data. An overview of the model is presented
in Figure 2c. The maximum number of input images which the encoder for the image
inputs takes is 14. This setting was heuristically chosen from the effectiveness experiments
of validated ranges: if the number was increased up to 15, a performance decrease was
observed. While the unimodal encoders extract feature representations from each modality,
the transformer integrates them to predict LNM/LVI. The architecture and input–output
constructions are described in the Supplementary Materials.

2.6. Internal and External Validations

The model was internally validated using data from 449 mutually exclusive patients
from the first five institutions (Seoul St. Mary’s Hospital, Incheon St. Mary’s Hospital,
Korea University Anam hospital, Gangnam Severance Hospital, and Kangwon University
Hospital). These patients’ data did not overlap with the data used for model construction.
External validation was performed using data from two independent institutions (Chun-
cheon Sacred Heart Hospital and Kyung Hee Medical Center), comprising 165 and 601
patients, respectively. To verify the model’s consistency across different cohorts, external
validation was conducted separately using data from two institutions.

2.7. Outcome

The endpoint selected to develop the AI models was predicting LNM/LVI requiring
surgery. This is considered to be the most useful outcome for identifying patients suitable
for ER alone. The sensitivity, specificity, positive predictive value (PPV), negative predictive
value (NPV), and area under the receiver operating characteristic curve (AUC) were used
to compare the performance of the developed model, including the basic CNN, CNN with
random forest, and transformer-based models. The best model based on these parameters
was selected and validated.

2.8. Statistical Analyses

ANOVA tests for continuous variables and chi-square tests for categorical variables
were used to compare baseline characteristics between the training and validation sets.
The performance of the developed model was evaluated by calculating the AUC. Our
primary analysis involved comparing the AUCs for each constructed AI model, followed
by a secondary analysis that included the calculation of parameters, such as the AUC,
sensitivity, specificity, PPV, and NPV, of the best-performing model using two different
external validation datasets. In addition, the predictive performance was assessed by the
probability density function (PDF) and clinical utility curve (CUC) to determine the clinical
utility thresholds [26].

3. Results
3.1. Patient Characteristics

The baseline characteristics of the training, internal validation, and external validation
sets are summarized in Tables 1 and 2. Tabular characteristics including location, pathologic
diagnosis, tumor size, invasion depth, CT findings, LVI, and LNM were similar between
the training and internal validation sets. The proportion of LNM/LVI was 12.95% in the
training set, 10.34% in the internal validation set, 8.67% in external validation set 1, and
6.60% in external validation set 2.
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Table 1. Demographic findings of the training set.

Training Set (N = 2927)

Age (yr, mean ± SD) 63.1 ± 11.3
Sex (male, n, %) 1985 (67.8)
Location (n, %)

Upper 1/3 289 (9.9)
Mid 1/3 889 (30.4)

Lower 1/3 1749 (59.7)
Biopsy pathology (n, %)

AWD 1141 (39.0)
AMD 983 (33.6)
APD 426 (14.5)
SRC 377 (12.9)

Size (mm, mean ± SD) 24.6 ± 16.7
Invasion depth (n, %)

Mucosa 1879 (64.4)
Submucosa 1039 (35.6)

CT findings (n, %)
No abnormalities 2133 (72.9)

Stomach thickening 430 (14.7)
Reactive LN 184 (6.3)

Metastatic LN 22 (0.8)
Stomach + LNM 158 (5.4)
LNM/LVI (n, %) 379 (12.9)

LNM (n, %) 233 (8.0)
LVI (n, %) 312 (10.7)
Both (n, %) 166 (5.7)

SD—standard deviation; AWD—adenocarcinoma well differentiated; AMD—adenocarcinoma moderately dif-
ferentiated; APD—adenocarcinoma poorly differentiated; SRC—signet ring cell carcinoma; LN—lymph node;
LNM—lymph node metastasis; LVI—lymphovascular invasion.

3.2. Selection of Best-Performing Model

Table 3 presents the results of the three models. The basic CNN model achieved an
AUC of 0.5937 with 53.06% sensitivity and 63.00% specificity, and the CNN with ran-
dom forest model achieved an AUC of 0.7548 with 67.35% sensitivity and 74.50% speci-
ficity. The transformer-based model achieved the highest AUC (0.9083) with compara-
ble sensitivity (85.71%) and specificity (90.57%). The PPV (89.74%) and NPV (86.59%)
were also the highest. The convergence process of the selected model is described in
Figure 3. The sensitivity, specificity, accuracy, F1-score, and val loss were computed on
the training–validation set, in which 10% of the data were randomly sliced and taken
from the training dataset.

3.3. Outcomes of Internal and External Validation

The internal validation group comprised 449 randomly selected patients. Their de-
mographic characteristics are summarized in Table 2. The basic CNN model had the
lowest AUC value (0.5937, 95% CI 0.5483–0.6392), followed by the CNN with random
forest model (0.7548, 95% CI 0.7151–0.7946) and the transformer-based model (0.9083, AUC
0.8816–0.9350). The transformer-based model exhibited the highest sensitivity (85.71%),
specificity (90.75%), PPV (89.74%), and NPV (86.59%). The results are summarized
in Table 3.
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Table 2. Demographic findings of the validation sets.

Internal Validation
(N = 449)

External Validation 1
(N = 165)

External Validation 2
(N = 601) p-Value

Age (yr, mean ± SD) 65.2 ± 11.47 76.17 ± 11.22 64.51 ± 10.31 <0.001
Sex (male, n, %) 312 (69.5) 112 (67.9) 410 (68.2) 0.885
Location (n, %) <0.001

Upper 1/3 27 (6.0) 12 (7.3) 60 (10.0)
Mid 1/3 131 (29.2) 37 (22.4) 237 (39.4)

Lower 1/3 291 (64.8) 116 (70.3) 304 (50.6)
Biopsy pathology (n, %) 0.071

AWD 196 (43.7) 61 (37.0) 244 (40.6)
AMD 160 (35.6) 65 (39.4) 195 (32.4)
APD 45 (10.0) 26 (15.8) 81 (13.5)
SRC 48 (10.7) 13 (7.9) 81 (13.5)

Size (mm, mean ± SD) 22.34 ± 14.12 3.02 ± 3.55 18.6 ± 11.57 <0.001
Invasion depth (n, %)

Mucosa 317 (70.6) 118 (72.4) 464 (77.2)
Submucosa 132 (29.4) 45 (27.6) 137 (22.8)

CT findings (n, %) <0.001
No abnormalities 306 (68.5) 153 (92.7) 526 (87.5)

Stomach thickening 88 (19.7) 8 (4.9) 42 (7.0)
Reactive LN 31 (6.9) 0 (0) 30 (5.0)

Metastatic LN 3 (0.7) 2 (1.2) 1 (0.2)
Stomach + LNM 19 (4.3) 0 (0) 2 (0.3)
LNM/LVI (n, %) 49 (10.3) 15 (8.7) 41 (6.6) 0.083

LVI (n, %) 36 (8.0) 11 (6.7) 28 (4.7) 0.079
LNM (n, %) 37 (8.2) 4 (2.4) 16 (2.7) <0.001
Both (n, %) 24 (5.3) 0 (0) 3 (0.5) <0.001

SD—standard deviation; AWD—adenocarcinoma well differentiated; AMD—adenocarcinoma moderately dif-
ferentiated; APD—adenocarcinoma, poorly differentiated; SRC—signet ring cell carcinoma; LN—lymph node;
LNM—lymph node metastasis; LVI—lymphovascular invasion.

Table 3. Performance comparison of the basic CNN model, the CNN with random forest model, and
the transformer-based model on the internal validation set.

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-Score (%) AUC

Basic CNN 61.92
(57.42–66.41)

53.06
(39.09–67.03)

63.00
(58.27–67.73)

58.43
(43.95–72.91)

57.80
(44.69–70.91)

55.61
(41.37–69.85)

0.5937
(0.5483–0.6392)

CNN with
random forest

73.72
(69.65–77.79)

67.35
(54.22–80.48)

74.50
(70.23–78.77)

72.13
(59.14–85.12)

69.95
(57.64–82.27)

69.66
(56.57–82.73)

0.7548
(0.7151–0.7946)

Transformer-
based

91.31
(88.71–93.92)

89.80
(81.32–98.27)

91.50
(88.77–94.23)

91.19
(83.19–99.19)

90.15
(81.95–98.35)

90.49
(82.25–98.73)

0.9182
(0.8929–0.9436)

CNN—convolutional neural network; PPV—positive predictive value; NPV—negative predictive value; AUC—
area under the receiver operating characteristic curve.

External validation was conducted using the transformer-based model on two datasets
from different institutions. These two datasets differ, particularly in terms of patient age,
lesion location, and lesion size (Table 2). In the first external validation set, a high AUC
of 0.9404 was observed with comparable sensitivity (93.33%), specificity (97.33%), PPV
(97.22%), and NPV (93.59%). In the second external validation set, the AUC remained high
(0.8906), with comparable sensitivity (87.80%), specificity (89.11%), PPV (89.20%), and NPV
(87.70). The transformer-based model showed consistent performance in two different
validation cohorts, implying high versatility. The results are summarized in Table 4.
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Figure 4. The attention ranks inferred by the transformer-based model. Each row is images from a
patient, whereas each column is the attention rank between images. The heatmap was extracted by using
the Grad-CAM method. In the heatmap, the red color means high attention for the 2D image space.
(a) A case predicted as positive by the transformer-based model: A 64-year-old male with AWD and a
13 mm lesion, showing normal findings on CT. The actual result was LVI-positive, which matched the
prediction. (b) A case predicted as positive: A 52-year-old male with SRC and a 15 mm lesion, showing
fold thickness on CT. The actual result was LNM-positive, which matched the prediction. (c) A case
predicted as negative: A 56-year-old male with AWD and a 22 mm lesion, showing normal findings on
CT. The actual results were LNM-negative and LVI-negative, which matched the prediction.
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Table 4. Results of transformer-based model on validation sets.

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-Score (%) Macro
F1-Score (%) AUC

Internal
validation

91.31
(88.71–93.92)

89.80
(81.32–98.27)

91.50
(88.77–94.23)

91.19
(83.19–99.19)

90.15
(81.95–98.35)

90.49
(82.25–98.73) 82.12 0.9182

(0.8929–0.9436)
External

validation 1
96.97

(94.35–99.59)
93.33

(80.71–100.00)
97.33

(94.76–99.91)
97.22

(88.73–100.00)
93.59

(81.44–100.00)
95.25

(84.53–100.00) 91.58 0.9404
(0.9043–0.9766)

External
validation 2

89.02
(86.52–91.52)

87.80
(77.79–97.82)

89.11
(86.53–91.69)

89.20
(79.63–98.78)

87.70
(77.60–97.80)

88.50
(78.70–98.30) 72.99 0.8906

(0.8657–0.9156)

Mean
(standard
deviation)

92.43
(3.341)

90.31
(2.286)

92.65
(3.452)

92.54
(3.410)

90.48
(2.416)

91.41
(2.832)

82.23
(7.590)

0.9164
(0.0203)

PPV—positive predictive value; NPV—negative predictive value; AUC—area under the receiver operating
characteristic curve.

Example result images are shown in Figure 4. The first two rows are positive cases,
while the last row is a negative case. The images in the left column have a higher attention
rank than those on the right side. For the tabular data, the CT findings had the highest
attention rank, and the biopsy results followed.

3.4. Choice of the Best Threshold Probability for Clinical Utility

The PDF of the LNM test group is shown in Figure 5a, and the CUC, which explains
the percentage of detected LNM/LVI-positive patients at any probability threshold,
is shown in Figure 4b. Based on these results, from a clinical perspective, we chose
36.24% as the threshold probability for making clinical decisions using Youden’s J statis-
tic. Using this threshold, we were able to distinguish 91.8% of patients with LNM/LVI
in the internal validation set, which is considered an acceptable determination rate.
For the external validation sets, 94.04% and 89.06% of patients with LNM/LVI could
be distinguished, respectively.
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(b) Clinical utility curves to decide clinical utility thresholds suggested 36.2% as a threshold probability
for guiding the diagnosis of lymph node metastasis (LNM) or lymphovascular invasion (LVI), which
could distinguish approximately 91.8% of patients with LNM/LVI, 80.0% (external validation set 1), and
85.4% (external validation set 2).
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4. Discussion
We developed a CDSS to predict LNM/LVI ‘before’ resection, mirroring real-world

scenarios. Although endoscopic images can be the most important in deciding upon ER or
surgery, most physicians consider demographic data and CT results to determine whether
to proceed with ER or surgery, reflecting the real clinical environment.

Our CDSS model is the first to integrate endoscopic images with tabular information
in EGC, similar to real-world situations. We also incorporated up-to-date transformer
models that showed comparable results, including a high AUC and sensitivity, in both the
internal validation set and two different external validation sets. This innovative approach
could assist physicians in making optimal decisions, regardless of their level of experience.

The transformer was originally used to train long-range dependencies in sequence-to-
sequence language tasks. Recently, transformer-based vision models have demonstrated
state-of-the-art performance in vision tasks because of their ability to learn dense correla-
tions between tokens. Transformers have been shown to competitively outperform existing
tasks and models by dividing dense, continuous signals into subpatches and rasterizing
them into 1D tokens. This early fusion model allowed us to freely learn the attention flow
between different spatiotemporal regions in the image as well as across modalities.

Applications of AI systems have been widely explored in many medical fields, and
these systems have achieved significant performance growth in their tasks. Contrary to
other applications and studies utilizing medical image data, however, securing and gather-
ing relevant datasets is more difficult in endoscopy than in other data modalities such as
CT and MRI due to the nature of its data acquisition. Specifically, if the patient pool for the
target task is narrow, constructing a robust dataset is impractical in terms of class imbal-
ance. Therefore, extracting core information from limited representations is too difficult in
building a model that can successfully conduct target tasks. This challenge emphasizes the
necessity of combining multimodal data to gain insight from multifarious representations
of information. However, optimizing all data modalities with a single objective optimizer
can lead to overfitting to a specific modality due to dimension imbalance. In this paper,
we have observed that the used model architecture can effectively classify and predict
LNM/LVI by alleviating the lack of a data pool, class imbalance, and dimension imbalance.

In a clinical environment, physicians may encounter challenges when deciding
whether a patient should undergo ER. The endoscopic appearance and results of EUS
can assist in assessing the depth of a lesion [27], which is crucial for considering curative
resection. Despite reports suggesting that EUS does not significantly change pretreatment
T staging in patients with EGC compared with conventional endoscopy [10], it can still be a
valuable tool. Nevertheless, for doctors, determining the T stage using only endoscopic vi-
sualization is challenging. Various models assisted by AI technology have been developed
to ascertain lesion characteristics using endoscopic images. A well-designed AI model
can outperform expert endoscopists in accurately predicting the depth of invasion of the
lesion [28] and delineating the line of tumors using magnifying narrow-band endoscopy
images [29]. However, in our study, the basic CNN model showed questionable results for
predicting LNM risk, with a low AUC (0.5937) and sensitivity (53.06%).

CT was used to evaluate the N and M stages before treatment. A deep learning-based
radiomic nomogram has demonstrated predictive capabilities for LNM in locally advanced
gastric cancer with wall invasion beyond the submucosa [30]. Another study developed a
deep learning model using data from patients who had undergone gastrectomy to predict
LNM [31], achieving an accuracy of 90%. One study also created a predictive model for the
occurrence of LNM in patients with EGC who underwent radical gastrectomy, reporting
an AUC of 0.834 [32]. However, these studies are not clinically applicable because they
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included a range of T stages, did not examine endoscopic images which are vital for
deciding the treatment approach, and were not externally validated.

A study reviewing the records of patients with EGC who underwent curative surgery
suggested that the expanded criteria for ER could be acceptable in cases without LNM [33].
However, a minimal risk of LNM still exists. In our study, approximately 20% of the
subjects in the training dataset who underwent ER and met the expanded criteria (344 of
1608 patients, 78.6%) were found to have LVI or LNM after ER and needed to undergo
surgery. Our model outperformed classical physician experience-based decisions in both
the training and validation sets. Using the transformer-based model, we successfully
distinguished 90.83% of the EGC patients with LNM/LVI. Furthermore, this result was
consistent across the two different validation sets, with the AUC exceeding 0.80 in both
sets (0.9258 and 0.8506).

Sensitivity is an important parameter in clinical decision-making to reduce the proba-
bility of insufficient treatment for gastric cancer. The transformer-based model achieved a
sensitivity of 80% or higher for all datasets, suggesting the potential clinical utility of this
CDSS for EGC treatment. Moreover, the PPVs were high across all datasets, indicating the
high utility of the model.

Our study has several strengths in various aspects. First, it examined both endoscopic
images and demographic data, which are used for clinical decision-making in real world
clinical practice, without subjectivity. With the aid of an AI model, physicians can make
clinical decisions with a certain degree of accuracy regardless of their experience. To the
best of our knowledge, this is the first study to report an integrated AI model developed
for clinical decision-making in EGC treatment based on predicting LNM/LVI. Second,
compared to previous studies, this study included a large number of patients from mul-
tiple institutions. This large number of subjects and institutions may help minimize bias.
Additionally, the characteristics of the three validation sets were different; however, the
transformer-based model still demonstrated good performance. This suggests that the
model has addressed a crucial AI model development challenge: overfitting. The model
exhibited consistent performance across different datasets, implying the possibility of its
general use in various clinical fields. Third, our dataset comprised surgical cases and
patients who underwent ER. We inferred that if a patient did not experience recurrence
within five years after ER, LNM could be considered negative. This assumption holds
greater relevance in real-world scenarios.

The limitations of this study are as follows: First, the model was developed based on
data from a single ethnicity—Koreans. However, owing to the high incidence of gastric
cancer in Korea and other countries, this model still has high utility for deciding treatment
options in real-world situations. Second, the findings from the CT scans were included
in the model as categorized variables, although the results of CT scans are somewhat
measurable compared to endoscopic findings. This suggests the need for further research
that includes the images themselves for more objective model construction. Third, in our
study, patients who experienced recurrence after ESD were excluded. For this group, it is
difficult to distinguish whether recurrent lesions are due to initial LNM or if they occur
metachronously. Therefore, we excluded these subjects in order to minimize potential bias.
Fourth, our study does not provide a head-to-head comparison of LNM/LVI prediction
between physicians and a transformer-based AI model. However, since this study evaluates
the performance of an AI model and demonstrates its potential application in clinical
practice, it is deemed possible to conduct a study comparing it with expert opinions.

Despite these limitations, our study is the first to develop and validate the utility of
the CDSS for predicting LNM/LVI in EGC by integrating real-world data. This CDSS can
provide practical support to physicians in real clinical settings when deciding between
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ER or gastrectomy for patients with EGC. Notably, while such decisions were previously
influenced by the physician’s experience and skill, the assistance of AI enables the de-
termination of treatment strategies to be more objective. The further application of this
system may reduce medical effort and costs by selecting appropriate candidates for ER or
surgery. Through broader applications, this model can evolve and be used more widely in
clinical practice.

5. Conclusions
The newly developed and validated transformer-based CDSS integrating endoscopic

images and demographic data to predict LNM/LVI in EGC achieved high accuracy and
sensitivity across diverse datasets. By providing objective and consistent support for
treatment decisions, this AI model has the potential to enhance clinical decision-making,
reduce reliance on physician experience, and optimize patient outcomes in real-world
practice. Further studies incorporating various images themselves for a more objective
model and including diverse ethnic groups are expected to contribute significantly to the
treatment of patients with EGC.
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mdpi.com/article/10.3390/cancers17050869/s1, Table S1: Performances of the models.

Author Contributions: D.K. contributed to formal analysis and the writing of the original draft. H.J.J.
was involved in formal analysis and provided resources. J.-H.K. contributed to conceptualization,
methodology, data curation, supervision, and funding acquisition. S.-I.O. was responsible for software
programming, software development, and the implementation of the algorithm. Y.S.S. participated in
formal analysis. J.Y.J., J.-W.K., J.S.K., S.-J.N., C.S.B. and H.S.C. provided resources. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Korean College of Helicobacter and Upper Gastrointestinal
Research Foundation Grant (KCHUGR-202001004).

Institutional Review Board Statement: This study involves human participants and was approved
by institutional review boards as follows: institutional review board of Seoul St. Mary’s Hospital
and Incheon St. Mary’s Hospital (XC22RCDI0068), institutional review board of Korea Univer-
sity Anam Hospital (2022AN0013), institutional review board of Gangnam Severance Hospital
(3-2021-0330), institutional review board of Gangwon National University Hospital (KNUH-2021-10-
014-003), institutional review board of Kyung Hee University Hospital (KHUH 2021-09-016), and
institutional review board of Chuncheon Sacred Heart Hospital (2022-03-022).

Informed Consent Statement: Patient consent was waived due to the retrospective design of
the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to personal information protection.

Conflicts of Interest: Author S.-I.O. was employed by Waycen Inc. The remaining authors declare
that the research was conducted in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

References
1. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer

incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [CrossRef] [PubMed]
2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

https://www.mdpi.com/article/10.3390/cancers17050869/s1
https://www.mdpi.com/article/10.3390/cancers17050869/s1
https://doi.org/10.1002/ijc.31937
https://www.ncbi.nlm.nih.gov/pubmed/30350310
https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338


Cancers 2025, 17, 869 14 of 15

3. Gotoda, T.; Yanagisawa, A.; Sasako, M.; Ono, H.; Nakanishi, Y.; Shimoda, T.; Kato, Y. Incidence of lymph node metastasis from
early gastric cancer: Estimation with a large number of cases at two large centers. Gastric Cancer 2000, 3, 219–225. [CrossRef]
[PubMed]

4. Hirasawa, T.; Gotoda, T.; Miyata, S.; Kato, Y.; Shimoda, T.; Taniguchi, H.; Fujisaki, J.; Sano, T.; Yamaguchi, T. Incidence of lymph
node metastasis and the feasibility of endoscopic resection for undifferentiated-type early gastric cancer. Gastric Cancer 2009, 12,
148–152. [CrossRef]

5. Kanesaka, T.; Nagahama, T.; Uedo, N.; Doyama, H.; Ueo, T.; Uchita, K.; Yoshida, N.; Takeda, Y.; Imamura, K.; Wada, K. Clinical
predictors of histologic type of gastric cancer. Gastrointest. Endosc. 2018, 87, 1014–1022. [CrossRef]

6. Suzuki, H.; Sano, M.; Nishizawa, T.; Toyoshima, O. Endoscopic Diagnosis of Early Gastric Cancer and High-Risk Gastritis. Korean
J. Helicobacter Up. Gastrointest. Res. 2024, 24, 311–318. [CrossRef]

7. Jeon, J.W.; Kim, S.J.; Jang, J.Y.; Kim, S.-M.; Lim, C.-H.; Park, J.M.; Hong, S.J.; Kim, C.G.; Jeon, S.W.; Lee, S.H.; et al. Clinical
Outcomes of Endoscopic Resection for Low-Grade Dysplasia and High-Grade Dysplasia on Gastric Pretreatment Biopsy: Korea
ESD Study Group. Gut Liver 2021, 15, 225–231. [CrossRef]

8. Gao, X.; Ma, T.; Cui, J.; Zhang, Y.; Wang, L.; Li, H.; Ye, Z. A CT-based radiomics model for prediction of lymph node metastasis in
early stage gastric cancer. Acad. Radiol. 2021, 28, e155–e164. [CrossRef]

9. Liu, S.; Zhang, M.; Yang, Y.; Cai, F.; Guo, F.; Dai, Z.; Cao, F.; Zhou, D.; Liang, H.; Zhang, R.; et al. Establishment and validation of
a risk score model based on EUS: Assessment of lymph node metastasis in early gastric cancer. Gastrointest. Endosc. 2024, 100,
857–866. [CrossRef]

10. Choi, J.; Kim, S.G.; Im, J.P.; Kim, J.S.; Jung, H.C.; Song, I.S. Comparison of endoscopic ultrasonography and conventional
endoscopy for prediction of depth of tumor invasion in early gastric cancer. Endoscopy 2010, 42, 705–713. [CrossRef]

11. Fairweather, M.; Jajoo, K.; Sainani, N.; Bertagnolli, M.M.; Wang, J. Accuracy of EUS and CT imaging in preoperative gastric cancer
staging. J. Surg. Oncol. 2015, 111, 1016–1020. [CrossRef] [PubMed]

12. Kim, E.H.; Park, J.C.; Song, I.J.; Kim, Y.J.; Joh, D.H.; Hahn, K.Y.; Lee, Y.K.; Kim, H.Y.; Chung, H.; Shin, S.K.; et al. Prediction model
for non-curative resection of endoscopic submucosal dissection in patients with early gastric cancer. Gastrointest. Endosc. 2017, 85,
976–983. [CrossRef] [PubMed]

13. Lee, S.H.; Kim, M.C.; Jeon, S.W.; Lee, K.N.; Park, J.J.; Hong, S.J. Risk Factors and Clinical Outcomes of Non-Curative Resection in
Patients with Early Gastric Cancer Treated with Endoscopic Submucosal Dissection: A Retrospective Multicenter Study in Korea.
Clin. Endosc. 2020, 53, 196–205. [CrossRef] [PubMed]

14. Feng, M.; Zhao, Y.; Chen, J.; Zhao, T.; Mei, J.; Fan, Y.; Lin, Z.; Yao, J.; Bu, H. A deep learning model for lymph node metastasis
prediction based on digital histopathological images of primary endometrial cancer. Quant. Imaging Med. Surg. 2023, 13,
1899–1913. [CrossRef]

15. Ma, X.; Zhang, Q.; Zhu, S.; Zhang, S.; Sun, X. Risk factors and prediction model for non-curative resection of early gastric cancer
with endoscopic resection and the evaluation. Front. Med. 2021, 8, 637875. [CrossRef]

16. Sunagawa, H.; Kinoshita, T.; Kaito, A.; Shibasaki, H.; Kaneko, K.; Ochiai, A.; Ohtsu, A.; Nishida, T. Additional surgery for
non-curative resection after endoscopic submucosal dissection for gastric cancer: A retrospective analysis of 200 cases. Surg.
Today 2017, 47, 202–209. [CrossRef]

17. Ryu, K.W.; Choi, I.J.; Doh, Y.W.; Kook, M.C.; Kim, C.G.; Park, H.J.; Lee, J.H.; Lee, J.S.; Lee, J.Y.; Kim, Y.W.; et al. Surgical indication
for non-curative endoscopic resection in early gastric cancer. Ann. Surg. Oncol. 2007, 14, 3428–3434. [CrossRef]

18. Hatta, W.; Gotoda, T.; Oyama, T.; Kawata, N.; Takahashi, A.; Yoshifuku, Y.; Hoteya, S.; Nakagawa, M.; Hirano, M.; Esaki, M.; et al.
Is the eCura system useful for selecting patients who require radical surgery after noncurative endoscopic submucosal dissection
for early gastric cancer? A comparative study. Gastric Cancer 2018, 21, 481–489. [CrossRef]

19. Shaikh, F.; Dehmeshki, J.; Bisdas, S.; Roettger-Dupont, D.; Kubassova, O.; Aziz, M.; Awan, O. Artificial Intelligence-Based Clinical
Decision Support Systems Using Advanced Medical Imaging and Radiomics. Curr. Probl. Diagn. Radiol. 2021, 50, 262–267.
[CrossRef]

20. Feng, X.; Hong, T.; Liu, W.; Xu, C.; Li, W.; Yang, B.; Song, Y.; Li, T.; Li, W.; Zhou, H.; et al. Development and validation of a
machine learning model to predict the risk of lymph node metastasis in renal carcinoma. Front. Endocrinol. 2022, 13, 1054358.
[CrossRef]

21. Zhou, S.; Ma, X.; Jiang, S.; Huang, X.; You, Y.; Shang, H.; Lu, Y. A retrospective study on the effectiveness of Artificial Intelligence-
based Clinical Decision Support System (AI-CDSS) to improve the incidence of hospital-related venous thromboembolism (VTE).
Ann. Transl. Med. 2021, 9, 491. [CrossRef] [PubMed]

22. Kim, J.H.; Oh, S.I.; Han, S.Y.; Keum, J.S.; Kim, K.N.; Chun, J.Y.; Youn, Y.H.; Park, H. An Optimal Artificial Intelligence System for
Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer. Cancers 2022, 14, 6000. [CrossRef] [PubMed]

23. Nam, J.Y.; Chung, H.J.; Choi, K.S.; Lee, H.; Kim, T.J.; Soh, H.; Kang, E.A.; Cho, S.J.; Ye, J.C.; Im, J.P.; et al. Deep learning model for
diagnosing gastric mucosal lesions using endoscopic images: Development, validation, and method comparison. Gastrointest.
Endosc. 2022, 95, 258–268.e10. [CrossRef] [PubMed]

https://doi.org/10.1007/PL00011720
https://www.ncbi.nlm.nih.gov/pubmed/11984739
https://doi.org/10.1007/s10120-009-0515-x
https://doi.org/10.1016/j.gie.2017.10.037
https://doi.org/10.7704/kjhugr.2024.0047
https://doi.org/10.5009/gnl19275
https://doi.org/10.1016/j.acra.2020.03.045
https://doi.org/10.1016/j.gie.2024.04.2903
https://doi.org/10.1055/s-0030-1255617
https://doi.org/10.1002/jso.23919
https://www.ncbi.nlm.nih.gov/pubmed/25872753
https://doi.org/10.1016/j.gie.2016.10.018
https://www.ncbi.nlm.nih.gov/pubmed/27756614
https://doi.org/10.5946/ce.2019.123
https://www.ncbi.nlm.nih.gov/pubmed/31648421
https://doi.org/10.21037/qims-22-220
https://doi.org/10.3389/fmed.2021.637875
https://doi.org/10.1007/s00595-016-1353-1
https://doi.org/10.1245/s10434-007-9536-z
https://doi.org/10.1007/s10120-017-0769-7
https://doi.org/10.1067/j.cpradiol.2020.05.006
https://doi.org/10.3389/fendo.2022.1054358
https://doi.org/10.21037/atm-21-1093
https://www.ncbi.nlm.nih.gov/pubmed/33850888
https://doi.org/10.3390/cancers14236000
https://www.ncbi.nlm.nih.gov/pubmed/36497481
https://doi.org/10.1016/j.gie.2021.08.022
https://www.ncbi.nlm.nih.gov/pubmed/34492271


Cancers 2025, 17, 869 15 of 15

24. Han, S.Y.; Yoon, H.J.; Kim, J.H.; Lee, H.S.; Chun, J.; Youn, Y.H.; Park, H. Nomogram for pre-procedural prediction of non-curative
endoscopic resection in patients with early gastric cancer. Surg. Endosc. 2023, 37, 4594–4603. [CrossRef]

25. Zheng, H.; Lin, Z.; Zhou, Q.; Peng, X.; Xiao, J.; Zu, C.; Jiao, Z.; Wang, Y. Multi-transsp: Multimodal transformer for survival
prediction of nasopharyngeal carcinoma patients. In Proceedings of the International Conference on Medical Image Computing
and Computer-Assisted Intervention, Singapore, 18–22 September 2022; pp. 234–243.

26. Campbell, D.J. The clinical utility curve: A proposal to improve the translation of information provided by prediction models to
clinicians. BMC Res. Notes 2016, 9, 219. [CrossRef]

27. Yanai, H.; Matsumoto, Y.; Harada, T.; Nishiaki, M.; Tokiyama, H.; Shigemitsu, T.; Tada, M.; Okita, K. Endoscopic ultrasonography
and endoscopy for staging depth of invasion in early gastric cancer: A pilot study. Gastrointest. Endosc. 1997, 46, 212–216.
[CrossRef]

28. Wu, L.; Wang, J.; He, X.; Zhu, Y.; Jiang, X.; Chen, Y.; Wang, Y.; Huang, L.; Shang, R.; Dong, Z.; et al. Deep learning system
compared with expert endoscopists in predicting early gastric cancer and its invasion depth and differentiation status (with
videos). Gastrointest. Endosc. 2022, 95, 92–104.e3. [CrossRef]

29. Ling, T.; Wu, L.; Fu, Y.; Xu, Q.; An, P.; Zhang, J.; Hu, S.; Chen, Y.; He, X.; Wang, J.; et al. A deep learning-based system
for identifying differentiation status and delineating the margins of early gastric cancer in magnifying narrow-band imaging
endoscopy. Endoscopy 2021, 53, 469–477. [CrossRef]

30. Dong, D.; Fang, M.J.; Tang, L.; Shan, X.H.; Gao, J.B.; Giganti, F.; Wang, R.P.; Chen, X.; Wang, X.X.; Palumbo, D.; et al. Deep learning
radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: An international
multicenter study. Ann. Oncol. 2020, 31, 912–920. [CrossRef]

31. Jin, C.; Jiang, Y.; Yu, H.; Wang, W.; Li, B.; Chen, C.; Yuan, Q.; Hu, Y.; Xu, Y.; Zhou, Z.; et al. Deep learning analysis of the primary
tumour and the prediction of lymph node metastases in gastric cancer. Br. J. Surg. 2021, 108, 542–549. [CrossRef]

32. Kim, S.M.; Lee, H.; Min, B.H.; Kim, J.J.; An, J.Y.; Choi, M.G.; Bae, J.M.; Kim, S.; Sohn, T.S.; Lee, J.H. A prediction model for lymph
node metastasis in early-stage gastric cancer: Toward tailored lymphadenectomy. J. Surg. Oncol. 2019, 120, 670–675. [CrossRef]

33. Oh, Y.J.; Kim, D.H.; Han, W.H.; Eom, B.W.; Kim, Y.I.; Yoon, H.M.; Lee, J.Y.; Kim, C.G.; Kook, M.C.; Choi, I.J.; et al. Risk factors for
lymph node metastasis in early gastric cancer without lymphatic invasion after endoscopic submucosal dissection. Eur. J. Surg.
Oncol. 2021, 47, 3059–3063. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00464-023-09949-0
https://doi.org/10.1186/s13104-016-2028-0
https://doi.org/10.1016/S0016-5107(97)70088-9
https://doi.org/10.1016/j.gie.2021.06.033
https://doi.org/10.1055/a-1229-0920
https://doi.org/10.1016/j.annonc.2020.04.003
https://doi.org/10.1002/bjs.11928
https://doi.org/10.1002/jso.25628
https://doi.org/10.1016/j.ejso.2021.04.029

	Introduction and Background 
	Methods 
	Study Design and Data Preparation 
	Model Construction 
	Image-Only-Based Model: Basic Convolutional Neural Network (CNN) 
	Multimodal Classification Model: CNN with Random Forest 
	Transformer-Based Model 
	Internal and External Validations 
	Outcome 
	Statistical Analyses 

	Results 
	Patient Characteristics 
	Selection of Best-Performing Model 
	Outcomes of Internal and External Validation 
	Choice of the Best Threshold Probability for Clinical Utility 

	Discussion 
	Conclusions 
	References

