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Frank’s sign (FS) is a diagnostic marker associated with aging and various health conditions. Despite 
its clinical significance, there lacks a standardized method for its identification. This study aimed 
to develop a deep learning model for automated FS detection in 3D facial images derived from MRI 
scans. Four deep learning architectures were evaluated for FS segmentation on a dataset of 400 brain 
MRI scans. The optimal model was subsequently validated on two external datasets, comprising 300 
brain MRI scans each with varying FS presence. Dice similarity coefficient (DSC) and receiver operating 
characteristic (ROC) analysis were employed to assess model performance. The U-net architecture 
demonstrated superior performance in terms of accuracy and efficiency. On the validation datasets, 
the model achieved a DSC of 0.734, an intra-class correlation coefficient of 0.865, and an area under 
the ROC curve greater than 0.9 for FS detection. Additionally, the model identified optimal voxel 
thresholds for accurate FS classification, resulting in high sensitivity, specificity, and accuracy metrics. 
This study successfully developed a deep learning model for automated FS segmentation in MRI scans. 
This tool has the potential to enhance FS identification in clinical practice and contribute to further 
research on FS and its associated health implications.
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Frank’s sign (FS) is a diagonal crease in the earlobe extending from the tragus across the lobule to the posterior 
edge of the auricle1–3, believed to result from premature aging and loss of dermal and vascular fibers4–6. 
Previous studies have associated FS with an increased risk of cardiovascular disease1,2, cerebrovascular disease7, 
and cognitive impairment8. However, the use of FS as a stand-alone biomarker is limited due to inconsistent 
replication of associations9–12, unclear underlying mechanisms13, and other confounding factors such as age 
and sleep. In addition, not all FSs may be associated with these diseases, and disease-specific characteristics may 
vary14,15.

There are no standardized methods for determining the presence and characteristics of FS. Most studies 
have relied on visual grading based on shape and bilateralism16–18, but grading methods vary widely, including 
‘complete/incomplete’19, ‘mild/moderate/severe’, ‘bilateral/unilateral’20, ‘diagonal /vertical /unclassifiable’16, or 
5-level grading17,18. Furthermore, visual rating has limited inter-rater reliability.

3D brain magnetic resonance imaging (MRI) typically provides images of the face, including both ears, before 
de-facing21. Automatic segmentation of FS from these 3D facial images could lead to more accurate, reliable, 
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and detailed identification and characterization than visual grading of real ears or photographs. However, the 
automatic identification of FS from the 3D facial image contained in the brain MRI has never been attempted.

In this study, we developed a deep learning model for automatic segmentation of FS from 3D facial images 
contained in 3D brain MRI and tested its validity using manually segmented FS in 3D facial images contained 
in 3D brain MRI. In addition, we determined an optimal threshold voxel of automatically segmented FS for 
detecting the presence of manually segmented FS.

Methods
Participants
Three datasets were constructed. Dataset 1 comprised of T1-weighted 3D brain MRIs from 400 older adults 
with FS. Dataset 2 comprised of T1-weighted 3D brain MRIs from 150 older adults with FS and 150 older adults 
without FS. Dataset 3 comprised of T1-weighted 3D brain MRIs from 110 older adults with FS and 120 older 
adults without FS.

Dataset 1 was constructed for the development of a deep learning model for automatic segmentation of 
FS (DLM4FS). Dataset 2 was created for the external validation of the DLM4FS and the determination of the 
optimal threshold voxel number of FS automatically segmented by DLM4FS for determining the presence of FS. 
Dataset 3 was constructed for the cross-center external validation of the DLM4FS.

The brain MRIs included in Dataset 1 and Dataset 2 were acquired at the Seoul National University Bundang 
Hospital (SNUBH), while those included in Dataset 3 were acquired at one of three university hospitals other 
than SNUBH (Chungnam National University Hospital [CNUH], Kangwon National University Hospital 
[KNUH], and Severance Hospital). The participants included in Dataset 1 and Dataset 2 were either participants 
in the Korean Longitudinal Study on Cognitive Aging and Dementia (KLOSCAD)22 or visitors to the dementia 
clingic at Seoul National University Bundang Hospital (SNUBH) from 2013 to 2022. The participants included 
in Dataset 3 were individuals who visited the dementia clinic at one of three hospitals (CNUH, KNUH, or 
Severance Hospital) and were participating in the Korean Registry for Activating Trial on Dementia (KREAT-D) 
from 2021 to 2022.

All participants provided written informed consent, either by themselves or through their legal guardians. 
This study protocol was approved by the Institutional Review Board of the Seoul National University Bundang 
Hospital (IRB No. B-2005-615-001, B-0912/089 − 010 and B-2011-651-001), and was performed in accordance 
with relevant guidelines and regulations.

Image acquisition and preprocessing
In Dataset 1 and Dataset 2, three-dimensional (3D) T1-weighted magnetic resonance images were acquired in 
Digital Imaging and Communications in Medicine (DICOM) format using Philips Achieva and Ingenia scanners 
(Philips Medical Systems; Eindhoven, Netherlands) at SNUBH. The parameters for brain MRI scanning were 
as follows: voxel size = 1.0 mm × 0.5 mm × 0.5 mm, 1.0 mm sagittal slices with no gap between slices, echo 
time = 4.6 ms, repetition time = 8.1 ms, field strength = 3.0 Tesla, field-of-view = 240 × 240, acquisition axial 
plane matrix size = 175 × 480 × 480 in the x-, y-, and z- dimensions, number of excitations = 1, flip angle = 8°, and 
inversion time = not applied.

Dataset 3 comprises 3D T1-weighted magnetic resonance images acquired in DICOM format using Philips 
Achieva scanner (Philips Medical Systems; Eindhoven, Netherlands) at KNUH and Philips Ingenia scanner 
(Philips Medical Systems; Eindhoven, Netherlands) at CNUH and Severance Hospital. The parameters for brain 
MRI scanning were as follows: voxel size = 1.0  mm × 1.0  mm × 1.0  mm, 1.0  mm sagittal slice with no gap 
between slices, echo time = 2.9 ms, repetition time = 6.5 ms, field strength = 3.0 Tesla, field-of-view = 256 × 256, 
acquisition axial plane matrix size = 211 × 256 × 256 in the x-, y-, and z- dimensions, number of excitations = 1, 
flip angle = 9°, and inversion time = not applied.

All images in DICOM format were converted to Neuroimaging Informatics Technology Initiative (NIFTI) 
format using MRIcron software (http://www.mricro.com/mricron). The images were then resampled into 
isotropic voxels (1 × 1 × 1 mm3) using the mri_convert function in FreeSurfer ​(​​​h​t​t​p​:​/​/​s​u​r​f​e​r​.​n​m​r​.​m​g​h​.​h​a​r​v​a​r​d​.​e​d​
u​​​​​)​​​2​3​​​. Finally, the images were resized to 175 × 240 × 240. Each image consisted of 175 sagittal slices.

We then removed the middle 111 slices (33rd to 143rd ), leaving 64 slices including both ears, 32 slices each 
on the left (1st to 32nd ) and right (144th to 175th ) sides. Each sagittal slice had a size of 240 × 240. Each slice 
was cropped to a size of 144 × 144 pixels (48th to 192nd pixels for width and 24th to 168th pixels for height) by 
removing the outer pixels. The resulting cropped images had a size of 64 × 144 × 144. Finally, the intensities of 
the cropped images were normalized. Specifically, voxel-wise intensity value of the cropped images was scaled 
to a range of [0, 1] by applying the following formula ( Intensity−Min

Max−Min ), where “Min” and “Max” represent the 
minimum and maximum intensity values within the cropped image.

Manual segmentation of FS
We converted the cropped images from grey scale to HSV due to the advantages this conversion offers in the 
processes of segmentation and feature extraction. The HSV color space separates the intensity (Value) from 
the color information (Hue and Saturation), enabling intensity-based analyses without interference from color 
variations. This separation enhances the capture of structural detail, improves the differentiation of features and 
increases the accuracy of the segmentation. Additionally, HSV minimizes the sensitivity to illumination changes, 
ensuring robust performance under varying lighting conditions24–27. We then segmented FSs primarily in the 
sagittal plane and confirmed in the axial and coronal planes. For each participant, two trained researchers, both 
of whom were blinded to demographic and clinical characteristics of the participants, independently segmented 
FS slice by slice using ITK-SNAP software version 3.8.0 (http://www.itksnap.org)28. A diagonal earlobe crease, 
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extending from the tragus to the posterior edge of the auricle, was identified as FS and carefully distinguished 
from a wrinkle connecting the inner edge of the earlobe to the cheek. The voxels belonging to the FS were 
excluded for the following conditions: first, those voxels belonging to the intertragic notch separating the tragus 
from the antitragus in the outer ear; second, those voxels belonging to the wrinkles connected to the FS but in a 
different direction; and third, those voxels belonging to the creases connected to the FS but associated with the 
earrings.

Development and validation of automatic FS segmentation models
ped to segment FSs from the pre-processed images using four different architectures: U-net29, U-net++30, attention 
U-net31, and USE-net32–35. Figure 1shows the original U-net for 3D FS images, and additional information on 
the candidate model architectures can be found in Supplementary Fig. 1. The model architecture comprises an 
encoder, a decoder block, and skip links. The encoder network, a contracting path with convolutional layers, 
extracts high-level features, thereby decreasing the spatial resolution at each layer. The decoder network, an 
expanding path, increases the spatial resolution by up-sampling and utilizes feature information to segment the 
voxels corresponding to the region of interest (ROI). The skip links between the encoder and decoder facilitate the 
recovery of fine details that might be lost during spatial down-sampling. All architectures employ max pooling 
layers (2 × 2 × 2) for down-sampling and transposed convolutions for up-sampling (2 × 2 × 2 kernel and strides). 
Each network comprises four pooling/up-sampling layers with 16 filters for all convolutional blocks in the first 
layer, which is doubled after each pooling and subsequently halved at each up-sampling layer. The output of each 
network is a score to classify each voxel as FS or not, generated by a convolutional layer followed by a sigmoid 
activation. All convolutional blocks included 3D convolutions36, ReLU activation37and batch normalization38.

The PyTorch libraries39 were used to implement all candidate architectures on a computer with an Intel Xeon 
E5-2687 W v4 CPU 3.00 GHz and 126 GB RAM, together with a dedicated GPU (GeForce GTX 1080Ti, 11 GB 
RAM). The models were trained on the pre-processed images and their corresponding ground truth labels of the 
development dataset. Randomly selected input images were augmented with horizontal flipping or rotation (± 
θ  < 10°) in order to improve the model’s capabilities by increasing the level of difficulty. Training was performed 
with a batch size of 2 for 100 epochs. The network weights were updated using the Adam optimizer with an 
L2 weight decay of 1 × 10⁻⁵ and an initial learning rate of 1 × 10⁻³. The learning rate was reduced by a factor of 
0.5 every 25 epochs. The binary cross entropy (BCE) cube loss function was used to train the model, which 
combines the cube loss with the standard BCE loss, emphasizing the learning features corresponding to the 
positive voxels. For purposes of comparison, the same network parameters were employed for all architectures.

Statistical analysis
Continuous variables were compared between groups using Student t tests and one-way analysis of variance 
(ANOVA), while categorical variables were evaluated using chi-square tests. To assess the inter-rater reliability 
of manual FS segmentation between the two researchers, 40 images from Dataset 1 were randomly selected and 
the two researchers were asked to segment FS independently. Subsequently, the intra-class correlation coefficient 
(ICC) and the Dice similarity coefficient (DSC) were calculated between the FSs that were manually segmented 
by two researchers. The DSC was computed to evaluate the spatial overlap between two manually segmented FS, 
using the formula( DSC = 2 |A∩ B|

|A|+|B| ), where A represents the one’s manually segmented FS and B represents 
the other’s manually segmented FS. This metric provides a measure of overlap, with a value of 1 indicating perfect 
alignment and 0 indicating no overlap. The ICC, on the other hand, was calculated to assess the consistency of 
FS segmentations by two researchers. We employed a two-way mixed-effects model (specifically ICC(3,1)) to 

Fig. 1.  The architecture based on 3D U-net. C, channel; D, depth; H, height; W, width; Conv, convolution 
3 × 3 × 3 size of the 3D kernels; ReLU, rectified linear unit. Note. The input to the encoder network was pre-
processed images and the output of the decoder network was a score to classify each voxel as FS or not.
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determine absolute agreement, which is appropriate for comparing measurements from the same subjects and 
offers a reliability measure for the volumes across segmentation trials. ICC values range from 0 to 1, with higher 
values indicating stronger agreement.

To identify the optimal automatic FS segmentation model, a 5-fold cross-validation approach was employed 
to assess the DSC and ICC between manually segmented FSs and automatically segmented FSs in each model 
with 5-fold cross-validation. Subsequently, the mean DSC and ICC values were compared between models using 
repeated measures analysis of variance (rmANOVA) with Tukey’s honest significant difference (HSD) post-hoc 
comparisons.

In the two external validation datasets (Dataset 2 and Dataset 3), the accuracy of the DLM4FS for detecting 
the presence of manually segmented FS was examined using receiver operating characteristic (ROC) curve 
analysis with a bootstrap sampling estimation (1,000 resamples). In addition, an optimal threshold number of 
voxels that were automatically segmented as FS for detecting the presence of manually segmented FS was also 
determined. In each iteration, the accuracy and optimal threshold voxel number were determined in 80% of the 
ears randomly selected from each dataset using the maximum Youden index (sensitivity + specificity – 1)40 and 
validated in the remaining 20% of all ears.

Finally, to evaluate the accuracy of FS volume predictions, we conducted correlation analyses between the 
model-predicted FS volumes and the ground truth FS volumes across different datasets. And Bland-Altman 
analysis was conducted across different datasets. For each dataset, Bland-Altman plots were generated, displaying 
the differences between predicted and ground truth FS volumes.

All statistical analyses were conducted using the most commonly employed Python scientific packages, 
namely Numpy41, Pandas42, statsmodels43and SciPy44.

Results
The demographic and clinical characteristics were comparable between the three datasets, with the exception 
of age, MMSE, and the distribution of FS. The participants included in Dataset 3 were younger and performed 
MMSE better than those included in Dataset 1 and Dataset 2. All participants included in Dataset 1 had manually 
segmented FS, while approximately half of the participants included in Dataset 2 and Dataset 3 had manually 
segmented. The volume of manually segmented in Dataset 3 was lower than that in Dataset 1 and Dataset 2 
(Table 1). In Dataset 2, the demographic and clinical characteristics were comparable between the participants 
with manually segmented and those without manually segmented. In Dataset 3, the participants with manually 
segmented were slightly older and more likely to be male than those without manually segmented (Table 2).

The two researchers demonstrated excellent inter-rater reliability in manual segmentation of FS, as indicated 
by the ICC (0.949, 95% confidence interval [CI] = 0.904–0.973) and DSC (0.850 ± 0.051).

As demonstrated in Table  3, while the average DSC and ICC between the automatically segmented FSs 
and the manually segmented FSs were highest in the model employing the U-net architecture, the observed 
differences were not statistically significant across the architectures utilized in the development of automatic FS 
segmentation models on the fivefold test sets from dataset 1 (p > 0.05). The Supplementary Table 1 presents the 
DSC and ICC values for the automatically segmented FSs in comparison to the manually segmented FSs across 
the test sets. However, the mean training time per epoch and the mean inference time per step were found to be 
significantly shorter for the model utilizing the U-net architecture than for the models using other architectures 

Dataset 1a Dataset 2b Dataset 3e Statistics*

(n = 400) (n = 300) (n = 230) F p Post hoc

Age, years 76.3 (7.7) 75.2 (7.1) 73.4 (7.9) 7.23 < 0.001 c < a, b

Women 250 (62.5) 192 (64.0) 147 (63.9) 0.10 0.900 -

Education, 
years 11.2 (5.0) 11.7 (5.0) 10.5 (5.1) 2.12 0.111 -

MMSE, points 23.7 (5.5) 23.3 (5.6) 24.8 (4.7) 5.34 0.005 a, b < c

CDR 1.43 0.240 -

0 172 (43.0) 117 (39.0) 110 (47.8)

0.5 207 (51.8) 156 (52.0) 94 (40.9)

1 21 (5.2) 27 (9.0) 26 (11.3)

mFS 10.4 < 0.001 b, c < a

None 0 (0) 150 (50.0) 120 (52.2)

Unilateral

Left 99 (24.8) 30 (10.0) 20 (8.7)

Right 104 (26.0) 51 (17.0) 33 (14.3)

Bilateral 197 (49.2) 69 (23.0) 57 (24.8)

VmFS, mm3 137.4 (77.7) 136.2 (70.0) 89.3 (74.9) 15.3 < 0.001 c < a, b

Table 1.  Demographic and clinical characteristics of datasets. MMSE, Mini Mental Status Examination; CDR, 
Clinical Dementia Rating; mFS, manually segmented Frank’s sign; VmFS, volume of mFS Note. Continuous 
variables are presented as mean (standard deviation) and categorical variables as number (percentage). 
*Analysis of variance for variables with Tukey’s HSD post-hoc comparison.

 

Scientific Reports |         (2025) 15:2383 4| https://doi.org/10.1038/s41598-024-82756-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


(p < 0.001) (Table 3). Therefore, the U-Net architecture was selected for the development of the automatic FS 
segmentation model. Figure 2 depicts FSs that have been automatically segmented by this model.

We then validated the performance of this model in Dataset 2 and Dataset 3. There were manually segmented 
FS in 219 ears out of 600 ears in Dataset 2 and 179 ears out of 460 ears in Dataset 3. In Dataset 2 (an external 
validation dataset obtained from the same institution as the development dataset), this model demonstrated 
excellent performance in terms of the area under the ROC curve (AUC), accuracy, sensitivity, and specificity for 
predicting the presence of manually segmented FS. The mean optimal threshold voxel number for predicting the 
presence of manually segmented FS was found to be 25/26 (Table 4). In Dataset 3 (an external validation dataset 
obtained from three institutions different from the institution where the development dataset was obtained), 
this model also demonstrated excellent AUC, accuracy, sensitivity, and specificity for predicting the presence 
of manually segmented FS. The mean optimal threshold voxel number for predicting the presence of manually 
segmented FS was found to be 22/23 (Table 4). The ROC analysis demonstrated high model accuracy across all 
datasets, with AUC values indicating strong discriminative power. The shaded regions around each ROC curve 
illustrate the confidence intervals from the 1000 iterations, supporting the model’s robustness and reliability in 
identifying FS across diverse datasets (Fig. 3). These results underscore the model’s capability to accurately detect 
FS across different institutions and patient populations.

The correlation analysis demonstrated strong positive correlations between the predicted and ground truth 
FS volumes across all datasets (Fig. 4). For Dataset 2, a Pearson correlation coefficient of r = 0.868 with p < 0.001 
was observed, indicating high prediction accuracy. In Dataset 3, subgroup analyses showed similar trends, 
with correlation coefficients of r = 0.828 for CNUH, r = 0.728 for KNUH, and r = 0.673 for Severance H, all with 
p < 0.001, reflecting robust model performance across different clinical settings. And the Bland-Altman analysis 
revealed that the mean differences between predicted and ground truth FS volumes varied slightly across datasets 
(Fig. 5). For Dataset 2, the mean difference was 9.88 mm³, indicating a slight underestimation by the model. In 
Dataset 3, the mean differences were 19.07 mm³ for CNUH, 7.38 mm³ for KNUH, and 4.63 mm³ for Severance 
H, with a slight overestimation observed in CNUH and smaller biases in KNUH and Severance H. These results 
suggest that the model’s predictions are closely aligned with the ground truth across various clinical settings, 
with minor variations in bias reflecting dataset-specific characteristics.

Discussion
This inaugural study developed a deep learning algorithm to automatically segment FS using face images 
embedded in 3D T1-weighted brain MRI. The algorithm demonstrated excellent performance in segmenting 
FS and determining its presence, with comparable results between the development and external validation 
datasets, suggesting strong potential for new, unseen data. The findings of this study do not indicate that a brain 
MRI should be conducted for the purpose of detecting Frank’s sign. Rather, the results suggest that brain MRIs 
performed for the diagnosis of numerous other brain disorders can be utilized for the accurate detection of 
Frank’s sign, obviating the necessity for additional testing.

Traditionally, FS detection has relied on semi-quantitative human visual assessment, either by direct 
observation or examination of photographs. Although brain MRI typically includes facial images, no attempt 
has been made to automatically segment FS from these images. Using 3D facial images in 3D brain MRI offers 
significant advantages over 2D ear photography for FS assessment. This study addresses key limitations in prior 
FS research, which relied heavily on subjective visual assessments or 2D imaging methods9,12,16. Unlike these 
approaches, our study employs a 3D MRI-based deep learning model, leveraging the voxel-level precision of 
U-Net for FS segmentation. This method not only eliminates grading inconsistencies but also provides higher 
reliability, as demonstrated by robust performance across multi-center datasets with AUC values exceeding 0.9. 
Moreover, while previous research often struggled to replicate FS-disease associations due to methodological 
limitations7,13, our model offers a standardized framework to explore disease-specific FS characteristics in future 

Dataset 2 Dataset 3

With mFS (n = 150) Without mFS (n = 150) p* With mFS (n = 110) Without mFS (n = 120) p*

Age, years 75.8 (7.5) 74.8 (6.8) 0.244 74.4 (7.3) 72.4 (7.9) 0.021

Women 100 (66.7) 92 (61.3) 0.337 62 (56.3) 79 (65.8) 0.043

Education, 
years 11.3 (5.3) 12.1 (4.8) 0.222 10.2 (5.2) 11.0 (5.0) 0.594

MMSE, points 24.2 (6.1) 25.2 (4.6) 0.237 25.1 (4.5) 24.9 (4.7) 0.775

CDR 0.073 0.053

0 66 (44.0) 53 (35.3) 65 (59.1) 57 (47.5)

0.5 74 (49.3) 80 (53.3) 41 (37.3) 51 (42.5)

1 10 (6.7) 17 (11.3) 4 (3.6) 12 (10.0)

Table 2.  Demographic and clinical characteristics of the participants with manually segmented Frank sign and 
those without manually segmented Frank sign. mFS, manually segmented Frank’s sign; MMSE, Mini Mental 
Status Examination; CDR, Clinical Dementia Rating. Continuous variables are presented as mean (standard 
deviation) and categorical variables as number (percentage). *Student t tests for continuous variables and chi 
square tests for categorical variables.
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studies. These findings align with advancements in medical imaging45 and highlight the potential of automated 
3D segmentation to overcome limitations in earlier methods, paving the way for broader applications.

The selection of the segmentation algorithm has a considerable impact on the computational efficiency and 
practical feasibility of the FS segmentation model, as evidenced by our findings. A key advantage is the extraction 
of intricate 3D FS features unattainable with 2D images, potentially identifying specific FS subgroups associated 
with cerebrovascular disease, cardiovascular disease, or cognitive disorders. This differentiation is crucial for 
distinguishing FS from generic earlobe folds. Additionally, FS characteristics may vary across these conditions, 
facilitating precise identification and understanding of disease-specific manifestations. Moreover, leveraging the 
typically included but often neglected ear imaging data in brain MRI enhances its utility, expanding clinical 
applications to provide deeper insights into FS-associated conditions beyond standard brain assessments.

The selection of the segmentation algorithm has a considerable impact on the computational efficiency and 
practical feasibility of the FS segmentation model, as evidenced by our findings. In this study, we implemented an 
encoder-decoder deep neural network configuration based on the 3D U-Net architecture, which has been widely 
recognized for its effectiveness in medical image segmentation45. The applicability of traditional segmentation 
approaches, including intensity thresholding, region growing, and deformable models, was evaluated; however, 

DSC Optimal cutoff AUC* Accuracy* Sensitivity* Specificity*

Dataset 2†

0.734 (0.159) 25/26 0.942 (0.021) 0.948 (0.019) 0.918 (0.039) 0.965 (0.026)

Dataset 3‡

All 0.714 (0.150) 22/23 0.902 (0.046) 0.911 (0.040) 0.842 (0.058) 0.983 (0.031)

CNUH 0.719 (0.128) 23/24 0.919 (0.052) 0.921 (0.045) 0.925 (0.041) 0.913 (0.041)

KNUH 0.712 (0.109) 23/24 0.900 (0.038) 0.892 (0.029) 0.800 (0.031) 1.000 (0.019)

Severance Hospital 0.708 (0.143) 21/22 0.864 (0.043) 0.923 (0.033) 0.727 (0.051) 1.000 (0.014)

Table 4.  External validation of the deep learning model for automatically segmenting Frank’s sign utilizing 
U-net architecture in dataset 2 and dataset 3. AUC, area under the receiver operator characteristics curve; 
CNUH, Chungnam National University Hospital; DSC, dice similarity coefficient; KNUH, Kangwon National 
University Hospital. All values are presented as a mean (standard deviation) of 1000 iterations. *Receiver 
operator characteristic analysis with 1000 resamples. †External validation dataset obtained from the same Seoul 
National University Bundang Hospital as Dataset 1. ‡External validation dataset obtained from hospitals other 
than Seoul National University Bundang Hospital where Dataset 1 was obtained.

 

Fig. 2.  Frank’s signs automatically segmented using the U-Net architecture-based model. (A) Original three-
dimensional ear input images. (B) Manually segmented Frank’s signs (red) overlaid on the original images. (C) 
Automatically segmented Frank’s signs (blue) overlaid on the original images. (D) Automatically segmented 
Frank’s signs (blue) overlaid on the manually segmented Frank’s signs (red) with the Dice similarity coefficient 
(DSC) between them.
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these methods were found to have limited utility in FS segmentation. These methods rely heavily on manually 
defined features, which are less effective for capturing the subtle and complex characteristics of FS. Although 
these methods are useful for simpler segmentation tasks, they lack the autonomous feature-learning capability 
that is a hallmark of modern deep learning models46. To further enhance the performance of the segmentation, 
we explored advanced variants of the 3D U-Net model, including 3D U-Net++, Attention 3D U-Net, and 3D 

Fig. 5.  Bland-Altman plots for Frank’s sign (FS) volume measurements across different datasets. Each plot 
shows the difference in FS volume measurements (y-axis) against the mean volume (x-axis) for Dataset 2 
and subgroups within Dataset 3 (CNUH, KNUH, Severance H). The solid horizontal line indicates the mean 
difference (mean diff) between measurements, while the dashed lines represent the limits of agreement at 
± 1.96 standard deviations (SD) from the mean difference. CNUH, Chungnam National University Hospital; 
KNUH, Kangwon National University Hospital; Severance H, Severance Hospital.

 

Fig. 4.  Correlation plots between predicted and ground truth Frank’s sign (FS) volumes across different 
datasets. Each plot shows the predicted FS volume vs. the ground truth volume for Dataset 2 and subgroups 
within Dataset 3 (CNUH, KNUH, Severance H). The red line represents the line of perfect correlation, while 
the blue line indicates the regression fit with a 95% confidence interval. The histograms on the x- and y-axes 
illustrate the distribution of ground truth and predicted volumes, respectively, across each dataset, highlighting 
the model’s predictive accuracy in estimating FS volume. CNUH, Chungnam National University Hospital; 
KNUH, Kangwon National University Hospital; Severance H, Severance Hospital.

 

Fig. 3.  The receiver operating characteristic (ROC) curves for the evaluation of model performance across 
diverse datasets, based on 1,000 iterations. The shaded regions surrounding each curve represent the 
confidence intervals derived from the 1,000 iterations. CNUH, Chungnam National University Hospital; 
KNUH, Kangwon National University Hospital; Severance H, Severance Hospital.
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USE-Net. These variants incorporate additional features, such as skip connections and attention mechanisms, 
which may contribute to improved performance. Attention-based architectures, such as Attention 3D U-Net and 
3D USE-Net, could have the potential to enhance the focus on clinically relevant regions by emphasizing small 
or indistinct features.

However, the more complex models did not yield significantly superior results in FS segmentation when 
compared to the original 3D U-Net. This finding corroborates the conclusions of previous studies29, which have 
demonstrated that the original U-Net model offers an optimal balance between segmentation accuracy and 
computational efficiency, rendering it a practical choice for applications in clinical settings. The U-Net model 
exhibited the optimal trade-off between segmentation accuracy and computational efficiency, a finding that aligns 
with its prevalent use in medical imaging applications. Although the mean DSC and ICC values were highest for 
the U-Net architecture, the differences in segmentation accuracy across the tested models were not statistically 
significant (p > 0.05). This indicates that all models exhibited comparable accuracy for FS segmentation within the 
context of this study. However, the U-Net model demonstrated a notable advantage in computational efficiency. 
The mean training time per epoch and the mean inference time per step were found to be significantly shorter 
for the U-Net model in comparison to the other architectures (p < 0.001), thereby underscoring its practicality 
for real-world clinical applications, particularly in time-sensitive settings. This efficiency likely contributed to the 
model’s robustness when validated on external datasets, as reduced computational overhead facilitates scalability 
across diverse clinical settings. Models based on attention mechanisms, such as Attention U-Net and USE-Net, 
demonstrated the potential to enhance focus on clinically relevant regions. However, the incremental gains in 
segmentation accuracy were negated by their longer training and inference times, rendering them less suitable 
for large-scale deployment or scenarios requiring rapid processing. These findings are in accordance with prior 
studies indicating that simpler architectures, such as U-Net, often provide an optimal balance between accuracy 
and computational demands, particularly in segmentation tasks involving subtle anatomical structures.

In external validation datasets (Datasets 2 and 3), the U-Net-based model exhibited excellent AUC, accuracy, 
sensitivity, and specificity, thereby confirming its reliability in diverse clinical settings. While dataset-specific 
characteristics, such as voxel intensity distributions, influenced optimal threshold values, the strong correlation 
coefficients and Bland-Altman analyses support the robustness of the model’s predictions. It is noteworthy that 
the observed biases in Dataset 3, particularly in CNUH, reflect the impact of inter-institutional variations, which 
may also interact with the choice of segmentation algorithm. These minor variations underscore the necessity of 
validating segmentation models across heterogeneous datasets to guarantee generalizability.

Alternative algorithms, including YOLO47and Fast R-CNN48, were also evaluated for their potential 
applicability. However, these models are primarily designed for 2D object detection and rely on bounding-
box approaches, which are not well-suited for voxel-wise segmentation of subtle structures like FS in 3D MRI 
data. Although some studies have achieved success in integrating segmentation and classification tasks in 
two-dimensional contexts, our study opted to separate these processes. This decision allowed us to prioritize 
segmentation accuracy as a fundamental step for FS analysis. Future research could build on this approach by 
integrating a classification stage to identify FS subtypes or their clinical implications, thereby enhancing the 
diagnostic value of the segmentation model49.

The application of preprocessing techniques is crucial for improving the model and enhancing its 
interpretability and robustness50,51. In this study, we optimized feature dimensions by combining cropped 
images of bilateral ears across all datasets while maintaining a consistent ratio. This included isotropic voxel 
resampling and intensity rescaling, potentially enhancing the deep learning models’ performance52. Furthermore, 
Additionally, data augmentation was used to refine model performance by effectively increasing the training 
dataset. Previous research suggests that data augmentation can improve accuracy by up to 5%53,54.

In the course of our investigation, we noted minor discrepancies in the optimal threshold voxel numbers 
between Dataset 2 and Dataset 3. These discrepancies are presumably attributable to variations in anatomical, 
demographic, and clinical characteristics, such as differences in the proportions of participants with varying 
degrees of cognitive impairment, cerebrovascular disease, and multiple sclerosis. Such variations can influence 
voxel intensity distributions through disease-related changes in tissue characteristics, as evidenced by previous 
studies55,56. Furthermore, age-related alterations in tissue density and discrepancies in MRI acquisition protocols 
may also contribute to these discrepancies.

To address these dataset-specific differences, minor adjustments were made to the post-processing thresholds 
to optimize segmentation accuracy for each dataset while maintaining consistent core model parameters across 
all analyses. This approach ensured robust and reliable performance, facilitating meaningful comparisons of 
model performance across datasets despite their inherent variability.

This study has certain limitations. The dataset was composed exclusively of Korean participants, meaning 
cross-ethnic validation was not performed. Differences in FS characteristics among ethnic groups, influenced 
by genetic, environmental, and lifestyle factors, suggest that cross-ethnic validation could further generalize the 
model. Furthermore, while our model effectively segments FS, we did not examine associations between FS and 
clinical conditions (e.g., cerebrovascular or cardiovascular diseases), which could be explored in future research.

Conclusion
In conclusion, our study demonstrates the feasibility of 3D U-Net-based segmentation of FS from MRI, offering 
a more accurate and reliable approach to FS assessment compared to traditional and 2D methods. This tool holds 
promise for improving FS identification and distinguishing clinically relevant FS features, paving the way for 
further research and broader applications in health and medical science.
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Data availability
Since the data includes private participant information, it is not available to the public. Upon reasonable request, 
qualified researchers may be given access to the individual, de-identified participant data that underlie the find-
ings described in this publication. To acquire access, proposals should be sent to K.W.K.
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