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Abstract

Integrating multiscale, multimodal neuroimaging data is essential for a comprehensive

understanding of neural circuits. However, this is challenging due to the inherent trade-offs

between spatial coverage and resolution in each modality, necessitating a computational

strategy that combines modality-specific information effectively. This study introduces a

dynamic causal modeling (DCM) framework designed to address the challenge of combin-

ing partially observed, multiscale signals across a larger-scale neural circuit by employing a

shared neural state model with modality-specific observation models. The proposed method

achieves robust circuit inference by iteratively integrating parameter estimates from local

microscale and global meso- or macroscale circuits, derived from signals across various

scales and modalities. Parameters estimated from high-resolution data within specific

regions inform global circuit estimation by constraining neural properties in unobserved

regions, while large-scale circuit data help elucidate detailed local circuitry. Using a virtual

ground truth system, we validated the method across diverse experimental settings, com-

bining calcium imaging (CaI), voltage-sensitive dye imaging (VSDI), and blood-oxygen-

level-dependent (BOLD) signals—each with distinct coverage and resolution. Our reciprocal

and iterative parameter estimation approach markedly improves the accuracy of neural

property and connectivity estimates compared to traditional one-step estimation methods.

This iterative integration of local and global parameters presents a reliable approach to infer-

ring extensive, complex neural circuits from partially observed, multimodal, and multiscale

data, showcasing how information from different scales reciprocally enhances entire circuit

parameter estimation.
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Author summary

Reliable estimation of a computational neural circuit model requires integrating data

from various brain imaging techniques, each providing unique but limited insights into

brain activity at different spatial and temporal scales. Combining these multiscale, multi-

modal data sources is challenging due to trade-offs between spatial coverage and resolu-

tion inherent in each modality. In this study, we introduce a novel dynamic causal

modeling (DCM) framework that overcomes these challenges by allowing partially

observed data across scales to jointly inform the estimation of neural circuit parameters.

Our method is distinctive in its use of a shared neural state model, paired with modality-

specific observation models, to iteratively integrate local, high-resolution data and global,

lower-resolution data. This reciprocal approach leverages detailed local circuit informa-

tion to constrain parameter estimation for unobserved regions within the broader net-

work, while also using global circuit data to refine local circuit estimates. This iterative,

multiscale integration enables more accurate circuit inference than traditional one-step

methods, which typically struggle with sparse data and complex neural structures. By

demonstrating how information from different scales and modalities can complement

each other, our framework provides a powerful tool for reconstructing neural circuits

from incomplete data. This approach has broad implications for advancing our under-

standing of complex neural systems, particularly in preclinical research, where compre-

hensive, multiscale neural data are often scarce.

1 Introduction

The brain operates as a multiscale system characterized by sophisticated interactions at both

local and global levels. Locally, interactions among regionally confined neural cells form func-

tional units within the broader context of global interactions. Global interactions, in turn, pro-

vide neural contexts that influence the dynamics within local circuits [1].

Direct measurement of interactions at any scale is not feasible; instead, we need to infer

these interactions from activities observed in the neural system. To infer asymmetric bidirec-

tional interactions, referred to as effective connectivity, it is essential to use a computational

model with a biologically grounded connectivity topology. The challenge then becomes reli-

ably estimating the connectivity parameters of the model using observed signals. This is where

the diversity of neuroimaging modalities plays a crucial role. Each modality provides a unique

perspective on neural activity, contributing complementary data that enrich the process of

model parameter estimation, leading to more plausible solutions to accessing the underlying

neural circuit. However, integrating imaging data across different scales and modalities to

enhance model parameter estimation is not trivial. This is particularly critical given the inher-

ent limitations of conventional imaging techniques, which often involve trade-offs between

spatial and temporal resolution and scope. Multimodal signals with different scales fail to cap-

ture data concurrently over the same spatial extent, leading to partial data and lacking signals

in some areas. Thus, integrating such multimodal signals necessitates a novel technique that

can effectively combine distinct but partial information with a different data representation

(see Fig 1A).

Recent technological advancements have improved the acquisition of multimodal multi-

scale neuroimaging data, leveraging the specific strengths of each modality, particularly in pre-

clinical research. In the preclinical animal study, neuroimaging methods like calcium imaging

(CaI), voltage-sensitive dye imaging (VSDI), and functional magnetic resonance imaging

PLOS COMPUTATIONAL BIOLOGY Integrating multimodal neural signals for neural circuit estimation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012655 December 23, 2024 2 / 29

Funding: This research was supported by Brain

Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry

of Science and ICT (Grant No.

2023R1A2C2006217 to HJP), the Bio & Medical

Technology Development Program of the NRF

(Grant No. RS-2024-00401794 to HJP), and the

Basic Science Research Program of the NRF

funded by the Ministry of Education of Korea

(Grant No. 2021R1I1A1A01059755 to JK). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1012655


(fMRI) are increasingly used. CaI, measuring photon emissions reflecting intracellular Ca2+

ion concentrations, reveals the activation of single or multiple neurons. VSDI offers insights

into membrane potentials with precise spatial and temporal resolution. fMRI detects blood-

oxygen-level-dependent (BOLD) signals across the whole brain, providing broader, albeit less

detailed, neural activity patterns. Researchers have begun to combine two or more of these sig-

nal types synchronously, taking advantage of their respective strengths. For instance, Schlegel

proposed a fiber-optic implant-based method for simultaneously detecting CaI and BOLD

fMRI signals in mice [2]. Cecchetto integrated CaI with multichannel local field potential

(LFP) recordings, addressing the limitations of CaI in capturing subthreshold neural activities

[3].

To infer the effective connectivity of a neural circuit model using multimodal and multi-

scale data in preclinical research, we employed the dynamic causal modeling (DCM) frame-

work [4,5]. This approach integrates a distinct neural state (a connectivity-based circuit) and

an observation model. Traditionally, DCM has been used to model neural circuits from single

modality signals like LFP, electroencephalograms (EEG), and fMRI [6–9]. More recently,

DCM has been adapted to incorporate multimodal data for brain circuit analysis. For instance,

Wei et al. [10] introduced a multimodal DCM that combines the high temporal resolution of

EEG with the high spatial resolution of fMRI data in human research. Their approach utilizes

Fig 1. Multimodal and multiscale signals and parameter estimation with mms-DCM. A. Three neuroimaging modalities of CaI, VSDI, and BOLD (YCaI,

YVSDI, and YBOLD), have different temporal and spatial resolutions in the current experimental setting. CaI measures activities within a neural population (n)

with a middle temporal resolution (0.1 sec), VSDI measures activities among cortical columns (c) with high temporal resolution (1 msec), and BOLD measures

activities of a region (r) composed of multitudes of neural columns with low temporal resolution (1 sec). B. In mms-DCM, a common neural state dynamics

denoted as f generates CaI, VSDI, and BOLD (YCaI, YVSDI, and YBOLD) through corresponding observation model functions (gCaI, gVSDI, and gBOLD). By fitting

multimodal observed signals, Y = [YCaI,YVSDI,YBOLD] with model generated signals ~Y~¼ ½~Y~
CaI;

~Y~
VSDI;

~Y~
BOLD�mms-DCM estimates model parameters for the

common neural state model f and each observation model function (gCaI,gVSDI, and gBOLD). C. A schematic of convolution-based neural state model for two

excitatory neural populations (1, 2) and one inhibitory neural population (3) is presented. For every connection from a source (m) to target (n) neural

populations, an effective connectivity (Anm)−weighted firing-rate transfer function of a membrane potential σ(xm) of a source neural population is convoluted

with the synaptic kernel (h(t)) to affect the membrane potential of the target neural population (xnm).

https://doi.org/10.1371/journal.pcbi.1012655.g001
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separate neural state models for EEG and fMRI and leverages EEG-derived model parameters

to estimate macroscopic neural interactions via fMRI [10]. Many preclinical applications, how-

ever, require a method to estimate parameters of a single neural state model by combining par-

tial data across modalities with vastly different scales.

In the current study, we introduce a multimodal multiscale DCM (mms-DCM) framework

to address the challenge of combining partially observed signals to estimate an extensive neural

circuit. The mms-DCM encompasses a single neural state and multiple observation models to

accommodate heterogeneous signal types. We hypothesized that information from the large-

scale circuit, with broader spatial coverage, can be instrumental in deciphering local circuitry.

Conversely, we also hypothesized that the detailed properties of a local circuit, captured in

high-resolution imaging, are essential for modeling large-scale interactions by refining nodal

properties within the larger network. To achieve precise inference of neural circuitry with

wide coverage, we employed reciprocal integration of local and global information from differ-

ent signal scales and modalities. The parameters of local circuits, inferred from high-resolution

signals in specific regions, were used as priors for unobserved regions to estimate larger circuit

parameters from lower-resolution imaging and vice versa in an iterative procedure.

We evaluated the mms-DCM framework in diverse virtual experiments, constructed using

simulated data from a computational model of the L2/3 mouse barrel cortex, derived from

experimental CaI data [1]. These virtual experiments involved various combinations of simu-

lated observation signals, including CaI, VSDI, and fMRI, to reflect conditions relevant to a

preclinical research environment.

In the next three sections, we introduce the mms-DCM framework (section 2), construct a

ground truth system for virtual experiments based on experimental data (section 3), and dem-

onstrate its model parameter estimation performance across different combinations of signal

modalities in virtual experimental settings (section 4).

By illustrating how signals at the micro- and mesoscopic scales reciprocally inform each

level of neural circuit estimation, we demonstrate the framework’s capability to provide plausi-

ble solutions to real-world experimental problems.

2 Method I: Introduction of mms-DCM

2.1. Virtual experimental settings

In the mms-DCM framework, we focus on three key imaging modalities commonly or

increasingly used in animal studies: CaI, VSDI, and BOLD signals, respectively labeled as YCaI,

YVSDI, and YBOLD. Each of these modalities offers distinct spatial and temporal resolutions. For

instance, advanced CaI technology can achieve near-millisecond temporal resolution, but typi-

cal CaI signals are captured at about 10–15 Hz, or approximately 0.1 seconds [11]. VSDI pro-

vides optical imaging of membrane potentials with a spatial resolution of 20–50 μm and a

temporal resolution of 1–2 ms [12–14]. In contrast, fMRI detects BOLD signals over the entire

brain but with slower temporal resolution (1–2 seconds) and coarser spatial resolution (about

millimeters).

In our virtual experimental setup, we consider CaI for high spatial resolution but limited

scale coverage (focusing on a set of neurons, n), VSDI for medium spatial resolution over a

moderate area (covering neural populations in a column, c), and BOLD fMRI for broad-scale,

low spatial resolution imaging (encompassing neural populations in a region, r). We also

account for the varying temporal resolutions of these modalities: approximately 1 ms for

VSDI, 0.1 second for CaI, and 1 second for BOLD fMRI. This is explained in Fig 1A.

The mms-DCM framework extends the conventional DCM scheme, which is implemented

in the SPM12 toolbox (https://www.fil.ion.ucl.ac.uk/spm/) [4,5]. As shown in Fig 1B, the
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mms-DCM encompasses a shared neural state dynamics model f and three observation models

(gCaI,gVSDI, and gBOLD) to simulate CaI, VSDI, and BOLD (YCaI, YVSDI, and YBOLD), the details

of which will be explained in the following sections.

2.2. Neural state dynamics model: a convolution-based neural population

model

In our study, we employed a convolution-based neural population model [8,15] to describe

neural state dynamics. This model has widely been used to model neural circuits with

electrophysiological data such as LFP or EEG/MEG [6,8] and has been extended for CaI [1],

VSDI [16] and fMRI data [10,17,18]. Here, we briefly introduce the convolution-based neural

state model. For a detailed explanation, please refer to the review by [8].

In the convolution-based model, the activity of the presynaptic neural population is trans-

formed into a firing rate through a sigmoidal function. Specifically, the membrane potential

xm at the neural populationm affects the membrane potential at the neural population n by the

convolution of the firing-rate transfer function in the form of sigmoidal function σ(xm) and

the synaptic kernel h(t) (Fig 1C),

xn ¼
X

m

AnmsðxmÞ � hðtÞ;

where the effective connectivity from a neural populationm to a neural population n is

denoted by Anm. The sigmoidal (activation) function σ(xm) of a neural populationm trans-

forms the membrane potential xm to the firing rate of action potentials, denoted by:

s xmð Þ ¼
fm

1þ exp� aðxm � x0;mÞ
ð1Þ

, where fm and a represent a maximal firing rate and a slope of the sigmoid function. Parameter

x0,m is the postsynaptic potential (PSP) that achieves a 50% firing rate of a neural populationm
(Jansen and Rit, 1995). The synaptic kernel h(t) is described as,

hðtÞ ¼ Hnknte
� knt; where kn ¼ 1=Tn:

Here, Tn and Hn are the decay time constant and the maximal PSP of a neural population n.

Mathematically, this relationship can be rewritten as the following ordinary differential equa-

tions of the cross-membrane current in of a neural population n:

dxn
dt
¼ in; ð2Þ

din
dt
¼ T � 1

n Hn

XN

m¼1
AnmsmsðxmÞ þ Cnun

� �
� 2T � 1

n in � T
� 2

n xn; ð3Þ

The polarity of a neural population n is indicated by sn, which is +1 for excitatory neural

populations and -1 for inhibitory neural populations. The external input to neural populations

un(t) is multiplied by the input modulation parameter Cn. In neural population n, the rate of

change in cross-membrane current is proportional to the sum of the weighted external input

un and all incoming neurons’ firing rates weighted by the effective connectivity Anm and its

polarity sm.

All parameters are summarized in Table 1.
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2.3. Combinations of observation models

Observation models transform neural population activity into the observed signals (YCaI,

YVSDI, and YBOLD). The subsequent subsections explain details of the observation models for

CaI, VSDI, and BOLD fMRI signals.

2.3.1. Observation model for CaI signals. Following previous studies with CaI signals

[1,19], the state dynamics equation for calcium concentration [Ca2+]n of a neuron n [20],

d
dt
½Ca2þ�n ¼ � kCagCa � xn � ECað Þ � s xn � VHVAð Þ �

½Ca2þ�n � ½Ca
2þ�base

tCa
; ð4Þ

is used. Here, the parameter kCa is the conversion ratio from a calcium ion current to its con-

centration per time unit; gCa represents the maximal conductance of calcium ions, ECa is the

reversal potential of calcium ion, the membrane potential xn in Eqs 2 and 3 is an input to the

calcium ion concentration dynamics, and τCa is a time constant for calcium decay. Following

Rahmati et al. [19], we employed a high-voltage-activated calcium channel (HVA) VHVA in the

sigmoidal function, σ(x−VHVA).

We transformed the calcium ion concentration [Ca2+]n into the CaI signal YCaI,n with the

saturating Hill-type function [1,19]:

YCaI;n ¼ gCaI x; �CaIð Þ ¼ kF
½Ca2þ�n

½Ca2þ�n þ Kd
þ dF; ð5Þ

where kF,Kd, and dF represent scale, dissociation, and offset parameters. The parameters in Eqs

5 and 6 that describe calcium dynamics were obtained from previous studies and are described

in Table 2 [1,19,21].

2.3.2. Observation model for VSDI signals. We use a linear model between membrane

potential and VSDI signals [16], as reported in previous studies [22,23]. The VSDI signals are

given by a linear weighted sum of the membrane potential of neural populations:

YVSDI;c ¼ gVSDIðx; �VSDIÞ ¼ a
X

n2½Nc �
rnxn: ð6Þ

Here, Yvsdi,c represents the VSDI signal at a cortical column c, composed of [NC] neural

populations and is a weighted sum of the membrane potential xn at neural population n with

the contribution ratio ρn to the VSDI signal in column c. The α is a scaling parameter for the

Table 1. Model parameters in the neural state model.

Parameter Value*
Resting membrane potential Vrest -65 mV

Decay time constant Tn T0 = 0.128 s

T0exp(θi)
θi*N(0,1/256)

Threshold for action potential Vth -40 mV

Maximal postsynaptic potential H 27.18 mV

Maximal firing rate f 30 Hz

Effective connectivity** Amn A0 = 0.17

A0exp(θi)
θi*N(0,1/32)

Input modulation parameter** Cn C0 = 0.25

C0exp(θi)
θi*N(0,1/32)

*The Gaussian priors distributions are presented as N(mean, variance).

** Reference values, A0 and C0, were determined by parameter optimization in constructing the ground truth system

described in section 3.

https://doi.org/10.1371/journal.pcbi.1012655.t001
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VSDI signals. Based on previous study, the parameter values are assigned as described in

Table 2 [16].

2.3.3. Observation model for BOLD signals. We utilize a typical hemodynamic model

for BOLD signals [24, 25], which consists of neurovascular coupling, hemodynamics, and

BOLD response. Neurovascular coupling describes how a vasoactive signal s is generated from

neuronal activity, which is described below:

s ¼
X

n
bn;excqn;exc þ bn;inhqn;inh þ bn;extpn;ext: ð7Þ

Here, qn,exc and qn,inh represent total inputs to a neural population n from excitatory and

inhibitory neural populations,

qn;exc ¼
X

m2exc
AnmsðvmÞ; ð8Þ

qn;inh ¼
X

m2inh
AnmsðvmÞ: ð9Þ

Table 2. Parameters in observation models.

Parameter Value

ϕCaI kCa Conversion ratio from a calcium ion current to its concentration per time unit* 0.18

gCa Maximal conductance of calcium ions 5 mS/cm

ECa Reversal potential of calcium ion 120 mV

VHVA Membrane potential that achieves 50% of high-voltage-activated calcium channel

(HVA) in the sigmoidal function, σ(vn−VHVA)

-27.89 mV

τCa Time constant for calcium decay* 1.44 sec

[Ca2

+]base

Calcium concentration at rest 100 nM

kF Scale parameter 9.85

Kd Dissociation parameter 200 nM

dF Offset parameter -3.283

ϕVSDI α Scaling factor for VSDI signals 0.01

ρn Contribution ratio ρn to the VSDI signal in column c of the membrane potential

at neural population n
0.8 for

excitatory

0.2 for

inhibitory

ϕBOLD
βn,exc Scaling factor for excitatory input in neurovascular coupling 0.1

βn,inh Scaling factor for inhibitory input in neurovascular coupling 0.1

βn,ext Scaling factor for external input in neurovascular coupling 0.1

H Rate of vasodilatory signal decay per sec 0.64

χ Rate of flow-dependent elimination 0.32

τ Rate hemodynamic transit per sec 2.0

α Grubb’s exponent 0.32

φ Resting oxygen extraction fraction 0.40

V0 Blood volume fraction 4

k1 Intravascular coefficient 2.773

k2 Concentration coefficient 1.087

k3 Extravascular coefficient -1.718

* In the estimation for the construction of the virtual model, we optimized kCa and τCa in the parameter optimization

step with DCM, and the final estimated values used in the virtual model are shown.

https://doi.org/10.1371/journal.pcbi.1012655.t002
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pn,ext denotes a weighted sum of direct external (stimulus) inputs to a neural population n,

pn;ext ¼
X

m
Cnmum: ð10Þ

With vasoactive signal s, the standard hemodynamics model describes vasodilatory signal

h1, venous blood flow h2, venous volume h3, and deoxyhemoglobin h4 as below:

dh1

dt
¼ s � Z h1 � 1ð Þ � w h2 � 1ð Þ; ð11Þ

dh2

dt
¼ h1 � 1; ð12Þ

dh3

dt
¼ h2 � h3

1=a
� �

=t; ð13Þ

dh4

dt
¼ h2 1 � ð1 � φÞ

1
h2

� �
=φ � h3

1
ah4=h3

� �
=t: ð14Þ

Here, η and χ represent the rate of vasodilatory signal decay per sec and the rate of flow-

dependent elimination; τ and α indicate rate of hemodynamic transit per sec and Grubb’s

exponent; φ indicates resting oxygen extraction fraction.

The BOLD signal is generated by

YBOLD ¼ gBOLDðx; �Þ ¼ V0ðk1ð1 � h4Þ þ k2ð1 � h4=h3Þ þ k3ð1 � h3ÞÞ; ð15Þ

where V0 indicates blood volume fraction; k1 indicates intravascular coefficient; k2 indicates

concentration coefficient; k3 indicates extravascular coefficient.

In summary, the goal of the current framework is to estimate unknown model parameters

—both neural state model parameters (Table 1) and observation model parameters (Table 2)—

using observed signals, a combination of multimodal data [YCaI,YVSDI,YBOLD] from a single

neural system. All parameters to be estimated in this study are detailed in Tables 1 and 2.

In the current multimodal framework, we used a shared neural state model f(x,θ) and com-

binations of observation models, i.e., gCaIðx; �CaIÞ; gVSDIðx; �VSDIÞ; gBOLDðx; �BOLDÞ, to predict the

observed multimodal signals, for example, [YCaI,YVSDI,YBOLD].

2.4. Model parameter estimation using DCM

DCM estimates model parameters θ of modelm for observed signals Y by maximizing the log-

evidence (ln p(Y|m)) [4,5], which is the sum of KL-divergence (between the posterior of the

parameter p(θ|Y,m) and its approximate density q(θ)) and the free energy F evaluated under q(θ),

ln pðYjmÞ ¼ KLðqðyÞjjpðyjY;mÞÞ þ FðqðyÞ;YÞ; ð16Þ

F qðyÞ;Yð Þ ¼

Z

q yð Þln
pðY; yÞ
qðyÞ

dy: ð17Þ

The free energy F serves an approximate lower bound for log evidence. Model optimization

involves deriving an approximate density q(θ) that maximizes F, leading to q(θ)�[(θ|Y,m).

Under the Laplace assumption, q(θ) is iteratively estimated using the expectation (E) and max-

imization (M) steps of an Expectation-Maximization (EM) algorithm [5]. The free energy F
represents the sum of complexity and accuracy [5,26]. For details, see [4,5] and SPM12

(https://www.fil.ion.ucl.ac.uk/spm, code: spm_nlsi_GN.m).
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To estimate model parameters from two or more signals, we modified the standard DCM

model inversion to fit the multimodal data [YCaI,YVSDI,YBOLD] from a single neural state model

f(x,θ) with combinations of observation model gCaIðx; �CaIÞ; gVSDIðx; �VSDIÞ; gBOLDðx; �BOLDÞ.
Note that our approach incorporates free energy calculations using multiple observation sig-

nals. To facilitate this, we have modified spm_int_ode.m to accommodate the computation of

all observation signals. These signals are then concatenated and processed through a free

energy maximization step using the EM algorithm. This extension allows for a comprehensive

analysis and integration of diverse data types within our framework.

Here, we can summarize this procedure with the function ‘DCM’, which calculates the

maximized free energy, F*, and the optimized posterior distribution, q*(θ), i.e.,

ðF∗; q∗ðyÞÞ ¼ DCMðqðyÞ;YÞ: ð18Þ

3. Method II: Construction of a ground truth foundational model for

evaluating mms-DCM

3.1. Configuration of a foundational model for virtual systems

In the absence of a suitable multimodal experimental dataset acquired simultaneously from a

single neural system, and the need for a ground truth to validate our proposed framework, we

employed diverse virtual neural systems to generate CaI, VSDI, and fMRI signals. These virtual

systems, serving as ground truth models for testing across various contexts, are modified ver-

sions of a foundational system. This foundational system is derived from real experimental

data using computational modeling [1].

The foundational model was derived using CaI signals recorded from the barrel cortex of a

mouse (animal ID: an194672) during a single whisker object localization task, as Peron [27]

reported. We partitioned the observed spatiotemporal CaI data into four subregions to

account for varying spatial coverages across different modalities. Using Independent Compo-

nent Analysis (ICA), we then grouped cells within each subregion into two excitatory and one

inhibitory neural populations, according to the conventional configuration of a cortical col-

umn in the Jansen-Rit model [8, 15], all showing immediate responses to stimuli. From these

groupings, we extracted a total of 12 CaI signals—three from each subregion, corresponding to

the two excitatory and one inhibitory neural populations identified. A more detailed descrip-

tion of this process can be found in S1 Text.

Extrinsic connections in the foundational model were established between subregions

(here, we denote subregions as columns in Fig 1), while intrinsic connections were defined

among neural populations within each subregion (column), as illustrated in Fig 2A. Similar to

Jung et al. [1], we included a hidden external region, containing both inhibitory and excitatory

populations, in the neural state model of the DCM to represent potential interactions between

external unobserved neural populations and the observed neural populations of interest.

The parameters for the foundational model are estimated through a series of parameter esti-

mation steps, which form a core component of the mms-DCM framework.

3.2. Model parameter configuration

In the DCM model, the biological parameters were expressed in exponential form, such as Xi =

Xi0 exp(θi), to ensure the polarity of parameter, as in the conventional DCM method [25]

(SPM code: spm_nlsi_GN.m). Here, Xi0 represents the reference value of a i-th biological

parameter Xi, which is modulated by a parameter θi. The goal of DCM parameter optimization

(DCM function) was to search the optimal biological parameter Xi by estimating the modula-

tion parameter θi using a prior distribution of θi~N(0, 1/32) for a given reference value Xi0. By

PLOS COMPUTATIONAL BIOLOGY Integrating multimodal neural signals for neural circuit estimation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012655 December 23, 2024 9 / 29

https://doi.org/10.1371/journal.pcbi.1012655


assigning a zero-mean prior, the real biological property Xi was allowed to vary around the ref-

erence value Xi0. In the current study, we used modulation parameters to represent effective

connectivity A, input modulation parameter C, the decay time constant T in the neural state

model, the conversion ratio kCa from calcium ion current to concentration per unit time, and

the time constant τCa for calcium decay, as described in Tables 1 and 2.

3.3. Bayesian optimization and DCM for model parameter estimation

Due to the exponential parameterization, model parameter estimation requires determining

both a reference value and its modulation parameter. The reference value is first established,

and then the modulation parameter is fine-tuned, rather than estimating both simultaneously.

In a conventional optimization setting, the reference value functions as a hyperparameter. To

enhance the efficiency of parameter estimation, we employed Bayesian optimization (referred

to as BAYESopt, distinct from DCM in Eq 18) [28] to determine the reference values. These

reference values then serve as priors for fine-tuning DCM parameter estimation (Eq 18), facili-

tating an effective fit to the experimental data.

In BAYESopt, a type of Bayesian optimization, we defined a cost function, DCMopt, which

returns maximized free energy derived from DCM for given priors q(θ) and data Y, based on

Eq 18, as below:

F∗ ¼ DCMoptðqðyÞ;YÞ

DCMopt provides free energy by inferring the neural state model model f(x,θ) and integrating

it with combinations of observation models such as gCaIðx; �CaIÞ; gVSDIðx; �VSDIÞ; gBOLDðx; �BOLDÞ
for a given data set and parameter set θ.

Among Bayesian optimization algorithms, we implemented a Gaussian process model as

the surrogate model [28] and used an expected-improvement-per-second-plus function for

the acquisition function [29,30]. This approach provides a point estimate, while DCMopt,

using the variational Laplace scheme, estimates model parameters in terms of posterior distri-

bution, as explained in the previous section.

To improve computational efficiency, DCMopt is divided into ‘fast’ and ‘precise’ modes

based on the number of EM cycle iterations in DCM: Fast DCMopt runs a single cycle,

whereas precise DCMopt runs under a convergence condition of the maximum number of

iterations 128, and the free energy gradient threshold 10−2. Initially, fast DCMopt is applied in

BAYESopt, with precise DCMopt employed subsequently for more thorough analysis.

Both BAYESopt and DCM are instrumental in optimizing modulation parameters but differ

in their specifics. BAYESopt primarily focuses on finding the expectations of modulation parame-

ters, �yi . In contrast, DCM searches for posteriors (expectations and variances) of modulation

parameters constrained by Gaussian prior distributions, denoted asNð�yi ; s2
i Þ, where �yi and s2

i

represent the expectation and variance of Gaussian distribution for the i-th parameter. The prior

variation s2
i for DCMopt is assigned a predetermined value as described in Table 1. The results

from BAYESopt are used to set prior expectations for fine-tuning in DCM. Consequently, BAYE-

Sopt serves as a hyperparameter optimization tool, considering parameter expectations �yi (not

distributions) as hyperparameters and using DCMopt as a cost function, as detailed in Box 1.

3.4. Parameter estimation for the foundational model

We implemented the described parameter estimation method on the experimental CaI signals

using the foundational circuit model depicted in Fig 2A. We observed consistent patterns of intra-

columnar connectivity across all columns (from column 1 to column 4), as illustrated in Fig 2B.
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For instance, in every column, there was pronounced excitatory connectivity from E#2 to I#1,

where ’E’ and ’I’ denote excitatory and inhibitory neuronal populations, respectively, ’#’ indicates

the column number, and the last number identifies the population. Conversely, the connectivity

from I#1 to E#1 was notably weak. Note that these parameters were estimated from experimental

data obtained from a mouse. Although the accuracy of the model parameters has not been vali-

dated, we considered these parameters as a ground truth reference for subsequent virtual experi-

ments by simulating diverse signals. The simulation results, utilizing the estimated parameters, are

displayed in Fig 2C, and the details of the parameter optimization are outlined in Table 1.

We constructed diverse virtual models based on the estimated foundational model and gen-

erated a range of signals across various virtual experimental settings to validate our mms-

DCM scheme.

4. Results: Experiments

Utilizing the virtual neural state model, we generated CaI (YCaI), VSDI (YVSDI), and BOLD

(YBOLD) signals at specific regions with varying spatial scales, as depicted in Fig 1, to simulate

diverse experimental scenarios.

Box 1. Pseudo-algorithm for Bayesian parameter optimization and
DCM optimization

% For observation signals Y, the prior distribution of a parameter X, qðyXj�yX; s2
XÞ, fol-

lows a Gaussian distribution, and a parameter X is represented in the form of

X ¼ X0 expðyXÞ; yX � Nð�yX; s2
XÞ:

function F∗ ¼ DCMoptðqðyj�y; s2
y
Þ;Y;max iterationÞ

% DCM algorithm explores optimal parameter that maximizes the free energy.

ðF∗; qðyj�y; s2
y
ÞÞ = DCM (qðyj�y; s2

y
Þ;Y;max iterationÞ

end

function ½�y� = BAYESopt (�y;Y, SR(�y))

% Exploring the optimal parameter expectation �y for given data Y

% within the given search range SR(�y).

% Fast search

for i = 1: Nfast
�y ¼ BAYES OPTIMIZATION UNIT ðDCMoptðqðyj�y; s2

y
Þ;Y; 1Þ; SR(�y))

end

% Precise search within the narrowed search range SRprcise(�y)

for i = 1: Nprecise
�y ¼ BAYES OPTIMIZATION UNIT ðDCMoptðqðyj�y; s2

y
Þ;Y; 128Þ; SRprcise(�y))

end

end

PLOS COMPUTATIONAL BIOLOGY Integrating multimodal neural signals for neural circuit estimation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012655 December 23, 2024 11 / 29

https://doi.org/10.1371/journal.pcbi.1012655


To validate mms-DCM for model estimation of a partially observed multiscale system, we

conducted five experiments with six simulations, each incorporating different combinations of

observation signals.

1. Experiment 1: We evaluated the performance of the proposed iterative estimation scheme

for integrating multimodal signals in the parameter estimation process of mms-DCM.

Fig 2. The ground truth foundational model for mms-DCM experiments. The ground truth foundational model for mms-DCM experiments is

constructed based on CaI signals from layer 2/3 (L2/3) of the mouse barrel cortex. For this model, we extracted 12 CaI signals corresponding to four

subregions (denoted as columns in the current study), each comprising three neural populations: two excitatory and one inhibitory. A. The virtual circuit

model, illustrating both intra-columnal and inter-columnal connections, is displayed. We assume identical connections across each column. B. The estimated

effective connectivity is shown, highlighting the dynamic interactions between neural populations. C. The reproduction of CaI signals, based on the estimated

circuit parameters, is depicted. Solid lines represent the generated signals, contrasting with the dotted lines, which correspond to the experimental data. The

different colors—red, orange, and blue—represent the excitatory populations E#1, E#2, and the inhibitory population I#1, respectively, with ‘#’ indicating the

column number.

https://doi.org/10.1371/journal.pcbi.1012655.g002
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2. Experiment 2: Focused on demonstrating the advantages of utilizing both local and global

circuit information in parameter estimation of the partially observed system:

a. Experiment 2a: Showcased the utility of using a local circuit’s prior information for esti-

mating global circuit parameters.

b. Experiment 2b: Illustrated the effectiveness of employing a global circuit’s prior infor-

mation for estimating local circuit parameters.

3. Experiment 3: We constructed a scenario where multimodal signals were acquired from

multiple independent experiments conducted at different times on the same neural circuit

system. This experiment assessed the multimodal integration scheme’s capability to handle

asynchronous data acquisition and within-subject variations in a neural system.

4. Experiment 4: This experiment involved the integration of all multimodal signals––CaI,

VSDI, and BOLD––in the estimation of neural circuitry at a region with partially observed

signals. We tested the performance of mms-DCM in modeling a neural circuit using signals

of different scales.

5. Experiment 5: This experiment aimed to showcase the applicability of mms-DCM to a

more complex system extending to four regions. In this experiment, we modeled a larger

circuit with CaI signals at a column, VSDI at two columns within a region, and BOLD sig-

nals across four regions.

All these experiments are summarized in Table 3.

4.1 Experiment 1: iterative parameter estimation of multiscale circuit in

mms-DCM

We expand upon the model parameter estimation steps described in 3.1.2 and introduce an

iterative scheme for parameter estimation in multiscale partially observed systems. We also

evaluate the proposed scheme using virtually generated data.

For the evaluation, we partially generated three CaI signals for neural populations exclu-

sively in column 1 and four VSDI signals across columns 1 to 4, with one VSDI signal per col-

umn. These signals were elicited by applying three distinct inputs to the virtual model with

intensities of 1.0, 0.8, and 1.2 mA for 1.1 seconds within an 8-second interval, as depicted in

Fig 3.

The parameter estimation process, illustrated in Fig 4, is an iterative procedure that recipro-

cally leverages local and global circuit information.

In step 1, the process begins with estimating local circuit parameters within column 1 using

the three available CaI signals. The estimated parameters serve as priors for the parameters in

columns 2, 3, and 4, where CaI signals are not available. In this step, BAYESopt is employed to

estimate three modulation parameters corresponding to intra-regional connectivity (Aintra),
input modulation strength (C), and the time constant (T).

In step 2, we focus on optimizing the global circuit parameters by refining the prior expec-

tations of modulation parameters for inter-regional connectivity (�y
step2
Ainter ). The posterior expec-

tations of local circuit parameters (e.g., �y
step1
AintraÞ from column 1 (found in step 1) serve as prior

expectations for local parameters in the other columns lacking CaI signals. The optimal

parameter expectations from this step 2 (�y
step2
Ainter ) define the search ranges (SR) for step 3.

Step 3 updates modulation parameters for the local circuit, i.e., Aintra, C, and T. The BAYE-

Sopt search ranges are set within ±30% from the optimal parameter expectations estimated in

step 2 (�y
step3
i 2 ½0:7� �y

step2
i ; 1:3� �y

step2
i �).
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In step 4, we perform a fine-tuning of model parameters based on the comprehensive infor-

mation gained from both local and global circuit estimations. The expectations of modulation

parameters for Ainter, Aintra, C, and T are explored within a search range of ±10% of the best

values estimated in step 3 (�y
step4
i 2 ½0:9� �y

step3
i ; 1:1� �y

step3
i �). Note that expectations of modula-

tion parameters for Aintra, C, T of column 1, which uniquely have CaI signals, are utilized

across all columns in steps 3 and 4. From steps 2 to 4, we iteratively proceeded with each step

until the optimized free energy exceeded the previous maximum.

The final parameter estimation is conducted using DCM with a maximum number of itera-

tions 128, and the free energy gradient threshold 10−2.

To evaluate the effectiveness of the proposed iterative parameter estimation scheme, we

compared it with a conventional estimation procedure where all the parameter expectations of

local and global circuits are searched simultaneously, referred to as ‘one-step estimation’ as

opposed to iterative estimation.

Estimation results. As shown in Fig 4B–4E, iterative estimation methods yield more

accurate results than the one-step method. The iterative approach produced a closer reproduc-

tion of CaI and VSDI to the ground truth, which can be quantitatively assessed by the root

Table 3. Summary of experiments.

Description Observation signals Figure

Estimation Construction of the ground truth system 12 CaI signals (YCaI;c1,c2,c3,c4) Fig 2

Experiment 1 Iterative model estimation using CaI and VSDI 3 CaI signals at column 1 (YCaI;c1),

4 VSDI signals at 4 columns (YVSDI;c1,c2,c3,c4)

Figs 3 and

4

Experiment

2a

Utility of using local circuit information in global circuit estimation using

CaI and VSDI

Method 1 & 2: 3 CaI signals at column 1

(YCaI;c1),

4 VSDI signals at 4 columns (YVSDI;c1,c2,c3,c4)

Method 3: 4 VSDI signals at 4 columns (YVSDI;c1,c2,c3,c4)

Fig 5

Experiment

2b

Utility of using global circuit information in local circuit estimation using

CaI and VSDI

Method 1: 3 CaI signals at column 1

(YCaI;c1),

1 VSDI signal at column 1 (YVSDI;c1)

Method 2: 3 CaI signals at column 1

(YCaI;c1),

4 VSDI signals at 4 columns (YVSDI;c1,c2,c3,c4)

Fig 6

Experiment 3 mms-DCM for CaI and VSDI sampled at different time experiments Case 1: 3 CaI signals at column 1 obtained with perturbed C
(Y0CaI;c1),

4 VSDI signals at 4 columns (YVSDI;c1,c2,c3,c4)

Case 2: 3 CaI signals at column 1

(YCaI;c1),

4 VSDI signals at 4 columns obtained with perturbed C
(Y0VSDI;c1,c2,c3,c4)

Fig 7

Experiment 4 mms-DCM with all multimodal signals of CaI, VSDI and BOLD. 3 CaI signals at column 1

(YCaI;c1),

2 VSDI signals at columns 1 and 2 (YVSDI;c1,c2),

2 BOLD signals at regions r1 and r2 (YBOLD;r1,r2).

Fig 8

Experiment 5 mms-DCM of CaI, VSDI and BOLD for an extended system (four regions) 3 CaI signals at column 1

(YCaI;c1),

2 VSDI signals at columns 1 and 2 (YVSDI;c1,c2),

4 BOLD signals at regions r1, r2, r3, and r4 (YBOLD;r1,r2,r3,r4).

Fig 9

1) In Experiments 1 to 4, there are a total of 14 neural populations, which include two neural populations in the hidden external region.
2) In Experiment 5, the number of neural populations is 28, encompassing four hidden external neural populations.
3) The indices c1, c2, c3, and c4 denote columns. For instance, the observed CaI signals in column 1 are represented as YCaI;c1, and include two excitatory neural

populations (E11 and E12) and one inhibitory neural population (I11).
4) The indices r1, r2, r3, and r4 denote regions. For example, the observed BOLD signals in region 1, which spans two columns, are represented as YBOLD;r1.
5) All experiments employed the same strategy for parameter estimations. Details of the estimation steps are displayed in the corresponding figures.

https://doi.org/10.1371/journal.pcbi.1012655.t003
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mean square error (RMSE). Specifically, the RMSE values from iterative estimation were 0.194

for CaI and 0.142 for VSDI, significantly lower than those from one-step estimation, which

were 0.639 for CaI and 0.433 for VSDI.

Moreover, the correlation coefficient between the estimated parameters and the ground

truth parameters is higher in the iterative estimation (r = 0.623) compared to the one-step esti-

mation (r = 0.299).

Fig 3. Multimodal signal generation using a virtual neural circuit model. We used a virtual neural circuit model to selectively generate multimodal signals.

This model serves as a ground truth and features four columns alongside a hidden external region, each column designed with identical connection topologies

that include two excitatory and one inhibitory neural population. To add complexity to the model, we allowed for slight variations in the strength of intra-

regional intrinsic connectivity among these columns. The strengths of these connections were derived from experimental data, specifically CaI signals (refer to

Fig 2). For our simulations, CaI signals were generated exclusively for neural populations in column 1, while four VSDI signals were produced for all four

columns to demonstrate the broader spatial coverage of this modality. Additionally, the hidden external region, which contains both inhibitory and excitatory

neural populations, is included in the model but omitted in subsequent figures for simplicity. This selective signal generation strategy aims to reflect the diverse

imaging capabilities of each signal modality within the intricate neural circuitry of the virtual model.

https://doi.org/10.1371/journal.pcbi.1012655.g003

PLOS COMPUTATIONAL BIOLOGY Integrating multimodal neural signals for neural circuit estimation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012655 December 23, 2024 15 / 29

https://doi.org/10.1371/journal.pcbi.1012655.g003
https://doi.org/10.1371/journal.pcbi.1012655


4.2 Experiment 2: mms-DCM utilizes reciprocal information for estimating

local and global circuit parameters

4.2.1 Experiment 2a: local circuit information improves global circuit estimation. To

evaluate the impact of local circuit information on global circuit parameter estimation, we

compared three different methods illustrated in Fig 5.

Method 1 involves the first two steps of Experiment 1, utilizing local circuit priors for global

circuit estimation. In Step 1, the local circuit is estimated using 1 VSDI and 3 CaI signals from

column 1 (Ymethod1;step1 ¼ ½YCaI;c1;YVSDI;c1�). The estimated local circuit posteriors from column 1

are then used as priors for each column in Step 2. In this step, 3 CaI signals from column 1,

along with an additional 4 VSDI signals covering all columns, are employed to fit all circuit

parameters (Ymethod1;step2 ¼ ½YCaI;c1;YVSDI;c1;c2;c3;c4�).

Fig 4. Iterative parameter estimation of local and global circuit parameters for multimodal signals. A. This figure outlines an iterative process for

estimating neural circuits based on CaI and VSDI signals. Initially, local circuit parameters are estimated using available CaI signals from column 1. These

estimated local parameters serve as expectations of prior distributions for parameters in other columns, facilitating the exploration of inter-regional interaction

parameters (Ainter). The third step updates expectations of prior distributions for intra-regional connectivity parameters, while the final step precisely refines

those of both global and local circuit parameters. B and C. Simulated signals from the ground truth (dotted lines) and from the estimated parameters (solid

lines) are displayed. D and E. Comparisons between the ground truth parameters (θgt, x-axis) and the estimated parameters (θ*, y-axis) are presented for both

iterative (D) and one-step (E) estimations. The results from the optimal model parameters in both iterative and one-step estimations are compared in (B) ~ (E).

https://doi.org/10.1371/journal.pcbi.1012655.g004
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Method 2 mirrors Method 1’s conditions by using local parameter posteriors from column

1 for other columns. However, this method uses only four VSDI signals for model fitting in

Step 2, excluding the local CaI signals from column 1

ðYmethod2;step1 ¼ ½YCaI;c1;YVSDI;c1�;Ymethod2;step2 ¼ ½YVSDI;c1;c2;c3;c4�Þ.
Method 3 utilizes only the four VSDI signals, without incorporating any local information

estimated from CaI signals, to estimate global circuit inter-regional connectivity

(Ymethod3 ¼ ½YVSDI;r1;r2;r3;r4�).
The results, presented in Fig 5, show that the accuracy of parameter estimation is signifi-

cantly influenced by the inclusion of local circuit information. Method 1, which integrates

both local CaI and VSDI signals along with the posteriors of CaI signal estimation across

Fig 5. Evaluation of global circuit parameter estimation using local circuit priors (Experiment 2a). A. Three different methods, designated as

Method 1, Method 2, and Method 3, are depicted schematically. B. Scatter plots show correlations between the estimated parameters (θ*) and the

ground truth parameters (θgt). Method 1, which incorporates local circuit information into global circuit estimation, demonstrates the highest accuracy,

showcasing the significant impact of utilizing local data to enhance global parameter estimation accuracy.

https://doi.org/10.1371/journal.pcbi.1012655.g005
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columns, achieved the highest correlation with the ground truth parameters (r = 0.582,

p = 3.52 × 10−8). Method 2, using the same initial local circuit posteriors but omitting CaI sig-

nals for fine-tuning in the second step, showed a lower correlation (r = 0.516, p = 1.79 × 10−6).

Method 3, relying only on VSDI signals, demonstrated the lowest correlation (r = 0.467,

p = 2.12 × 10−5).

These findings underscore the significance of integrating local circuit information to accu-

rately capture the dynamics of global neural circuits. The results affirm the importance of com-

bining multimodal, multiscale signals for more precise global circuit model estimation.

4.2.2 Experiment 2b: global circuit information supports local circuit estimation. To

assess the impact of global circuit information on local circuit dynamics, we compared local

circuit parameters derived under two different contexts, as depicted in Fig 6. In Method 1

(local parameter estimation without global circuit information), the focus was solely on the

local circuit of column 1. This method isolated the column from others, using only CaI signals

from this column for parameter estimation. In contrast, Method 2 incorporated both local and

global circuit information to fit the local CaI signals at column 1 along with the global VSDI

signals from all columns.

The correlation of the ground truth with models’ estimated parameters for the local circuit

with global circuit information (Method 2) was r = 0.692 (p = 0.018) while those without global

circuit information (Method 1) was r = 0.530 (p = 0.094) (Fig 6). These results highlight the

significant role of global circuit information in achieving accurate estimations of local circuit

dynamics. It underscores the interdependence between local and global neural activities, dem-

onstrating that global insights can enhance the precision of local parameter estimations.

Fig 6. Utility of the global circuit information on local circuit estimation (Experiment 2b) . A. This experiment compares the local circuit of column 1

under two different evaluation contexts. In Method 1, the local circuit is evaluated in isolation (without global circuit information), focusing solely on its

inherent dynamics. B. Estimated and ground truth CaI and VSDI signals of Method 1 are plotted. The solid lines in the plots are generated from the estimated

parameters, reflecting the model’s interpretation of the neural activity. Conversely, the dotted lines represent the signals derived from the ground truth

parameters, serving as a benchmark for evaluating the accuracy of the model’s estimations. C. Scatter plots of Method 1 show correlations between the

estimated parameters (θ*) and the ground truth parameters (θgt) for Method 1. D. Method 2 evaluates the same local circuit within a broader global context,

incorporating global circuit information to potentially enhance parameter estimation accuracy. E. CaI and VSDI signals of Method 2 are plotted. F. Scatter plot

between the estimated parameters and the ground truth parameters of Method 2 is displayed.

https://doi.org/10.1371/journal.pcbi.1012655.g006
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4.3 Experiment 3: mms-DCM for integrating multimodal data across

experiments

In practical experimental setups, acquiring multimodal signals simultaneously can be challeng-

ing. A more feasible alternative involves repeating experiments to capture data from different

modalities separately. This experiment evaluates the utility of the mms-DCM framework, con-

sidering that data are collected from two separate experiments at slightly different time points

from the same neural system. The experiment operates under the assumption that while

dynamic neural activities may vary, the most critical system parameters, such as connectivity

and intrinsic properties, remain relatively consistent.

To simulate the collection of multimodal data at different times, we introduced slight varia-

tions in the system’s input gains across the time points. This was achieved by modifying the

input gain parameter C, perturbing it with noise following a normal distribution N (0, 0.04).

This experiment aimed to mimic the variability encountered in real-world data acquisition.

We created two scenarios: In the first, we combined the original VSDI signals with CaI sig-

nals of the perturbed system, represented as Y ¼ ½Y 0CaI;r1;YVSDI;r1;r2;r3;r4�. In the second scenario,

we used perturbed VSDI signals alongside the original CaI signals, denoted as

Y ¼ ½YCaI;r1;Y 0VSDI;r1;r2;r3;r4�, where Y0 indicates signals from the perturbed system (Fig 7A and

7D). We then evaluated the accuracy of parameter estimation using the mms-DCM, following

a procedure similar to that in Experiment 1.

The analysis yielded moderate fitting results for the perturbed signals (Fig 7B and 7E). The

correlation with ground truth parameters for the perturbed CaI signals was r = 0.460 (p = 2.88

×10−5), and for the perturbed VSDI signals, the correlation was r = 0.350 (p = 0.002) (Fig 7C

and 7F). These findings indicate that despite the introduction of noise into the input

Fig 7. Results of mms-DCM estimation with integrated multimodal data across replicated experiments (Experiment 3). A. Two cases from the experiment

are schematically displayed. In Case 1, CaI signals were obtained from a perturbed system, reflecting intentional variations in input parameters to simulate real-

world data inconsistencies. B. Estimated and ground truth CaI and VSDI signals of Case 1 are plotted. The solid lines are generated from the estimated

parameters, while the dotted lines depict signals derived from the ground truth parameters. C. Scatter plot of Case 1 shows correlations between the estimated

parameters (θ*) and the ground truth parameters (θgt). D. In Case 2, we used perturbed VSDI signals, introducing similar variability. E. Estimated and ground

truth CaI and VSDI signals of Case 2 are plotted. F. Scatter plot of the estimated and ground truth parameters of Case 2 is displayed.

https://doi.org/10.1371/journal.pcbi.1012655.g007
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parameters, the mms-DCM method can maintain a reasonable level of accuracy in estimating

model parameters, particularly concerning the neural circuit.

4.4 Experiment 4: mms-DCM for integration of multiscale multimodal CaI,

VSDI, and BOLD signals

In this section, we expand the mms-DCM framework to encompass BOLD signals alongside

the existing CaI and VSDI signals. In the present configuration, the VSDI signals from col-

umns 3 and 4, used in the previous section, are omitted. Instead, BOLD signals have been gath-

ered from two broader regions: r1, which encompasses both columns 1 and 2, and r2, which

comprises columns 3 and 4; Y ¼ ½YCaI;c1;YVSDI;c1;c2;YBOLD;r1;r2�. Similar to the previous section,

we apply an iterative estimation methodology to manage multiscale observed signals (Fig 8A).

By integrating these BOLD signals from combined columns, we aim to enhance the estimation

process by leveraging the distinct temporal and spatial characteristics of BOLD responses rela-

tive to the more localized and direct measurements of neuronal activity obtained from VSDI

and CaI signals.

We also compare the results of iterative estimation with those of one-step estimation as in

section 4.1. The observation signals of CaI, VSDI, and BOLD were better fitted in the iterative

estimation, compared to the one-step estimation (Fig 8B and 8C). For the iterative estimation,

the RMSE for CaI, VSDI, and BOLD were 0.561, 0.108, and 2.497, respectively (Fig 8B), which

were lower than those from the one-step estimation, which were 0.655, 0.219, and 10.673 (Fig

8C). Correlations between the estimated model parameters and ground truth were also higher

in the iterative estimation (r = 0.340, p = 0.003) than in one-step estimation (r = 0.138,

p = 0.236) (Fig 8D and 8E). This result underscores the effectiveness of iterative estimation in

capturing the complex dynamics of neural circuits across multiple observational modalities

and demonstrates the effectiveness of mms-DCM with CaI, VSDI, and BOLD signals.

4.5 Experiment 5: mms-DCM for an extended system

In this section, we extend the application of mms-DCM to a more complex system consisting

of two greater Regions, as illustrated in Fig 9A. Here, a Region includes two regions (or four

columns). We hypothesize that these Regions are identical and interconnected through an

interaction from column 2 of the first Region to column 1 of the second Region. The observa-

tional signals used for analysis are as follows: for the first Region, we use the same set as in the

previous section (Y ¼ ½YCaI;c1;YVSDI;c1;c2;YBOLD;r1;r2�), which includes 3 CaI at region 1 (YCaI;c1), 2

VSDI at region 1 (YVSDI,c1,c2), and 2 BOLD signals at region 1 and 2 (YBOLD;r1,r2). The second

Region is analyzed using only two BOLD signals (YBOLD;r3,r4).

Following the iterative mms-DCM estimation procedure described in section 4.4, we first

perform an iterative estimation for the first barrel cortex column. The estimated posterior neu-

ral circuit parameters of column 1 are then used as priors for the circuit estimation of column

2 (as shown in Fig 9A). This approach ensures a continuous optimization of both global and

local circuit parameters, including the inter-columnar interactions. In the final step, we select

the optimal solution based on the highest free energy. This result is compared with a one-step

estimation, as done in the previous sections.

The experiment results are consistent with trends observed in the previous sections: while

the one-step estimation produces a moderate level of signal reproduction, the iterative process

exhibits enhanced performance. Particularly notable is the one-step estimation’s significant

shortcoming in accurately reproducing BOLD signals for the second column (Fig 9B and 9C).

For the iterative estimation, the RMSE for CaI, VSDI, and BOLD were 0.213, 0.057, and 4.355,

respectively (Fig 9B), which were lower than those from the one-step estimation, which were
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0.641, 0.218, and 17.962 (Fig 9C). Additionally, the correlation between the ground truth and

the estimated parameters from the iterative estimation (r = 0.411, p = 1.16 ×10−7) is substan-

tially higher than that from the one-step estimation (r = 0.101, p = 0.212), reinforcing the effec-

tiveness and increased accuracy of the iterative mms-DCM approach when applied to a more

complex neural system (Fig 9D and 9E).

To evaluate how effectively our estimation methods refined parameter estimates by reduc-

ing uncertainty, we calculated the posterior shrinkage, as described in [31], defined by:

ri ¼ 1 �
s2
i;post

s2
i;prior

;

Fig 8. Parameter estimation incorporating local and global circuit priors for multimodal observation signals; CaI, VSDI, and BOLD signals. A. This

outlines an iterative process for estimating neural circuits based on CaI, VSDI, and BOLD signals. The process begins by estimating the local circuit parameters

using CaI signals available exclusively in column 1. These estimated local parameters then serve as prior expectations for parameters in other columns,

facilitating the exploration of inter-regional interaction parameters (Ainter). The third step updates expectations of prior distributions for intra-regional

connectivity parameters, and the final step meticulously refines those of both global and local circuit parameters, ensuring comprehensive integration of all data

sources. B and C. Simulated signals (CaI, VSDI, and BOLD) from the ground truth (dotted lines) and the estimated parameters (solid lines) are displayed. D

and E. Correlations between the ground truth parameters (θgt, x-axis) and the estimated parameters (θ*, y-axis) are presented for the iterative (D) and the one-

step (E) estimation schemes. The simulation results with optimal model parameters obtained from the iterative and the one-step estimation schemes are

compared in (B) ~ (E).

https://doi.org/10.1371/journal.pcbi.1012655.g008
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where, s2
i;prior and s2

i;post represent the variance of prior and posterior distribution of parame-

ter i.
We compared the posterior shrinkage of effective connectivity between the iterative and

one-step estimation methods for both intra- and inter-regional connectivity. The results

showed a significant reduction in variance from prior to posterior estimates in the iterative

estimation process, particularly for intra-regional connectivity, as indicated by higher ρi values

in the blue box plots compared to the red box plots in Fig 10. In contrast, the one-step estima-

tion method showed relatively less reduction in posterior variance for both intra- and inter-

regional connectivity. These findings suggest that the iterative method more effectively utilized

information from the data.

Fig 9. Results of iterative mms-DCM for extended system that consists of two Regions. A. The estimation process for the extended system involves two

interconnected Regions. Initially, we estimate the circuitry of the first Region by adhering to the methodology outlined in Experiment 4, as presented in Fig 8 of

Section 4.4. Following this, we proceed with both local and global circuit estimations for the extended system, utilizing priors derived from the initial

estimation step. B and C. Simulated signals (CaI, VSDI, and BOLD signals) from ground truth (dotted lines) and estimated parameters (solid lines) are

displayed. D and E. Comparisons between the ground truth parameters (θgt, x-axis) and the estimated parameters (θ*, y-axis) are presented for the iterative (D)

and the one-step (E) estimation schemes. The simulation results with optimal model parameters obtained from the iterative and the one-step estimation

schemes are compared in (B) ~ (E).

https://doi.org/10.1371/journal.pcbi.1012655.g009
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5. Discussion

In this study, we present a DCM framework designed to effectively estimate neural circuits

from multiscale and multimodal data, named mms-DCM. By utilizing a biologically plausible

virtual system as a ground truth model, we illustrate how a reciprocal, multiscale approach

that leverages diverse and partially observed multimodal signals can significantly enhance the

accuracy of parameter estimation of a larger neural circuit. This approach strategically uses the

posterior probabilities of local circuit parameters as informative priors for estimating global

circuit parameters and, conversely, incorporates global circuit information to refine local cir-

cuit estimations. The framework is demonstrated using a combination of VSDI, CaI, and

BOLD signals collected from a unified ground truth system. This innovative method offers a

more nuanced and comprehensive understanding of neural circuits by effectively integrating

varied neuroimaging data and may serve as a valuable tool for advancing our understanding of

complex brain dynamics.

The increasing focus on multimodal signals in neuroscience research stems from their abil-

ity to provide complementary information crucial for understanding the brain. Studies like

those by Engemann, Kozynets [32] and Schirner, Rothmeier [33] demonstrate the benefits of

Fig 10. Posterior shrinkages from prior distributions for each effective connectivity in experiment 5. Posterior

shrinkages (ρi) of each parameter i from prior distributions in iterative estimation (left) and one-step estimation (right)

are displayed. Both panels use blue box plots for intra-regional (Aintra) and red for inter-regional (Ainter) connectivity,

with significant differences marked by three asterisks (* and *** represents p< 0.01 and p< 0.0001, respectively).

Statistical significance was assessed using the Kruskal-Wallis test since the groups have different variances, violating

the homogeneity of variance assumption required for one-way ANOVA.

https://doi.org/10.1371/journal.pcbi.1012655.g010
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combining modalities such as magnetoencephalography (MEG) and fMRI, or EEG and fMRI,

for brain state modeling. These combinations are straightforward in terms of integrating the

spatial coverage of EEG/MEG and fMRI data.

However, in preclinical research, the practical challenges of integrating multimodal data are

more pronounced due to differences in resolution, span, and data availability across modali-

ties. For instance, CaI typically focuses on a narrow region with cell-level resolution, whereas

fMRI covers broader areas with regional-level resolution. This disparity in spatial coverage

and resolution between modalities like CaI and fMRI presents a significant challenge. How to

effectively combine such multimodal data with heterogeneous regional coverage is an issue

that has not been extensively explored.

Addressing this challenge requires innovative computational approaches that can accom-

modate the differing scales and resolutions of various imaging techniques. Such models need

to account for the unique strengths and limitations of each modality to provide a comprehen-

sive and accurate representation of brain activity. Wei, Jafarian [10] proposed a DCM scheme

using EEG-fMRI data, suggesting a Bayesian fusion method; a posterior density that was esti-

mated from EEG was used as a prior of model parameters with fMRI data. In their approach,

the neural state dynamics differ between EEG and fMRI. Unlike their approach, our study

employs a common neural state dynamic model with different observation models, avoiding

issues in matching parameters of different neural state models. We fit all available signals to

estimate a single set of model parameters for the common neural state model.

We further propose an iterative methodology to combine neuroimaging data of varying

scales and spatial extents, a common scenario in preclinical and basic neuroscience research.

This method effectively addresses the typical trade-offs between high-resolution imaging,

which focuses on specific areas, and low-resolution imaging that covers the entire system. Our

approach, as exemplified by combinations like CaI with VSDI or CaI with BOLD, leverages

parameter posteriors estimated at one scale as priors for another scale. For instance, local cir-

cuits estimated with CaI data in a specific region are used as priors for broader system estima-

tion with VSDI, and similarly in reverse.

Our experimental results demonstrate that this iterative estimation approach is more effec-

tive than traditional one-step estimations that rely on less informative priors. This process

allows for a more constrained and biologically plausible search space for the larger circuit

model, enhancing the accuracy of the neural circuit estimation. Notably, this methodology

underscores the importance of integrating both local and global circuit information from dif-

ferent imaging modalities. By recognizing the reciprocal and complementary roles of these

diverse data sources, we can more accurately model neural activity, accommodating the het-

erogeneity inherent in the observation modalities.

Theoretically, there is no inherent prioritization between estimating local intra-regional

and global inter-regional parameters; instead, iterative estimation facilitates convergence by

allowing these parameter sets to inform each other reciprocally. Practically, however, it is pref-

erable to first estimate low-level biological features, which then serve as a basis for establishing

global parameters. We assumed that local microscopic biological properties are generally con-

sistent across different brain regions compared to the more variable inter-regional global

parameters. Based on this assumption, we assigned priors to parameters for regions without

observed signals using parameter estimates from regions with observed signals, thereby

enhancing the efficiency of the entire parameter estimation process. Additionally, under this

assumption, we used BAYESopt to search for reference values for local properties. By using a

single reference value for each biological property across all local regions, this approach con-

strains parameter estimates for these properties within a similar range across regions, even

after final DCM fine-tuning. Conversely, suppose we do not use a single reference value but

PLOS COMPUTATIONAL BIOLOGY Integrating multimodal neural signals for neural circuit estimation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012655 December 23, 2024 24 / 29

https://doi.org/10.1371/journal.pcbi.1012655


instead use DCM with a wide prior variance for each biological property in each region. In

that case, we cannot ensure that biological properties remain within a similar range across

local regions.

In multiscale brain modeling, a common approach has been the bottom-up method, where

small modules with limited parameters are compiled, often sharing parameters across small

modules to fit brain dynamics data. For example, Schmidt, Bakker [34] developed the full-den-

sity multi-area spiking network model of the macaque visual cortex, successfully reproducing

cortical activity features across scales, from individual cell spiking statistics to global resting-

state networks. In their model, microcircuits for each cortical area, detailed in their layer-spe-

cific architecture and connectivity, were constructed from smaller modules, reflecting the

intricate dynamics of brain activity on various scales. Likewise, Dura-Bernal, Suter [35] devel-

oped the NetPyNE tool (https://www.netpyne.org), which allows for the construction of

detailed multiscale models by specifying high-level rules and parameters, which are then auto-

matically translated into NEURON (https://nrn.readthedocs.io/en/8.2.4/) simulation compo-

nents. This method simplifies the process of incorporating complex experimental data from

various scales, from molecular to cellular to network levels, into unified computational models.

This approach generally focused on the rule-based bottom-up model construction and rela-

tively less emphasis on large circuit parameter optimization.

Our study, however, diverges from these bottom-up multiscale methods by employing an

integrative strategy. We utilize both bottom-up and top-down approaches that effectively har-

ness prior knowledge, leveraging the insights gained from available signals to inform the

parameters of unobserved signals. The findings of our study reinforce the notion that local

neural activities are deeply entangled with and significantly influence global circuit dynamics.

This interplay highlights the importance of understanding global circuits for accurately esti-

mating local circuits, as local regions do not operate in isolation. The accurate modeling of

local circuit activities necessitates understanding their interactions within the broader neural

network. Conversely, information about local circuits is equally crucial when estimating larger,

global circuits. Data observed in local circuits can provide critical insights into the nodal prop-

erties of other regions within the global neural network, particularly in areas where direct

observations might not be available. This approach leads to more biologically accurate estima-

tions of parameters across the neural network. In our experimental framework, a local circuit,

defined by experimental data from a specific region, serves as a model or reference for other

regions, allowing for slight variations across local regions. This is crucial for capturing the sub-

tle differences and nuances that exist in different parts of the neural network while maintain-

ing a coherent model structure.

The primary limitation of our study is that its validity has been tested only in simulation-

based experiments, which may not fully encapsulate the complexities of real-world scenarios.

While our simulations are informed by data from the mouse cortical circuit, extending this

methodology to experimental data involving multiscale and multimodal dimensions remains

an objective for future research. This goal is contingent on the availability of such data. Even

with the application to experimental data, simulations might still play a crucial role due to the

inherent difficulty in accessing ground truth in real neural systems [10,36–38]. Additionally,

the simplification that local neural circuits are uniform across different brain areas may intro-

duce inaccuracies, especially within large and heterogeneous neural systems. Furthermore,

given the higher number of parameters relative to observational data, particularly in the non-

linear system, there is a risk that different effective connectivity configurations could yield sim-

ilar observational outcomes, introducing potential degeneracy, as discussed in prior studies

[39,40]. Thus, the primary challenge is not reaching an optimal solution but ensuring that this

solution is valid and accurately represents real biological systems. Addressing this would
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require a more precise model with additional biological constraints. These limitations pertain

more to the selection of an appropriate model than to the parameter optimization approach

addressed in this study.

Our study predominantly utilizes CaI, VSDI, and BOLD signals, which are commonly used

in animal research. However, the fundamental principles of our approach have the potential

for adaptation to human brain studies. For instance, this method could be applied using com-

binations of electrocorticogram (ECoG) or stereo-electroencephalography (SEEG) with EEG

or MEG signals for large-scale whole-brain circuit analysis, particularly in the study of epi-

lepsy. For this purpose, fiber tractography using diffusion magnetic resonance imaging can be

combined for better modeling of the whole brain circuit.

Furthermore, while our current framework is built on a convolution-based model, its versa-

tility allows for extension to other types of neural state models. An example of this adaptability

can be seen in the conductance model demonstrated by Shaw, Muthukumaraswamy [41].

Additionally, it can be adapted for a multi-state neural dynamics model, as explored in the

context of diverse seizure states [42]. This flexibility suggests that our approach could be

refined and expanded in future research to accommodate a broader range of neural dynamics

and conditions.

In summary, our research presents the mms-DCM scheme, a novel approach in the con-

struction of computational neural circuits for a large scope with details. We have shown that

by integrating stepwise techniques and dynamically updating priors for both local and global

circuit parameters driven by partially observed signals from multimodal imaging, our

approach can effectively estimate the complexities of extensive neural systems. The strength of

the mms-DCM lies in its ability to integrate diverse data sources and scales, overcoming mis-

matching of data availability, and providing a more holistic view of neural function and

interactions.
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